人教A版高中数学必修4第一章 三角函数1.1 任意角和弧度制导学案(1)

合集下载

新课标人教A版必修4教案(全)

新课标人教A版必修4教案(全)

第一章 三角函数1.1任意角和弧度制1.1.1任意角一、 教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境:“转体720︒,逆(顺)时针旋转”,角有大于360︒角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25 小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图 1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x 轴的非负半轴重合。

高一数学人教A版必修4第一章(三角函数)本章小结课件

高一数学人教A版必修4第一章(三角函数)本章小结课件

1-(-
5 5
)2
=
-
2
5 5
.
6. 用 cosa 表示 sin4a-sin2a+cos2a.
解: sin4a-sin2a+cos2a = sin2a(sin2a-1)+cos2a = sin2a(-cos2a)+cos2a = cos2a(1-sin2a) = cos4a.
7. 求证:
(1) 2(1-sina)(1+cosa) = (1-sina+cosa)2; (2) sin2a+sin2b-sin2a·sin2b+cos2a·cos2b =1.
6. 终边位置确定三角函数值的正负
y
y
y
++ -o - x
-+
ox
-+
-+
ox
+-
sina
cosa
tana
正弦上正下负, 余弦右正左负, 正切一三正二四负.
7. 同角三角函数的关系
sin2a+cos2a=1,
sina cosa
=
tana
.
常用的变形:
sin2a=1-cos2a. cos2a=1-sin2a.
解: 由已知得 sin2x=4cos2x, 1-cos2x=4cos2x,
解得 cos x =
5 5
.
又由已知得 tanx =2,
则 x 是第一、第三象限角.
当 x 是第一象限角时,
cos x =
5 5
,
sin x =
1-(
5 5
)2=
2
5 5
;
当 x 是第三象限角时,

高中数学第一章三角函数1.2.1任意角的三角函数(一)导学案新人教A版必修4(2021年整理)

高中数学第一章三角函数1.2.1任意角的三角函数(一)导学案新人教A版必修4(2021年整理)

2018版高中数学第一章三角函数1.2.1 任意角的三角函数(一)导学案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第一章三角函数1.2.1 任意角的三角函数(一)导学案新人教A版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第一章三角函数1.2.1 任意角的三角函数(一)导学案新人教A版必修4的全部内容。

1.2。

1 任意角的三角函数(一)学习目标 1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2。

借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号。

3.通过对任意角的三角函数定义的理解,掌握终边相同的角的同一三角函数值相等.知识点一任意角的三角函数使锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,作PM⊥x 轴于M,设P(x,y),|OP|=r。

思考1 角α的正弦、余弦、正切分别等于什么?答案sin α=错误!,cos α=错误!,tan α=错误!。

思考2 对确定的锐角α,sin α,cos α,tan α的值是否随P点在终边上的位置的改变而改变?答案不会.因为三角函数值是比值,其大小与点P(x,y)在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关。

思考3 在思考1中,当取|OP|=1时,sin α,cos α,tan α的值怎样表示?答案 sin α=y,cos α=x,tan α=错误!.梳理(1)单位圆在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆。

高一数学人教A版必修四教案:第一章三角函数1-2任意角的三角函数

高一数学人教A版必修四教案:第一章三角函数1-2任意角的三角函数
问题 2.以上结论对任一个角 都成立吗?你能够说明吗?
(1) (sin)2 (cos)2 1对任一个角 都成立;
sin tan 对任何一个不等于 k (k Z ) 的角 都成立.
cos
2
(2)说明方法 1:用三角函数的定义说明(利用定义)
说明方法 2:用三角函数线说明(数形结合)
(3)体会从特殊到一般的认知规律,了解同角三角函数关系的几何意义.

所以原等式成立.
证法 2、(1 sin x)(1 sin x) 1 sin2 x cos2 x cos x cos x
且1 sin x 0,cos x 0 cos x 1 sin x
(2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所 在象限进行分类讨论.
五、评价设计
(1) 作业:习题 1.2A 组第 10,13 题. (2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.
1.2.3 同角三角函数的基本关系
教学重点:正弦、余弦、正切线的概念。 教学难点:正弦、余弦、正切线的利用。 授课类型:新授课 教学模式:讲练结合 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.三角函数的定义及定义域、值域:
练习 1:已知角 的终边上一点 P( 3, m) ,且 sin 2m ,求 cos,sin 的值。
r
x
当 m 5 时, r 2 2, x 3 ,
cos x 6 , tan y 15 ;
r4
x3
当 m 5 时, r 2 2, x 3 ,
cos x 6 , tan y 15 .
r4
x3
2.三角函数的符号:

高中数学第一章三角函数1.1任意角和弧度制1.1.1任意角课堂导学案新人教A版必修4(2021学年)

高中数学第一章三角函数1.1任意角和弧度制1.1.1任意角课堂导学案新人教A版必修4(2021学年)

高中数学第一章三角函数1.1 任意角和弧度制 1.1.1任意角课堂导学案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.1 任意角和弧度制 1.1.1任意角课堂导学案新人教A版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数1.1 任意角和弧度制 1.1.1 任意角课堂导学案新人教A版必修4的全部内容。

1.1.1 任意角课堂导学三点剖析1.任意角的概念和象限角的概念【例1】 若α是第四象限角,那么2α是第几象限角? 思路分析:运用直角坐标系内角的表示及不等式性质,先用不等式把第四象限的角表示出来,然后再确定2α的范围. 解:∵α是第四象限角。

∴270°+k·360°<α<360°+k·360°(k∈Z ),则有, 135°+k·180°<2α<180°+k·180°(k∈Z )。

当k=2n (n∈Z )时,135°+n·360°<2α<180°+n·360°, ∴2α是第二象限角. 当k =2n+1(n∈Z )时 315°+n·360°<2α<360°+n·360°, ∴2α是第四象限角. 综上所述,2α是第二或第四象限角. 温馨提示准确表示第四象限角,再分k 为奇数、偶数两种情况讨论。

不要认为α为第四象限角,2α是第二象限角。

第一章三角函数教案

第一章三角函数教案

第一章三角函数1.1 任意角和弧度制1.1.1 任意角一、教学目标:1、知识与技能(1)推广角的概念、引入大于360 角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4) 掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣. (7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境:“转体720 ,逆(顺)时针旋转”,角有大于360 角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分. 角的概念推广以后,知道角之间的关系. 理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角, 最小的角是零角. 通过回忆和观察日常生活中实际例子, 把对角的理解进行了推广. 把角放入坐标系环境中以后, 了解象限角的概念. 通过角终边的旋转掌握终边相同角的表示方法. 我们在学习这部分内容时, 首先要弄清楚角的表示符号, 以及正负角的表示. 另外还有相同终边角的集合的表示等.教学用具: 电脑、投影机、三角板四、教学设想【创设情境】思考: 你的手表慢了 5 分钟,你是怎样将它校准的?假如你的手表快了 1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[ 取出一个钟表, 实际操作] 我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上, 这就是说角已不仅仅局限于0 360 之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0 360 角的概念,它是如何定义的呢?[ 展示投影] 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 如图 1.1-1 ,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角. 旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫的顶点.2. 如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转1体720 ”(即转体 2 周),“转体1080 ”(即转体 3 周)等, 都是遇到大于360 的角以及按不同方向旋转而成的角. 同学们思考一下: 能否再举出几个现实生活中“大于360 的角或按不同方向旋转而成的角”的例子, 这些说明了什么问题?又该如何区分和表示这些角呢?[ 展示课件] 如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定: 按逆时针方向旋转所形成的角叫正角(positive angle), 按顺时针方向旋转所形成的角叫负角(negative angle). 如果一条射线没有做任何旋转, 我们称它形成了一个零角(zero angle).[ 展示课件] 如教材图 1.1.3(1) 中的角是一个正角, 它等于750 ;图 1.1.3(2) 中,正角210 ,负角150 , 660 ;这样,我们就把角的概念推广到了任意角(anyangle ), 包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角”或“”可简记为.3. 在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与x轴的非负半轴重合。

人教A版精编高中数学必修4第一章三角函数1.1.1任意角导学案

人教A版精编高中数学必修4第一章三角函数1.1.1任意角导学案

1.1.1.任意角学习目标.1.了解角的概念.2.掌握正角、负角和零角的概念,理解任意角的意义.3.熟练掌握象限角、终边相同的角的概念,会用集合符号表示这些角.知识点一.角的相关概念思考1.用旋转方式定义角时,角的构成要素有哪些?答案.角的构成要素有始边、顶点、终边.思考2.将射线OA绕着点O旋转到OB位置,有几种旋转方向?答案.有顺时针和逆时针两种旋转方向.思考3.如果一个角的始边与终边重合,那么这个角一定是零角吗?答案.不一定,若角的终边未作旋转,则这个角是零角.若角的终边作了旋转,则这个角就不是零角.梳理.(1)角的概念:角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB 所成的图形.点O是角的顶点,射线OA,OB分别是角α的始边和终边.(2)按照角的旋转方向,分为如下三类:知识点二.象限角思考.把角的顶点放在平面直角坐标系的原点,角的始边与x轴的非负半轴重合,旋转该角,则其终边(除端点外)可能落在什么位置?答案.终边可能落在坐标轴上或四个象限内.梳理.在直角坐标系内,使角的顶点与原点重合,角的始边与x轴的非负半轴重合.象限角:终边在第几象限就是第几象限角;轴线角:终边落在坐标轴上的角.知识点三.终边相同的角思考1.假设60°的终边是OB,那么-660°,420°的终边与60°的终边有什么关系,它们与60°分别相差多少?答案.它们的终边相同.-660°=60°-2×360°,420°=60°+360°,故它们与60°分别相差了-2个周角及1个周角.思考2.如何表示与60°终边相同的角?答案.60°+k·360°(k∈Z).梳理.终边相同角的表示:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.类型一.任意角概念的理解例1.(1)给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③第二象限角是钝角;④小于180°的角是钝角、直角或锐角.其中正确说法的序号为 .(把正确说法的序号都写上)(2)将时钟拨快20分钟,则分针转过的度数是 .答案.(1)①.(2)-120°解析.(1)锐角指大于0°小于90°的角,都是第一象限的角,所以①对;由任意角的概念知,第一象限角也可为负角,第二象限角不一定是钝角,小于180°的角还有负角、零角,所以②③④错误.(2)分针每分钟转6°,由于顺时针旋转,所以20分钟转了-120°.反思与感悟.解决此类问题要正确理解锐角、钝角、0°~90°角、象限角等概念.角的概念推广后,确定角的关键是确定旋转的方向和旋转量的大小.跟踪训练1.写出下列说法所表示的角.(1)顺时针拧螺丝2圈;(2)将时钟拨慢2小时30分,分针转过的角.解.(1)顺时针拧螺丝2圈,螺丝顺时针旋转了2周,因此所表示的角为-720°.(2)拨慢时钟需将分针按逆时针方向旋转,因此将时钟拨慢2小时30分,分针转过的角为900°.类型二.象限角的判定例2.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解.(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角. 引申探究确定αn(n ∈N *)的终边所在的象限.解.一般地,要确定αn所在的象限,可以作出各个象限的从原点出发的n 等分射线,它们与坐标轴把周角分成4n 个区域,从x 轴的非负半轴起,按逆时针方向把这4n 个区域依次标上1,2,3,4,…,4n ,标号为几的区域,就是根据α所在第几象限时,αn的终边所落在的区域,如此,αn所在的象限就可以由标号区域所在的象限直观的看出.反思与感悟.判断象限角的步骤: (1)当0°≤α<360°时,直接写出结果;(2)当α<0°或α≥360°时,将α化为k ·360°+β(k ∈Z ,0°≤β<360°),转化为判断角β所属的象限.跟踪训练2.下列各角分别是第几象限角?请写出与下列各角终边相同的角的集合S ,并把S 中适合不等式-360°≤β<720°的元素β写出来. (1)60°;(2)-21°.解.(1)60°角是第一象限角,所有与60°角终边相同的角的集合S ={β|β=60°+k ·360°,k ∈Z },S 中适合-360°≤β<720°的元素是60°+(-1)×360°=-300°,60°+0×360°=60°,60°+1×360°=420°.(2)-21°角是第四象限角,所有与-21°角终边相同的角的集合S ={β|β=-21°+k ·360°,k ∈Z },S 中适合-360°≤β<720°的元素是-21°+0×360°=-21°,-21°+1×360°=339°,-21°+2×360°=699°. 类型三.终边相同的角命题角度1.求与已知角终边相同的角例3.在与角10 030°终边相同的角中,求满足下列条件的角. (1)最大的负角;(2)最小的正角;(3)[360°,720°)的角.解.与10 030°终边相同的角的一般形式为β=k ·360°+10 030°(k ∈Z ),(1)由-360°<k ·360°+10 030°<0°,得-10 390°<k ·360°<-10 030°,解得k =-28,故所求的最大负角为β=-50°.(2)由0°<k ·360°+10 030°<360°,得-10 030°<k ·360°<-9 670°,解得k =-27,故所求的最小正角为β=310°.(3)由360°≤k ·360°+10 030°<720°,得-9 670°≤k ·360°<-9 310°,解得k =-26,故所求的角为β=670°.反思与感悟.求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k 的值.跟踪训练3.写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.解.由终边相同的角的表示知,与角α=-1 910°终边相同的角的集合为{β|β=k ·360°-1 910°,k ∈Z }. ∵-720°≤β<360°,即-720°≤k ·360°-1 910°<360°(k ∈Z ), ∴31136≤k <61136(k ∈Z ),故取k =4,5,6. 当k =4时,β=4×360°-1 910°=-470°; 当k =5时,β=5×360°-1 910°=-110°; 当k =6时,β=6×360°-1 910°=250°. 命题角度2.求终边在给定直线上的角的集合 例4.写出终边在直线y =-3x 上的角的集合.解.终边在y =-3x (x <0)上的角的集合是S 1={α|α=120°+k ·360°,k ∈Z }; 终边在y =-3x (x ≥0)上的角的集合是S 2={α|α=300°+k ·360°,k ∈Z }.因此,终边在直线y =-3x 上的角的集合是S =S 1∪S 2={α|α=120°+k ·360°,k ∈Z }∪{α|α=300°+k ·360°,k ∈Z },即S ={α|α=120°+2k ·180°,k ∈Z }∪{α|α=120°+(2k +1)·180°,k ∈Z }={α|α=120°+n ·180°,n ∈Z }.故终边在直线y =-3x 上的角的集合是S ={α|α=120°+n ·180°,n ∈Z }.反思与感悟.求终边在给定直线上的角的集合,常用分类讨论的思想,即分x ≥0和x <0两种情况讨论,最后再进行合并. 跟踪训练4.写出终边在直线y =33x 上的角的集合. 解.终边在y =33x (x ≥0)上的角的集合是S 1={α|α=30°+k ·360°,k ∈Z };终边在y=33x(x<0)上的角的集合是S2={α|α=210°+k·360°,k∈Z}.因此,终边在直线y=33x上的角的集合是S=S1∪S2={α|α=30°+k·360°,k∈Z}∪{α|α=210°+k·360°,k∈Z},即S={α|α=30°+2k·180°,k∈Z}∪{α|α=30°+(2k+1)·180°,k∈Z}={α|α=30°+n·180°,n∈Z}.故终边在直线y=33x上的角的集合是S={α|α=30°+n·180°,n∈Z}.类型四.区域角的表示例5.如图所示.(1)写出终边落在射线OA,OB上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.解.(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)的角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.反思与感悟.解答此类题目应先在0°~360°上写出角的集合,再利用终边相同的角写出符合条件的所有角的集合,如果集合能化简的还要化成最简.跟踪训练5.如图所示,写出终边落在阴影部分的角的集合.解.设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集,即S={α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.1.下列说法正确的是(..)A.终边相同的角一定相等B.钝角一定是第二象限角C.第一象限角一定不是负角D.小于90°的角都是锐角答案.B2.与-457°角终边相同的角的集合是(..)A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}答案.C解析.-457°=-2×360°+263°,故选C.3.2 017°是第象限角.答案.三解析.因为2 017°=5×360°+217°,故2 017°是第三象限角.4.与-1 692°终边相同的最大负角是 .答案.-252°解析.∵-1 692°=-4×360°-252°,∴与-1 692°终边相同的最大负角为-252°.5.写出终边落在坐标轴上的角的集合S.解.终边落在x轴上的角的集合:S1={β|β=k·180°,k∈Z};终边落在y轴上的角的集合:S2={β|β=k·180°+90°,k∈Z}.∴终边落在坐标轴上的角的集合:S=S1∪S2={β|β=k·180°,k∈Z}∪{β|β=k·180°+90°,k∈Z}={β|β=2k·90°或β=(2k+1)·90°,k∈Z}={β|β=n·90°,n∈Z}.1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.2.关于终边相同的角的认识一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 注意:(1)α为任意角;(2)k·360°与α之间是“+”号,k·360°-α可理解为k·360°+(-α);(3)相等的角终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍;(4)k∈Z这一条件不能少.课时作业一、选择题1.把-1 485°化成k·360°+α(0°≤α<360°,k∈Z)的形式是(..)A.315°-5×360°B.45°-4×360°C.-315°-4×360°D.-45°-10×180°答案.A解析.可以估算-1 485°介于-5×360°与-4×360°之间.∵0°≤α<360°,∴k=-5,则α=315°.2.若α是第四象限角,则180°-α是(..)A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案.C解析.可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.3.设A={θ|θ为锐角},B={θ|θ为小于90°的角},C={θ|θ为第一象限的角},D={θ|θ为小于90°的正角},则下列等式中成立的是(..)A.A=BB.B=CC.A=CD.A=D答案.D解析.直接根据角的分类进行求解,容易得到答案.4.时针走过了2小时40分,则分针转过的角度是(..)A.80°B.-80°C.960°D.-960°答案.D解析.分针转过的角是负角,且分针每转一周是-360°,故共转了-360°×(2+4060)=-960°.5.若α与β的终边关于x轴对称,则α可以用β表示为(..)A.2kπ+β(k∈Z)B.2kπ-β(k∈Z)C.kπ+β(k∈Z)D.kπ-β(k∈Z)答案.B解析.∵α与β的终边关于x轴对称,∴α+β=2kπ(k∈Z),∴α=2kπ-β(k∈Z).故选B.6.设集合A={α|α=45°+k·180°,k∈Z}∪{α|α=135°+k·180°,k∈Z},集合B ={β|β=45°+k·90°,k∈Z},则(..)A.A∩B=∅B.A BC.B AD.A=B答案.D解析.对于集合A,α=45°+k·180°=45°+2k·90°或α=135°+k·180°=45°+90°+2k·90°=45°+(2k+1)·90°.∵k∈Z,∴2k表示所有的偶数,2k+1表示所有的奇数,∴集合A={α|α=45°+n·90°,n∈Z},又集合B={β|β=45°+k·90°,k∈Z},∴A=B.故选D.二、填空题7.已知角α=-3 000°,则与α终边相同的最小正角是 .答案.240°解析.与α=-3 000°终边相同的角的集合为{θ|θ=-3 000°+k·360°,k∈Z},令-3 000°+k ·360°>0°,解得k >253,故当k =9时,θ=240°满足条件.8.如图,终边落在OA 的位置上的角的集合是 ;终边落在OB 的位置上,且在-360°~360°内的角的集合是 ;终边落在阴影部分(含边界)的角的集合是 .答案.{α|α=120°+k ·360°,k ∈Z }.{315°,-45°} {α|-45°+k ·360°≤α≤120°+k ·360°,k ∈Z } 解析.终边落在OA 的位置上的角的集合是 {α|α=120°+k ·360°,k ∈Z }. 终边落在OB 的位置上的角的集合是 {α|α=315°+k ·360°,k ∈Z }, 取k =0,-1得α=315°,-45°. 故终边落在OB 的位置上,且在-360°~360°内的角的集合是{315°,-45°}. 终边落在阴影部分的角的集合是{α|-45°+k ·360°≤α≤120°+k ·360°,k ∈Z }. 9.若α=k ·360°+45°,k ∈Z ,则α2是第 象限角.答案.一或三解析.∵α=k ·360°+45°,k ∈Z , ∴α2=k ·180°+22.5°,k ∈Z . 当k 为偶数,即k =2n ,n ∈Z 时,α2=n ·360°+22.5°,n ∈Z ,∴α2为第一象限角; 当k 为奇数,即k =2n +1,n ∈Z 时,α2=n ·360°+202.5°,n ∈Z ,∴α2为第三象限角. 综上,α2是第一或第三象限角.10.集合A ={α|α=k ·90°-36°,k ∈Z },B ={β|-180°<β<180°},则A ∩B= .答案.{-126°,-36°,54°,144°} 解析.当k =-1时,α=-126°; 当k =0时,α=-36°; 当k =1时,α=54°; 当k =2时,α=144°.∴A ∩B ={-126°,-36°,54°,144°}. 三、解答题11.如图所示,半径为1的圆的圆心位于坐标原点,点P 从点A (1,0)出发,以逆时针方向等速沿单位圆周旋转,已知P 点在1 s 内转过的角度为θ (0°<θ<180°),经过2 s 到达第三象限,经过14 s 后又回到了出发点A 处,求θ.解.∵0°<θ<180°,且k ·360°+180°<2θ<k ·360°+270°,k ∈Z , 则一定有k =0,于是90°<θ<135°. 又∵14θ=n ·360°(n ∈Z ), ∴θ=n ·180°7,从而90°<n ·180°7<135°,∴72<n <214,∴n =4或5. 当n =4时,θ=720°7;当n =5时,θ=900°7.12.已知角β的终边在直线3x -y =0上. (1)写出角β的集合S ;(2)写出集合S 中适合不等式-360°<β<720°的元素.解.(1)如图,直线3x -y =0过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA 上的角是60°,终边落在射线OB 上的角是240°,所以以射线OA ,OB 为终边的角的集合分别为S 1={β|β=60°+k ·360°,k ∈Z },........S 2={β|β=240°+k ·360°,k ∈Z },所以,角β的集合S =S 1∪S 2={β|β=60°+k ·360°,k ∈Z }∪{β|β=60°+180°+k ·360°,k ∈Z }={β|β=60°+2k ·180°,k ∈Z }∪{β|β=60°+(2k +1)·180°,k ∈Z }={β|β=60°+n ·180°,n ∈Z }.(2)由于-360°<β<720°,即-360°<60°+n ·180°<720°,n ∈Z .解得-73<n <113,n ∈Z ,所以n =-2,-1,0,1,2,3.所以集合S 中适合不等式-360°<β<720°的元素为60°-2×180°=-300°;60°-1×180°=-120°;60°+0×180°=60°;60°+1×180°=240°;60°+2×180°=420°;60°+3×180°=600°.13.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.解.由题意可知,α+β=-280°+k ·360°,k ∈Z .∵α,β为锐角,∴0°<α+β<180°.取k =1,得α+β=80°.①α-β=670°+k ·360°,k ∈Z .∵α,β为锐角,∴-90°<α-β<90°.取k =-2,得α-β=-50°,② 由①②得α=15°,β=65°.。

