高考数学(理)二轮练习【专题1】(第2讲)不等式与线性规划(含答案)
2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc
限时规范训练五 不等式及线性规划限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B.①ac 2>bc 2,则c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 4.已知不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是( )A .{x |2<x <3}B .{x |x ≤2或x ≥3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12解析:选B.∵不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13, ∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3. 5.若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎢⎡⎦⎥⎤-12,2C .[-1,2]D.⎣⎢⎡⎦⎥⎤-12,1 解析:选B.作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.6.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12解析:选A.∵a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92,故选A.7.一条长为2的线段,它的三个视图分别是长为3,a ,b 的三条线段,则ab 的最大值为( ) A. 5 B. 6 C.52D .3解析:选C.如图,构造一个长方体,体对角线长为2,由题意知a 2+x 2=4,b 2+y 2=4,x2+y 2=3,则a 2+b 2=x 2+y 2+2=3+2=5,又5=a 2+b 2≥2ab ,所以ab ≤52,当且仅当a =b 时取等号,所以选C.8.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[3,11]D .[3,10]解析:选C.画出约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12的可行域如图阴影部分所示,则x +2y +3x +1=x +1+2y +2x +1=1+2×y +1x +1,y +1x +1的几何意义为过点(x ,y )和(-1,-1)的直线的斜率.由可行域知y +1x +1的取值范围为k MA ≤y +1x +1≤k MB ,即y +1x +1∈[1,5],所以x +2y +3x +1的取值范围是[3,11].9.设x ,y 满足不等式⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,若M =3x +y ,N =⎝ ⎛⎭⎪⎫12x-72,则M -N 的最小值为( )A.12 B .-12C .1D .-1解析:选A.作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A (-1,2),B (3,2),当直线3x +y -M =0经过点A (-1,2)时,目标函数M =3x +y 取得最小值-1.又由平面区域知-1≤x ≤3,所以函数N =⎝ ⎛⎭⎪⎫12x-72在x =-1处取得最大值-32,由此可得M -N 的最小值为-1-⎝ ⎛⎭⎪⎫-32=12.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选D.作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.其中直线x -y =0与直线2x +y =2的交点是⎝ ⎛⎭⎪⎫23,23,而直线x +y =a 与x 轴的交点是(a,0).由图知,要使原不等式组表示的平面区域的形状为三角形,只需a ≥23+23或0<a ≤1,所以选D.11.已知不等式组⎩⎪⎨⎪⎧3x +4y -10≥0,x ≤4,y ≤3表示区域D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A 、B ,当∠APB 最大时,cos∠APB =( )A.32 B.12 C .-32D .-12解析:选B.画出不等式组表示的可行域如图中阴影部分所示,易知当点P 到点O 距离最小时,∠APB 最大,此时|OP |=|3×0+4×0-10|32+42=2,又OA =1,故∠OPA =π6, ∴∠APB =π3,∴cos∠APB =12.12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C.由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3,由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0,① 由-1+a -b +c =-27+9a -3b +c ,得 4a -b -13=0,②由①②,解得a =6,b =11,∴0<c -6≤3, 即6<c ≤9,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2.而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:214.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 215.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出不等式组表示的可行域如图阴影部分所示.w =4x ·2y =22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51216.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。
2020高考数学理二轮课标通用专题能力训练:不等式、线性规划含解析
8.已知变量x,y满足约束条件 若x+2y≥-5恒成立,则实数a的取值范围为()
A.(-∞,-1]B.[-1,+∞)
C.[-1,1]D.[-1,1)
答案:C
解析:设z=x+2y,要使x+2y≥-5恒成立,即z≥-5.作出不等式组对应的平面区域如图阴影部分所示,要使不等式组成立,则a≤1,由z=x+2y,得y=- x+ ,
18.已知存在实数x,y满足约束条件 则R的最小值是.
答案:2
解析:根据前三个约束条件 作出可行域如图中阴影部分所示.由存在实数x,y满足四个约束条件,得图中阴影部分与以(0,1)为圆心、半径为R的圆有公共部分,因此当圆与图中阴影部分相切时,R最小.由图可知R的最小值为2.
16.已知x,y∈(0,+∞),2x-3= ,则 的最小值为.
答案:3
解析:由2x-3= ,得x+y=3,故 (x+y) (5+4)=3,当且仅当 (x,y∈(0,+∞))时等号成立.
17.若函数f(x)= lgx的值域为(0,+∞),则实数a的最小值为.
答案:-2
解析:函数f(x)的定义域为(0,1)∪(1,+∞),由 >0及函数f(x)的值域为(0,+∞)知x2+ax+1>0对∀x∈{x|x>0,且x≠1}恒成立,即a>-x- 在定义域内恒成立,而-x- <-2(当x≠1时等号不成立),因此a≥-2.
A.{x|x>2,或x<-2}B.{x|-2<x<2}
【走向高考】高考数学二轮复习微专题强化习题:不等式与线性规划含答案
第一部分 一 16一、选择题1.(文)(2015·唐山市一模)已知全集U ={x |x 2>1},集合A ={x |x 2-4x +3<0},则∁U A =( ) A .(1,3) B .(-∞,1)∪[3,+∞) C .(-∞,-1)∪[3,+∞) D .(-∞,-1)∪(3,+∞)[答案] C[解析] ∵U ={x |x 2>1}={x |x >1或x <-1},A ={x |x 2-4x +3<0}={x |1<x <3},∴∁U A ={x |x <-1或x ≥3}.(理)(2014·唐山市一模)己知集合A ={x |x 2-3x +2<0},B ={x |log 4x >12},则( )A .A ∩B =∅ B .B ⊆AC .A ∩(∁R B )=RD .A ⊆B[答案] A[解析] A ={x |x 2-3x +2<0}={x |1<x <2},B ={x |log 4x >12}={x |x >2},∴A ∩B =∅.[方法点拨] 解不等式或由不等式恒成立求参数的取值范围是高考常见题型.1.解简单的分式、指数、对数不等式的基本思想是把它们等价转化为整式不等式(一般为一元二次不等式)求解.2.解决含参数不等式的难点在于对参数的恰当分类,关键是找到对参数进行讨论的原因.确定好分类标准,有理有据、层次清楚地求解.3.解不等式与集合结合命题时,先解不等式确定集合,再按集合的关系与运算求解. 4.分段函数与解不等式结合命题,应注意分段求解.2.(文)(2014·天津理,7)设a 、b ∈R ,则“a >b ”是“a |a |>b |b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 [答案] C[解析] (1)若a >b ,则①a >b ≥0,此时a |a |>b |b |;②a >0>b ,显然有a |a |>b |b |;③0≥a >b ,此时0<|a |<|b |,∴a |a |>a |b |>b |b |,综上a >b 时,有a |a |>b |b |成立.(2)若a |a |>b |b |,①b =0时,有a >0,∴a >b ;②b >0时,显然有a >0,∴a 2>b 2,∴a >b ;③b <0时,若a ≥0时,a >b ;若a <0,则-a 2>-b 2,∴a 2<b 2,∴(a +b )(a -b )<0,∴a >b ,综上当a |a |>b |b |时有a >b 成立,故选C .(理)(2014·四川文,5)若a >b >0,c <d <0,则一定有( ) A .a d >b cB .a d <b cC .a c >b dD .a c <b d[答案] B[解析] ∵c <d <0,∴1d <1c <0,∴-1d >-1c >0,又∵a >b >0,∴-a d >-b c >0,即a d <bc.选B .[方法点拨] 不等式的性质经常与集合、充要条件、命题的真假判断、函数等知识结合在一起考查,解题时,关键是熟记不等式的各项性质,特别是各不等式成立的条件,然后结合函数的单调性求解.3.(文)若直线2ax +by -2=0(a 、b ∈R )平分圆x 2+y 2-2x -4y -6=0,则2a +1b 的最小值是( )A .1B .5C .4 2D .3+2 2 [答案] D[解析] 直线平分圆,则必过圆心. 圆的标准方程为(x -1)2+(y -2)2=11.∴圆心C (1,2)在直线上⇒2a +2b -2=0⇒a +b =1.∴2a +1b =(2a +1b )(a +b )=2+2b a +a b +1=3+2b a +ab ≥3+22,故选D . (理)(2015·湖南文,7)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A . 2B .2C .2 2D .4 [答案] C[解析] 考查基本不等式.根据1a +2b =ab ,可得a >0,b >0,然后利用基本不等式1a +2b ≥21a ×2b求解ab 的最小值即可;∵1a +2b =ab ,∴a >0,b >0,∵ab =1a +2b≥21a ×2b=22ab,∴ab ≥22,(当且仅当b =2a 时取等号),所以ab 的最小值为22,故选C .[方法点拨] 1.用基本不等式a +b2≥ab 求最值时,要注意“一正、二定、三相等”,一定要明确什么时候等号成立,要注意“代入消元”、“拆、拼、凑”、“1的代换”等技巧的应用.2.不等式恒成立问题一般用分离参数法转化为函数最值求解或用赋值法讨论求解. 4.(文)(2015·天津文,2)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -2≤0,x -2y ≤0,x +2y -8≤0,则目标函数z =3x+y 的最大值为( )A .7B .8C .9D .14[答案] C[解析] z =3x +y =52(x -2)+12(x +2y -8)+9≤9,当x =2,y =3时取得最大值9,故选C .此题也可画出可行域如图,借助图象求解.(理)设变量x 、y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .2[答案] A[解析] 由x ,y 满足的约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,画出可行域如图,容易求出A (2,0),B (5,3),C (1,3),由图可知当直线z =y -2x 过点B (5,3)时,z 最小值为3-2×5=-7.5.(2015·四川文,4)设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件[答案] A[解析] 考查命题及其关系.a >b >1时,有log 2a >log 2b >0成立,反之也正确.选A .6.(文)(2015·福建文,5)若直线x a +y b =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5[答案] C[解析] 考查基本不等式.由已知得,1a +1b =1,a >0,b >0,则a +b =(a +b )(1a +1b )=2+b a +ab ≥2+2b a ·a b =4,当b a=ab,即a =b =2时取等号. (理)已知a >0,b >0,且2a +b =4,则1ab 的最小值为( )A .14B .4C .12D .2[答案] C[解析] ∵a >0,b >0,∴4=2a +b ≥22ab , ∴ab ≤2,∴1ab ≥12,等号在a =1,b =2时成立.7.设z =2x +y ,其中变量x ,y 满足条件⎩⎪⎨⎪⎧x -4y ≤-33x +5y ≤25x ≥m .