2021年整式的乘除专项训练

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘除专项训练

欧阳光明(2021.03.07)

一、同底数幂的乘法:公式:n m n m a a a +=

1.下面的计算对不对?

(1)523632=⨯; (2)633a a a =+;

(3)n n n y y y 22=⨯; (4)22m m m =⋅;

(5)422)()(a a a =-⋅-; (6)1243a a a =⋅;

2.填空

=⋅53x x ; =⋅⋅32a a a ; =⋅2x x n ;⋅2x =6x ;

34a a a ⋅⋅ = =--⋅43)()(a a ;=--⋅24)()(m m ; =--⋅32)()(q q n ;

;___________11=⋅-+n n x x =⋅⋅+⋅4353x x x x x _____;

_________21=⋅-⋅+y y y y n n ;=-⋅-32)()(a a ;=-⋅23b b ;=-⋅3)(a a ;=⋅-32)(x x ;()()()352a a a -⋅-⋅-- = _;()=-⋅-⋅-62)()(a a a ;=-⋅-)()(32a a p ____________;=⨯⨯32333; =⨯461010;=⋅100010m ; ()()()53222--- =; =-⨯-62)3

1()31(;=--⋅67)5()5(;=-⋅2433;=-⨯-)2(86________;

;__________10210365=⨯⨯⨯=⨯10000105; =-⋅-43)()(a b a b ;=---+-333)()()(n n y x y x y x _____________;

=--43)()(x y y x ____________;=---)()(5y x x y ____________;=++32)()(x y y x

3.拓展提升

(1)若6322=⋅m ,则m 等于___________.

(2)已知

2111145(01),(0,)m n n m n x x x x x y y y y -+--=≠≠=≠≠且且且y 1, 求2mn 的值.(3)已知.,3222的值求n m n m +=⋅(4)已知912224=⨯⨯+a a ,且28a b +=,求b

a 的值.

(5)当23,x a x b ==,则7x 等于_________________. (6)若a m =10,b n =10,那么=+n m 10______.

(7)已知.,12,3的值求y y x x a a a ==+

(8)已知y x y x +==求,24,84的值.

(9)计算.)2()2(101100-+-

二、幂的乘方:公式:

mn n m a a =)(

1.填空

=24)(a __________; =10)(m a _________;__________)(124=-m x ; =⋅532)(a a ______;77)(m = ___________; 3)(m b - = ___________; 535)(m m = ___________; 3223)()(y y = ___________; =-22254223)()()()(x x x x _________;=-77)(x __________;

=-23)(x __________;=-32)(a __________;

=-⋅3224)()(a a __________;

3

23)()(a a -⋅-=________________;=⋅--3422)()(x x _______________;____________________)()(1231=⋅-++m m a a ;=63)10(__________; 42)2(-=___________;32)3(-=___________;22)2(-=___________ 22)2(-=___________ ; =-⋅-⋅+-522256)()()(8)2(y x x y x _________;

=+m y x ])[(2_________;=-⋅-523)(])[(y x y x ____________;

2.拓展提升

(1)若3=n x , 则n x 3=________;若,23=m x 则=m x 9___________;

(2)如果1-=n x ,则=33)(n x ________;若32=n x ,则

=43)(n x _________;

(3)已知,2,332==m n y x 求代数式m n y x 962-的值.

(4)计算).42)(24(n n ⋅⋅

(5)若2139273m m ⨯⨯=,则m 的值为___________;若,3)9(122=n 则n 的值为_____;

若1228-=x x ,则x 的值为____________;若,512525521=⨯⨯x x 则x 的值为_______;

(6)若2,7x y a a ==,则2x y a +=________;

(7)已知a m =5,a n =3,求n m a 32+的值.

(8)若0352=-+y x ,求y x 324⨯的值.

(9)比较2100与375的大小.

(10)试比较3333444455555,4,3三个数的大小.

三、积的乘方:公式:

m m m b a ab =)(

1.填空:

=2)2(x ___________;3)(ab =_________;2)3(a =__________;22)(ab =__________;

2

4)2(a =_________;3)2(x -=__________;32)2(b a -=_______; ______)3(242=-y x ;=-332)21(b a ___________;=-332)3

2(y x ________; =-223)2(z y x ___________;21223()(2)m n a a a +-=_______;

=n ab )(____________;=33)(n n b a __________; 32)(b a n =

___________;

相关文档
最新文档