2020-2021学年高中数学 第一章 三角函数 1.2.1 任意角的三角函数学案新人教A版必修4

2020-2021学年高中数学 第一章 三角函数 1.2.1 任意角的三角函数学案新人教A版必修4

2020-2021学年高中数学第一章三角函数1.2.1 任意角的三角函数学案新人教A版必修4年级:姓名:1.2 任意角的三角函数1.2.1 任意角的三角函数(一)内容标准学科素养1.理解任意角的三角函数的定义并利用定义求值.2.结合单位圆定义三角函数,判断三角函数在各个象限的符号.3.掌握三角函数诱导公式一.提升数学运算运用直观想象授课提示:对应学生用书第7页[基础认识]知识点一任意角的三角函数阅读教材P11~12,思考并完成以下问题(1)使锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,作PM⊥x轴于M,设P(x,y),|OP|=r.那么sin α、cos α、tan α如何用x,y或r表示?提示:sin α=|PM||OP|=yr,cos α=|OM||OP|=xr,tan α=|PM||OM|=yx.(2)对确定的锐角α,sin α,cos α,tan α的值是否随P点在终边上的位置的改变而改变?为什么?提示:不变.三角形相似,对应边成比例.(3)当取|OP|=1时,sin α,cos α,tan α的值怎样表示?提示:sin α=y,cos α=x,tan α=yx.(4)如果α的终边OP在第二象限且|OP|=1,P(x,y),sin α,cos α,tan α的表示变化吗?提示:不变.仍是sin α=y,cos α=x,tan α=yx.前提如图,设α是一个任意角,它的终边与单位圆交于点P(x,y)定义正弦y叫做α的正弦,记作sin α,即sin α=y余弦 x 叫做α的余弦,记作cos α,即cos α=x 正切 y x 叫做α的正切,记作tan α,即tan α=yx(x ≠0) 三角函数正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数.三角函数 定义域 sin α R cos α Rtan α α≠k π+π2,k ∈Z知识点二 阅读教材P 13,思考并完成以下问题根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗? (1)当α的终边在第一象限时,P (x ,y ). 提示:sin α=y >0,cos α=x >0,tan α=y x >0 (2)当α的终边在第二象限时,P (x ,y ). 提示:sin α=y >0,cos α=x <0,tan α=y x<0. (3)当α的终边在第三象限时,P (x ,y ).提示:sin α=y <0,cos α=x <0,tan α=yx>0.(4)当α的终边在第四象限时,P (x ,y ).提示:sin α=y <0,cos α=x >0,tan α=yx<0.知识梳理 口诀概括为:一全正、二正弦、三正切、四余弦(如图).知识点三 诱导公式一阅读教材P 14,思考并完成以下问题当角α分别为30°,390°,-330°时,它们的终边有什么特点? 提示:sin 390°=sin(360°+30°), sin(-330°)=sin(-360°+30°), 故30°、390°、-330°终边相同. 知识梳理 诱导公式一sin(α+k ·2π)=sin α, cos(α+k ·2π)=cos α, tan(α+k ·2π)=tan α, 其中k ∈Z .(1)当α的终边在y 轴正半轴时,P (0,1),则α=π2+2k π,k ∈Z .sin α=sin ⎝ ⎛⎭⎪⎫π2+2k π=sin π2=1.cos α=cos ⎝ ⎛⎭⎪⎫π2+2k π=cos π2=0.(2)当α的终边在y 轴负半轴时,P (0,-1),则α=32π+2k π,k ∈Z .sin α=sin ⎝ ⎛⎭⎪⎫32π+2k π=sin 32π=-1.cos α=cos ⎝ ⎛⎭⎪⎫32π+2k π=cos 32π=0.(3)当α的终边在x 轴正半轴时,P (1,0), 则α=2k π,k ∈Z .sin α=sin(2k π+0)=sin 0=0. cos α=cos(2k π+0)=cos 0=1. tan α=tan(2k π+0)=tan 0=0.(4)当α的终边在x 轴负半轴时,P (-1,0), 则α=2k π+π,k ∈Z .sin α=sin(2k π+π)=sin π=0. cos α=cos(2k π+π)=cos π=-1. tan α=tan(2k π+π)=tan π=0.[自我检测]1.若α是第二象限角,则点P (sin α,cos α)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D2.α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则sin α=______,cos α =________.答案:35 -45授课提示:对应学生用书第8页探究一 任意角的三角函数的定义及应用[教材P 12例1、例2]方法步骤:(1)确定终边上点的坐标.(2)应用定义求值. 角度1 已知角α终边上一点的坐标求三角函数值[例1] (1)已知θ终边上一点P (x ,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ.[解析] 由题意知r =|OP |=x 2+9, 由三角函数定义得cos θ=x r=xx 2+9.又∵cos θ=1010x ,∴x x 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3),此时sin θ=312+32=31010, tan θ=31=3.当x =-1时,P (-1,3),此时sin θ=3(-1)2+32=31010, tan θ=3-1=-3.(2)已知角α的终边过点P (-3a ,4a )(a ≠0),求2sin α+cos α的值.[解析] r =(-3a )2+(4a )2=5|a |, ①若a >0,则r =5a ,角α在第二象限.sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,所以2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限,sin α=4a -5a =-45,cos α=-3a -5a =35.所以2sin α+cos α=-85+35=-1.角度2 已知角α终边所在直线求三角函数值[例2] 已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.[解析] 由题意知,cos α≠0.设角α的终边上任一点为P (k ,-3k )(k ≠0), 则x =k ,y =-3k ,r =k 2+(-3k )2=10|k |.(1)当k >0时,r =10k ,α是第四象限角,sin α=y r =-3k 10k =-31010,1cos α=r x =10k k=10,∴10sin α+3cos α=10×⎝ ⎛⎭⎪⎫-31010+310=-310+310=0.(2)当k <0时,r =-10k ,α是第二象限角, sin α=y r =-3k -10k =31010,。

高中数学人教A版必修4目录

高中数学人教A版必修4目录

必修4目录第一章:三角函数1.1任意角和弧度制1.1.1任意角(1课时)1.1.2弧度制(1课时)1.2任意角的三角函数1.2.1任意角的三角函数(2课时)1.2.2同角三角函数的基本关系(1课时)1.3三角函数的诱导公式1.3三角函数的诱导公式(2课时)1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象(1课时)1.4.2正弦函数、余弦函数的性质(2课时)1.4.3正切函数的性质与图象(1课时)1.5函数y=Asin(ωx+φ) 的图象1.5函数y=Asin(ωx+ϕ)的图象(2课时)1.6三角函数模型的简单应用1.6三角函数模型的简单应用(2课时)第二章:平面向量2.1平面向量的实际背景及基本概念2.1.1向量的物理背景与概念 2.1.2向量的几何表示(1课时)2.1.3相等向量与共线向量(1课时)2.2平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其几何意义(1课时) 2.2.3向量数乘运算及其几何意义(1课时)2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理 2.3.2平面向量的正交分解及坐标表示(1课时) 2.3.3平面向量的坐标表示 2.3.4平面向量共线是坐标表示(1课时)2.4平面向量的数量积2.4.1平面向量数量积的物理背景及含义(1课时)2.4.2平面向量数量积的坐标表示、模、夹角(1课时)2.5平面向量应用举例2.5.1平面几何中的向量方法(1课时)2.5.2向量在物理中的应用举例(1课时)第三章:三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.1.1两角差的余弦公式(1课时)3.1.2两角和与差的正弦、余弦、正切公式(1课时)3.1.3二倍角的正弦、余弦、正切公式(1课时)3.2简单的三角恒等变换3.2简单的三角恒等变换(3课时)。

高中数学第一章三角函数1.1任意角和弧度制1.1.2弧度制问题导学案新人教A版必修4(2021学年)

高中数学第一章三角函数1.1任意角和弧度制1.1.2弧度制问题导学案新人教A版必修4(2021学年)

高中数学第一章三角函数1.1 任意角和弧度制1.1.2弧度制问题导学案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.1 任意角和弧度制 1.1.2弧度制问题导学案新人教A版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数 1.1 任意角和弧度制1.1.2 弧度制问题导学案新人教A版必修4的全部内容。