若z 的最小值为3,则m 的值为( )A .1B .2C .3D .4[答案] A[解析] 作出不等式组⎩⎪⎨⎪⎧x -4y ≤-33x +5y ≤25,表示的平面区域,由于z =2x +y 的最小值为3,作直线l 0:x =m 平移l 0可知m =1符合题意.[方法点拨] 1.线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是由最优解确定目标函数中参数的取值范围.2.解决线性规划问题首先要画出可行域,再注意目标函数所表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题可通过验证解决.3.确定二元一次不等式组表示的平面区域:①画线,②定侧,③确定公共部分;解线性规划问题的步骤:①作图,②平移目标函数线,③解有关方程组求值,确定最优解(或最值等).8.(文)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A .52B .72C .154D .152[答案] A[解析] ∵a >0,∴不等式x 2-2ax -8a 2<0化为 (x +2a )(x -4a )<0,∴-2a <x <4a , ∵x 2-x 1=15,∴4a -(-2a )=15,∴a =52.(理)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增,若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( )A .[1,2]B .(0,12]C .[12,2]D .(0,2] [答案] C[解析] 因为log 12a =-log 2a ,所以f (log 2a )+f (log 12a )=f (log 2a )+f (-log 2a )=2f (log 2a ),原不等式变为2f (log 2a )≤2f (1),即f (log 2a )≤f (1),又因为f (x )是定义在R 上的偶函数,且在[0,+∞)上递增,所以|log 2a |≤1,即-1≤log 2a ≤1,解得12≤a ≤2,故选C .9.(文)(2014·新课标Ⅰ文,11)设x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( ) A .-5 B .3 C .-5或3 D .5或-3[答案] B[解析] 当a =-5时,作出可行域,由⎩⎪⎨⎪⎧x +y =-5,x -y =-1,得交点A (-3,-2),则目标函数z=x -5y 过A 点时取最大值,z max =7,不合题意,排除A 、C ;当a =3时,同理可得目标函数z =x +3y 过B (1,2)时,z min =7符合题意,故选B .(理)(2014·北京理,6)若x 、y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-12[答案] D[解析] 本题考查了线性规划的应用. 若k ≥0,z =y -x 没有最小值,不合题意. 若k <0,则不等式组所表示的平面区域如图所示. 由图可知,z =y -x 在点(-2k,0)处取最小值-4,故0-(-2k )=-4,解得k =-12,即选项D 正确.10.(2015·江西质量监测)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0x -1≤0ax -y +1≥0(a 为常数)所表示的平面区域的面积等于5,则a 的值为( )A .-11B .3C .9D .9或-11[答案] C[解析] 由题意知不等式组所表示的平面区域为一个三角形区域,设为△ABC ,其中A (1,0),B (0,1),C (1,1+a )且a >-1,因为S △ABC =5,所以12×(1+a )×1=5,解得a =9.11.(2015·南昌市一模)已知实数x ,y 满足⎩⎪⎨⎪⎧x +1-y ≥0x +y -4≤0y ≥m ,若目标函数z =2x +y 的最大值与最小值的差为2,则实数m 的值为( )A .4B .3C .2D .-12[答案] C[解析] ⎩⎪⎨⎪⎧x +1-y ≥0x +y -4≤0y ≥m表示的可行域如图中阴影部分所示.将直线l 0:2x +y =0向上平移至过点A ,B 时,z =2x +y 分别取得最小值与最大值.由⎩⎪⎨⎪⎧ x +1-y =0y =m 得A (m -1,m ),由⎩⎪⎨⎪⎧x +y -4=0y =m 得B (4-m ,m ),所以z min =2(m -1)+m =3m -2,z max =2(4-m )+m =8-m ,所以z max -z min =8-m -(3m -2)=10-4m =2,解得m =2.12.(2015·洛阳市期末)设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).对∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( )A .6+2B .6-2C .22+2D .22-2[答案] B[解析] 由已知得:f ′(x )=2ax +b ,f (x )≥f ′(x )恒成立即ax 2+(b -2a )x +c -b ≥0恒成立,∴⎩⎪⎨⎪⎧a >0,Δ≤0,∴b 2≤-4a 2+4ac ,∴b 2a 2+2c 2≤-4a 2+4ac a 2+2c 2=-4+4c a 1+2·⎝⎛⎭⎫c a 2,设c a =t ,令g (t )=4(t -1)1+2t 2,令t -1=m ,则g (t )=4m 1+2(m +1)2=4m2m 2+4m +3=42m +3m+4≤426+4=6-2,当且仅当2m =3m,即m =32时等号成立,故选B . 二、填空题13.(文)不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y -2-1≤0,x -ky +k ≥0表示的是一个轴对称四边形围成的区域,则k=________.[答案] ±1[解析] 本题可以通过画图解决,如图直线l :x -ky +k =0过定点(0,1).当k =±1时,所围成的图形是轴对称图形.(理)设变量x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =x 2+y 2的最大值为________.[答案] 41[解析] 约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,画出可行域如图,易知x =4,y =5时,z 有最大值,z =42+52=41.14.(文)(2015·天津文,12)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.[答案] 4[解析] log 2a ·log 2(2b )≤⎝⎛⎭⎫log 2a +log 2(2b )22=14[log 2(2ab )]2=14(log 216)2=4, 当a =2b 时取等号,结合a >0,b >0,ab =8,可得a =4,b =2.(理)(2015·重庆文,14)设a ,b >0,a +b =5,则a +1+b +3的最大值为________. [答案] 3 2[解析] 考查基本不等式.由2ab ≤a 2+b 2两边同时加上a 2+b 2,得(a +b )2≤2(a 2+b 2)两边同时开方即得:a +b ≤2(a 2+b 2)(a >0,b >0,当且仅当a =b 时取“=”);从而有a +1+b +3≤2(a +1+b +3)=2×9=32(当且仅当a +1=b +3,即a =72,b =32时,“=”成立)故填:3 2.15.(2014·邯郸市一模)已知f (x )是定义在[-1,1]上的奇函数且f (1)=2,当x 1、x 2∈[-1,1],且x 1+x 2≠0时,有f (x 1)+f (x 2)x 1+x 2>0,若f (x )≥m 2-2am -5对所有x ∈[-1,1]、a ∈[-1,1]恒成立,则实数m 的取值范围是________.[答案] [-1,1][解析] ∵f (x )是定义在[-1,1]上的奇函数, ∴当x 1、x 2∈[-1,1]且x 1+x 2≠0时, f (x 1)+f (x 2)x 1+x 2>0等价于f (x 1)-f (-x 2)x 1-(-x 2)>0,∴f (x )在[-1,1]上单调递增.∵f (1)=2,∴f (x )min =f (-1)=-f (1)=-2.要使f (x )≥m 2-2am -5对所有x ∈[-1,1],a ∈[-1,1]恒成立, 即-2≥m 2-2am -5对所有a ∈[-1,1]恒成立, ∴m 2-2am -3≤0,设g (a )=m 2-2am -3,则⎩⎪⎨⎪⎧ g (-1)≤0,g (1)≤0,即⎩⎪⎨⎪⎧-3≤m ≤1,-1≤m ≤3.∴-1≤m ≤1. ∴实数m 的取值范围是[-1,1]. 三、解答题16.(文)(2015·湖北文,21)设函数f (x ),g (x )的定义域均为R ,且f (x )是奇函数,g (x )是偶函数,f (x )+g (x )=e x ,其中e 为自然对数的底数.(1)求f (x ),g (x )的解析式,并证明:当x >0时,f (x )>0,g (x )>1;(2)设a ≤0,b ≥1,证明:当x >0时,ag (x )+(1-a )<f (x )x<bg (x )+(1-b ). [分析] 考查1.导数在研究函数的单调性与极值中的应用;2.函数的基本性质. (1)将等式f (x )+g (x )=e x 中x 用-x 来替换,并结合已知f (x )是奇函数,g (x )是偶函数,构造方程组即可求出f (x ),g (x )的表达式;当x >0时,由指数与指数函数的性质知e x >1,0<e -x <1,进而可得到f (x )>0.然后再由基本不等式即可得出g (x )>1.(2)要证明ag (x )+(1-a )<f (x )x <bg (x )+(1-b ),即证f (x )>axg (x )+(1-a )x 和f (x )<bxg (x )+(1-b )x .于是构造函数h (x )=f (x )-cxg (x )-(1-c )x ,利用导数在函数的单调性与极值中的应用即可得出结论成立.[解析] (1)由 f (x ),g (x )的奇偶性及f (x )+g (x )=e x , ① 得:-f (x )+g (x )=e -x .②联立①②解得f (x )=12(e x -e -x ),g (x )=12(e x +e -x ).当x >0时,e x >1,0<e -x <1,故 f (x )>0.③ 又由基本不等式,有g (x )=12(e x +e -x )>e x e -x =1,即g (x )>1.④ (2)由(1)得f ′(x )=12⎝⎛⎭⎫e x -1e x ′=12⎝⎛⎭⎫e x +e x e 2x =12(e x +e -x)=g (x ),⑤ g ′(x )=12⎝⎛⎭⎫e x +1e x ′=12⎝⎛⎭⎫e x -e x e 2x =12(e x -e -x)=f (x ),⑥ 当x >0时,f (x )x >ag (x )+(1-a )等价于f (x )>axg (x )+(1-a )x ,⑦ f (x )x<bg (x )+(1-b )等价于f (x )<bxg (x )+(1-b )x . ⑧设函数h (x )=f (x )-cxg (x )-(1-c )x ,由⑤⑥,有h ′(x )=g (x )-cg (x )-cxf (x )-(1-c )=(1-c )[g (x )-1] -cxf (x ). 当x >0时,1°若c ≤0,由③④,得h ′(x )>0,故h (x )在[0,+∞) 上为增函数,从而h (x )>h (0)=0,即f (x )>cxg (x )+(1-c )x ,故⑦成立.2°若c ≥1,由③④,得h ′(x )<0,故h (x )在[0,+∞)上为减函数,从而h (x )<h (0)=0,即f (x )<cxg (x )+(1-c )x ,故⑧成立.综合⑦⑧,得ag (x )+(1-a )<f (x )x <bg (x )+(1-b ).(理)(2015·福建文,22)已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间; (2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1). [分析] 考查导数的综合应用.(1)求导函数f ′(x ),解不等式f ′(x )>0并与定义域求交集,得函数f (x )的单调递增区间;(2)构造函数F (x )=f (x )-(x -1),x ∈(1,+∞).欲证明f (x )<x -1,只需证明F (x )的最大值小于0即可;(3)当k ≥1时,易知不存在x 0>1满足题意;当k <1时,构造函数G (x )=f (x )-k (x -1),x ∈(0,+∞),利用导数研究函数G (x )的单调性,讨论得出结论.[解析] (1)f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0. 解得0<x <1+52. 故f (x )的单调递增区间是⎝⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞).则有F ′(x )=1-x 2x. 当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意.当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1),从而不存在x 0>1满足题意. 当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞),则有G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x. 由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0, x 2=1-k +(1-k )2+42>1. 当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增.从而当x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x -1),综上,k 的取值范围是(-∞,1).17.(文)已知函数f (x )=ln x ,g (x )=-a x(a >0). (1)当a =1时,若曲线y =f (x )在点M (x 0,f (x 0))处的切线与曲线y =g (x )在点P (x 0,g (x 0))处的切线平行,求实数x 0的值;(2)若∀x ∈(0,e],都有f (x )≥g (x )+32,求实数a 的取值范围. [解析] (1)当a =1时,f ′(x )=1x ,g ′(x )=1x 2. 