1。

1。

2 弧度制问题导学一、弧度制的概念活动与探究1下面各命题中,是假命题的为__________. ①“度”与“弧度”是度量角的两种不同的度量单位;②1度的角是周角的1360,1弧度的角是周角的12π;③根据弧度的定义,180°一定等于π弧度;④不论是用角度制还是用弧度制度量角,它们均与所在圆的半径长短有关.迁移与应用圆弧长度等于其圆内接正三角形的边长,则其圆心角的弧度数为( )A.π3 B .2π3C. D.2不管以“弧度"还是以“度”为单位的角的大小都是一个与圆的半径大小无关的定值.二、弧度制与角度制的换算活动与探究2设α1=510°,α2=-750°,β1=4π5,β2=11π6-. (1)将α1,α2用弧度表示出来,并指出它们各自终边所在的象限;(2)将β1,β2用角度表示出来,并在[-360°,360°)内找出与它们终边相同的所有的角. 迁移与应用(1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π;(2)若β∈[-4π,0],且β与(1)中α的终边相同,求β.1.在进行角度制和弧度制的换算时,抓住关系式π rad =180°是关键.由它可以得到:度数×π180=弧度数,弧度数×180π⎛⎫︒ ⎪⎝⎭=度数. 2.特殊角的弧度数与度数对应值今后常用,应熟记.三、扇形的弧长与面积公式的应用活动与探究3若扇形OAB 的面积是1 cm 2,它的周长是4 cm,求扇形圆心角的弧度数.迁移与应用1.在圆心角均为1弧度的若干个圆中,下列结论正确的是( )A.所对的弧长相等B.所对的弦长相等C .所对的弧长等于各自圆的半径D .所对的弦长等于各自圆的半径2.如下图所示,已知扇形A OB的圆心角为120°,半径长为6,求弓形A CB 的面积.1.明确弧度制下扇形的面积公式是211||22S lR R α==(其中l 是扇形弧长,α是扇形圆心角).2.涉及扇形的周长、弧长、圆心角、面积等的计算,关键是先分析题目中已知哪些量求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程(组)求解.当堂检测1.若α=5 r ad ,则角α的终边所在的象限为( )A .第一象限 B.第二象限C.第三象限 D.第四象限2.终边在y 轴的非负半轴上的角的集合是( )A.{α|α=kπ,k ∈Z } B.ππ+,2k k αα⎧⎫=∈⎨⎬⎩⎭Z C.{α|α=2k π,k ∈Z } D.π2π+,2k k αα⎧⎫=∈⎨⎬⎩⎭Z 3.圆弧长度等于其圆内接正四边形的边长,则其圆心角的弧度数为( ) A.π4 B.π2C .24.2π5化成角度为__________. 5.在直径为20 cm 的圆中,圆心角为150°时所对的弧长为__________.答案:课前预习导学【预习导引】1.(1)\f(1,360) (2)半径长 圆心角 弧度制 弧度(3)正数 负数 0 错误!预习交流1 提示:根据1弧度角的定义,圆周长是2π个半径,所以圆周角是2π弧度,所以1弧度角就是错误!圆周角,与圆的大小即半径无关.2.2π rad 360° π rad 180° \f (π,180)rad 错误!°预习交流2 提示:不正确.在表示角时,角度与弧度不能混合使用.一般情况下,“弧度”二字或“rad”可省略不写.5.αR l+2R 错误!lR 错误!αR2预习交流3 提示:扇形的面积公式与三角形的面积公式类似.实际上,扇形可看作是一曲边三角形,弧是底,半径是底上的高.课堂合作探究【问题导学】活动与探究1思路分析:正确理解“角度”与“弧度"的概念,从而进行正确的判断.④解析:根据角度和弧度的定义,可知无论是角度制还是弧度制,角的大小与所在圆的半径长短无关,而是与弧长和半径的比值有关,所以④是假命题.迁移与应用 C 解析:设圆的半径为R,则圆的内接正三角形的边长为3R,所以圆心角的弧度数为错误!=错误!.活动与探究2思路分析:首先利用1°=π180rad可将角度化成弧度,利用 1 rad=错误!°可将弧度化成角度,然后再根据要求指出α1,α2终边所在的象限,与β1,β2终边相同且在[-360°,360°)内的角.解:(1)∵1°=错误! rad,∴α1=510°=510×错误!=错误!π=2π+错误!π;α2=-750°=-750×π180=-256π=-3×2π+错误!π.∴α1的终边在第二象限,α2的终边在第四象限.(2)β1=错误!π=错误!×错误!°=144°.设θ1=k·360°+144°(k∈Z).∵-360°≤θ1<360°,∴-360°≤k·360°+144°<360°.∴k=-1或k=0.∴在[-360°,360°)内与β1终边相同的角是-216°角.β2=-\f(11,6)π=-错误!×错误!°=-330°.设θ2=k·360°-330°(k∈Z).∵-360°≤θ2<360°,∴-360°≤k·360°-330°<360°.∴k=0或k=1.∴在[-360°,360°)内与β2终边相同的角是30°角.迁移与应用解:(1)∵-1 480°=-\f(74,9)π=-8π-\f(2,9)π=-10π+169π,又∵0≤错误!π<2π,故-1480°=\f(16,9)π-2×5π.(2)∵β与α终边相同,∴β=α+2kπ=错误!π+2kπ,k∈Z.又∵β∈[-4π,0],∴β1=\f(16,9)π-2π=-错误!,β2=错误!π-4π=-错误!π.活动与探究3思路分析:确定扇形的条件有两个,最直接的条件是给出扇形的半径、弧长和圆心角中的两个.解:设扇形的半径为R,弧长为l,由已知得错误!解得错误!∴扇形圆心角的弧度数是错误!=2.迁移与应用1.C 解析:∵l=θR,θ=1,∴l=R,故选C.2.解:S扇形AOB=错误!×错误!π×62=12π,S△AOB=错误!×62×sin 120°=9错误!,∴S弓形ACB=S扇形AOB-S△AOB=12π-9错误!.【当堂检测】1.D2.D 解析:A选项表示的角的终边在x轴上;B选项表示的角的终边在y轴上;C选项表示的角的终边在x轴非负半轴上;D选项表示的角的终边在y轴非负半轴上,故选D.3.C 4。

高中数学第一章三角函数第1节任意角和弧度制(第1课时)任意角教案(含解析)新人教A版必修4

高中数学第一章三角函数第1节任意角和弧度制(第1课时)任意角教案(含解析)新人教A版必修4

高中数学第一章三角函数第1节任意角和弧度制(第1课时)任意角教案(含解析)新人教A版必修4[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P2~P5的内容,回答下列问题.(1)阅读教材P2“思考”的内容,你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25个小时,你应当如何将它校准?在你调整的过程中,分针转动的方向有什么区别?提示:当手表慢了5分钟时,通常将分针顺时针旋转进行调整;当手表快了1.25小时时,通常将分针逆时针旋转进行调整.故在调整的过程中两种情形分针的转动方向相反.(2)体操中有“转体720°”(即“转体2周”),“转体1 080°”(即“转体3周”)这样的动作名称,而旋转的方向也有顺时针与逆时针的不同;又如图是两个齿轮旋转的示意图,被动轮随着主动轮的旋转而旋转,而且被动轮与主动轮有相反的旋转方向.这样,OA 绕O旋转所成的角与O′B绕O′旋转所成的角就会有不同的方向.利用我们以前学过的0°~360°范围的角,还能描述以上现象吗?提示:要准确地描述这些现象,不仅要知道角形成的结果,而且要知道角形成的过程,即必须既要知道旋转量,又要知道旋转方向.故利用0°~360°范围的角,无法描述以上现象.(3)阅读教材P3“探究”的内容,请思考:对于直角坐标系内任一条射线OB,以它为终边的角是否唯一?如果不唯一,那么这些终边相同的角有什么关系?提示:不唯一.它们之间相差360°的整数倍,即相差k·360°(k∈Z).2.归纳总结,核心必记(1)角的有关概念有关概念描述定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形图示其中O为顶点,OA为始边,OB为终边记法角α或∠α,或简记为α①②按角的终边位置(ⅰ)角的终边在第几象限,则此角称为第几象限角;(ⅱ)角的终边在坐标轴上,则此角不属于任何一个象限.(3)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[问题思考](1)你能说出角的三要素吗?提示:角的三要素是顶点、终边、始边.(2)如果一个角的终边与其始边重合,这个角一定是零角吗?提示:不一定,零角的终边与始边重合,但终边与始边重合的角不一定是零角,如360°,-360°等.(3)一条射线绕端点旋转,旋转的圈数越多,则这个角越大,这样说对吗?提示:不对,如果一条射线绕端点按顺时针方向旋转,则它形成负角,旋转的圈数越多,则这个角越小.(4)在坐标系中,将y轴的正半轴绕坐标原点顺时针旋转到x轴的正半轴形成的角为90°,这种说法是否正确?提示:不正确,在坐标系中,将y轴的正半轴绕坐标原点旋转到x轴的正半轴时,是按顺时针方向旋转的,故它形成的角为-90°.(5)当角的始边和终边确定后,这个角就被确定了吗?提示:不是的.虽然始、终边确定了,但旋转的方向和旋转量的大小并没有确定,所以角也就不能确定.(6)初中我们学过对顶角相等.依据现在的知识试判断一下图中角α,β是否相等?提示:不相等.角α为逆时针方向形成的角,α为正角;角β为顺时针方向形成的角,β为负角.[课前反思](1)角的概念:;(2)角的分类:;(3)终边相同的角: .终边相同的角及区域角的表示知识点1[思考1] 终边相同的角一定是相等的角吗?它们之间有什么关系?如何把这一类角表示出来?名师指津:不一定.相等的角的终边一定相同,但终边相同的角不一定相等,它们相差360°的整数倍.可以用集合{β|β=α+k·360°,k∈Z}表示.[思考2] 区域角是指终边落在坐标系的某个区域的角,区域角如何表示?名师指津:区域角可以看作是某一范围内的终边相同角的集合.故可把区域的起始、终止边界表示出来,然后组成集合即可.讲一讲1.(1)写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.(2)分别写出终边在下列各图所示的直线上的角的集合.(3)写出终边落在图中阴影部分(包括边界)的角的集合.[尝试解答] (1)与角α=-1 910°终边相同的角的集合为{β|β=-1 910°+k ·360°,k ∈Z }.∵-720°≤β<360°,∴-720°≤-1 910°+k ·360°<360°,31136≤k <61136. 故k =4,5,6,k =4时,β=-1 910°+4×360°=-470°.k =5时,β=-1 910°+5×360°=-110°.k =6时,β=-1 910°+6×360°=250°.(2)①在0°~360°范围内,终边在直线y =0上的角有两个,即0°和180°,因此,所有与0°角终边相同的角构成集合S 1={β|β=0°+k ·360°,k ∈Z },而所有与180°角终边相同的角构成集合S 2={β|β=180°+k ·360°,k ∈Z },于是,终边在直线y =0上的角的集合为S =S 1∪S 2={β|β=k ·180°,k ∈Z }.②由图形易知,在0°~360°范围内,终边在直线y =-x 上的角有两个,即135°和315°,因此,终边在直线y =-x 上的角的集合为S ={β|β=135°+k ·360°,k ∈Z }∪{β|β=315°+k ·360°,k ∈Z }={β|β=135°+k ·180°,k ∈Z }.③终边在直线y =x 上的角的集合为{β|β=45°+k ·180°,k ∈Z },结合②知所求角的集合为S ={β|β=45°+k ·180°,k ∈Z }∪{β|β=135°+k ·180°,k ∈Z }={β|β=45°+2k ·90°,k ∈Z }∪{β|β=45°+(2k +1)·90°,k ∈Z }={β|β=45°+k ·90°,k ∈Z }.(3)终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z }={α|α=135°+k ·360°,k ∈Z },终边落在OB 位置上的角的集合为{β|β=-30°+k ·360°,k ∈Z }.故阴影部分角的集合可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.类题·通法(1)在0°~360°范围内找与给定角终边相同的角的方法①把任意角化为α+k·360°(k∈Z且0°≤α<360°)的形式,关键是确定k.可以用观察法(α的绝对值较小),也可用除法.②要求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k的值.(2)区域角的写法可分三步①按逆时针方向找到区域的起始和终止边界;②由小到大分别标出起始、终止边界对应的一个角α,β,写出所有与α,β终边相同的角;③用不等式表示区域内的角,组成集合.练一练1.已知角α=2 018°.(1)把α改写成k·360°+β(k∈Z,0°≤β<360°)的形式;(2)求θ,使θ与α终边相同,且-360°≤θ<720°.解:(1)由2 018°除以360°,得商为5,余数为218°,∴取k=5,β=218°,α=5×360°+218°.(2)与2 018°角终边相同的角为k·360°+2 018°(k∈Z).令-360°≤k·360°+2 018°<720°,k∈Z,∴k取-6,-5,-4,将k的值代入k·360°+2 018°中,得角θ的值为-142°,218°,578°.象限角的判断知识点2[思考1] 若α为第一象限角,则α的顶点、始边、终边各有什么特点?提示:若α为第一象限角,则α的顶点为坐标原点、始边与x轴的正半轴重合,终边处在第一象限.[思考2] 如何判定象限角?提示:(1)根据图形判定;(2)根据终边相同的角的概念判定.讲一讲2.已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.[尝试解答] 作出各角,其对应的终边如图所示:(1)由图①可知:-75°是第四象限角.(2)由图②可知:855°是第二象限角.(3)由图③可知:-510°是第三象限角.类题·通法给定角α所处象限的判定方法法一:第一步,将α写成α=k ·360°+β(k ∈Z,0°≤β<360°)的形式.第二步,判断β的终边所在的象限.第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.法二:在坐标系中画出相应的角,观察终边的位置,角的终边落在第几象限,此角就是第几象限角.练一练2.(1)已知下列各角:①-120°;②-240°;③180°;④495°.其中是第二象限角的是( )A .①②B .①③C .②③D .②④(2)若β是第四象限角,则180°-β是第________象限角.解析:(1)-120°角是第三象限角;-240°角是第二象限角;180°角不在任何一个象限内;495°=360°+135°,所以495°角是第二象限角.(2)因为β是第四象限角,所以取β=-20°,则180°-β=200°,为第三象限角. 答案:(1)D (2)三知识点3nα或αn 所在象限的判定 讲一讲3.若α是第二象限角,则2α,α2分别是第几象限的角? [尝试解答] (1)∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°(k ∈Z ),∴180°+k ·720°<2α<360°+k ·720°,∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上.(2)∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°(k ∈Z ),∴45°+k ·180°<α2<90°+k ·180°(k ∈Z ). 法一:①当k =2n (n ∈Z )时,45°+n ·360°<α2<90°+n ·360°(n ∈Z ),即α2是第一象限角;②当k =2n +1(n ∈Z )时,225°+n ·360°<α2<270°+n ·360°(n ∈Z ), 即α2是第三象限角. 故α2是第一或第三象限角. 法二:∵45°+k ·180°表示终边为一、三象限角平分线的角,90°+k ·180°(k ∈Z )表示终边为y 轴的角,∴45°+k ·180°<α2<90°+k ·180°(k ∈Z )表示如图中阴影部分图形.即α2是第一或第三象限角. 类题·通法(1)nα所在象限的判断方法确定nα终边所在的象限,先求出nα的范围,再直接转化为终边相同的角即可.(2)αn 所在象限的判断方法已知角α所在象限,要确定角αn 所在象限,有两种方法:①用不等式表示出角αn 的范围,然后对n 的取值分情况讨论:被n 整除;被n 除余1;被n 除余2;…;被n 除余n -1.从而得出结论.②作出各个象限的从原点出发的n 等分射线,它们与坐标轴把周角分成4n 个区域.从x 轴非负半轴起,按逆时针方向把这4n 个区域依次循环标上1,2,3,4.α的终边在第几象限,则标号为几的区域,就是αn 的终边所落在的区域.如此,αn所在的象限就可以由标号区域所在的象限直观地看出.练一练 3.若角α是第一象限角,则-α,2α,α3分别是第几象限角? 解:∵α是第一象限角,∴k ·360°<α<k ·360°+90°(k ∈Z ).(1)-k ·360°-90°<-α<-k ·360°(k ∈Z ),∴-α所在区域与(-90°,0°)范围相同,故-α是第四象限角.(2)2k ·360°<2α<2k ·360°+180°(k ∈Z ),∴2α所在区域与(0°,180°)范围相同,故2α是第一、二象限角或终边落在y 轴非负半轴上的角.(3)法一(分类讨论):k ·120°<α3<k ·120°+30°(k ∈Z ). 当k =3n (n ∈Z )时, n ·360°<α3<n ·360°+30°,∴α3是第一象限角; 当k =3n +1(n ∈Z )时,n ·360°+120°<α3<n ·360°+150°,∴α3是第二象限角; 当k =3n +2(n ∈Z )时,n ·360°+240°<α3<n ·360°+270°,∴α3是第三象限角. 综上可知,α3是第一、第二或第三象限角. 法二(几何法):如图,先将各象限分成3等份,再从x 轴的正向的上方起,依次将各区域标上1,2,3,4,则标有1的区域即为α3角的终边落在的区域,故α3为第一、第二或第三象限角.[课堂归纳·感悟提升]1.本节课的重点是象限角的判断、终边相同角及区域角的表示,难点是nα及αn 所在象限的判定.2.本节课要重点掌握以下规律方法(1)求终边相同的角及区域角的表示,见讲1;(2)象限角及nα、αn所处象限的判断,见讲2和讲3.3.本节课的易错点有以下几点(1)对于角的理解,要明确该角是按顺时针方向还是逆时针方向旋转形成的,按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角.(2)把任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k,可以用观察法(α的绝对值较小),也可以用除法.(3)已知角的终边范围,求角的集合时,先写出边界对应的角,再写出0°~360°内符合条件的角的范围,最后都加上k·360°,得到所求.课下能力提升(一)[学业水平达标练]题组1 终边相同的角及区域角的表示1.与-457°角的终边相同的角的集合是( )A.{α|α=457°+k·360°,k∈Z}B.{α|α=97°+k·360°,k∈Z}C.{α|α=263°+k·360°,k∈Z}D.{α|α=-263°+k·360°,k∈Z}解析:选C 由于-457°=-1×360°-97°=-2×360°+263°,故与-457°角终边相同的角的集合是{α|α=-457°+k·360°,k∈Z}={α|α=263°+k·360°,k ∈Z}.2.若A={α|α=k·360°,k∈Z},B={α|α=k·180°,k∈Z},C={α|α=k·90°,k∈Z},则下列关系中正确的是( )A.A=B=C B.A=B∩CC.A∪B=C D.A⊆B⊆C解析:选D ∵90°∈C,90°∉B,90°∉A,∴选项A,C错误;又∵180°∈C,180°∈B,180°∉A,∴选项B错误.故选D.3.若α=n·360°+θ,β=m·360°-θ,m,n∈Z,则α,β终边的位置关系是( )A.重合 B.关于原点对称C.关于x轴对称 D.关于y轴对称解析:选C 由α=n·360°+θ,n∈Z可知α与θ是终边相同的角,由β=m·360°-θ,m∈Z可知β与-θ是终边相同的角.因为θ与-θ两角终边关于x轴对称,所以α与β两角终边关于x轴对称.4.已知角α的终边在图中阴影所表示的范围内(不包括边界),那么α∈________.解析:在0°~360°范围内,终边落在阴影内的角α满足30°<α<150°或210°<α<330°,所以所有满足题意的角α的集合为{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|2k·180°+30°<α<2k·180°+150°,k∈Z}∪{α|(2k+1)180°+30°<α<(2k+1)·180°+150°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.答案:{α|n·180°+30°<α<n·180°+150°,n∈Z}5.(1)写出与下列各角终边相同的角的集合S,并把S中适合不等式-360°≤α<720°的元素α写出来:①60°;②-21°.(2)试写出终边在直线y=-x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.解:(1)①S={α|α=60°+k·360°,k∈Z},其中适合不等式-360°≤α<720°的元素α为:-300°,60°,420°;②S={α|α=-21°+k·360°,k∈Z},其中适合不等式-360°≤α<720°的元素α为:-21°,339°,699°.(2)终边在直线y=-x上的角的集合S={α|α=k·360°+135°,k∈Z}∪{α|α=k·360°+315°,k∈Z}={α|α=k·180°+135°,k∈Z},其中适合不等式-180°≤α<180°的元素α为:-45°,135°.题组2 象限角的判断6.-1 120°角所在象限是( )A.第一象限 B.第二象限C.第三象限 D.第四象限解析:选D 由题意,得-1 120°=-4×360°+320°,而320°在第四象限,所以-1 120°角也在第四象限.7.下列叙述正确的是( )A.三角形的内角必是第一、二象限角B.始边相同而终边不同的角一定不相等C.第四象限角一定是负角D.钝角比第三象限角小解析:选B 90°的角是三角形的内角,它不是第一、二象限角,故A 错;280°的角是第四象限角,它是正角,故C 错;-100°的角是第三象限角,它比钝角小,故D 错.8.若α是第四象限角,则180°+α一定是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选B ∵α是第四象限角,∴k ·360°-90°<α<k ·360°.∴k ·360°+90°<180°+α<k ·360°+180°.∴180°+α在第二象限,故选B.题组3 nα或αn 所在象限的判定9.已知角2α的终边在x 轴上方,那么α是( )A .第一象限角B .第一或第二象限角C .第一或第三象限角D .第一或第四象限角解析:选C 由条件知k ·360°<2α<k ·360°+180°,(k ∈Z ),∴k ·180°<α<k ·180°+90°(k ∈Z ),当k 为偶数时,α在第一象限,当k 为奇数时,α在第三象限.10.若角α是第三象限角,则角α2的终边所在的区域是如图所示的区域(不含边界)( )A .③⑦B .④⑧C .②⑤⑧D .①③⑤⑦解析:选A ∵α是第三象限角,∴k ·360°+180°<α<k ·360°+270°(k ∈Z ),∴k ·180°+90°<α2<k ·180°+135°(k ∈Z ). 当k =2n (n ∈Z )时,n ·360°+90°<α2<n ·360°+135°,对应区域③;当k =2n +1(n ∈Z )时,n ·360°+270°<α2<n ·360°+315°,对应区域⑦.∴角α2的终边所在的区域为③⑦. [能力提升综合练]1.已知集合A ={α|α小于90°},B ={α|α为第一象限角},则A ∩B =( )A .{α|α为锐角}B .{α|α小于90°}C .{α|α为第一象限角}D .以上都不对解析:选D 小于90°的角包括锐角及所有负角,第一象限角指终边落在第一象限的角,所以A ∩B 是指锐角及第一象限的所有负角的集合,故选D.2.下列叙述正确的是( )A .第一或第二象限的角都可作为三角形的内角B .始边相同而终边不同的角一定不相等C .若α是第一象限角,则2α是第二象限角D .钝角比第三象限角小解析:选B -330°角是第一象限角,但不能作为三角形的内角,故A 错;若α是第一象限角,则k ·360°<α<k ·360°+90°(k ∈Z ),所以2k ·360°<2α<2k ·360°+180°(k ∈Z ),所以2α不一定是第二象限角,故C 错;-135°是第三象限角,135°是钝角,而135°>-135°,故D 错.3.终边与坐标轴重合的角的集合是( )A .{α|α=k ·360°,k ∈Z }B .{α|α=k ·180°,k ∈Z }C .{α|α=k ·90°,k ∈Z }D .{α|α=k ·180°+90°,k ∈Z }解析:选C 终边在x 轴上的角的集合M ={α|α=k ·180°,k ∈Z },终边在y 轴上的角的集合P ={α|α=k ·180°+90°,k ∈Z },则终边与坐标轴重合的角的集合S =M ∪P ={α|α=k ·180°,k ∈Z }∪{α|α=k ·180°+90°,k ∈Z }={α|α=2k ·90°,k ∈Z }∪{α|α=(2k +1)·90°,k ∈Z }={α|α=n ·90°,n ∈Z },故选C.4.角α与角β的终边关于y 轴对称,则α与β的关系为( )A .α+β=k ·360°,k ∈ZB .α+β=k ·360°+180°,k ∈ZC .α-β=k ·360°+180°,k ∈ZD .α-β=k ·360°,k ∈Z解析:选B 法一:特殊值法:令α=30°,β=150°,则α+β=180°.法二:直接法:∵角α与角β的终边关于y 轴对称,∴β=180°-α+k ·360°,k ∈Z ,即α+β=k ·360°+180°,k ∈Z .5.如果将钟表拨快10分钟,则时针所转成的角度是________度,分针所转成的角度是________度.解析:将钟表拨快10分钟,则时针按顺时针方向转了10×360°12×60=5°,所转成的角度是-5°;分针按顺时针方向转了10×360°60=60°,所转成的角度是-60°.答案:-5 -606.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,则角α=________.解析:∵角5α与α具有相同的始边与终边,∴5α=k·360°+α,k∈Z.得 4α=k·360°,当k=3时,α=270°.答案:270°7.写出终边在如下列各图所示阴影部分内的角的集合.解:先写出边界角,再按逆时针顺序写出区域角,则得(1){α|30°+k·360°≤α≤150°+k·360°,k∈Z};(2){α|150°+k·360°≤α≤390°+k·360°,k∈Z}.8.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.解:由题意可知,α+β=-280°+k·360°,k∈Z.∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.①∵α-β=670°+k·360°,k∈Z,α,β都是锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.。

高一数学人教A版必修四教案:第一章三角函数1-1任意角和弧度制

高一数学人教A版必修四教案:第一章三角函数1-1任意角和弧度制

高中数学新人教A 版必修4教案第一章 三角函数1.1任意角和弧度制 1.1.1任意角一、教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境: “转体720︒,逆(顺)时针旋转”,角有大于360︒角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法. 难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25 小时,你应当如何将它校准?当时间校准以后,分针转了多少度? [取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢? [展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角(anyangle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x 轴的非负半轴重合。

2014-2015学年高中数学人教A版必修四三角函数导学案

2014-2015学年高中数学人教A版必修四三角函数导学案

§1.1.1 任意角导学案【学习要求】1.理解正角、负角、零角与象限角的概念.2.掌握终边相同角的表示方法.【学法指导】1.解答与任意角有关的问题的关键在于抓住角的四个“要素”:顶点、始边、终边和旋转方向.2.确定任意角的大小要抓住旋转方向和旋转量.3.学习象限角时,注意角在直角坐标系中的放法,在这个统一前提下,才能对终边落在坐标轴上的角、象限角进行定义.【知识要点】1.角的概念(1)角的概念:角可以看成平面内绕着从一个位置到另一个位置所成的图形.(22.象限角角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=},即任一与角α终边相同的角,都可以表示成角α与的和.【问题探究】探究点一角的概念的推广我们在初中已经学习过角的概念,角可以看作从同一点出发的两条射线组成的平面图形.这种定义限制了角的范围,也不能表示具有相反意义的旋转量.因此,从“旋转”的角度,对角作重新定义如下:一条射线OA绕着端点O旋转到OB的位置所形成的图形叫作角,射线OA叫角的始边,OB叫角的终边,O叫角的顶点.问题1正角、负角、零角是怎样规定的?问题2根据角的定义,图中角α=120°;β=;-α=;-β=;γ=.问题3经过10小时,分别写出时针和分针各自旋转所形成的角.问题4如果你的手表快了1.25小时,只需将分针旋转多少度就可以将它校准?探究点二终边相同的角今后我们常在直角坐标系内讨论角.为了讨论问题的方便,我们使角的顶点与原点重合,角的始边与x 轴的非负半轴重合.角的终边落在第几象限,我们就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.按照上述方法,在平面直角坐标系中,角的终边绕原点旋转360°后回到原来的位置.终边相同的角相差360°的整数倍.因此,所有与角α终边相同的角(连同角α在内)的集合S={β|β=α+k·360°,k∈Z}.根据终边相同的角的概念,回答下列问题:问题1已知集合S={θ|θ=k·360°+60°,k∈Z},则-240°S,300°S,-1 020°S.(用符号:∈或∉填空).问题2集合S={α|α=k·360°-30°,k∈Z}表示与角终边相同的角,其中最小的正角是.问题3已知集合S={α|α=45°+k·180°,k∈Z},则角α的终边落在上探究点三象限角与终边落在坐标轴上的角问题1问题2问题3写出终边落在x轴上的角的集合S.问题4写出终边落在y轴上的角的集合T.【典型例题】例1在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.跟踪训练1判断下列角的终边落在第几象限内:(1)1 400°;(2)-2 010°.例2写出终边落在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.跟踪训练2求终边在直线y=-x上的角的集合S.例3 已知α是第二象限角,试确定2α,α2的终边所在的位置跟踪训练3 已知α为第三象限角,则α2所在的象限是 ( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【当堂检测】1.-361°的终边落在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.下列各角中与330°角终边相同的角是 ( )A .510°B .150°C .-150°D .-390° 3.经过10分钟,分针转了________度. 4.写出终边落在坐标轴上的角的集合S .【课堂小结】1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”. 2.关于终边相同角的认识一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 注意:(1)α为任意角. (2)k ·360°与α之间是“+”号,k ·360°-α可理解为k ·360°+(-α).(3)相等的角终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.(4)k ∈Z 这一条件不能少.【拓展提高】§1.1.2 弧度制导学案【学习要求】1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换.2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系. 3.掌握并能应用弧度制下的弧长公式和扇形面积公式.【学法指导】1.通过类比长度、重量的不同度量制,体会一个量可以用不同的单位制来度量,从而引出弧度制.2.弄清1弧度的角的含义是了解弧度制,并能进行弧度与角度换算的关键.3.引入弧度制后,应与角度制进行对比,明确角度制和弧度制下弧长公式和扇形面积公式的联系与区别.【知识要点】1.1弧度的角:把长度等于 的弧所对的圆心角叫做1弧度的角,用符号 表示,读作 .2.弧度制:用 作为单位来度量角的单位制叫做弧度制.3.角的弧度数的规定:一般地,正角的弧度数是一个 ,负角的弧度数是一个 ,零角的弧度数是 .如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是 .这里,α的正负由角α的终边的旋转方向决定. 4.角度与弧度的互化: (1)角度转化为弧度: 360°= rad ;180°= rad ;1°= rad≈0.017 45 rad. (2)弧度转化为角度:2π rad = ;π rad = ;1 rad =⎝⎛⎭⎫180π°≈57.30°=57°18′.【问题探究】探究点一 弧度制问题1 1弧度的角是怎样规定的?1弧度的角和圆半径的大小有关吗?你能作出一个1弧度的角吗?问题2 如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么α的弧度数与l 、r 之间有着怎样的关系?请问题3 除了角度制,数学还常用弧度制表示角.请叙述一下弧度制的内容. 问题4 角度制与弧度制换算时,灵活运用下表中的对应关系,请补充完整.探究点二 弧度制下的弧长公式和扇形面积公式问题1 我们已经学习过角度制下的弧长公式和扇形面积公式,请根据“一周角(即360°)的弧度数为2π”这一事实化简上述公式.(设半径为r ,圆心角弧度数为α). 问题2 角度制与弧度制下扇形的弧长及面积公式对比:探究点三 利用弧度制表示终边相同的角在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z),其中α的单位必须是弧度. 问题1 【典型例题】例1 (1)把112°30′化成弧度;(2)把-7π12化成角度.跟踪训练1 将下列角按要求转化: (1)300°=________rad ; (2)-22°30′=________rad ; (3)8π5=________度例2 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?跟踪训练2 一个扇形的面积为1,周长为4,求圆心角的弧度数.例3 把下列各角化成2k π+α (0≤α<2π,k ∈Z)的形式,并指出是第几象限角: (1)-1 500°; (2)23π6; (3)-4.跟踪训练3 将-1 485°化为2k π+α (0≤α<2π,k ∈Z)的形式是___________【当堂检测】1.时针经过一小时,时针转过了( )A .π6radB .-π6 radC .π12radD .-π12rad2.若α=-3,则角α的终边在 ( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的中心角的弧度数是 ( ) A .1 B .4 C .1或4 D .2或44.把-114π表示成θ+2k π(k ∈Z)的形式,使|θ|最小的θ值是_______【课堂小结】1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 易知:度数×π180rad =弧度数,弧度数×⎝⎛⎭⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.【拓展提高】§1.2.1 任意角的三角函数(一) 导学案【学习要求】1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数在各象限内的符号. 3.通过对任意角的三角函数定义的理解,掌握终边相同角的同一三角函数值相等.【学法指导】1.在初中所学习的锐角三角函数的基础上过渡到任意角三角函数的概念.2.紧扣任意角的三角函数的定义来掌握三角函数值在各象限的符号规律以及诱导公式一的记忆. 3.理解任意角三角函数的定义不仅是学好本节内容的关键,也是学好本章内容的关键.【知识要点】1.任意角三角函数的定义(1)在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的 ,记作 ,即 ; ②x 叫做α的 ,记作 ,即 ; ③yx叫做α的 ,记作 ,即 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.(2)设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=___,cos α=___,tan α=___ 2.正弦、余弦、正切函数值在各象限的符号3.诱导公式一终边相同的角的同一三角函数的值 ,即:sin(α+k ·2π)= ,cos(α+k ·2π)= ,tan(α+k ·2π)= ,其中k ∈Z.【问题探究】探究点一 锐角三角函数的定义 问题1 Rt △ABC 中,∠C =90°,若已知a =3,b =4,c =5,试求sin A ,cos B ,sin B ,cos A ,tan A ,tan B 的值.问题2 如图,锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,在α终边上任取一点P (a ,b ),它与原点的距离为r ,作PM ⊥x 轴,你能根据直角三角形中三角函数的定义求出sin α,cos α,tan α吗?问题3 如图所示,在直角坐标系中,以原点为圆心,以单位长度为半径的圆为单位圆.锐角α的终边与单位圆交于P (x ,y ) 点,则有:sin α= ,cos α= ,tan α= .探究点二 任意角三角函数的概念关于任意角三角函数的定义,总的来说就两种:“单位圆定义法”与“终边定义法”.根据相似三角形对应边成比例.可知这两种定义方法本质上是一致的. 问题1 单位圆定义法:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: 叫做α的正弦, 记作sin α,即sin α= ; 叫做α的余弦,记作cos α,即cos α= ;yx 叫做α的正切,记作tan α,即tan α= (x ≠0). 问题2 终边定义法:设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则有sin α=___,cos α=___,tan α=___ (x ≠0),其中r =x 2+y 2>0.问题3 由三角函数的定义知,三角函数值是一个比值,即一个实数,它的大小只与角α的终边位置有关,即与角有关,与角α终边上P 点的位置无关.请以角α为第二象限角为例,借助三角形相似的知识证明上述两种定义是一致的. 问题4 利用任意角三角函数的定义推导特殊角的三角函数值.探究点三 三角函数值在各象限的符号三角函数的定义告诉我们,三角函数在各象限内的符号,取决于x ,y 的符号.(1)sin α=yr (r >0),因此sin α的符号与y 的符号相同,当α的终边在第 象限时,sin α>0;当α的终边在第 象限时,sin α<0.(2)cos α=xr (r >0),因此cos α的符号与x 的符号相同,当α的终边在第 象限时,cos α>0;当α的终边在第 象限时,cos α<0.(3)tan α=yx,因此tan α的符号由x 、y 确定,当α终边在第 象限时,xy >0,tan α>0;当α终边在第 象限时,xy <0,tan α<0.三角函数值在各象限内的符号,如图所示:三角函数值的符号在以后学习中经常用到,必须熟记,可根据定义记,也可按以下口诀记忆:一全正,二正弦,三正切,四余弦(是正的).探究点四 诱导公式一由任意角的三角函数的定义可以知道,终边相同的角的同一三角函数值相等.由此得到诱导公式一: sin(k ·360°+α)=sin α,cos(k ·360°+α)=cos α,tan(k ·360°+α)=tan α,其中k ∈Z , 或者:sin(2k π+α)=sin α,cos(2k π+α)=cos α,tan(2k π+α)=tan α,其中k ∈Z.诱导公式一的作用是将求任意角的三角函数值转化为求0°~360°的三角函数值. 例如:sin 420°=sin 60°=32;cos(-330°)= = ;tan(-315°)= = . 【典型例题】例1 已知角α的终边上一点P (-15a,8a ) (a ∈R 且a ≠0),求α的各三角函数值. 跟踪训练1 已知角θ的终边上一点P (x,3) (x ≠0),且cos θ=1010x ,求sin θ,tan θ.例2 求下列各式的值. (1)cos25π3+tan ⎝⎛⎭⎫-15π4; (2)sin(-1 320°)cos 1 110°+cos(-1 020°)sin 750°+tan 495°. 跟踪训练2 求下列各式的值. (1)cos ⎝⎛⎭⎫-23π3+tan 17π4; (2)sin 630°+tan 1 125°+tan 765°+cos 540°.例3 判断下列各式的符号: (1)sin α·cos α(其中α是第二象限角); (2)sin 285°cos(-105°);(3)sin 3·cos 4·tan ⎝⎛⎭⎫-23π4. 跟踪训练3 (1)若sin αcos α<0,则α是第_________象限角.(2)代数式:sin 2·cos 3·tan 4的符号是________.【当堂检测】1.sin(-1 380°)的值为 ( ) A .-12B .12C .-32D .322.如果角α的终边过点P (2sin 30°,-2cos 30°),则cos α的值等于 ( )A .12B .-12C .-32D .323.若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于 ( )A .-34B .34C .43D .-434.如果sin x =|sin x |,那么角x 的取值集合是________.【课堂小结】1.三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置确定.即三角函数值的大小只与角有关.2.要善于利用三角函数的定义及三角函数的符号规律解题,并且注意掌握解题时必要的分类讨论及三角函数值符号的正确选取.3.要牢记一些特殊角的正弦、余弦、正切值.【拓展提高】§1.2.1 任意角的三角函数(二) 导学案【学习要求】1.掌握正弦、余弦、正切函数的定义域.2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切. 3.