因为函数f (x )在点M (x 0,f (x 0))处的切线与函数g (x )在点P (x 0,g (x 0))处的切线平行,所以1x 0=1x 20,解得x 0=1. (2)若∀x ∈(0,e],都有f (x )≥g (x )+32. 记F (x )=f (x )-g (x )-32=ln x +a x -32, 只要F (x )在(0,e]上的最小值大于等于0,F ′(x )=1x -a x 2=x -a x 2, 则F ′(x )、F (x )随x 的变化情况如下表:当a ≥e 所以F (e)=1+a e -32≥0,得a ≥e 2,所以a ≥e. 当a <e 时,函数F (x )在(0,a )上单调递减,在(a ,e)上单调递增,F (a )为最小值,所以F (a )=ln a +a a -32≥0,得a ≥e , 所以e ≤a <e ,综上a ≥ e.(理)设函数f (x )=ln x -ax +1-a x-1. (1)当a =1时,求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )的单调性;(3)当a =13时,设函数g (x )=x 2-2bx -512,若对于∀x 1∈[1,2],∃x 2∈[0,1],使f (x 1)≥g (x 2)成立,求实数b 的取值范围.[解析] 函数f (x )的定义域为(0,+∞),f ′(x )=-1x -a -1-a x2, (1)当a =1时,f (x )=ln x -x -1,∴f (1)=-2,f ′(x )=1x-1,∴f ′(1)=0 ∴f (x )在x =1处的切线方程为y =-2(2)f ′(x )=1x -a -1-a x 2=-ax 2+x -(1-a )x 2=-(x -1)[ax -(1-a )]x 2,f (x )的定义域为(0,+∞)当a =0时,f ′(x )=x -1x 2,f (x )的增区间为(1,+∞),减区间为(0,1) 当a ≠0时,1-a a >1,即0<a <12时,f (x )的增区间为(1,1-a a ),减区间为(0,1),(1-a a,+∞)1-a a =1,即a =12时,f (x )在(0,+∞)上单调递减 1-a a <1,即a >12或a <0,当a >12时,f (x )的增区间为(1-a a ,1),减区间为(0,1-a a ),(1,+∞)当a <0时,f (x )的增区间为(0,1-a a ),(1+∞);减区间为(1-a a,1). (3)当a =13时,由(Ⅱ)知函数f (x )在区间(1,2)上为增函数, 所以函数f (x )在[1,2]上的最小值为f (1)=-23对于∀x 1∈[1,2],∃x 2∈[0,1],使f (x 1)≥g (x 2)成立⇔g (x )在[0,1]上的最小值不大于f (x )在[1,2]上的最小值-23(*) 又g (x )=x 2-2bx -512=(x -b )2-b 2-512,x ∈[0,1] ①当b <0时,g (x )在[0,1]上为增函数,g (x )min =g (0)=-512>-23与(*)矛盾 ②当0≤b ≤1时,g (x )min =g (b )=-b 2-512, 由-b 2-512≤-23及0≤b ≤1得,12≤b ≤1 ③当b >1时,g (x )在[0,1]上为减函数,g (x )min =g (1)=712-2b ≤-23, 此时b >1 综上所述,b 的取值范围是[12,+∞). [方法点拨] 注意区分几类问题的解法.①对任意x ∈A ,f (x )>M (或f (x )<M )恒成立.②存在x ∈A ,使f (x )>M (或f (x )<M )成立.。
高考数学(理)二轮专题练习【专题1】(2)不等式与线性规划(含答案)
第 2 讲不等式与线性规划考情解读 1.在高考取主要考察利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考察求最值问题,线性规划主要考察直接求最优解和已知最优解求参数的值或取值范围问题.2.多与会合、函数等知识交汇命题,以选择、填空题的形式表现,属中档题.1.四类不等式的解法(1)一元二次不等式的解法先化为一般形式 ax2+bx+ c>0( a≠0),再求相应一元二次方程 ax2+ bx+ c= 0(a≠0)的根,最后依据相应二次函数图象与 x 轴的地点关系,确立一元二次不等式的解集.(2)简单分式不等式的解法①变形 ?f x>0(<0) ? f(x)g(x)>0(<0) ;g x②变形 ?f x≥ 0( ≤?0)f( x)g(x) ≥ 0( ≤且0)g(x) ≠ 0.g x(3) 简单指数不等式的解法①当 a>1 时, a f(x)>a g(x)? f(x)>g(x);②当 0< a<1 时, a f(x) >a g(x)? f(x)<g(x).(4)简单对数不等式的解法①当 a>1 时, log a f(x)>log a g(x) ? f(x)>g(x)且 f( x)>0 , g(x)>0;②当0< a<1 时, log a f( x)>log a g(x)? f(x)<g(x)且 f(x)>0,g(x)>0.2.五个重要不等式(1)|a| ≥0,a2≥ 0(a∈R ).(2)a2+b2≥2ab(a、b∈R ).a+ b(3)2≥ ab(a>0, b>0).a+ b 2(4) ab≤(2) (a, b∈R).(5)a2+ b2 a+ b2ab(a>0, b>0) .2≥2≥ ab≥a+ b3.二元一次不等式(组 )和简单的线性规划(1)线性规划问题的相关观点:线性拘束条件、线性目标函数、可行域、最优解等.(2)解不含实质背景的线性规划问题的一般步骤:①画出可行域;②依据线性目标函数的几何意义确立最优解;③求出目标函数的最大值或许最小值.4.两个常用结论(1) ax2a>0,+ bx+ c>0( a≠0)恒建立的条件是<0.2a<0,(2) ax+ bx+ c<0( a≠0)恒建立的条件是<0.热门一一元二次不等式的解法例 1(1)(2013 安·徽 )已知一元二次不等式f(x)<0 的解集为x|x<-1或x>1,则 f(10x)>0 的解集2为 ()A . { x|x<- 1 或 x>- lg 2}B . { x|- 1<x<- lg 2}C. { x|x>- lg 2}D . { x|x<- lg 2}(2) 已知函数f(x)= (x- 2)(ax+ b)为偶函数,且在 (0,+∞)单一递加,则 f(2- x)>0 的解集为 ()A . { x|x>2 或 x<- 2}B . { x|- 2< x<2}C. { x|x<0 或 x>4} D . { x|0<x<4}思想启示答案(1)D (1) 利用换元思想,设(2)C10x= t,先解f(t)>0.(2) 利用f(x)是偶函数求b,再解f(2 -x)>0.分析(1) 由已知条件0<10x<12,解得x<lg 12=- lg 2.(2)由题意可知 f(- x)= f(x).即 (- x- 2)(- ax+ b) = (x-2)(ax+b) ,(2a- b)x= 0 恒建立,故 2a-b= 0,即 b= 2a,则 f(x)= a(x- 2)(x+ 2).又函数在 (0,+∞)单一递加,所以 a>0.f(2 -x)>0 即 ax(x- 4)>0 ,解得 x<0 或 x>4.应选 C.思想升华二次函数、二次不等式是高中数学的基础知识,也是高考的热门,“三个二次”的相互转变表现了转变与化归的数学思想方法.(1)不等式x-1≤0的解集为 ()2x+ 1A . (-12, 1]1B .[-2,1]1C . (-∞,- 2)∪ [1,+ ∞)1D . (-∞,- 2]∪ [1,+ ∞)(2) 已知 p :? x 0∈ R , mx 02+1≤0,q :? x ∈ R , x 2+ mx + 1>0.若 p ∧ q 为真命题,则实数 m 的取 值范围是 ()A . (-∞,- 2)B . [- 2,0)C . (-2,0)D . [0,2]答案 (1)A (2)C分析(1) 原不等式等价于 (x - 1)(2x + 1)<0 或 x -1= 0,即- 1<x<1 或 x = 1,2 所以不等式的解集为 (- 1, 1],选 A.2(2) p ∧ q 为真命题,等价于 p ,q 均为真命题.命题 p 为真时, m<0;命题 q 为真时, 2= m -4<0 ,解得- 2<m<2. 故 p ∧ q 为真时,- 2<m<0. 热门二 基本不等式的应用例 2(1)(2014 ·湖北 )某项研究表示:在考虑行车安全的状况下,某路段车流量 F( 单位时间内经过丈量点的车辆数,单位:辆 /时) 与车流速度 v(假定车辆以同样速度 v 行驶,单位:米 /秒 )、均匀车长 l(单位:米 )的值相关,其公式为 F = 276 000v.v + 18v + 20l①假如不限制车型, l = 6.05,则最大车流量为 ________辆 /时;②假如限制车型, l =5,则最大车流量比①中的最大车流量增添 ________辆 /时.(2)(2013 山·东 )设正实数 x ,y ,z 知足 x 2- 3xy + 4y 2-z =0,则当xy获得最大值时,2+ 1-2的最zx yz大值为 ( )9A .0B .1C.4 D .3思想启示(1) 把所给 l 值代入,分子分母同除以 v ,结构基本不等式的形式求最值; (2) 重点是找寻xyz 获得最大值时的条件.答案(1) ① 1 900 ② 100 (2)B76 000v分析 (1) ① 当 l = 6.05 时, F = v 2+ 18v + 121=76 000≤76 000=76 000= 1 900.v +121+ 182121+ 1822+ 18v v ·v当且仅当 v = 11 米 /秒时等号建立,此时车流量最大为1 900 辆 /时.② 当 l = 5 时, F = 2 76 000v=76 000 ≤ 76 000=76 000= 2 000.v + 18v + 10010010020+ 18v + v + 18 2 v ·v + 18当且仅当 v = 10 米/ 秒时等号建立, 此时车流量最大为 2 000 辆 /时.比 ①中的最大车流量增添100 辆 /时.(2) 由已知得 z = x 2- 3xy + 4y 2, (*)则xy= 2 xy2=1≤1,当且仅当 x = 2y 时取等号,把 x = 2y 代入 (*) 式,得 z = 2y 2,z x - 3xy + 4yx4yy + x - 3所以 2+1- 2= 1+1-12 =-1-1 2+ 1≤1,x y z y y yy所以当 y = 1 时, 2x + 1y - 2z 的最大值为 1.思想升华在利用基本不等式求最值时,要特别注意“拆、拼、凑 ”等技巧,使其知足基本不等式中 “正 ”(即条件要求中字母为正数 )、 “定 ”(不等式的另一边一定为定值 )、 “等 ”(等号获得的条件 )的条件才能应用,不然会出现错误.(1) 若点 A(m , n)在第一象限,且在直线x+ y = 1 上,则 mn 的最大值为 ________.3 42(2) 已知对于 x 的不等式 2x + x - a ≥7在 x ∈ (a ,+ ∞)上恒建立,则实数 a 的最小值为 ()35A .1 B.2 C .2 D.2答案 (1)3 (2)B分析(1) 由于点 A(m , n)在第一象限,且在直线x + y= 1 上,所以 m , n>0 ,且 m +n= 1.3434m n m + nm n13m n 1所以3 4 2, n =2 时,取等号 ).所以·≤( 2 ) ( 当且仅当3== ,即 m = ·≤ ,即 mn ≤3,3 442 23 4 4 所以 mn 的最大值为 3.2= 2(x - a)+ 2 + 2a(2)2x + x - ax - a≥2·x - a2+ 2a = 4+ 2a ,x - a3由题意可知4+ 2a ≥7,得 a ≥ ,2即实数 a 的最小值为 3,应选 B.2热门三简单的线性规划问题例 3(2013 ·湖北 )某旅游社租用A、B 两种型号的客车安排900 名客人旅游, A、B 两种车辆的载客量分别为36 人和 60 人,租金分别为 1600 元 /辆和 2400 元 /辆,旅游社要求租车总数不超出 21 辆,且 B 型车不多于 A 型车 7 辆.则租金最少为 ()A .31 200 元B.36 000 元C. 36 800 元D.38 400 元思想启示经过设变量将实质问题转变为线性规划问题.答案C分析设租 A 型车 x 辆, B 型车 y 辆时租金为 z 元,x+ y≤21y-x≤7则 z= 1 600x+ 2 400y, x、 y 知足36x+ 60y≥900,x,y≥0, x、 y∈N画出可行域如图直线 y=-2x+z过点 A(5,12) 时纵截距最小,3 2 400所以 z min= 5×1 600+ 2 400 ×12= 36 800,故租金最少为36 800 元.思想升华(1)线性规划问题一般有三种题型:一是求最值;二是求地区面积;三是确立目标函数中的字母系数的取值范围.(2)解决线性规划问题第一要找到可行域,再注意目标函数所表示的几何意义,利用数形联合找到目标函数的最优解.(3)对于应用问题,要正确地设出变量,确立可行域和目标函数.x>0(1) 已知实数 x, y 知足拘束条件4x+3y≤4,则 w=y+1的最小值是 ()y≥0xA.-2 B.2 C.-1 D.12x-y+ 1>0 ,(2)(2013北·京 )设对于 x、 y 的不等式组 x+m<0,表示的平面地区内存在点P(x0, y0),y-m>0知足 x0- 2y0= 2,求得 m 的取值范围是 ()A.-∞,4 B. -∞,133C. -∞,-2D. -∞,-533答案 (1)D (2)C分析(1) 画出可行域,如下图.y + 1表示可行域内的点(x , y)与定点 P(0,- 1)连线的斜率,察看图形可知PA 的斜率最小w = x为 -1-0= 1,应选 D.0-1(2) 当 m ≥0 时,若平面地区存在, 则平面地区内的点在第二象限, 平面地区内不行能存在点 P(x 0,y 0)知足 x 0- 2y 0= 2,所以 m<0.如下图的暗影部分为不等式组表示的平面地区.1要使可行域内包括y = 2x - 1 上的点,只要可行域界限点11 2(- m ,m)在直线 y = 2x - 1 的下方即可,即 m<-2m - 1,解得 m<- 3.1.几类不等式的解法一元二次不等式解集的端点值是相应一元二次方程的根,也是相应的二次函数图象与x 轴交点的横坐标,即二次函数的零点;分式不等式可转变为整式不等式 (组 )来解;以函数为背景的不等式可利用函数的单一性进行转变.2.