能利用三角函数线解决一些简单的三角函数问题.【学法指导】1.三角函数线是利用数形结合的思想解决有关问题的重要工具,利用三角函数线可以解或证明三角不等式,求函数的定义域及比较大小,三角函数线也是后面将要学习的三角函数的图象的作图工具.2.三角函数线是有向线段,字母顺序不能随意调换,正弦线、正切线的正向与y 轴的正向相同,向上为正,向下为负;余弦线的正向与x 轴的正向一致,向右为正,向左为负;当角α的终边与x 轴重合时,正弦线、正切线分别变成一个点,此时角α的正弦值和正切值都为0;当角α的终边与y 轴重合时,余弦线变成一个点,正切线不存在.【知识要点】1.三角函数的定义域正弦函数y =sin x 的定义域是__;余弦函数y =cos x 的定义域是__;正切函数y =tan x 的定义域是_______. 2.三角函数线如图,设单位圆与x 轴的正半轴交于点A ,与角α的终边交于P 点.过点P 作x 轴的垂线PM ,垂足为M ,过A 作单位圆的切线交OP 的延长线(或反向延长线)于T 点.单位圆中的有向线段 、 、 分别叫做角α的正弦线、余弦线、正切线.记作:sin α= ,cos α= ,tan α=【问题探究】探究点一 三角函数的定义域任意角的三角函数是在坐标系中定义的,角的范围是使函数有意义的实数集.根据任意角三角函数的定义可知正弦函数y =sin x 的定义域是__;余弦函数y =cos x 的定义域是__;正切函数y =tan x 的定义域是____________.在此基础上,可以求一些简单的三角函数的定义域.例如: (1)函数y =sin x +tan x 的定义域为________________. (2)函数y =sin x 的定义域为________________. (3)函数y =lg cos x 的定义域为________________探究点二 三角函数线的作法问题1 请叙述正弦线、余弦线、正切线的作法? 问题2 作出下列各角的正弦线、余弦线和正切线. (1)-π4;(2)17π6;(3)10π3.探究点三 三角函数线的应用三角函数线是三角函数的几何表示,是任意角的三角函数定义的一种“形”的补充,线段的长度表示了三角函数绝对值的大小,线段的方向表示了三角函数值的正负.仔细观察单位圆中三角函数线的变化规律,回答下列问题.问题1 若α为任意角,根据单位圆中正弦线和余弦线的变化规律可得:sin α的范围是 ;cos α的范围是问题2 若α为第一象限角,证明sin α+cos α>1.问题3 若α为任意角,根据单位圆中正弦线和余弦线的变化规律探究sin 2α+cos 2α与1的关系.【典型例题】例1 在单位圆中画出满足sin α=12的角α的终边,并求角α的取值集合.跟踪训练1 根据下列三角函数值,作角α的终边,然后求角的取值集合: (1)cos α=12;(2)tan α=-1.例2 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合: (1)sin α≥32; (2)cos α≤-12. 跟踪训练2 已知点P (sin α-cos α,tan α)在第一象限,在[0,2π)内,求α的取值范围.例3 求下列函数的定义域. f (x )=1-2cos x +ln ⎝⎛⎭⎫sin x -22跟踪训练3 求函数f (x )=lg(3-4sin 2x )的定义域.【当堂检测】1.角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异,那么α的值为 ( ) A .π4B .3π4C .7π4D .3π4或7π42.如图在单位圆中角α的正弦线、正切线完全正确的是 ( ) A .正弦线PM ,正切线A ′T ′ B .正弦线MP ,正切线A ′T ′ C .正弦线MP ,正切线AT D .正弦线PM ,正切线AT 3.在[0,2π]上,满足sin x ≥12的x 的取值范围为( )A .⎣⎡⎦⎤0,π6 B .⎣⎡⎦⎤π6,5π6 C .⎣⎡⎦⎤π6,2π3 D .⎣⎡⎦⎤5π6,π 4.利用三角函数线比较下列各组数的大小(用“>”或“<”连接): (1)sin 23π________sin 45π;(2)cos 23π________cos 45π;(3)tan 23π________tan 45π.【课堂小结】1.三角函数线的意义三角函数线是用单位圆中某些特定的有向线段的长度和方向表示三角函数的值,三角函数线的长度等于三角函数值的绝对值,方向表示三角函数值的正负.具体地说,正弦线、正切线的方向同纵坐标轴一致,向上为正,向下为负;余弦线的方向同横坐标轴一致,向右为正,向左为负.三角函数线将抽象的数用几何图形表示出来了,使得问题更形象直观,为从几何途径解决问题提供了方便. 2.三角函数线的画法定义中不仅定义了什么是正弦线、余弦线、正切线,同时也给出了角α的三角函数线的画法即先找到P 、M 、T 点,再画出MP 、OM 、AT .注意三角函数线是有向线段,要分清始点和终点,字母的书写顺序不能颠倒.【拓展提高】§1.2.2 同角三角函数的基本关系(一) 导学案【学习要求】1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.能运用同角三角函数的基本关系式进行三角函数式的求值和计算.【学法指导】1.推导和牢记同角三角函数间的基本关系是进行三角函数式恒等变形的基础和前提.2.要注意公式sin 2α+cos 2α=1及tan α=sin αcos α的直接使用,公式逆用,公式变形用.利用平方关系sin 2α+cos 2α=1求值时,要注意符号的选择.3.已知任意角的正弦、余弦、正切中的一个值可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能.在求值时,根据已知的三角函数值,确定角的终边所在的象限,有时由于角的象限不确定,因此解的情况不止一种.【知识要点】1.任意角三角函数的定义如图所示,以任意角α的顶点O 为坐标原点,以角α的始边的方向作为x轴的正方向,建立直角坐标系.设P (x ,y )是任意角α终边上不同于坐标原点的任意一点.其中,r =OP =x 2+y 2 >0.则sin α=___,cos α=___,tan α=___ 2.同角三角函数的基本关系式(1)平方关系: .(2)商数关系: . 3.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α= ;cos 2α= ; (2)tan α=sin αcos α的变形公式:sin α= ;cos α=【问题探究】探究点一 利用任意角三角函数的概念推导平方关系和商数关系问题1 利用任意角的三角函数的定义证明同角三角函数的平方关系和商数关系. 问题2 平方关系sin 2α+cos 2α=1与商数关系tan α=sin αcos α成立的条件是怎样的?探究点二 已知一个角的三角函数值求其余两个三角函数值已知某角的一个三角函数值,再利用sin 2α+cos 2α=1求它的其余三角函数值时,要注意角所在的象限,恰当选取开方后根号前面的正负号,一般有以下三种情况:类型1:如果已知三角函数值,且角的象限已知,那么只有一组解. 例如:已知sin α=35,且α是第二象限角,则cos α=_____,tan α=_____.类型2:如果已知三角函数值,但没有指定角在哪个象限,那么由已知三角函数值的正负确定角可能在的象限,然后求解,这种情况一般有两组解.例如:已知tan θ=-3,求sin θ,cos θ.类型3:如果所给的三角函数值是由字母给出的,且没有确定角在哪个象限,那么就需要进行讨论. 例如:已知cos α=m ,且|m |<1,求sin α,tan α.【典型例题】例1 已知cos α=-817,求sin α,tan α.跟踪训练1 已知tan α=43,且α是第三象限角,求sin α,cos α的值.例2 已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α.跟踪训练2 已知tan α=3,求下列各式的值. (1)3cos α-sin α3cos α+sin α;(2)2sin 2α-3sin αcos α.例3 已知sin θ+cos θ=15,θ∈(0,π),求:(1)sin θ-cos θ;(2)sin 3θ+cos 3θ.跟踪训练3 已知sin αcos α=14,且π4<α<π2,求cos α-sin α的值.【当堂检测】1.α是第四象限角,cos α=1213,则sin α等于( )A .513B .-513C .512D .-5122.若cos α=-35,且α∈⎝⎛⎭⎫π,3π2,则tan α=_______ 3.若tan θ=-2,则sin θcos θ=_______ 4.已知sin α=15,求cos α,tan α【课堂小结】1.同角三角函数的基本关系揭示了“同角不同名”的三角函数的运算规律,它的精髓在“同角”二字上,如sin 22α+cos 22α=1,sin 8αcos 8α=tan 8α等都成立,理由是式子中的角为“同角”. 2.已知角α的某一种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择.一般是先选用平方关系,再用商数关系.在应用平方关系求sin α或cos α时,其正负号是由角α所在象限来决定,切不可不加分析,凭想象乱写公式.3.在三角函数的变换求值中,已知sin α+cos α,sin αcos α,sin α-cos α中的一个,可以利用方程思想,求出另外两个的值.【拓展提高】§1.2.2 同角三角函数的基本关系(二) 导学案【学习要求】1.会用同角三角函数的基本关系进行三角函数式的化简和恒等式的证明.2.通过同角三角函数的基本关系的学习,培养三角函数恒等变形的能力,体验化归的思想.【学法指导】1.三角函数式的化简实际上是一种不指定答案的恒等变形.化简时,要善于观察待化简式子的结构特征,如果待化简的三角函数是分式,应想办法去掉分母;如果出现高次,则应设法灵活运用平方关系化高次为低次;如果待化简式子中含有根号,则应将根号下化为完全平方式,再去掉根号.2.在三角恒等式证明的过程中,要注意三角公式的灵活运用.由于三角公式多,因此要“盯住目标”选择恰当公式.在同时含有弦函数和切函数的三角函数式中,常“化切为弦”,统一为弦函数后,再化简.【知识要点】1.同角三角函数的基本关系(1)平方关系: =1.变形:1-sin 2α= ;1-cos 2α= . (2)商数关系:tan α=sin αcos α.变形:sin α= ;cos α= .2.(sin α+cos α)2= ;(sin α-cos α)2=3.若设sin α+cos α=t ,则sin αcos α= ;若设sin α-cos α=t ,则sin αcos α= .4.若设sin α+cos α=t ,则sin 3α+cos 3α= ;若设sin α-cos α=t ,则sin 3α-cos 3α= .【问题探究】探究点一 三角函数式的化简三角函数式的化简是将三角函数式尽量化为最简单的形式,其基本要求:尽量减少角的种数,尽量减少三角函数的种数,尽量化为同角且同名的三角函数等.三角函数式的化简实质上是一种不指定答案的恒等变形,体现了由繁到简的最基本的数学解题原则.它不仅要求熟悉和灵活运用所学的三角公式,还需要熟悉和灵活运用这些公式的等价形式.同时,这类问题还具有较强的综合性,对其他非三角知识的运用也具有较高的要求,因此在平常学习时要注意经验的积累.化简三角函数式时,在题设的要求下,应合理利用有关公式,常见的化简方法:异次化同次、高次化低次、切化弦、特殊角的三角函数与特殊值互化等.请按照上述标准化简下列三角函数式:已知α是第三象限角,化简:1+sin α1-sin α-1-sin α1+sin α.探究点二 三角恒等式的证明证明三角恒等式就是通过转化和消去等式两边差异来促成统一的过程,证明的方法在形式上显得较为灵活,常用的有以下几种:①直接法:从等式的一边开始直接化为等式的另一边,常从比较复杂、繁杂的一边开始化简到另一边,其依据是相等关系的传递性;②综合法:由一个已知成立的等式(如公式等)恒等变形得到所要证明的等式,其依据是等价转化的思想; ③中间量法:证明等式左右两式都等于同一个式子,其依据是等于同一个量的两个量相等,即“a =c ,b =c ,则a =b ”,它可由等量关系的传递性及对称性推出;④分析法:从结论出发,逐步向已知找条件,其证明过程的书写格式为“要证明……,只需……”,只要所需的条件都已经具备,则结论就成立;⑤比较法:设法证明:“左边-右边=0”或“左边右边=1”.请选用上面的方法,证明三角恒等式cos α1-sin α=1+sin αcos α,并体会上述方法的应用.【典型例题】例1 化简sin α1-cos α·tan α-sin αtan α+sin α(其中α为第二象限角)跟踪训练1 化简:1-cos 4α-sin 4α1-cos 6α-sin 6α例2 求证:2sin x cos x -1cos 2x -sin 2x =tan x -1tan x +1跟踪训练2 证明:tan α·sin αtan α-sin α=tan α+sin αtan α·sin α例3 已知下列等式成立.(1)a sin θ-b cos θ=a 2+b 2;(2)sin 2θm 2+cos 2θn 2=1a 2+b 2.求证:a 2m 2+b2n 2=1.跟踪训练3 已知tan 2α=2tan 2β+1,求证:sin 2β=2sin 2α-1.【当堂检测】1.化简sin 2β+cos 4β+sin 2βcos 2β的结果是_______ 2.若α是第三象限角,化简 1+cos α1-cos α+1-cos α1+cos α.3.求证:tan θ·sin θtan θ-sin θ=1+cos θsin θ4.已知6tan αsin α=5,α∈⎝⎛⎭⎫-π2,0,求tan α的值 【课堂小结】1.在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当的选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.利用同角三角函数的基本关系主要是统一函数,要掌握“切化弦”和“弦化切”的方法. 2.在化简或恒等式证明时,注意方法的灵活运用,常用的技巧有:①“1”的代换;②减少三角函数的个数(化切为弦、化弦为切等);③多项式运算技巧的应用(如因式分解、整体思想等);④对条件或结论的重新整理、变形,以便于应用同角三角函数关系来求解.【拓展提高】§1.3 三角函数的诱导公式(一)导学案【学习要求】1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题.【学法指导】1.本节将要学习的诱导公式既是公式一的延续,又是后继学习内容的基础,广泛应用于求任意角的三角函数值以及有关三角函数的化简、证明等问题.2.这组诱导公式的推导思路是:首先确定角180°+α、角-α的终边与角α的终边之间的位置关系,找出它们与单位圆交点的坐标,再由正弦函数、余弦函数的定义得出结论. 3.在诱导公式的学习中,化归思想贯穿始末.为什么确定180°+α角为第一研究对象,-α角为第二研究对象,正是化归思想的运用.利用诱导公式把求任意角的三角函数值转化为求锐角的三角函数值,清晰地体现了化归的思想.【知识要点】1.设α为任意角,则π+α,-α,π-α的终边与α的终边之间 的对称关系.2.诱导公式一~四(1)公式一:sin(α+2k π)= ,cos(α+2k π)= ,tan(α+2k π)= ,其中k ∈Z. (2)公式二:sin(π+α)= ,cos(π+α)= ,tan(π+α)= . (3)公式三:sin(-α)= ,cos(-α)= ,tan(-α)= . (4)公式四:sin(π-α)= ,cos(π-α)= ,tan(π-α)=【问题探究】探究点一 诱导公式的作用和意义在前面的学习中,我们知道终边相同的角的同名三角函数相等,即公式一,并且利用公式一可以把绝对值较大的角的三角函数转化为0°~360°内的角的三角函数值,对于90°~360°内的三角函数我们能否进一步把它们转化到锐角范围内来求解?请你完成下面的问题,并注意观察三角函数的符号规律.(1)角π3的终边与单位圆的交点坐标为___ ____,所以sin π3=___,cos π3=___,tan π3=___;(2)角4π3的终边与单位圆的交点坐标为_________,所以sin 4π3=______,cos 4π3=_____,tan 4π3=____;。

人教A版高中数学必修4第一章 三角函数1.1 任意角和弧度制教案(2)

人教A版高中数学必修4第一章 三角函数1.1 任意角和弧度制教案(2)

1.1 任意角和弧度制1.1.1 任意角整体设计教学分析教材首先通过实际问题的展示,引发学生的认知冲突,然后通过具体例子,将初中学过的角的概念推广到任意角,在此基础上引出终边相同的角的集合的概念.这样可以使学生在已有经验(生活经验、数学学习经验)的基础上,更好地认识任意角、象限角、终边相同的角等概念.让学生体会到把角推广到任意角的必要性,引出角的概念的推广问题.本节充分结合角和平面直角坐标系的关系,建立了象限角的概念.使得任意角的讨论有一个统一的载体.教学中要特别注意这种利用几何的直观性来研究问题的方法,引导学生善于利用数形结合的思想方法来认识问题、解决问题.让学生初步学会在平面直角坐标系中讨论任意角.能熟练写出与已知角终边相同的角的集合,是本节的一个重要任务.学生的活动过程决定着课堂教学的成败,教学中应反复挖掘“探究”栏目及“探究”示图的过程功能,在这个过程上要不惜多花些时间,让学生进行操作与思考,自然地、更好地归纳出终边相同的角的一般形式.也就自然地理解了集合S={β|β=α+k·360°,k∈Z}的含义.如能借助信息技术,则可以动态表现角的终边旋转的过程,更有利于学生观察角的变化与终边位置的关系,让学生在动态的过程中体会,既要知道旋转量,又要知道旋转方向,才能准确刻画角的形成过程的道理,更好地了解任意角的深刻涵义.三维目标1.通过实例的展示,使学生理解角的概念推广的必要性,理解并掌握正角、负角、零角、象限角、终边相同角的概念及表示,树立运动变化的观点,并由此深刻理解推广之后的角的概念.2.通过自主探究、合作学习,认识集合S中k、α的准确含义,明确终边相同的角不一定相等,终边相同的角有无限多个,它们相差360°的整数倍.这对学生的终身发展,形成科学的世界观、价值观具有重要意义.3.通过类比正、负数的规定,让学生认识正角、负角并体会类比、数形结合等思想方法的运用,为今后的学习与发展打下良好的基础.重点难点教学重点:将0°—360°范围的角推广到任意角,终边相同的角的集合.教学难点:用集合来表示终边相同的角.课时安排1课时教学过程导入新课图1思路 1.(情境导入)如图1,在许多学校的门口都有摆设的一些游戏机,只要指针旋转到阴影部分即可获得高额奖品.由此发问:指针怎样旋转,旋转多少度才能赢?还有我们所熟悉的体操运动员旋转的角度,自行车车轮旋转的角度,螺丝扳手的旋转角度,这些角度都怎样解释?在学生急切想知道的渴望中引入角的概念的推广.进而引入角的概念的推广的问题.思路2.(复习导入)回忆初中我们是如何定义一个角的?所学的角的范围是什么?用这些角怎样解释现实生活的一些现象,比如你原地转体一周的角度,应怎样修正角的定义才能解释这些现象?由此让学生展开讨论,进而引入角的概念的推广问题.推进新课新知探究提出问题①你的手表慢了5分钟,你将怎样把它调整准确?假如你的手表快了1.25小时,你应当怎样将它调整准确?当时间调整准确后,分针转过了多少度角?②体操运动中有转体两周,在这个动作中,运动员转体多少度?③请两名男生(或女生、或多名男女学生)起立,做由“面向黑板转体背向黑板”的动作.在这个过程中,他们各转体了多少度?活动:让学生到讲台利用准备好的教具——钟表,实地演示拨表的过程.让学生站立原地做转体动作.教师强调学生观察旋转方向和旋转量,并思考怎样表示旋转方向.对回答正确的学生及时给予鼓励、表扬,对回答不准确的学生提示引导考虑问题的思路.角可以看作是平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形,设一条射线的端点是O,它从起始位置OA按逆时针方向旋转到终止位置OB,则形成了一个角α,点O 是角的顶点,射线OA、OB分别是角α的始边和终边.我们规定:一条射线绕着它的端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.钟表的时针和分针在旋转过程中所形成的角总是负角,为了简便起见,在不引起混淆的前提下,“角α”或“∠α”可以简记作“α”.如果一条射线没有作任何旋转,我们称它形成了一个零角,零角的始边和终边重合,如果α是零角,那么α=0°.讨论结果:①顺时针方向旋转了30°;逆时针方向旋转了450°.②顺时针方向旋转了720°或逆时针方向旋转了720°.③-180°或+180°或-540°或+540°或900°或1 080°……提出问题①能否以同一条射线为始边作出下列角:210°,-45°,-150°.②如何在坐标系中作出这些角,象限角是什么意思? 0°角又是什么意思?活动:先让学生看书、思考、并讨论这些问题,教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生,教师提示、引导考虑问题的思路.学生作这样的角,使用一条射线作为始边,没有固定的参照,所以会作出很多形式不同的角.教师可以适时地提醒学生:如果将角放到平面直角坐标系中,问题会怎样呢?并让学生思考讨论在直角坐标系内讨论角的好处:使角的讨论得到简化,还能有效地表现出角的终边“周而复始”的现象.今后我们在坐标系中研究和讨论角,为了讨论问题的方便,我们使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.那么角的终边在第几象限,我们就说这个角是第几象限角.要特别强调角与直角坐标系的关系——角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.讨论结果:①能.②使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.角的终边在第几象限,我们就说这个角是第几象限角.这样:210°角是第三象限角;-45°角是第四象限角;-150°角是第三象限角.特别地,终边落在坐标轴上的角不属于任何一个象限,比如0°角.可以借此进一步设问:锐角是第几象限角?钝角是第几象限角?直角是第几象限角?反之如何?将角按照上述方法放在直角坐标系中,给定一个角,就有唯一一条终边与之对应,反之,对于直角坐标系中的任意一条射线OB,以它为终边的角是否唯一?如果不唯一,那么终边相同的角有什么关系?提出问题①在直角坐标系中标出210°,-150°的角的终边,你有什么发现?它们有怎样的数量关系?328°,-32°,-392°角的终边及数量关系是怎样的?终边相同的角有什么关系?②所有与α终边相同的角,连同角α在内,怎样用一个式子表示出来?活动:让学生从具体问题入手,探索终边相同的角的关系,再用所准备的教具或是多媒体给学生演示:演示象限角、终边相同的角,并及时地引导:终边相同的一系列角与0°到360°间的某一角有什么关系,从而为终边相同的角的表示作好准备.为了使学生明确终边相同的角的表示方法,还可以用教具作一个32°角,放在直角坐标系内,使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,形成-32°角后提问学生这是第几象限角?是多少度角?学生对后者的回答是多种多样的.至此,教师因势利导,予以启发,学生对问题探究的结果已经水到渠成,本节难点得以突破.同时学生也在这一学习过程中,体会到了探索的乐趣,激发起了极大的学习热情,这是比学习知识本身更重要的.讨论结果:①210°与-150°角的终边相同;328°,-32°,-392°角的终边相同.终边相同的角相差360°的整数倍.设S={β|β=-32°+k·360°,k∈Z},则328°,-392°角都是S的元素,-32°角也是S的元素(此时k=0).因此,所有与-32°角的终边相同的角,连同-32°在内,都是集合S的元素;反过来,集合S的任何一个元素显然与-32°角终边相同.②所有与α终边相同的角,连同角α在内,可以构成一个集合S={β|β=k·360°+α,k∈Z}.即任一与角α终边相同的角,都可以表示成α与整数个周角的和.适时引导学生认识:①k∈Z;②α是任意角;③终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.应用示例例1 在0°—360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角. 解:-950°12′=129°48′-3×360°,所以在0°—360°的范围内,与-950°12′角终边相同的角是129°48′,它是第二象限的角.点评:教师可引导学生先估计-950°12′大致是360°的几倍,然后再具体求解.例2 写出终边在y轴上的角的集合.活动:终边落在y轴上,应分y轴的正方向与y轴的负方向两个.学生很容易分别写出所有与90°,270°的终边相同的角构成集合,这时应启发引导学生进一步思考:能否化简这两个式子,用一个式子表示出来.让学生观察、讨论、思考,并逐渐形成共识,教师再规范地板书出来.并强调数学的简捷性.在数学表达式子不唯一的情况下,注意采用简约的形式.图2解:在0°—360°范围内,终边在y轴上的角有两个,即90°和270°角,如图2.因此,所有与90°的终边相同的角构成集合S1={β|β=90°+k·360°,k∈Z}.而所有与270°角的终边相同的角构成集合S2={β|β=270°+k·360°,k∈Z}.于是,终边在y轴上的角的集合S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+180°+2k·180°,k∈Z}={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.点评:本例是让学生理解终边在坐标轴上的角的表示.教学中,应引导学生体会用集合表示终边相同的角时,表示方法不唯一,要注意采用简约的形式.变式训练①写出终边在x轴上的角的集合.②写出终边在坐标轴上的角的集合.答案:①S={β|β=(2n+1)·180°,n∈Z}.②S={β|β=n·90°,n∈Z}.例3 写出终边在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.图3解:如图3,在直角坐标系中画出直线y=x,可以发现它与x轴夹角是45°,在0°—360°范围内,终边在直线y=x上的角有两个:45°和225°,因此,终边在直线y=x上的角的集合S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z}.S中适合-360°≤β<720°的元素是:45°-2×180°=-315°,45°-1×180°=-135°,45°+0×180°=45°,45°+1×180°=225°,45°+2×180°=405°,45°+3×180°=585°.点评:本例是让学生表示终边在已知直线的角,并找出某一范围的所有的角,即按一定顺序取k的值,应训练学生掌握这一方法.例4 写出在下列象限的角的集合:①第一象限; ②第二象限;③第三象限; ④第四象限.活动:本题关键是写出第一象限的角的集合,其他象限的角的集合依此类推即可,如果学生阅读例题后没有解题思路,或者把①中的范围写成0°—90°,可引导学生分析360°—450°范围的角是不是第一象限的角呢?进而引导学生写出所有终边相同的角.解:①终边在第一象限的角的集合:{β|n·360°<β<n·360°+90°,n∈Z}.②终边在第二象限的角的集合:{β|n·360°+90°<β<n·360°+180°,n∈Z}.③终边在第三象限的角的集合:{β|n·360°+180°<β<n·360°+270°,n∈Z}.④终边在第四象限的角的集合:{β|n·360°+270°<β<n·360°+360°,n∈Z}.点评:教师给出以上解答后可进一步提问:以上的解答形式是唯一的吗?充分让学生思考、讨论后形成共识,并进一步深刻理解终边相同角的意义.课堂小结以提问的方式与学生一起回顾本节所学内容并简要总结:让学生自己回忆:本节课都学习了哪些新知识?你是怎样获得这些新知识的?你从本节课上都学到了哪些数学方法?让学生自己得到以下结论:本节课推广了角的概念,学习了正角、负角、零角的定义,象限角的概念以及终边相同的角的表示方法,零角是射线没有作任何旋转.一个角是第几象限的角,关键是看这个角的终边落在第几象限,终边相同的角的表示有两方面的内容:(1)与角α终边相同的角,这些角的集合为S={β|β=k·360°+α,k∈Z};(2)在0°—360°内找与已知角终边相同的角α,其方法是用所给的角除以360°,所得的商为k,余数为α(α必须是正数),α即为所找的角.数形结合思想、运动变化观点都是学习本课内容的重要思想方法.作业①课本习题1.1 A组1、3、5.②预习下一节:弧度制.设计感想1.本节课设计的容量较大,学生的活动量也较大,若用信息技术辅助教学效果会很好.教师可充分利用多媒体做好课件,在课堂上演示给学生;有条件的学校,可以让学生利用计算机或计算器进行探究,让学生在动态中掌握知识、提炼方法.2.本节设计的指导思想是加强直观.利用几何直观有利于对抽象概念的理解.在学生得出象限角的概念后,可以充分让学生讨论在直角坐标系中研究角的好处.前瞻性地引导学生体会:在直角坐标系中角的“周而复始”的变化规律,为研究三角函数的周期性奠定基础.3.几点说明:(1)列举不在0°—360°的角时,应注意所有的角在同一个平面内,且终边在旋转的过程中,角的顶点不动.(2)在研究终边相同的两个角的关系时,k的正确取值是关键,应让学生独立思考领悟.(3)在写出终边相同的角的集合时,可根据具体问题,对相应的集合内容进行复习.1.1.2 弧度制整体设计教学分析在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要.现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单位进行度量,并且一度的角等于周角的 3601,记作1°. 通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法.在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性.这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础.通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的.进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点. 三维目标1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣.重点难点教学重点:理解弧度制的意义,并能进行角度和弧度的换算.教学难点:弧度的概念及其与角度的关系.课时安排1课时教学过程导入新课思路1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购买水果常用千克、斤为单位进行度量,这两种度量单位是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的?思路2.(情境导入)利用古代度量时间的一种仪器——日晷,或者利用普遍使用的钟表.实际上我们使用的钟表是用时针、分针和秒针角度的变化来确定时间的.无论采用哪一种方法,度量一个确定的量所得到的量数必须是唯一确定的.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法——弧度制.要使学生真正了解弧度制,首先要弄清1弧度的含义,并能进行弧度与角度换算的关键.在引入弧度制后,可以引导学生建立弧与圆心角的联系——弧的度数等于圆心角的度数.随着角的概念的推广,圆心角和弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角,相应的,弧也就有正弧、零弧、负弧;从“数”上讲,圆心角与弧的度数有正数、0、负数.圆心角和弧的正负实际上表示了“角的不同方向”,就像三角函数值的正负可以用三角函数线(有向线段)的方向来表示一样.每一个圆心角都有一条弧与它对应,并且不同的圆心角对应着不同的弧,反之亦然.推进新课新知探究提出问题问题①:在初中几何里,我们学习过角的度量,1°的角是怎样定义的呢?问题②:我们从度量长度和重量上知道,不同的单位制能给我们解决问题带来方便.那么角的度量是否也能用不同单位制呢?图1活动:教师先让学生思考或讨论问题,并让学生回忆初中有关角度的知识,提出这是认识弧度制的关键,为更好地理解角度弧度的关系奠定基础.讨论后教师提问学生,并对回答好的学生及时表扬,对回答不准确的学生提示引导考虑问题的关键.教师板书弧度制的定义:规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.以弧度为单位来度量角的制度叫做弧度制;在弧度制下,1弧度记作1 rad.如图1中,的长等于半径r,AB 所对的圆心角∠AOB 就是1弧度的角,即rl =1. 讨论结果:①1°的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1°.它是一个定值,与所取圆的半径大小无关.②能,用弧度制.提出问题问题①:作半径不等的甲、乙两圆,在每个圆上作出等于其半径的弧长,连结圆心与弧的两个端点,得到两个角,将乙图移到甲图上,两个角有什么样的关系?问题②:如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数是多少?既然角度制、弧度制都是角的度量制,那么它们之间如何换算?活动:教师引导学生学会总结和归纳角度制和弧度制的关系,提问学生归纳的情况,让学生找出区别和联系.教师给予补充和提示,对表现好的学生进行表扬,对回答不准确的学生提示和鼓励.引入弧度之后,应与角度进行对比,使学生明确:第一,弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制;第二,1弧度是等于半径长的弧所对的圆心角(或这条弧)的大小,而1°的角是周角的3601;第三,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值.教师要强调为了让学生习惯使用弧度制,本教科书在后续的内容中尽量采用弧度制.讨论结果:①完全重合,因为都是1弧度的角. ②α=r 1;将角度化为弧度:360°=2π rad,1°=180πrad≈0.017 45 rad,将弧度化为角度:2π rad=360°,1 rad=(π180)°≈57.30°=57°18′.弧度制与角度制的换算公式:设一个角的弧度数为α rad=(πa 180)°,n°=n 180π(rad). 提出问题问题①:引入弧度之后,在平面直角坐标系中,终边相同的角应该怎么用弧度来表示?扇形的面积与弧长公式用弧度怎么表示? 问题②:填写下列的表格,找出某种规律.的长 OB 旋转的方向∠AOB 的弧度数 ∠AOB 的度数 πr 逆时针方向2πr 逆时针方向R1 2r-2-π180°360° 活动:教师先给学生说明教科书上为什么设置这个“探究”?其意图是先根据所给图象对一些特殊角填表,然后概括出一般情况.教师让学生互动起来,讨论并总结出规律,提问学生的总结情况,让学生板书,教师对做正确的学生给予表扬,对没有总结完全的学生进行简单的提示.检查完毕后,教师做个总结.由上表可知,如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数的绝对值是a1这里,应当注意从数学思想的高度引导学生认识“换算”问题,即角度制、弧度制都是角的度量制,那么它们一定可以换算.推而广之,同一个数学对象用不同方式表示时,它们之间一定有内在联系,认识这种联系性也是数学研究的重要内容之一.教师给学生指出,角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.值得注意的是:今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两项所用的单位制必须一致,绝对不能出现k·360°+3π或者2kπ+60°一类的写法.在弧度制中,与角α终边相同的角,连同角α在内,可以写成β=α+2kπ(k∈Z )的形式.如图2为角的集合与实数集R 之间的一一对应关系.图2讨论结果:①与角α终边相同的角,连同角α在内,可以写成β=α+2kπ(k∈Z )的形式.弧度制下关于扇形的公式为l=αR,S=21αR 2,S=21lR. 的长OB 旋转的方向 ∠AOB 的弧度数 ∠AOB 的度数 πr 逆时针方向 Π 180°例1 下列诸命题中,真命题是( )A.一弧度是一度的圆心角所对的弧B.一弧度是长度为半径的弧C.一弧度是一度的弧与一度的角之和D.一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位活动:本例目的是让学生在教师的指导下理解弧度制与角度制的联系与区别,以达到熟练掌握定义.从实际教学上看,弧度制不难理解,学生结合角度制很容易记住.根据弧度制的定义:我们把长度等于半径长的弧和所对的圆心角叫做一弧度的角.对照各项,可知D 为真命题.答案:D点评:本题考查弧度制下角的度量单位:1弧度的概念.变式训练下列四个命题中,不正确的一个是( )A.半圆所对的圆心角是π radB.周角的大小是2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度答案:D例2 将下列用弧度制表示的角化为2kπ+α(k∈Z ,α∈[0,2π))的形式,并指出它们所在的象限:①-415π;②332π;③-20;④-32. 活动:本题的目的是让学生理解什么是终边相同的角,教师给予指导并讨论归纳出一般规律.即终边在x 轴、y 轴上的角的集合分别是:{β|β=kπ,k∈Z },{β|β2π=kπ,k∈Z }.第一、二、三、四象限角的集合分别为:{β|2kπ<β<2kπ+2π,k∈Z }, {β|2kπ+2π<β<2kπ+π,k∈Z }, {β|2kπ+π<β<2kπ+23π,k∈Z }, {β|2kπ+23π<β<2kπ+2π,k∈Z }. 解:①415π-=-4π+4π,是第一象限角.②432π=10π+32π,是第二象限角. ③-20=-3×6.28-1.16,是第四象限角.④-23≈-3.464,是第二象限角.点评:在这类题中对于含有π的弧度数表示的角,我们先将它化为2kπ+α(k∈Z ,α∈[0,2π))的形式,再根据α角终边所在的位置进行判断,对于不含有π的弧度数表示的角,取π=3.14,化为k×6.28+α,k∈Z ,|α|∈[0,6.28)的形式,通过α与2π,π,23π比较大小,估计出角所在的象限.变式训练(1)把-1 480°写成2kπ+α(k∈Z ,α∈[0,2π))的形式;(2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解:(1)∵-1 480°=-974π=-10π+916π,0≤916π <2π, ∴-1 480°=2(-5)π+916π. (2)∵β与α终边相同,∴β=2kπ+916π,k∈Z . 又∵β∈[-4π,0),∴β1=92π-,β2=920π-. 例3 已知0<θ<2π,且θ与7θ相同,求θ.活动:本例目的是让学生在教师的指导下会用弧度制求终边相同的角,并通过独立完成课后练习真正领悟弧度制的要领,最终达到熟练掌握.从实际教学来看,用弧度制解决角的问题要很容易却难掌握,很有可能记错或者混淆或者化简错误,学生需多做些这方面的题来练基本功.可先让学生多做相应的随堂练习,在黑板上当场演练,教师给予批改指导,对易出错的地方特别强调.对学生出现的种种失误,教师不要着急,在学生的练习操作中一一纠正,这对以后学习大有好处.解:由已知,得7θ=2kπ+θ,k∈Z ,即6θ=2kπ.∴θ=3k π. 又∵0<θ<2π,∴0<3k π<2π. ∵k∈Z ,当k=1、2、3、4、5时,θ=3π、32π、π、34π、35π. 点评:本题是在一定的约束条件下,求与角α终边相同的角,一般地,首先将这样的角表示为2kπ+α(k∈Z ,α∈[0,2π))的形式,然后在约束条件下确定k 的值,进而求适合条件的角.例 4 已知一个扇形的周长为a,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值.活动:这是一道应用题,并且考查了函数思想,教师提示学生回顾一下用函数法求最值的思路与步骤,教师提问学生对已学知识的掌握和巩固,并对回答好的学生进行表扬,对回答不全面的学生给予一定的提示和鼓励.教师补充,函数法求最值所包括的五个基本环节:(1)选取自变量;(2)建立目标函数;(3)指出函数的定义域;(4)求函数的最值;(5)作出相应结论.其中自变量的选取不唯一,建立目标函数结合有关公式进行,函数定义域要根据题意确定,有些函数是结构确定求最值的方法,并确保在定义域内能取到最值.。