基本不等式的作用二元基本不等式拥有将“积式 ”转变为 “和式 ”或将 “和式 ”转变为 “积式 ”的放缩功能,经常用于比较数 (式 )的大小或证明不等式或求函数的最值或解决不等式恒建立问题.解决问题的重点是弄清分式代数式、函数分析式、不等式的结构特色,选择好利用基本不等式的切入点,并创建基本不等式的应用背景,如经过“代换 ”、“拆项 ”、 “凑项 ”等技巧,改变原式的结构使其具备基本不等式的应用条件.利用基本不等式求最值时要注意 “一正、二定、三相等 ”的条件,三个条件缺一不行.3.线性规划问题的基本步骤(1) 定域 —— 画出不等式 (组)所表示的平面地区, 注意平面地区的界限与不等式中的不等号的对应;(2) 平移 —— 画出目标函数等于 0 时所表示的直线 l ,平行挪动直线, 让其与平面地区有公共点,依据目标函数的几何意义确立最优解,注意要娴熟掌握最常有的几类目标函数的几何意义;(3) 求值 —— 利用直线方程组成的方程组求解最优解的坐标,代入目标函数,求出最值 .真题感悟1. (2014·山东 )已知实数x y) x, y 知足 a <a (0<a<1) ,则以下关系式恒建立的是 (A. 21 >21 B . ln(x2+1)>ln( y2+ 1) x+ 1y+1C. sin x>sin y33 D . x >y答案D分析由于 0<a<1,a x<a y,所以 x>y.采纳赋值法判断, A 中,当 x= 1,y= 0 时,1<1,A 不行2立. B 中,当 x= 0,y=- 1 时, ln 1<ln 2 ,B 不建立. C 中,当 x= 0,y=-π时, sin x= sin y = 0, C 不建立. D 中,由于函数y= x3在R上是增函数,应选 D.x+ 2y- 4≤0,2. (2014 ·浙江 )当实数 x,y 知足 x- y- 1≤0,时, 1≤ax+ y≤4恒建立,则实数 a 的取值范x≥1围是 ________.答案[1,3 ] 2分析画可行域如下图,设目标函数 z= ax+ y,即 y=- ax+z,要使 1≤z≤4 恒建立,则 a>0,1≤2a+ 1≤4,即可,解得33数形联合知,知足1≤a≤ .所以 a 的取值范围是1≤a≤ .1≤a≤422押题精练1.为了迎接2014年3 月8 日的到来,某商场举行了促销活动,经测算某产品的销售量P 万件 (生产量与销售量相等 )与促销花费 x 万元知足 P= 3-2,已知生产该产品还需投入成本 (10 x+ 1+ 2P)万元 (不含促销花费 ),产品的销售价钱定为(4+20P )万元 /万件.则促销花费投入万元时,厂家的收益最大?()A .1B.1.5C. 2 D . 3答案A分析设该产品的收益为y 万元,由题意知,该产品售价为2×(10+ 2P) 万元,所以y=P10+ 2P)×P- 10-2P- x =4- x(x>0) ,所以 y = 17 - (4+ x + 1)≤17 -2×(P16 -x+1x+1244= x+ 1,即 x= 1 时取等号 ),所以促销花费投入 1 万元x+ 1×x+= 13(当且仅当x+1时,厂家的收益最大,应选 A.3x- y≤0,2.若点 P(x,y)知足线性拘束条件x- 3y+ 2≥0,点 A(3, 3),O 为坐标原点,则→ →OA·OPy≥0,的最大值为 ________.答案6分析→→→ →由题意,知 OA= (3, 3),设 OP= (x, y),则 OA·OP= 3x+ 3y.令 z= 3x+ 3y,如图画出不等式组所表示的可行域,可知当直线 y=-3x+33z 经过点 B 时, z 获得最大值.3x- y= 0,解得x= 1,3),故 z 的最大值为3×1+3× 3= 6.由即 B(1,x- 3y+ 2=0,y= 3,→→即 OA·OP的最大值为 6.(介绍时间: 50 分钟 )一、选择题1. (2014 ·四川 )若 a>b>0 ,c<d<0,则必定有 ()a b a bA. c>dB. c<da b a bC.d> cD. d<c答案D分析令 a= 3,b= 2, c=- 3, d=- 2,则ac=- 1,bd=- 1,所以 A ,B 错误;a=- 3,b=-2,d 2 c 3a b所以 d <c ,所以 C 错误.应选 D.2.以下不等式必定建立的是()21 A . lg x+4 >lg x(x>0)1B . sin x +sin x ≥ 2(x ≠k π, k ∈ Z )C . x 2+ 1≥2|x|(x ∈ R )1D.x 2 + 1>1( x ∈ R ) 答案 C分析应用基本不等式: x , y>0,x +y2 ≥ xy(当且仅当 x = y 时取等号 ) 逐一剖析,注意基本不等式的应用条件及取等号的条件.当 x>0 时, x 2+11= x ,≥··42所以 lg2+ 1,应选项 A 不正确;x 4 ≥lg x( x>0) 运用基本不等式时需保证一正二定三相等,而当 x ≠k π, k ∈ Z 时, sin x 的正负不定,应选项 B 不正确;由基本不等式可知,选项C 正确;1当 x = 0 时,有 x 2+ 1= 1,应选项 D 不正确.3. (2013 ·重庆 )对于 x 的不等式 x 2- 2ax - 8a 2<0(a>0) 的解集为 (x 1, x 2) ,且 x 2- x 1= 15,则 a 等于 ()5 7 A. 2B. 215 15 C. 4D. 2答案 A分析由 x 2 - 2ax - 8a 2<0 ,得 (x + 2a)( x - 4a)<0,因 a>0,所以不等式的解集为 (- 2a,4a) ,即x 2= 4a , x 1=- 2a ,由 x 2- x 1= 15,得 4a -( -2a)= 15,解得 a = 52.4. (2014 ·重庆 )若 log 4(3a +4b)= log 2 ab ,则 a + b 的最小值是 ( )A .6+2 3B .7+2 3C.6+4 3D.7+43答案Dab>0 ,a>0,分析由题意得ab≥0,所以b>0.3a+4b>0,又 log 4(3a+ 4b)= log 2 ab,所以 log 4(3a+ 4b)= log4ab,43所以 3a+ 4b= ab,故+=1.所以 a+b= (a+ b)(4+3)= 7+3a+4ba b b a3a 4b≥7+2· =7+43,b a当且仅当3ab=4ba时取等号.应选D.x+ y-5≤05.已知变量 x, y 知足拘束条件x- 2y+ 1≤0,则 z=x+ 2y- 1 的最大值为 ()x- 1≥0A .9B . 8C. 7 D . 6答案Bx+ y- 5≤0分析拘束条件x-2y+ 1≤0所表示的地区如图,x- 1≥0由图可知,当目标函数过A(1,4) 时获得最大值,故z= x+ 2y- 1 的最大值为1+ 2×4- 1= 8.二、填空题6.已知f(x)是R 上的减函数,A(3,- 1),B(0,1)是其图象上两点,则不等式|f(1 +ln x)|<1 的解集是 ________.答案(1,e2) e分析∵ |f(1+ ln x)|<1,∴ - 1<f(1+ ln x)<1 ,∴ f(3)< f(1+ ln x)<f(0), 又 ∵ f(x) 在 R 上为减函数,∴ 0<1 +ln x<3, ∴ - 1<ln x<2,12∴ e <x<e .x - y ≤0,7.若x , y 知足条件x + y ≥0,且 z = 2x + 3y 的最大值是5,则实数a 的值为 ________.y ≤a ,答案1分析 画出知足条件的可行域如图暗影部分所示,则当直线z = 2x + 3y 过点 A( a , a)时, z =2x+ 3y 获得最大值 5,所以 5= 2a + 3a ,解得 a =1.8. 若点 A(1,1)在直线 2mx + ny - 2=0 上,此中 mn>0,则 1+ 1的最小值为 ________.m n答案32+ 2分析∵ 点 A(1,1)在直线 2mx + ny - 2=0 上,∴ 2m + n = 2,∵ 1 + 1= ( 1 + 1)2m + n = 1(2+2m + n+ 1)m n m n 22n m1 2m n 3+ 2,≥ (3+2n· )=2m 2当且仅当2m = n,即 n = 2m 时取等号,n m∴ 1+ 1的最小值为3+ 2.m n2三、解答题9.设会合 A 为函数 y =ln( - x 2- 2x +8) 的定义域,会合B 为函数 y = x +1的值域,会合 Cx + 11为不等式 ( ax - a )(x + 4) ≤0的解集.(1) 求 A ∩B ;(2) 若 C? ?R A ,求 a 的取值范围.解 (1)由- x 2- 2x +8>0 得- 4< x<2,即 A = (- 4,2).y= x+1=(x+1)+1-1,x+ 1x+ 1当 x+ 1>0,即 x>- 1 时 y≥2- 1= 1,此时 x=0,切合要求;当 x+ 1<0,即 x<- 1 时, y≤- 2- 1=- 3,此时 x=- 2,切合要求.所以 B= (-∞,- 3]∪ [1,+∞),所以 A∩B= (- 4,- 3]∪ [1,2) .1(2)(ax-a)( x+ 4)= 0 有两根1 x=- 4 或 x= a2.1当 a>0 时, C={ x|- 4≤x≤a2} ,不行能C? ?R A;当 a<0 时, C={ x|x≤- 4 或 x≥a 12} ,若 C? ?R A,则121,a2≥2,∴a≤2∴ -22, 0).2≤a<0.故 a 的取值范围为 [ -2132处获得极大值,在x= x2处获得极小值,且10.已知函数 f( x)= ax-bx+ (2- b)x+ 1 在 x=x130<x1<1< x2<2.(1)证明: a>0;(2)若 z= a+ 2b,求 z 的取值范围.(1)证明求函数 f(x)的导数f′(x)= ax2- 2bx+ 2- b.由函数 f(x)在 x= x1处获得极大值,在 x= x2处获得极小值,知 x1、 x2是 f′(x)=0 的两个根,所以 f′(x)= a(x- x1)(x- x2) .当 x<x1时, f(x)为增函数, f′(x)>0,由 x- x1<0,x- x2<0 得 a>0.f,(2) 解在题设下, 0<x1<1<x2<2 等价于 f,f,2- b>0,即a- 2b+ 2- b<0,4a- 4b+2- b>0 ,化简得2- b>0,a- 3b+ 2<0,4a- 5b+2>0.此不等式组表示的地区为平面aOb 上的三条直线:2- b =0, a - 3b + 2= 0,4a - 5b + 2=0 所围成的 △ ABC 的内部,其三个极点分别为4 6 A 7,7 , B(2,2), C(4,2).16z 在这三点的值挨次为, 6,8.所以 z 的取值范围为 (16, 8).711.某工厂生产某种产品,每天的成本C(单位:万元 )与日产量 x(单位:吨 )知足函数关系式C= 3+ x ,每天的销售额 S(单位:万元 )与日产量 x 的函数关系式S = k+ 5, 0<x<6,3x + x - 814, x ≥ 6. 已知每天的收益 L = S - C ,且当 x = 2 时, L = 3.(1) 求 k 的值;(2) 当天产量为多少吨时,每天的收益能够达到最大,并求出最大值.(1)由题意可得 L = k+2, 0<x<6,解2x + x - 811-x , x ≥6.k由于当 x = 2 时, L = 3,所以 3= 2×2++ 2,解得 k =18.(2) 当 0<x<6 时, L = 2x + 18+ 2,所以x - 818+ 18=- [2(8 - x)+18- x18+ 18=6,L = 2(x - 8)+x - 88- x ] + 18≤- 28- x当且仅当 2(8- x)= 18,即 x = 5 时获得等号.8-x 当 x ≥6 时, L =11- x ≤5.所以当 x = 5 时 L 获得最大值 6.所以当天产量为 5 吨时,每天的收益能够达到最大,最大值为 6 万元.。
高考数学二轮:1.2《不等式与线性规划》试题(含答案)
第 2 讲不等式与线性规划x x+,)1. (2014 大·纲全国 )不等式组的解集为 (|x|<1A . { x|- 2< x<- 1}B. { x|- 1<x<0}C.{ x|0<x<1}D. { x|x>1}4x+ 5y≥8,2. (2015 广·东 )若变量 x,y 满足约束条件 1≤x≤3,则 z=3x+ 2y 的最小值为 ()0≤y≤2,2331A.4 B. 5C.6 D. 53.(2015 浙·江 )有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位: m2)分别为 x, y, z,且 x< y< z,三种颜色涂料的粉刷费用 (单位:元 /m2) 分别为 a, b, c,且 a< b< c.在不同的方案中,最低的总费用( 单位:元 )是 ()A . ax+ by+cz B. az+by+ cxC.ay+ bz+ cx D. ay+ bx+ cz4. (2015 重·庆 )设 a, b>0, a+ b= 5,则 a+ 1+ b+ 3的最大值为 ________.1.利用不等式性质比较大小,利用基本不等式求最值及线性规划问题是高考的热点;2.一元二次不等式常与函数、数列结合考查一元二次不等式的解法和参数取值范围;3.利用不等式解决实际问题.热点一不等式的解法1.一元二次不等式的解法先化为一般形式ax2+bx+ c>0(a≠0),再求相应一元二次方程ax2+bx+ c= 0(a≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集.2.简单分式不等式的解法fx(1)g x >0(<0) ? f(x)g( x)>0(<0) ;f x≥ 0( ≤?0)f( x)g(x) ≥ 0( ≤且0)g(x) ≠ 0.(2)g x3.指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解. 例 1(1) 已知一元二次不等式f(x)<0 的解集为 x|x<- 1或 x>1,则 f(10x )>0 的解集为 ()2A . { x|x<- 1 或 x>- lg 2}B .{ x|- 1< x<- lg 2}C .{ x|x>- lg 2}D . { x|x<- lg 2}(2)已知函数 f(x)= (x - 2)(ax + b)为偶函数,且在 (0,+ ∞)单调递增,则 f(2- x)>0 的解集为 ()A . { x|x>2 或 x<- 2}B .{ x|- 2<x<2}C .{ x|x<0 或 x>4}D . { x|0<x<4}思维升华(1)对于和函数有关的不等式,可先利用函数的单调性进行转化;(2) 求解一元二次不等式的步骤:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间 ”得不等式的解集; (3)含参数的不等式的求解,要对参数进行分类讨论.跟踪演练 1(1) 关于 x 的不等式 x 2- 2ax - 8a 2 <0(a>0) 的解集为 (x 1, x 2),且 x 2- x 1= 15,则 a= ________.(2)已知 f(x) 是 R 上的减函数, A(3,- 1),B(0,1) 是其图象上两点, 则不等式 |f(1 + ln x)|<1 的解集是 ________________ .热点二基本不等式的应用利用基本不等式求最大值、最小值,其基本法则是: (1) 如果 x>0,y>0,xy = p(定值 ) ,当 x =y 时, x + y 有最小值 2 p(简记为:积定,和有最小值);(2) 如果 x>0, y>0, x + y = s(定值 ),当 x =y 时, xy 有最大值 1 24s (简记为:和定,积有最大值 ).例 2(1) 已知向量 a =(3,- 2), b = (x ,y - 1),且 a ∥ b ,若 x , y 均为正数,则 3+ 2的最小x y 值是 ()5 8 A. 3 B. 3 C .8D . 24(2)已知关于2≥7在 x∈(a,+∞)上恒成立,则实数 a 的最小值为 () x 的不等式 2x+x-a3A . 1 B. 25C.2 D. 2思维升华在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数 )、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件 )的条件才能应用,否则会出现错误.跟踪演练 2(1)(2015 ·津天) 已知 a> 0,b> 0,ab=8,则当 a 的值为 ________时,log 2a·log 2(2b)取得最大值.(2)若直线 2ax- by+ 2=0(a>0 ,b>0) 被圆 x2+ y2+ 2x-4y+ 1= 0 截得的弦长为 4,则1+1的最a b小值是 ________.热点三简单的线性规划问题解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点 ) ,但要注意作图一定要准确,整点问题要验证解决.x- y≤0,例 3(1)(2015 ·北京 )若 x, y 满足 x+ y≤1,则 z=x+ 2y 的最大值为 ()x≥0,3A.0 B. 1 C.2 D.2x+ y- 2≤0,(2)(2014 安·徽 )x, y 满足约束条件x- 2y- 2≤0,若z=y-ax取得最大值的最优解不唯一,2x- y+ 2≥ 0.则实数 a 的值为 ()A.1或- 1B.2或1 22C.2或1D.2 或- 1思维升华(1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2) 一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.y ≥x ,跟踪演练3已知x , y 满足y ≤- x +2,且目标函数z = 2x + y 的最小值为 9,则实数 a 的x ≥a ,值是 ()A . 1C .3B . 2D . 71.若点 A(a , b)在第一象限,且在直线x + 2y = 1 上,则 ab 的最大值为 ()11 1A .1 B.2C.4D.82x - y + 2≥0,2.已知 A(1,- 1), B( x , y),且实数 x , y 满足不等式组 x + y ≥2,→ →则 z =OA ·OB 的最x ≤2, 小值为 ()A .2B .- 2C .- 4D .- 6x + 3 x,3.已知函数 f(x)= x - 2则不等式 f(x) ≤4的解集为 ____________ .log 2 - xx,212 -a|对于 x ∈ [2,6] 恒成立,则 a 的取值范围是 ________.4.已知不等式≥ |ax - 1 5提醒:完成作业 专题一 第 2讲二轮专题强化练专题一第 2 讲不等式与线性规划A 组专题通关1.下列选项中正确的是()A .若 a>b,则 ac2>bc21 1B .若 ab>0, a>b,则a<bC.若 a>b,c<d,则ac<bdD.若 a>b, c>d,则 a- c>b-d2.不等式 x2+ x<a+b对任意 a, b∈ (0,+∞)恒成立,则实数 x 的取值范围是 ()b aA . (- 2,0)B. (-∞,- 2)∪ (1,+∞)C.(-2,1)D. (-∞,- 4)∪ (2,+∞)x- y≥0,3.(2015 山·东 )已知 x,y 满足约束条件x+ y≤2,若 z= ax+y 的最大值为4,则 a 等于 ()y≥0,A.3 B.2 C.- 2 D.-34. (2014 重·庆 )若 log4 (3a+ 4b)= log 2ab,则 a+ b 的最小值是 ()A.6+2 3B. 7+2 3C.6+ 4 3D.7+4 35.已知二次函数 f(x)= ax2+ bx+c 的导函数为 f′(x),f′(0)>0,且 f(x)的值域为 [0,+∞),则ff的最小值为 ()53A.3 B.2C. 2 D.2log3x, x>0,6.已知函数 f(x)=1那么不等式 f(x) ≥1的解集为 ________________ .x, x≤0,37.(2015 绵·阳市一诊 ) 某商场销售某种商品的经验表明,该产品生产总成本 C 与产量 q( q∈N* )1的函数关系式为 C= 100- 4q,销售单价 p 与产量 q 的函数关系式为p= 25-16q.要使每件产品的平均利润最大,则产量q= ________.2128.(2015 资·阳市测试 )若两个正实数 x,y 满足x+y= 1,且 x+ 2y>m+ 2m恒成立,则实数 m 的取值范围是 ________.9.设 0<a<1,集合 A= { x∈R |x>0} ,B={ x∈R|2x2- 3(1+ a)x+ 6a>0} ,D= A∩B,求集合D.( 用区间表示 )10.运货卡车以每小时x 千米的速度匀速行驶130 千米 ( 按交通法规限制50≤x≤ 100)(单位:千2x米 /小时 ).假设汽油的价格是每升 2 元,而汽车每小时耗油(2+360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于 x 的表达式;(2)当 x 为何值时,这次行车的总费用最低,并求出最低费用的值.B 组能力提高11.(2015 陕·西 )设 f(x)= ln x,0< a< b,若 p= f( ab),q= f a+ b ,r= 1(f(a)+ f(b)),则下列关22系式中正确的是()A . q= r< p B. q= r > pC.p= r< q D. p= r > qx- 1≥0,12. (2015 课·标全国Ⅰ )若 x, y 满足约束条件x- y≤0,x+ y-4≤0,则y的最大值为________. x13.已知 x>0 ,y>0,x+ y+ 3= xy,且不等式 ( x+y)2- a(x+ y)+1≥0恒成立,则实数 a 的取值范围是 ______________________________________ .14.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度 v(单位:千米 /小时 )是车流密度x(单位:辆 /千米 )的函数.当桥上的车流密度达到200辆 /千米时,造成堵塞,此时车流速度为0 千米 /小时;当车流密度不超过20 辆 /千米时,车流速度为60 千米 /小时,研究表明:当20≤x≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x≤ 200时,求函数v(x)的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/ 小时 )f(x)= x·v(x)可以达到最大,并求出最大值.(精确到 1 辆/小时 ).学生用书答案精析第 2 讲不等式与线性规划高考真题体验x x+,x>0或 x<-2,1.C [由得|x|<1,- 1<x<1,所以 0<x<1 ,所以原不等式组的解集为 { x|0<x<1} ,故选 C.] 2. B [不等式组所表示的可行域如下图所示,3z,依题当目标函数直线l :y=-3z经过由 z= 3x+ 2y 得 y=- x+x+2222A 1,4423,故选 B.]时, z 取得最小值即z min= 3×1+ 2×=5553. B[令 x= 1, y= 2, z= 3, a= 1,b= 2, c=3.A项: ax+ by+ cz= 1+ 4+ 9= 14;B项: az+ by+cx= 3+ 4+3= 10;C项: ay+ bz+cx= 2+ 6+3= 11;D项: ay+ bx+ cz= 2+ 2+ 9= 13.故选 B.]4.32解析∵a, b> 0, a + b = 5 ,∴ (a+ 1+b+ 3) 2= a + b + 4+ 2 a+ 1b+ 3≤a + b + 4 +(a+ 1)2+ (b+ 3)2= a+ b+ 4+ a+ b+4= 18,当且仅当a=7,b=3时,等号成立,则22a+ 1+b+ 3≤32,即 a+1+ b+3最大值为 3 2.热点分类突破例 1 (1)D(2)Cx1解析 (1) 由已知条件 0<10 <2,1解得 x<lg =- lg 2.(2)由题意可知f(-x)= f(x).即 (- x - 2)( - ax + b)= ( x - 2)(ax + b), (2a - b)x = 0 恒成立,故 2a - b = 0,即 b =2a ,则 f(x)=a(x -2)(x +2).又函数在 (0,+ ∞)单调递增,所以 a>0.f(2- x)>0 即 ax(x - 4)>0 ,解得 x<0 或 x>4.故选C.跟踪演练1(1)52(2)(1, e 2)e解析(1) 由 x 2- 2ax - 8a 2<0,得 (x +2a) ·(x - 4a)<0,因为 a>0,所以不等式的解集为(- 2a,4a),5即 x 2= 4a , x 1=- 2a ,由 x 2- x 1= 15,得 4a - (- 2a)= 15,解得 a =2.(2)∵ |f(1+ln x)|<1,∴- 1<f(1+ ln x)<1,∴ f(3)< f(1+ ln x)<f(0) ,又∵ f(x)在 R 上为减函数,∴ 0<1+ ln x<3,∴- 1<ln x<2 ,12∴ e <x<e .例 2 (1)C (2)B解析(1) ∵a ∥ b ,∴ 3(y - 1)+ 2x = 0,即 2x + 3y = 3.∵ x>0,y>0,∴ 3 23 + 2 1x + = ( y ) ·(2x + 3y)yx 3 = 1 9y + 4x 13(6+ 6+ x y ) ≥3(12+ 2×6)= 8. 当且仅当 3y = 2x 时取等号.2 = 2(x - a)+2+2a(2)2x + x - ax - a≥ 2·x -a2+ 2a = 4+ 2a ,x - a3由题意可知 4+2a ≥7,得 a ≥ ,23即实数 a 的最小值为2,故选 B.跟踪演练 2 (1)4 (2)4解析(1)log 2a·log 2(2b) = log2 a·(1 + log2 b) ≤log2a+1+log2b2=log 2ab+1 2 =log28+1 2 =2224,当且仅当 log2a= 1+log2b,即 a= 2b时,等号成立,此时a= 4, b= 2.(2)易知圆 x2+ y2+ 2x-4y+ 1=0的半径为2,圆心为 (- 1,2),因为直线 2ax-by+ 2= 0(a>0,22截得的弦长为 4,所以直线 2ax- by+ 2= 0(a>0,b>0) 过圆心,b>0)被圆 x+y +2x- 4y+1= 0把圆心坐标代入得: a+ b= 1,所以1+1= (1+1)(a+ b)= 2 +b+a≥4,当且仅当b=a, a+b a b a b a b a b=1,即 a=b=12时等号成立.例 3 (1)D (2)D解析(1) 可行域如图所示.目标函数化为y=-1x+1z,22当直线 y=-112.x+ z 过点 A(0,1) 时, z 取得最大值22(2)如图,由y= ax+ z 知 z 的几何意义是直线在y 轴上的截距,故当 a>0 时,要使z= y- ax 取得最大值的最优解不唯一,则a=2;当 a<0 时,要使 z= y- ax 取得最大值的最优解不唯一,则a=- 1.跟踪演练 3 C [依题意,不等式组所表示的可行域如图所示(阴影部分 ),观察图象可知,当目标函数z= 2x+y 过点 B(a,a)时, z min=2a+ a= 3a;因为目标函数z= 2x+ y 的最小值为9,所以 3a= 9,解得 a= 3,故选 C.]高考押题精练1. D[因为点 A(a , b)在第一象限,且在直线x + 2y = 1 上,所以a>0, b>0,且 a + 2b = 1,1 1 a + 2b2 1所以 ab = ·a ·2b ≤ ·(2 ) = ,228当且仅当 a = 2b = 1,即 a = 1, b =1时, “= ”成立.2 2 4 故选 D.]2. C [画出不等式组所表示的可行域为如图所示的 △ ECD 的内部 (包括边界 ),其中E(2,6), C(2,0), D(0,2) .目标函数 → →z = OA ·OB =x - y.令直线 l :y =x - z ,要使直线 l 过可行域上的点且在 y 轴上的截距- z 取得最大值,只需直线l 过点 E(2,6).此时 z 取得最小值,且最小值z min = 2- 6=- 4.故选 C.]113. { x|- 14≤x<2 或 x ≥3 }x>2,x<2,解析 由题意得 x + 3或- x,x - 2 ≤4log 211解得 x ≥ 或- 14≤x<2 ,311故不等式 f( x) ≤4的解集为 { x|- 14≤x<2 或 x ≥} .34. [- 1,2]解析 设 y = 2, y ′=-2 2,x -1x -故 y = 2在 x ∈[2,6] 上单调递减,x-122即 y min = 6-1= 5,故不等式2 12恒成立等价于1 22 a 2- a -2≤0,x - 1 ≥|a - a|对于 x ∈[2,6]5|a - a| ≤恒成立,化简得a 2- a +2≥0,55解得- 1≤a≤2,故 a 的取值范围是 [ - 1,2] .二轮专题强化练答案精析第 2 讲不等式与线性规划1.B[若 a>b,取 c= 0,则 ac2>bc2不成立,排除 A;取 a= 2,b=- 1, c=1, d=2,则选项 C 不成立,排除 C;取 a= 2, b= 1, c= 1,d=- 1,则选项 D 不成立,排除 D. 