高中数学人教A版必修4第一章任意角和弧度制与任意角的三角函数导学案

高中数学人教A版必修4第一章任意角和弧度制与任意角的三角函数导学案
掌握“1”的妙用、“切割化弦”的解题思想
三、例题精析
【例题1】
已知角 的终边经过点 ,求 的正弦、余弦、正切值.
【思考】若角 的终边经过点 ,求 .
【例题2】
取什么值时, 有意义.
.
【例题3】
确定下列三角函数的符号:
(1) ;
(2) ;
(3)
【例题4】
已知 ,求角 的集合
【例题5】
(1)若 ,确定 的范围;
7.时钟经过一小时,时针转过了( )
A. rad B.- rad C. rad D.- rad
8.两个圆心角相同的扇形的面积之比为1∶2,则两个扇形周长的比为( )
A.1∶2 B.1∶4 C.1∶ D.1∶8
【拔高】
1.设 是第一象限角,试探究:
(1) 一定不是第几象限角?(2) 是第几象限角?
.
2.若扇形的周长为定值 ,则该扇形的圆心角为多大时,扇形的面积最大?
3.设 是第三、四象限角, ,则 的取值范围是_____
4.确定下列三角函数值的符号:
(1) ;(2) ;(3) ;(4) .
5.求下列各角的正弦、余弦、正切值:
(1) ;(2) ;(3) .
6.已知角 的终边上一点 ,且 ,求 的值。

7.在 内,使 成立的x的取值范围是()
A. B. C. D.
教 师
高 学生
上课时间
阶 段
基础(√) 提高( ) 强化( )
课时计划
共 次课 第 次课
教学课题
任意角,弧度制,任意角的三角函数
教学目标
1.了解任意角的概念;正确理解正角、零角、负角的概念;
2.正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示.