选 B.]2.C[ 根据题意,由于不等式2a b2 a bx + x< +对任意 a,b∈ (0,+∞)恒成立,则 x+ x<( + )min,b a b aa b a b∵+≥2 ·=2,b a b a∴ x2+ x<2,求解此一元二次不等式可知其解集为( -2,1). ]3. B [不等式组表示的平面区域如图阴影部分所示.易知 A(2,0) ,x- y= 0,由x+y= 2,得 B(1,1) .由 z= ax+ y,得 y=- ax+ z.∴当 a=- 2 或 a=- 3 时, z= ax+ y 在O(0,0) 处取得最大值,最大值为z max= 0,不满足题意,排除C, D 选项;当 a= 2 或 3 时, z =ax+y 在 A(2,0) 处取得最大值,∴2a=4,∴ a=2,排除 A ,故选 B.]ab>0 ,a>0,4. D [由题意得ab≥0,所以b>0.3a+4b>0,又log 4(3a+4b)=log2ab,所以 log4(3a+ 4b)=log 4ab,43所以 3a+ 4b= ab,故+=1.433a4b所以 a+ b= (a+ b)( + )=7++aa b b3a 4b≥7+2· =7+43,b a当且仅当3ab=4ba时取等号.故选 D.]5. C [f′(x)= 2ax+ b, f′ (0)= b>0,函数f(x)的值域为 [0,+∞),所以a>0 ,且 b2- 4ac= 0,2f a + b +c a + c 2 ac 4ac即 4ac = b ,所以 c>0. 又 f(1) = a + b + c ,所以 f=b= 1+ b ≥1+ b =1+ b= 1+ 1= 2(当且仅当 b = 2a = 2c 时取等号 ),所以f的最小值为 2,故选 C.]f6.(-∞,0]∪[3,+ ∞)解析当 x>0 时,由 log 3x ≥1可得 x ≥3,当 x ≤0时,由 (1)x≥1可得 x ≤0,3∴不等式 f( x) ≥1的解集为 (- ∞, 0]∪ [3,+ ∞).7. 40解析每件产品的利润 y = 25-1100- 4q = 29- ( q +10016q -q16q ) ≤ 29-2q 100= 24, 16·qq 100当且仅当 16= q 且 q>0 ,即 q = 40 时取等号.8. (- 4,2)解析∵ x + 2y =( x + 2y)(2+1)=4+ x + 4yx y yx≥4+ 2x 4y· = 8,∴ (x + 2y)min = 8,y x令 m 2+ 2m<8,得- 4<m<2.9.解令 g(x)= 2x 2- 3(1+ a)x + 6a ,其对称轴方程为 x = 3(1+ a),4= 9(1+ a)2- 48a = 9a 2- 30a +9= 3(3a - 1)(a - 3).1 3①当 0<a ≤ 时, Δ≥0, x =(1+ a)>0, g(0)= 6a>0,34方程 g( x)= 0 的两个根分别为0<x 1= 3a + 3-9a 2- 30a + 9 3a + 3+ 9a 2- 30a +94 <x 2= 4,3a +3-9a 2-30a + 9 3a + 3+ 9a 2- 30a + 9 ∴ D = A ∩B = 0,4∪ ,+∞ ;4 ②当 1<a<1 时, <0,则 g(x)>0 恒成立,3 所以 D = A ∩B = (0,+ ∞).综上所述,当10<a ≤ 时,33a+ 3-9a2- 30a+ 9∪3a+ 3+9a2-30a+ 9D= 0,4,+∞;41当3<a<1 时, D= (0,+∞).130 10.解(1)行车所用时间为t=x (h) ,130x2130,x∈[50,100] .y=x×2×(2+360) +14×x所以,这次行车总费用y 关于 x 的表达式是2 34013y=x+18x, x∈[50,100] .2 340+ 13(2)y=x18x≥ 26 10,当且仅当2 340 13x=18x,即 x=18 10时,上述不等式中等号成立.故当 x= 18 10时,这次行车的总费用最低,最低费用为2610元.11. C [ ∵ 0< a< b,∴a+b> ab,2又∵ f(x)= ln x 在 (0,+∞)上为增函数,故 f a+b> f(ab),即 q> p.211111ab) = p.又 r = (f(a)+ f( b))= (ln a+ ln b)= ln a+ ln b= ln(ab) = f( 22222故 p=r < q.选 C.]12. 3解析画出可行域如图阴影所示,∵y表示过点(x,y)与原点(0,0)的直线的斜率,xy∴点 (x, y)在点 A 处时最大.x= 1,x= 1,由得x+ y- 4= 0,y= 3.∴A(1,3) .∴y的最大值为 3. x3713. (-∞, 6 ]解析要使 (x + y)2- a(x + y)+ 1≥0恒成立,则有(x + y)2+ 1≥a(x + y),即 a ≤(x +y)+ 1恒成立.x+ yx + y 2由 x + y + 3= xy ,得 x + y + 3= xy ≤( 2 ) ,即 (x + y)2- 4(x + y)- 12≥0,解得 x + y ≥6或 x + y ≤- 2(舍去 ).设 t = x + y ,则 t ≥6, (x + y)+ 1 = t + 1.x +y t111 37 37设 f(t)= t + t ,则在 t ≥6时, f(t)单调递增,所以 f(t)= t + t 的最小值为 6+ 6 = 6 ,所以 a ≤6 ,即实数 a 的取值范围是 (- ∞,376 ] .14.解 (1)由题意:当0≤x ≤ 20时, v(x) = 60;当 20≤x ≤ 200时,设 v(x)= ax + b ,显然 v(x)=200a + b = 0,1,a =- 3ax + b 在 [20,200] 上是减函数,由已知得解得20020a + b = 60,b = 3 ,故函数 v(x) 的表达式为60x ,x ,v(x)= 1- x ,x3(2)依题意并由 (1)可得60xx,f(x) = 13x- x x ,当 0≤x ≤20时,f(x)为增函数, 故当 x =20 时,其最大值为 60×20= 1 200;当 20≤x ≤200时,f(x)1 1 x +-x 2 10 000,当且仅当 x = 200 - x ,即 x = 100 时,等号成立,=x(200-x) ≤[2] =333所以,当 x = 100 时, f(x)在区间 [20,200] 上取得最大值 10 000 .3综上,当 x = 100 时, f(x)在区间 [0,200] 上取得最大值10 000≈ 3 333,3即当车流密度为 100 辆 /千米时,车流量可以达到最大,最大值约 3 333 辆 /小时.。
2020版 高考理科数学大二轮专题复习作业 1.2不等式 线性规划 Word版含解析
由图象可知该平面区域表示一个三角形(阴影部分),其面积S =12×⎝ ⎛⎭⎪⎫3+32×3=274.故选B. 答案:B4.[2019·广西南宁摸底]已知实数x ,y 满足⎩⎪⎨⎪⎧x -y ≥0,x +y -4≥0,x ≤4,则z =4x -y 的最小值为( )A .4B .6C .12D .16解析:作出可行域如图中阴影部分所示,作出直线y =4x 并平移,结合图象可知当平移后的直线经过点A (2,2)时,z =4x -y 取得最小值,z min =4×2-2=6.故选B.答案:B5.[2019·北京101中学统考]“a >0”是“a +2a ≥22”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:当a >0时,由基本不等式易得a +2a ≥22成立;当a +2a ≥22时,得a 2-22a +2a ≥0,即(a -2)2a ≥0,所以a >0,所以“a >0”是“a +2a ≥22”的充要条件,故选C.答案:Cxy ≤(x +y )24=424=4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4cm 2.故选C.答案:C9.[2019·天津南开中学月考]若实数x ,y 满足⎩⎪⎨⎪⎧y ≤x ,x +4y -4≥0,x +y -3≤0,则x +1y 的取值范围是( )A.⎣⎢⎡⎦⎥⎤53,11B.⎣⎢⎡⎦⎥⎤111,35C.⎣⎢⎡⎦⎥⎤53,2 D .[2,11] 解析:作出可行域如图中阴影部分所示.x +1y 的几何意义是可行域内的点与点P (-1,0)连线的斜率的倒数,连接P A ,PB .由⎩⎪⎨⎪⎧ y =x ,x +y -3=0,得A ⎝ ⎛⎭⎪⎫32,32,所以k P A =35.由⎩⎪⎨⎪⎧x +y -3=0,x +4y -4=0,得B ⎝ ⎛⎭⎪⎫83,13,所以k PB =111.故x +1y 的取值范围是⎣⎢⎡⎦⎥⎤53,11.故选A.答案:A10.[2019·天津二十五中月考]设实数x ,y满足⎩⎪⎨⎪⎧x ≥2,3x -y ≥1,y ≥x +1,则下列不等式恒成立的是( )A .x ≥3B .y ≥4C .x +2y -8≥0D .2x -y +1≥0解析:作出可行域如图中阴影部分所示:则C (2,3),B (2,5),A 项,由图可以看出,阴影部分不全在直线x =3的右侧,故A 项不符合题意;B 项,由图可以看出,阴影部分不全在直线y =4的上侧,故B 项不符合题意;C项,x+2y-8≥0,即y≥-12x+4,作出直线y=-12x+4,由图可以看出,阴影部分都在直线y=-12x+4的上侧,故C项符合题意;D项,2x-y+1≥0,即y≤2x+1,作出直线y=2x+1,由图可以看出,阴影部分不全在直线y=2x+1的下侧,故D项不符合题意.故选C.答案:C11.[2019·内蒙古包头九中期末]若6<a<10,a2≤b≤2a,c=a+b,则c的取值范围是()A.[9,18] B.(18,30)C.[9,30] D.(9,30)解析:∵a2≤b≤2a,∴3a2≤a+b≤3a,即3a2≤c≤3a,又6<a<10,∴9<c<30.故选D.答案:D12.设实数x,y满足约束条件⎩⎪⎨⎪⎧y≥0,x+y-3≤0,x-2y+6≥0,若目标函数z=a|x|+2y的最小值为-6,则实数a等于()A.2 B.1C.-2 D.-1解析:作出约束条件⎩⎪⎨⎪⎧y≥0,x+y-3≤0,x-2y+6≥0,的可行域如图中阴影部分所示,因为目标函数z=a|x|+2y的最小值为-6,数形结合可知目标函数的最优解为B,由⎩⎪⎨⎪⎧y=0,x-2y+6=0,得B(-6,0),所以-6=a×|-6|,得a=-1.故选D.答案:D 13.[2019·山西师大附中月考]已知a >b ,ab ≠0,下列不等式中:①a 2>b 2;②2a>2b;③1a <1b ;④a 13>b13;⑤⎝ ⎛⎭⎪⎫13a <⎝ ⎛⎭⎪⎫13b.恒成立的是________.(填序号)解析:因为函数y =2x ,y =x 13在R 上是单调增函数,a >b ,ab ≠0,所以2a >2b,a 13>b 13恒成立;又函数y =⎝ ⎛⎭⎪⎫13x 在R 上是单调减函数,a >b ,ab ≠0,所以⎝ ⎛⎭⎪⎫13a <⎝ ⎛⎭⎪⎫13b恒成立;又a >b ,ab ≠0,a 2-b 2=(a -b )(a +b )和1a -1b =b -a ab 的正负不确定;所以a 2>b 2,1a <1b 不恒成立.答案:②④⑤14.[2019·洛阳尖子生第二次联考]已知x ,y 满足⎩⎪⎨⎪⎧x ≥2,x +y ≤4,2x -y -m ≤0.若目标函数z =3x +y 的最大值为10,则z 的最小值为________.解析:作出可行域,如图中阴影部分所示.作出直线3x +y =0,并平移可知当直线过点A 时,z 取得最大值,为10,当直线过点B 时,z取得最小值.由⎩⎪⎨⎪⎧x +y =4,2x -y -m =0,得⎩⎨⎧x =4+m 3,y =8-m 3,即A ⎝ ⎛⎭⎪⎫4+m 3,8-m 3,所以3×4+m 3+8-m 3=10,解得m =5,可得点B 的坐标为(2,-1),所以z min =3×2-1=5.答案:515.[2019·黑龙江鹤岗一中月考]已知x <0,且x -y =1,则x +12y +1的最大值是________.解析:∵x <0,且x -y =1,∴x =y +1,y <-1,∴x +12y +1=y +1+12y +1=y +12+12y +12+12,∵y +12<0,∴y +12+12y +12=-⎣⎢⎢⎡⎦⎥⎥⎤-⎝ ⎛⎭⎪⎫y +12+12-⎝⎛⎭⎪⎫y +12≤-2, 当且仅当y =-1+22时等号成立,∴x +12y +1≤12-2,∴x +12y +1的最大值为12- 2.答案:12- 2 16.[2019·山西晋中月考]已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y +4≤0,y ≥2,x -4y +k ≥0,且z =3x +y 的最小值为-1,则常数k =________.解析:根据题意作出可行域如图中阴影部分所示,作出直线3x +y =0,并平移,结合图象可知,当平移后的直线过点A (x,2)时,z =3x +y 取得最小值-1,故3x +2=-1,解得x =-1,故A (-1,2),故-1-4×2+k =0,故k =9.答案:9。
高考数学二轮复习 专题一 第2讲 不等式及线性规划课件
3.利用基本不等式求最值 已知 x,y∈(0,+∞),则(1)若 x+y=S(和为定值),则当 x=y 时, 积 xy 取得最大值S42xy≤x+2 y2=S42;(2)若 xy=P(积为定值),则 当 x=y 时,和 x+y 取得最小值 2 P(x+y≥2 xy=2 P).
真题感悟 1.(2015·福建卷)若直线ax+by=1(a>0,b>0)过点(1,1),则
a+b 的最小值等于( C )
A.2
B.3
C.4
D.5
解析 由题意1a+1b=1,∴a+b=(a+b)1a+1b=2+ba+
ab≥4,当且仅当 a=b=2 时,取等号.故选 C.
2.(2015·陕西卷)设 f(x)=ln x,0<a<b,若 p=f( ab),q=f a+2 b,
4.平面区域的确定方法是“直线定界、特殊点定域”,二元一次不 等式组所表示的平面区域是各个不等式所表示的半平面的交集. 线性目标函数 z=ax+by 中的 z 不是直线 ax+by=z 在 y 轴上的 截距,把目标函数化为 y=-abx+bz,可知bz是直线 ax+by=z 在 y 轴上的截距,要根据 b 的符号确定目标函数在什么情况下取得 最大值、什么情况下取得最小值.
+ln b)=12ln a+12ln b=ln(ab)12=f( ab)=p.故 p=r<q.选 C.
3.(2015·全国Ⅰ卷)若 x,y 满足约束条件xx+ -y2-y+2≤ 1≤0, 0,则 z=3x 2x-y+2≥0,
+y 的最大值为________.
解析 作出不等式组所表示的可行域 ( 如 图 中 阴 影 部 分 所 示 ) , 作 直 线 l0 : 3x +y=0,平移直线l0,当直线3x+y=z 过点(1,1)时,zmax=3+1=4. 答案 4
新广东高考数学理科步步高二轮复习专题突破1.2不等式与线性规划(含答案解析)
第2讲 不等式与线性规划(推荐时间:50分钟)一、选择题1.(2014·四川)若a >b >0,c <d <0,则一定有( )A.a c >b dB.a c <b dC.a d >b cD.a d <b c 答案 D解析 令a =3,b =2,c =-3,d =-2,则a c =-1,b d=-1, 所以A ,B 错误;a d =-32,bc =-23, 所以a d <b c, 所以C 错误.故选D.2.若x ∈(0,1),则下列结论正确的是( )A .lg x >x 12>2xB .2x >lg x >x 12C .x 12>2x >lg xD .2x >x 12>lg x答案 D解析 分别画出函数y =2x ,y =x 12,y =lg x 的图象,如下图,由图象可知,在x ∈(0,1)时,有2x >x 12>lg x ,故选D.3.(2013·重庆)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于( )A.52B.72C.154D.152答案 A解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52. 4.(2014·重庆)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 3 答案 D 解析 由题意得⎩⎪⎨⎪⎧ ab >0,ab ≥0,3a +4b >0,所以⎩⎪⎨⎪⎧a >0,b >0. 又log 4(3a +4b )=log 2ab ,所以log 4(3a +4b )=log 4ab , 所以3a +4b =ab ,故4a +3b=1. 所以a +b =(a +b )(4a +3b )=7+3a b +4b a≥7+23a b ·4b a=7+43, 当且仅当3a b =4b a时取等号.故选D. 5.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y -5≤0x -2y +1≤0x -1≥0,则z =x +2y -1的最大值为( )A .9B .8C .7D .6答案 B解析 约束条件⎩⎪⎨⎪⎧ x +y -5≤0x -2y +1≤0x -1≥0所表示的区域如图,由图可知,当目标函数过A (1,4)时取得最大值,故z =x +2y -1的最大值为1+2×4-1=8.二、填空题6.已知f (x )是R 上的减函数,A (3,-1),B (0,1)是其图象上两点,则不等式|f (1+ln x )|<1的解集是________.答案 (1e,e 2) 解析 ∵|f (1+ln x )|<1,∴-1<f (1+ln x )<1,∴f (3)<f (1+ln x )<f (0),又∵f (x )在R 上为减函数,∴0<1+ln x <3,∴-1<ln x <2,∴1e<x <e 2. 7.若x ,y 满足条件⎩⎪⎨⎪⎧ x -y ≤0,x +y ≥0,y ≤a ,且z =2x +3y 的最大值是5,则实数a 的值为________.答案 1解析 画出满足条件的可行域如图阴影部分所示,则当直线z =2x +3y 过点A (a ,a )时,z =2x +3y 取得最大值5,所以5=2a +3a ,解得a =1.8.若点A (1,1)在直线2mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________. 答案 32+ 2 解析 ∵点A (1,1)在直线2mx +ny -2=0上,∴2m +n =2,∵1m +1n =(1m +1n )2m +n 2=12(2+2m n +n m+1) ≥12(3+22m n ·n m )=32+2, 当且仅当2m n =n m,即n =2m 时取等号, ∴1m +1n 的最小值为32+ 2. 三、解答题9.设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a)(x +4)≤0的解集. (1)求A ∩B ;(2)若C ⊆∁R A ,求a 的取值范围.解 (1)由-x 2-2x +8>0得-4<x <2,即A =(-4,2). y =x +1x +1=(x +1)+1x +1-1, 当x +1>0,即x >-1时y ≥2-1=1,此时x =0,符合要求;当x +1<0,即x <-1时,y ≤-2-1=-3,此时x =-2,符合要求.所以B =(-∞,-3]∪[1,+∞),所以A ∩B =(-4,-3]∪[1,2).(2)(ax -1a )(x +4)=0有两根x =-4或x =1a2. 当a >0时,C ={x |-4≤x ≤1a2},不可能C ⊆∁R A ; 当a <0时,C ={x |x ≤-4或x ≥1a2}, 若C ⊆∁R A ,则1a 2≥2,∴a 2≤12, ∴-22≤a <0.故a 的取值范围为[-22,0). 10.投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米,可获利润300万元;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米,可获利润200万元.现某单位可使用资金1 400万元,场地900平方米,问:应作怎样的组合投资,可使获利最大?解 设生产A 产品x 百吨,生产B 产品y 百吨,利润为S 百万元,则约束条件为⎩⎪⎨⎪⎧ 2x +3y ≤14,2x +y ≤9,x ≥0,y ≥0,目标函数为S =3x +2y .作出可行域如图阴影部分所示,作直线l 0:3x +2y =0,将l 0向上平移时,S =3x +2y 随之增大,当它经过直线2x +y =9和2x +3y =14的交点(134,52)时,S 最大,此时,S max =3×134+2×52=14.75.因此,生产A 产品325吨,生产B 产品250吨时,利润最大为1 475万元.11.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 的函数关系式S =⎩⎪⎨⎪⎧ 3x +k x -8+5,0<x <6,14,x ≥6.已知每日的利润L =S -C ,且当x =2时,L =3. (1)求k 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.解 (1)由题意可得L =⎩⎪⎨⎪⎧2x +k x -8+2,0<x <6,11-x ,x ≥6.因为当x =2时,L =3,所以3=2×2+k 2-8+2, 解得k =18.(2)当0<x <6时,L =2x +18x -8+2,所以 L =2(x -8)+18x -8+18=-[2(8-x )+188-x]+18≤-2-x 188-x +18=6, 当且仅当2(8-x )=188-x,即x =5时取得等号. 当x ≥6时,L =11-x ≤5.所以当x=5时L取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大,最大值为6万元.。
高考专题 不等式与线性规划(教学案)高考理数二轮复习精品资料含答案
与区域有关的面积、距离、参数范围问题及线性规划问题;利用基本不等式求函数最值、运用不等式性质求参数范围、证明不等式是高考热点.2018高考备考时,应切实理解与线性规划有关的概念,要熟练掌握基本不等式求最值的方法,特别注意“拆”“拼”“凑”等技巧方法.要特别加强综合能力的培养,提升运用不等式性质分析、解决问题的能力.1.熟记比较实数大小的依据与基本方法.①作差(商)法;②利用函数的单调性.2.特别注意熟记活用以下不等式的基本性质(1)乘法法则:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;(2)同向可加性:a>b,c>d⇒a+c>b+d;(3)同向可乘性:a>b>0,c>d>0⇒ac>bd;(4)乘方法则:a>b>0⇒a n>b n(n∈N,n≥2);3.熟练应用基本不等式证明不等式与求函数的最值.4.牢记常见类型不等式的解法.(1)一元二次不等式,利用三个二次之间的关系求解.(2)简单分式、高次不等式,关键是熟练进行等价转化.(3)简单指、对不等式利用指、对函数的单调性求解.5.简单线性规划(1)应用特殊点检验法判断二元一次不等式表示的平面区域.(2)简单的线性规划问题解线性规划问题,关键在于根据条件写出线性约束关系式及目标函数,必要时可先做出表格,然后结合线性约束关系式作出可行域,在可行域中求出最优解.考点一 不等式性质及解不等式例1、(1)不等式组⎩⎪⎨⎪⎧x x +>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}解析:基本法:由x (x +2)>0得x >0或x <-2;由|x |<1得-1<x <1,所以不等式组的解集为{x |0<x <1},故选C.答案:C(2)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝⎛⎭⎫13,1B.⎝⎛⎭⎫-∞,13∪(1,+∞)C.⎝⎛⎭⎫-13,13D.⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫13,+∞速解法:令x =0,f (x )=f (0)=-1<0. f (2x -1)=f (-1)=ln 2-12=ln 2-ln e >0.不适合f (x )>f (2x -1),排除C. 令x =2,f (x )=f (2)=ln 3-15,f (2x -1)=f (3),由于f (x )=ln(1+|x |)-11+x 2在(0,+∞)上为增函数∴f (2)<f (3),不适合.排除B 、D ,故选A. 答案:A考点二 基本不等式及应用例2、【2017山东,理7】若0a b >>,且1ab =,则下列不等式成立的是(A )()21log 2ab a a b b +<<+ (B )()21log 2ab a b a b <+<+(C )()21log 2ab a a b b+<+<(D )()21log 2ab a b a b+<+<【答案】B【解析】因为0a b >>,且1ab =,所以()221,01,1,log log 1,2ab a b a b ><<∴+=()12112log a ba ab a a b bb+>+>+⇒+>+ ,所以选B.【变式探究】(1)若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( ) A .2 B .3 C .4 D .5答案:C(2)定义运算“⊗”:x ⊗y =x 2-y 2xy (x ,y ∈R ,xy ≠0).当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.解析:基本法:x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22yx =2x 2-2y 2+4y 2-x 22xy =x 2+2y 22xy =x 2y +yx , ∵x >0,y >0,∴x 2y +y x ≥212=2,当且仅当x 2y =yx ,即x =2y 时等号成立,故所求最小值为 2. 答案: 2考点三 求线性规划中线性目标函数的最值例3、【2017课标II ,理5】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9 【答案】A【解析】x 、y 满足约束条件2+330{2330 30x y x y y -≤-+≥+≥的可行域如图:【变式探究】(1)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解析:基本法:作出可行域,如图:由z =x +y 得y =-x +z ,当直线y =-x +z 过点 A ⎝⎛⎭⎫1,12时,z 取得最大值,z max =1+12=32.速解法:由⎩⎪⎨⎪⎧x -y +1=0x -2y =0得点(-2,-1),则z =-3由⎩⎪⎨⎪⎧ x -y +1=0x +2y -2=0得点(0,1),则z =1 由⎩⎪⎨⎪⎧x -2y =0x +2y -2=0得点⎝⎛⎭⎫1,12则z =32.答案:32(2)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3解析:基本法:二元一次不等式组表示的平面区域如图所示,其中A ⎝⎛⎭⎫a -12,a +12.平移直线x +ay =0,可知在点A⎝⎛⎭⎫a -12,a +12处,z 取得最小值,答案:B考点四 线性规划的非线性目标函数的最值例4、(1)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( )A .[1,5]B .[2,6]C .[3,11]D .[3,10]答案:C(2)(2016·高考山东卷)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12解析:基本法:先作出不等式组表示的平面区域,再求目标函数的最大值.作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y 2表示平面区域内的点到原点距离的平方,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)max =|OA |2=32+(-1)2=10.故选C.答案:C1.【2017北京,理4】若x,y满足32xx yy x≤⎧⎪+≥⎨⎪≤⎩,,,则x + 2y的最大值为(A)1 (B)3 (C)5 (D)9 【答案】D【解析】如图,画出可行域,2.【2017浙江,4】若x,y满足约束条件3020xx yx y≥⎧⎪+-≥⎨⎪-≤⎩,则yxz2+=的取值范围是A.[0,6] B.[0,4] C.[6,)∞+D.[4,)∞+【答案】D【解析】如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D.3.【2017山东,理7】若0a b >>,且1ab =,则下列不等式成立的是 (A )()21log 2ab a a b b +<<+ (B )()21log 2ab a b a b <+<+(C )()21log 2ab a a b b+<+<(D )()21log 2ab a b a b+<+<【答案】B4.【2017课标II ,理5】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9 【答案】A【解析】x 、y 满足约束条件2+330{2330 30x y x y y -≤-+≥+≥的可行域如图:z =2x +y 经过可行域的A 时,目标函数取得最小值,y由3{2330y x y =--+= 解得A (−6,−3),则z =2x +y 的最小值是:−15. 故选:A.5.【2017山东,理4】已知x,y满足x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x ,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )6 【答案】C【解析】由x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x 画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线3x+y 50=+与x -3=的交点(3,4)-时,2z x y=+最大为3245z =-+⨯=,选C.6.【2017天津,理2】设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23(B )1(C )32(D )3【答案】D1. 【2016高考新课标1卷】若101a b c >><<,,则( )(A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c < 【答案】C【解析】用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,11223223⨯>⨯,选项B 错误,2313log 2log 22<,选项C 正确,3211log log 22>,选项D 错误,故选C .2.【2016高考天津理数】设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩则目标函数25z x y=+的最小值为( )(A )4- (B )6 (C )10 (D )17【答案】B【解析】可行域为一个三角形ABC 及其内部,其中(0,2),(3,0),(1,3)A B C ,直线z 25x y =+过点B 时取最小值6,选B.3.【2016高考山东理数】若变量x ,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是()(A )4 (B )9 (C )10 (D )12【答案】C4.【2016高考浙江理数】在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x +y -2=0上的投影构成的线段记为AB ,则│AB │=( )A .2 B .4 C .3D .6【答案】C【解析】如图∆PQR 为线性区域,区域内的点在直线20x y +-=上的投影构成了线段''R Q ,即AB ,而''=R Q PQ ,由3400-+=⎧⎨+=⎩x y x y 得(1,1)-Q ,由20=⎧⎨+=⎩x x y 得(2,2)-R,===AB QR .故选C .5.【2016年高考北京理数】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A.0B.3C.4D.5 【答案】C6.【2016年高考四川理数】设p:实数x,y满足22(1)(1)2x y-+-≤,q:实数x,y满足1,1,1,y xy xy≥-⎧⎪≥-⎨⎪≤⎩则p是q的( )(A)必要不充分条件(B)充分不必要条件(C)充要条件(D)既不充分也不必要条件【答案】A【解析】画出可行域(如图所示),可知命题q中不等式组表示的平面区域ABC∆在命题p中不等式表示的圆盘内,故选A.7.【2016高考新课标3理数】若,x y满足约束条件1020220x yx yx y-+≥⎧⎪-≤⎨⎪+-≤⎩错误!未找到引用源。
高考数学二轮复习第2部分 不等式线性规划
性知识渗透在函数、三
角函数、数列、解析几
选择题
何等题目中;高考对线性
填空题
规划考查的频率非常高,
几乎每年都有题目,重点
是确定二元一次不等式
(组)表示的平面区域,求
目标函数的最值或范围,
已知目标函数的最值求
参数值或范围.
复习策略
抓住考查的主
要题目类型进
行训练,重点
是一元二次不
等式、简单的
分式不等式、
对数不等式和
指数不等式的
解法;求目标
函数的最值或
范围;已知目
标函数的最值
求参数值或范
围.
-3命题热点一
命题热点二
命题热点三
命题热点四
简单不等式的解法
【思考】 如何解一元二次不等式、分式不等式?解指数不等式、
对数不等式的基本思想是什么?
例 1(1)若 log 1 (1-x)<log 1 x,则( C )
题,求解时借助二次函数的图象,一般考虑四个方面:开口方向,判别
式的符号,对称轴的位置,区间端点函数值的符号.
-6命题热点一
命题热点二
命题热点三
命题热点四
-1
对点训练 1(1)不等式2+1≤0 的解集为( C )
1
A. -∞,- 2 ∪[1,+∞)
1
C. - ,1
2
2 -8
1
B. - 2 ,1
≤ 2,
例 2 若 x,y 满足 ≥ -1,
则 y-x 的最小值为
4-3 + 1 ≥ 0,
1
最大值为
.
解析 作出可行域如图阴影部分所示.
设z=y-x,则y=x+z.