高中数学 第一章 三角函数 1.1.2 弧度制导学案 新人教A版必修4-新人教A版高一必修4数学学案

高中数学 第一章 三角函数 1.1.2 弧度制导学案 新人教A版必修4-新人教A版高一必修4数学学案

1.1.2 弧度制学习目标 1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换.2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系.3.掌握并能应用弧度制下的弧长公式和扇形面积公式.知识点一 角度制与弧度制思考1 在初中学过的角度制中,1度的角是如何规定的? 答案 周角的1360等于1度.思考2 在弧度制中,1弧度的角是如何规定的,如何表示?答案 把长度等于半径长的弧所对的圆心角叫做1弧度(radian)的角,用符号rad 表示. 思考3 “1弧度的角”的大小和所在圆的半径大小有关系吗?答案 “1弧度的角”的大小等于半径长的圆弧所对的圆心角,是一个定值,与所在圆的半径大小无关.梳理 (1)角度制和弧度制 角度制用度作为单位来度量角的单位制叫做角度制,规定1度的角等于周角的1360弧度制长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.以弧度作为单位来度量角的单位制叫做弧度制(2)角的弧度数的计算如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr. 知识点二 角度制与弧度制的换算思考 角度制和弧度制都是度量角的单位制,它们之间如何进行换算呢? 答案 利用1°=π180rad 和1 rad =(180π)°进行弧度与角度的换算.梳理 (1)角度与弧度的互化角度化弧度 弧度化角度 360°=2π rad2π rad=360°180°=π rad π rad=180° 1°=π180rad≈0.017 45 rad1 rad =⎝⎛⎭⎪⎫180π°≈57.30°(2)一些特殊角的度数与弧度数的对应关系度0° 1° 30° 45° 60° 90°120°135° 150° 180° 270° 360° 弧度 0π180π6π4π3π22π33π45π6π3π22π知识点三 扇形的弧长及面积公式思考 扇形的面积与弧长公式用弧度怎么表示?答案 设扇形的半径为R ,弧长为l ,α为其圆心角,则:α为度数 α为弧度数 扇形的弧长l =απR 180°l =αR 扇形的面积S =απR 2360°S =12lR =12αR 2类型一 角度与弧度的互化 例1 将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-11π5.解 (1)20°=20π180=π9.(2)-15°=-15π180=-π12.(3)7π12=712×180°=105°.(4)-11π5=-115×180°=-396°.反思与感悟 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad=180°即可求解.把弧度转化为角度时,直接用弧度数乘以⎝ ⎛⎭⎪⎫180π°即可.跟踪训练1 (1)把112°30′化成弧度; (2)把-5π12化成度.解 (1)112°30′=⎝⎛⎭⎪⎫2252°=2252×π180=5π8.(2)-5π12=-⎝ ⎛⎭⎪⎫5π12×180π°=-75°.类型二 用弧度制表示终边相同的角例2 把下列各角化成2k π+α(0≤α<2π,k ∈Z )的形式,并指出是第几象限角. (1)-1 500°;(2)23π6;(3)-4.解 (1)∵-1 500°=-1 800°+300°=-5×360°+300°. ∴-1 500°可化成-10π+5π3,是第四象限角. (2)∵23π6=2π+11π6,∴23π6与11π6终边相同,是第四象限角. (3)∵-4=-2π+(2π-4),π2<2π-4<π.∴-4与2π-4终边相同,是第二象限角.反思与感悟 用弧度制表示终边相同的角2k π+α(k ∈Z )时,其中2k π是π的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用.跟踪训练2 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α≤2π; (2)在[0°,720°]内找出与2π5角终边相同的角. 解 (1)∵-1 480°=-1 480×π180=-74π9,而-74π9=-10π+16π9,且0≤α≤2π,∴α=16π9.∴-1 480°=16π9+2×(-5)π.(2)∵2π5=2π5×(180π)°=72°,∴终边与2π5角相同的角为θ=72°+k ·360°(k ∈Z ),当k =0时,θ=72°;当k =1时,θ=432°.∴在[0°,720°]内与2π5角终边相同的角为72°,432°.类型三 扇形的弧长及面积公式的应用例3 (1)若扇形的中心角为120°,半径为3,则此扇形的面积为( ) A.π B.5π4 C.3π3 D.23π9(2)如果2弧度的圆心角所对的弦长为4,那么这个圆心角所对的弧长为( ) A.2 B.2sin 1 C.2sin 1 D.4sin 1答案 (1)A (2)D解析 (1)扇形的中心角为120°=2π3,半径为3,所以S 扇形=12|α|r 2=12×2π3×(3)2=π.(2)连接圆心与弦的中点,则以弦心距、弦长的一半、半径长为长度的线段构成一个直角三角形,半弦长为2,其所对的圆心角也为2,故半径长为2sin 1.这个圆心角所对的弧长为2×2sin 1=4sin 1. 反思与感悟 联系半径、弧长和圆心角的有两个公式:一是S =12lr =12|α|r 2,二是l =|α|r ,如果已知其中两个,就可以求出另一个.求解时应注意先把度化为弧度,再计算. 跟踪训练3 一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.1.下列说法中,错误的是( )A.“度”与“弧度”是度量角的两种不同的度量单位B.1°的角是周角的1360,1 rad 的角是周角的12πC.1 rad 的角比1°的角要大D.用角度制和弧度制度量角,都与圆的半径有关 答案 D解析 根据1度、1弧度的定义可知只有D 是错误的,故选D. 2.时针经过一小时,转过了( ) A.π6 rad B.-π6 radC.π12 rad D.-π12rad答案 B解析 时针经过一小时,转过-30°, 又-30°=-π6 rad ,故选B.3.若θ=-5,则角θ的终边在( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限答案 D解析 2π-5与-5的终边相同, ∵2π-5∈(0,π2),∴2π-5是第一象限角,则-5也是第一象限角.4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形圆心角的弧度数是( ) A.1 B.4 C.1或4 D.2或4答案 C解析 设扇形半径为r ,圆心角的弧度数为α,则由题意得⎩⎪⎨⎪⎧2r +αr =6,12αr 2=2,∴⎩⎪⎨⎪⎧r =1,α=4或⎩⎪⎨⎪⎧r =2,α=1.5.已知⊙O 的一条弧的长等于该圆内接正三角形的边长,则从OA 顺时针旋转到OE 所形成的角α的弧度数是 . 答案 - 3解析 设⊙O 的半径为r ,其内接正三角形为△ABC .如图所示,D 为AB 边中点, AO =r ,∠OAD =30°, AD =r ·cos 30°=32r , ∴边长AB =2AD =3r . ∴的弧长l =AB =3r . 又∵α是负角, ∴α=-l r=-3rr=- 3.1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 易知:度数×π180 rad =弧度数,弧度数×⎝ ⎛⎭⎪⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,在具体应用时,要注意角的单位取弧度.课时作业一、选择题1.-300°化为弧度是( ) A.-43πB.-53πC.-74πD.-76π答案 B解析 -300°=-300×π180=-53π.2.下列与9π4的终边相同的角的表达式中,正确的是( )A.2k π+45°(k ∈Z )B.k ·360°+9π4(k ∈Z )C.k ·360°-315°(k ∈Z )D.k π+5π4(k ∈Z )答案 C解析 A ,B 中弧度与角度混用,不正确. 9π4=2π+π4,所以9π4与π4的终边相同. -315°=-360°+45°,所以-315°也与45°的终边相同.故选C. 3.下列转化结果错误的是( ) A.60°化成弧度是π3B.-103π化成度是-600°C.-150°化成弧度是-76πD.π12化成度是15° 答案 C解析 C 项中-150°=-150×π180=-56π.4.设角α=-2弧度,则α所在的象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 C解析 ∵-π<-2<-π2,∴2π-π<2π-2<2π-π2,即π<2π-2<32π,∴2π-2为第三象限角, ∴α为第三象限角.5.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是( )A.-34πB.-2πC.πD.-π答案 A解析 ∵-114π=-2π+⎝ ⎛⎭⎪⎫-34π =2×(-1)π+⎝ ⎛⎭⎪⎫-34π,∴θ=-34π.6.若扇形圆心角为π3,则扇形内切圆的面积与扇形面积之比为( )A.1∶3B.2∶3C.4∶3D.4∶9答案 B解析 设扇形的半径为R ,扇形内切圆半径为r , 则R =r +rsinπ6=r +2r =3r .∴S 内切圆=πr 2.S 扇形=12αR 2=12×π3×R 2=12×π3×9r 2=32πr 2.∴S 内切圆∶S 扇形=2∶3.7.《九章算术》是我国古代数学成就的杰出代表作.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2).弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径为4 m的弧田,按照上述经验公式计算所得弧田面积约是( )A.6 m 2B.9 m 2C.12 m 2D.15 m 2答案 B解析 根据题设,弦=2×4sin π3=43(m),矢=4-2=2(m),故弧田面积=12×(弦×矢+矢2)=12(43×2+22)=43+2≈9(m 2). 二、填空题8.在直径长为20 cm 的圆中,圆心角为165°时所对的弧长为 cm. 答案55π6解析 ∵165°=π180×165=11π12(rad),∴l =11π12×10=55π6(cm).9.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },集合B ={x |-4≤x ≤4},则A ∩B = . 答案 [-4,-π]∪[0,π] 解析 如图所示,∴A ∩B =[-4,-π]∪[0,π].10.若2π<α<4π,且α与-76π角的终边垂直,则α= .答案 73π或103π解析 α=-76π-π2+2k π=2k π-53π,k ∈Z ,∵2π<α<4π,∴k =2,α=73π;或者α=-76π+π2+2k π=2k π-23π,k ∈Z ,∵2π<α<4π,∴k =2,α=103π.综上,α=73π或103π.11.如果圆心角为2π3的扇形所对的弦长为23,则扇形的面积为 .答案4π3解析 如图,作BF ⊥AC .已知AC =23,∠ABC =2π3,则AF =3,∠ABF =π3.∴AB =AFsin ∠ABF =2,即R =2.∴弧长l =|α|R =4π3,∴S =12lR =4π3.三、解答题12.已知一扇形的圆心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积; (2)若扇形的周长是30,当α为多少弧度时,该扇形有最大面积? 解 (1)设弧长为l ,弓形面积为S 弓,∵α=60°=π3,R =10(cm),∴l =αR =10π3(cm).S 弓=S 扇-S △=12×10π3×10-2×12×10×sin π6×10×cos π6=50⎝ ⎛⎭⎪⎫π3-32 (cm 2). (2)∵l +2R =30,∴l =30-2R ,从而S =12·l ·R =12(30-2R )·R =-R 2+15R =-⎝⎛⎭⎪⎫R -1522+2254. ∴当半径R =152 cm 时,l =30-2×152=15(cm), 扇形面积的最大值是2254 cm 2,这时α=l R=2(rad). ∴当扇形的圆心角为2 rad ,半径为152 cm 时,面积最大,为2254cm 2. 13.已知角α=1 200°.(1)将α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限的角;(2)在区间[-4π,π]上找出与α终边相同的角.解 (1)∵α=1 200°=1 200×π180=20π3=3×2π+2π3, 又π2<2π3<π, ∴角α与2π3的终边相同,∴角α是第二象限的角. (2)∵与角α终边相同的角(含角α在内)为2k π+2π3,k ∈Z , ∴由-4π≤2k π+2π3≤π,得-73≤k ≤16. ∵k ∈Z ,∴k =-2或k =-1或k =0.故在区间[-4π,π]上与角α终边相同的角是-10π3,-4π3,2π3.。

人教A版高中数学必修4第一章 三角函数1.1 任意角和弧度制教案

人教A版高中数学必修4第一章 三角函数1.1 任意角和弧度制教案

任意角与弧度制任意角与弧度制【教学目标】(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;【教学重点难点】重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.【学前准备】:多媒体,预习例题电脑、三角板2.象限角3.终边与角α相同的角 α+K×360°,K ϵZ五.布置作业完成课后习题六.教学反思弧度制【教学目标】1.理解1弧度的角、弧度制的定义。

2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算。

3.熟记特殊角的弧度数【教学重难点】教学重点:弧度制的概念,弧度制与角度制的互化; 教学难点:弧度制概念的建立与理解. 【学前准备】:多媒体,预习例题 教学课程 第一课教学环节导案/学案师生互动//随堂测试备注一、复习引入(5分钟) 1. 有一个扇形的篱笆,半径为3m ,圆心角为135°,则篱笆的弧长和面积分别是多少?2. 有一个扇形的篱笆,若已知其周长为10m ,求扇形的面积最大时圆心角的大小?a. 置角的顶点于原点b. 始边重合于X 轴的非负半轴c. 终边落在第几象限就是第几正角:射线按逆时针方向旋转所形成的角 负角:射线按顺时针方向旋转形成的角 零角:射线不作旋转形成的角二..探究新知(25分钟)1.在角度制下,扇形的弧长公式180n Rlπ=看上去有点繁琐,能不能想办法简化?形成概念,构建知识2. 这样我们就有180=πo,依次类推360=290=60=23πππo o o L,,,,我们发现了衡量角度大小的另一种单位.那么这种度量角的公式是怎么样的?3. 这样定义合理吗,这个角会不会随着圆的半径变化而变化呢?4、即1lnR=.同时会思考,这样一个定义的合理性,对于这个问题,通过代数上的公式变形及几何上的相似比的显示,都可以验证定理的合理性.那么1弧度的角是怎样定义的呢?它有什么特殊含义?若1R=,即单位圆的圆心角的弧度数跟弧长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2 弧度制
1.了解弧度制,明确1弧度的含义.
2.能进行弧度与角度的互化.
3.掌握弧度数的计算公式及其应用.
1.弧度制
(1)定义:以 为单位度量角的单位制叫做弧度制.
(2)度量方法:长度等于________的弧所对的圆心角叫做1弧度的角.如图所示,圆O
的半径为r ,»
AB 的长等于r ,∠AOB 就是1弧度的角.
一定大小的圆心角α的弧度数是所对弧长与半径的比值,是唯一确定的,与半径大小无关.
(3)记法:弧度单位用符号 表示,或用“弧度”两个字表示.在用弧度制表示角时,单位通常省略不写.
【做一做1】 下列表述中正确的是( ) A.一弧度是一度的圆心角所对的弧 B.一弧度是长度为半径的弧
C.一弧度是一度的弧与一度的角之和
D.一弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位 2.弧度数
一般地,正角的弧度数是一个 数,负角的弧度数是一个 数,零角的弧度数是 .
如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|= .
(1)弧长公式:l =|α|r .
(2)扇形面积公式:S =12lr =12
|α|r 2
.
【做一做2】 已知半径为10 cm 的圆上,有一条弧的长是40 cm ,则该弧所对的圆心角的弧度数是 .
3.弧度制与角度制的换算
(1)角度转化为弧度:360°= rad,180°= rad ,1°= rad≈0.017 45 rad.
(2)弧度转化为角度:2π rad= ,π rad= ,1 rad =() °≈57.30°=57°18′.
之间建立起 关系:每一个角都有唯一的一个 (即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个 (即弧度数等于这个实数的角)与它对应.
【做一做3-1】 把50°化为弧度为( )
A.50
B.518π
C.185π
D.9 000
π
【做一做3-2】 把2
5
π rad 化为度为( )
A.52°
B.36°
C.72°
D.90°
答案:1.(1)弧度 (2)半径长 (3)rad 【做一做1】 D
2.正 负 0 l r
【做一做2】 4 3.(1)2π π
π180 (2)360° 180° 180π (3)π6 π4 π3 π2 2π3 3π4 5π6
π 2π (4)一一对应 实数 角
【做一做3-1】 B 【做一做3-2】 C
1.用弧度制表示象限角与轴线角
剖析:主要从定义、意义、换算、写法等方面考虑.
(1)从定义上:弧度制是以“弧度”为单位度量角的单位制,角度制是以“度”为单位度量角的单位制.因此弧度制和角度制一样,都是度量角的方法.
(2)从意义上:1弧度是等于半径长的圆弧所对的圆心角(或该弧)的大小,而1°是圆的周长的1360所对的圆心角(或该弧)的大小;任意圆心角α的弧度数的绝对值|α|=l
r ,其中
l 是以角α作为圆心角时所对的圆弧长,r 为圆的半径.
(3)从换算上:1 rad =⎝ ⎛⎭
⎪⎫180π°,1°=π180 rad. (4)从写法上:用弧度为单位表示角的大小时,“弧度”两字可以省略不写,这时弧度数在形式上虽是一个不名数,但我们应当把它理解为名数;如果以度“°”为单位表示角时,度“°”就不能省去.
题型一 角度与弧度的互化
【例1】 把下列角度化成弧度或弧度化成角度.
(1)310°;(2)5π
12
rad.
分析:利用下列公式换算:1°=π180 rad ;1 rad =⎝ ⎛⎭
⎪⎫180π°. 反思:n °=n π180rad ,x rad =⎝ ⎛⎭
⎪⎫180πx °. 题型二 比较大小
【例2】 利用计算器比较sin 1和sin 1°的大小.
反思:比较sin α与sin β,cos α与cos β,tan α与tan β的大小时,通常使用计算器来完成,要注意α与β的单位.
题型三 扇形的弧长和面积公式 【例3】 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积为多少?
分析:设出扇形的半径r ,弧长l ,面积S ,列出S 关于r 的函数解析式,转化为求二次函数的最大值.
反思:(1)在弧度制下的弧长公式、扇形的面积公式简洁明了,灵活应用这些公式列方程组求解是解决这类问题的关键;
(2)在研究实际问题中的最值问题时,往往转化为二次函数的最值问题,这是经常用到的思想方法.
题型四 易错辨析
易错点 混淆了用弧度制和角度制表示的角 【例4】 α=π,β=π°,则有( ) A.α=β B.α>β
C.α<β
D.α与β的大小不确定 错解:由于π=π,则α=β,故选A.
错因分析:错解中混淆了π与π°的区别,π的单位是弧度,而π°的单位是度. 反思:角度制下的单位不能省略,而弧度制下的单位通常省略不写,因此要注意区分弧度制和角度制表示的角.
答案:
【例1】 解:(1)310°=π180 rad×310=31π
18 rad.
(2)5π12rad =⎝ ⎛⎭⎪⎫180π×5π12°=75°.
【例2】 解:由计算器 MODE MODE 2
sin 1=0.841 470 984. MODE MODE 1
sin 1。

, ,,=0.017 452 406.
∴sin 1>sin 1°.
【例3】 解:设扇形的圆心角为θ,半径为r cm ,弧长为l cm ,面积为S cm 2
,则l +2r =40,∴l =40-2r .
∴S =12lr =12
×(40-2r )r =20r -r 2=-(r -10)2
+100.
∴当r =10时,扇形的面积最大,最大值为100 cm 2
,这时θ=l
r
=2.
【例4】 B 正解:α=π=180°,因为180°>π°,所以α>β.
1.下列各式正确的是( ) A.
2
π
=90 B.
18
π
=10° C.3°=
60
π
D.38°=
38
π
2.下列各式正确的是( )
A.cos 3.7°<cos 3.8°
B.sin 5.1>sin 2.7°
C.tan 46°>tan 44
D.tan 1.23<tan 1.22 3.把-900°化为弧度为________.
4.若扇形的周长是16 cm ,圆心角是2 rad ,则扇形的面积是________.
5.如图所示,扇形AOB 的面积是4 cm 2
,它的周长是10 cm ,求扇形的圆心角α的弧度数.
答案:1.B
2.C 借助于计算器有:cos 3.7°≈0.997 9>cos 3.8°≈0.997 8,所以A 项不正确; sin 5.1≈-0.925 8<sin 2.7°≈0.047 1,所以B 项不正确; tan 46°≈1.035 5>tan 44≈0.017 7,所以C 项正确; tan 1.23≈2.819 8>tan 1.22≈2.732 8,所以D 项不正确.
3.-5π-900°=-900×
π
180
=-5π.
4.16 cm2设扇形的半径是r cm,弧长为l cm,则
216,
2.
l r
l
r
+=



=
⎪⎩
解得l=8,r=4.则
扇形的面积是1
2
lr=16 cm2.
5.分析:列方程组求出扇形的弧长l和半径R,再由|α|=l
R
求解.
解:设长为l cm,扇形半径为R cm,
则由题意,得
210, 1
4, 2
l R
l R
+=



⋅=
⎪⎩
解得
4,
2,
R
l
=


=


1,
8,
R
l
=


=

∴|α|=
2
4

1
2
或|α|=
8
1
=8>2π(舍去).∴α=
1
2
.
百度文库是百度发布的供网友在线分享文档的平台。

百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。

网友可以在线阅读和下载这些文档。

百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。

百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。

当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt 文件格式。

本文档仅用于百度文库的上传使用。

相关文档
最新文档