2023届二轮专练_专题三 不等式_第1讲 基本不等式与线性规划(含答案)
2023届二轮专练_专题三 不等式_第1讲 基本不等式与线性规划一、填空题(共17小题)1. 不等式组 {y ≤−x +2,y ≤x −1,y ≥0 所表示的平面区域的面积为 . 2. 若 x ,y 满足约束条件 {2x +y ≥4,x −y ≥1,x −2y ≤2, 则 z =x +y 的最小值是 . 3. 已知函数 f (x )=x +1x −2(x <0),那么 f (x ) 的最大值为 . 4. 若 x >0,y >0,且 log 3x +log 3y =1,则 1x +1y 的最小值为 .5. 设 x,y ∈R ,a >1,b >1,若 a x =b y =2,a +√b =4,则 2x +1y 的最大值为 .6. 设实数 x ,y 满足 x 2+2xy −1=0,则 x 2+y 2 的最小值是 .7. 若实数 x ,y 满足约束条件 {x −y +1≥0,x −2y ≤0,x +2y −2≤0, 则 z =x +y 的最大值为 . 8. 若变量 x ,y 满足约束条件 {x +y ≤2,2x −3y ≤9,x ≥0, 则 x 2+y 2 的最大值是 .9. 若实数 x ,y 满足约束条件 {x +y −3≥0,x −y −3≤0,0≤y ≤1, 则 z =2x+y x+y 的最小值为 . 10. 若 0<x <1,则当 f (x )=x (4−3x ) 取得最大值时 x 的值为 . 11. 已知 a >0,b >0,a ,b 的等比中项是 1,且 m =b +1a ,n =a +1b,则 m +n 的最小值是 .12. 若实数 x ,y 满足约束条件 {2x −y ≤0,x +y ≤3,x ≥0,则 2x +y 的最大值为 .13. 在平面上,过点 P 作直线 l 的垂线所得的垂足称为点 P 在直线 l 上的投影,由区域{x −2≤0,x +y ≥0,x −3y +4≥0中的点在直线 x +y −2=0 上的投影构成的线段记为 AB ,则 AB = . 14. 函数 y =2√x 2+4 的最小值为 .15. 设 x ,y ,z 均为大于 1 的实数,且 z 为 x 和 y 的等比中项,则 lgz 4lgx +lgz lgy 的最小值为 .16. 已知 a >b >1,且 2log a b +3log b a =7 ,则 a +1b 2−1 的最小值为 .17. 若正实数 x ,y 满足 (2xy −1)2=(5y +2)(y −2),则 x +12y 的最大值为 .二、解答题(共1小题)18. 某市对城市路网进行改造,拟在原有a个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x个标段和n个道路交叉口,其中n与x满足n=ax+5.已知新建一个标段的造价为m万元,新建一个道路交叉口的造价是新建一个标段的造价的k倍.(1)试求新建道路交叉口的总造价y(单位:万元)与x的函数关系式;(2)设P是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数,并说明理由.的20%,且k≥3.问:P能否大于120答案1. 142. 23. −44. 2√335. 46. √5−127. 328. 109. 5310. 2311. 412. 413. 3√214. 52【解析】y=2√x2+4=√x2+4√x2+4,令t=√x2+4,则t≥2,因为y=t+1t在[2,+∞)上为增函数,所以当t=2时,y min=2+12=52,所以当且仅当x=0时,y min=52.15. 98【解析】因为z为x和y的等比中项,所以z2=xy.两边同时取以e为底的对数得,ln(z2)=ln(xy),即2lnz=lnx+lny.因为x,y,z>1,所以lnx,lny,lnz>0,所以lgz 4lgx +lgzlgy=lnx+lny8lgx+lnx+lny2lgy=18+18×lnylnx+12+12×lnxlny≥58+2√18×lnylnx×12×lnxlny=98.当且仅当y=x2时" = "号成立.所以最小值为98.16. 3【解析】提示:因为a>b>1,所以t=log a b<1,又因为2log a b+3log b a=7,所以2t+3t=7,解得t=12,或t=3(舍去),所以t=log a b=12,所以b2=a,所以a+1b2−1=a−1+1a−1+1≥2√(a−1)1a−1+1=3,当且仅当a−1=1a−1,即a=2且b=√2时,取等号.17. 3√22−1【解析】方法一:令x+12y=t.则2xy=2ty−1,代入已知等式,得(2ty−2)2=(5y+2)(y−2),整理得(4t2−5)y2+8(1−t)y+8=0.因为总存在正实数y使得等式成立,所以Δ=64(1−t)2−32(4t2−5)≥0,即2t2+4t−7≤0,解得−3√22−1≤t≤3√22−1.当t=3√22−1时,y=−8(1−t)2(4t2−5)=8+6√2为正值,所以x+12y 的最大值为3√22−1.方法二:由题意知(x−12y )2=(52+1y)(12−1y),整理得(x−12y)2+(1y+1)2=94.令x−12y =32cosα,1y+1=32sinα,其中α∈R,且x,y>0,所以12y =34sinα−12,x=32cosα+34sinα−12,所以x+12y =32cosα+32sinα−1≤3√22−1.即所求的最大值为3√22−1.18. (1)由题意知y=mkn=mk(ax+5),x∈N∗.(2)方法一:由题意知x=0.2a,所以P=mxy=xk(ax+5)=0.2ak(0.2a2+5)=ak(a2+25)≤a3(a2+25)=13(a+25a)≤3×2√a×25a=130<120.答:P不可能大于120.方法二:由题意知x=0.2a,所以P=mxy =xk(ax+5)=0.2ak(0.2a2+5)=ak(a2+25).假设P>120,得ka2−20a+25k<0.因为k≥3,所以Δ=100(4−k2)<0,不等式ka2−20a+25k<0无解.故P不可能大于120.答:P不可能大于120.。
高考数学二轮复习专题一第2讲不等式及线性规划训练文
第2讲 不等式及线性规划一、选择题1.已知x >-1,则函数y =x +1x +1的最小值为( ) A.-1B.0C.1D.2解析 ∵x >-1,∴x +1>0. ∴y =x +1x +1=(x +1)+1x +1-1, ≥2(x +1)·1x +1-1=1, 当且仅当x +1=1x +1,即x =0时取等号. 答案 C2.(2015·成都模拟)若点A (m ,n )在第一象限,且在直线x 3+y4=1上,则mn 的最大值是( )A.3B.4C.7D.12解析 因为点A (m ,n )在第一象限,且在直线x 3+y 4=1上,所以m ,n ∈R +,且m 3+n4=1,所以m 3·n4≤(m 3+n42)2⎝ ⎛⎭⎪⎫当且仅当m 3=n 4=12,即m =32,n =2时,取“=”,所以m 3·n 4≤⎝ ⎛⎭⎪⎫122=14, 即mn ≤3,所以mn 的最大值为3. 答案 A3.(2015·天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -2≤0,x -2y ≤0,x +2y -8≤0,则目标函数z =3x +y 的最大值为( ) A.7B.8C.9D.14解析 作出约束条件对应的可行域,如图中阴影部分,作直线l :3x +y =0,平移直线l 可知,经过点A 时,z =3x +y 取得最大值,由⎩⎪⎨⎪⎧x -2=0,x +2y -8=0,得A (2,3),故z max =3×2+3=9.选C. 答案 C4.已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为( ) A.1B.2C.3D.4解析 ∵x >0,y >0,∴x +2y ≥22xy (当且仅当x =2y 时取等号). 又由x +22xy ≤λ(x +y )可得λ≥x +22xyx +y,而x +22xy x +y ≤x +(x +2y )x +y=2,∴当且仅当x =2y 时,⎝ ⎛⎭⎪⎫x +22xy x +y max=2.∴λ的最小值为2.答案 B5.(2015·四川卷)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y ≤10,x +2y ≤14,x +y ≥6,则xy 的最大值为( )A.252B.492C.12D.16解析 xy =12×2xy ≤12⎝ ⎛⎭⎪⎫2x +y 22≤12⎝ ⎛⎭⎪⎫1022=252,当且仅当x =52,y =5时,等号成立,把x =52,y =5代入约束条件,满足.故xy 的最大值为252. 答案 A 二、填空题6.(2015·江苏卷)不等式22x x-<4的解集为________.解析 不等式22x x-<4⇔x 2-x <2⇔-1<x <2,故原不等式的解集为(-1,2).答案 (-1,2)7.(2015·北京卷)如图,△ABC 及其内部的点组成的集合记为D ,P (x ,y )为D 中任意一点,则z =2x +3y 的最大值为________.解析 z =2x +3y ,化为y =-23x +13z ,当直线y =-23x +z 3在点A (2,1)处时,z 取最大值,z =2×2+3=7.答案 78.(2015·重庆卷)设a ,b >0,a +b =5,则a +1+b +3的最大值为________.解析 ∵a ,b >0,a +b =5,∴(a +1+b +3)2=a +b +4+2a +1b +3≤a +b +4+(a +1)2+(b +3)2=a +b +4+a +b +4=18,当且仅当a =72,b =32时,等号成立,则a +1+b +3≤32,即a +1+b +3最大值为3 2. 答案 3 2 三、解答题 9.已知函数f (x )=2xx 2+6. (1)若f (x )>k 的解集为{x |x <-3,或x >-2},求k 的值; (2)对任意x >0,f (x )≤t 恒成立,求t 的取值范围. 解 (1)f (x )>k ⇔kx 2-2x +6k <0. 由已知{x |x <-3,或x >-2}是其解集, 得kx 2-2x +6k =0的两根是-3,-2.由根与系数的关系可知(-2)+(-3)=2k ,即k =-25.(2)因为x >0,f (x )=2x x 2+6=2x +6x≤226=66,当且仅当x =6时取等号.由已知f (x )≤t 对任意x >0恒成立,故t ≥66,即t 的取值范围是⎣⎢⎡⎭⎪⎫66,+∞. 10.如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.解 (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0, 故x =20k 1+k 2=20k +1k≤202=10, 当且仅当k =1时取等号.所以炮的最大射程为10千米. (2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0⇔a ≤6. 所以当a 不超过6千米时,可击中目标.11.已知函数f (x )=13ax 3-bx 2+(2-b )x +1在x =x 1处取得极大值,在x =x 2处取得极小值,且0<x 1<1<x 2<2. (1)证明:a >0;(2)若z =a +2b ,求z 的取值范围.(1)证明 求函数f (x )的导数f ′(x )=ax 2-2bx +2-b . 由函数f (x )在x =x 1处取得极大值, 在x =x 2处取得极小值,知x 1,x 2是f ′(x )=0的两个根, 所以f ′(x )=a (x -x 1)(x -x 2).当x <x 1时,f (x )为增函数,f ′(x )>0, 由x -x 1<0,x -x 2<0得a >0.(2)解 在题设下,0<x 1<1<x 2<2等价于⎩⎪⎨⎪⎧f ′(0)>0,f ′(1)<0,f ′(2)>0,即⎩⎪⎨⎪⎧2-b >0,a -2b +2-b <0,4a -4b +2-b >0,化简得⎩⎪⎨⎪⎧2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上的三条直线:2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为A ⎝ ⎛⎭⎪⎫47,67,B (2,2),C (4,2).z 在这三点的值依次为167,6,8.所以z 的取值范围为⎝ ⎛⎭⎪⎫167,8.。
2024高考高考数学二轮复习第二部分第一讲高考常考客观题微专题3不等式与线性规划学案理
微专题3 不等式与线性规划命 题 者 说考 题 统 计考 情 点 击2024·全国卷Ⅰ·T 13·线性规划求最值 2024·全国卷Ⅱ·T 14·线性规划求最值 2024·北京高考·T 8·线性规划区域问题 2024·浙江高考·T 15·不等式的解法 2024·全国卷Ⅰ·T 14·线性规划求最值1.不等式作为高考命题热点内容之一,多年来命题较稳定,多以选择、填空题的形式进行考查,题目多出现在第5~9或第13~15题的位置上,难度中等,干脆考查时主要是简洁的线性规划问题,关于不等式性质的应用、不等式的解法以及基本不等式的应用,主要体现在其工具作用上。
2.若不等式与函数、导数、数列等其他学问交汇综合命题,难度较大。
考向一 不等式的性质与解法【例1】 (1)已知a >b >0,则下列不等式中恒成立的是( ) A .a +1b >b +1aB .a +1a >b +1bC.b a >b +1a +1D.a +b2>ab(2)已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫12,+∞B.⎝ ⎛⎭⎪⎫-32,12 C.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫32,+∞ D.⎝ ⎛⎭⎪⎫-12,32解析 (1)因为a >b >0,所以1a <1b ,依据不等式的性质可得a +1b >b +1a,故A 正确;对于B ,取a =1,b =12,则a +1a =1+11=2,b +1b =12+2=52,故a +1a >b +1b 不成立,故B 错误;依据不等式的性质可得b a <b +1a +1,故C 错误;取a =2,b =1,可知D 错误。
2020届高考理科数学二轮复习训练:专题1_第2讲 函数与导数
专题复习检测A 卷1.(2019年天津)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( ) A .a <c <b B .a <b <c C .b <c <a D .c <a <b【答案】A【解析】a =log 52<1,b =log 0.50.2=log 1215=log 25>log 24=1,c =0.50.2<1,所以b 最大.因为a =log 52=1log 25,c =0.50.2=⎝⎛⎭⎫1215 =512=152.而log 25>log 24=2>52,所以1log 25<152,即a <c .故选A .2.(2019年甘肃白银模拟)若函数f (x )=⎩⎪⎨⎪⎧2x +2+a ,x ≤1,log 12(x +1),x >1有最大值,则a 的取值范围为( )A .(-5,+∞)B .[-5,+∞)C .(-∞,-5)D .(-∞,-5]【答案】B【解析】易知f (x )在(-∞,1]上单调递增,在(1,+∞)上单调递减,要使f (x )有最大值,则f (1)=4+a ≥log 12(1+1)=-1,解得a ≥-5.3.(2018年新课标Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln(1-x )B .y =ln(2-x )C .y =ln(1+x )D .y =ln(2+x )【答案】B【解析】y =ln x 的图象与y =ln(-x )的图象关于y 轴即x =0对称,要使新的图象与y =ln x 关于直线x =1对称,则y =ln(-x )的图象需向右平移2个单位,即y =ln(2-x ).4.设a ∈R ,若函数y =e x +ax 有大于零的极值点,则( ) A .a <-1 B .a >-1 C .a >-1eD .a <-1e【答案】A【解析】∵y =e x +ax ,∴y ′=e x +a .∵函数y =e x +ax 有大于零的极值点,∴方程y ′=e x +a =0有大于零的解.∵x >0时,-e x <-1,∴a =-e x <-1.5.(2019年云南玉溪模拟)函数f (x )=x 2ln x 的最小值为( )A .-1eB .1eC .-12eD .12e【答案】C【解析】由f (x )=x 2ln x ,得定义域为(0,+∞)且f ′(x )=2x ln x +x 2·1x=x (2ln x +1).令f ′(x )=0,得x =e -12.当0<x <e -12时,f ′(x )<0,f (x )单调递减;当x >e -12时,f ′(x )>0,f (x )单调递增.所以当x =e -12时,f (x )取得最小值,即f (x )min =f (e -12)=-12e.故选C .6.(2019年贵州遵义模拟)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.【答案】6【解析】由f (x +4)=f (x -2),可得f (x +6)=f (x ),则f (x )是周期为6的周期函数,所以f (919)=f (153×6+1)=f (1).又f (x )是偶函数,所以f (919)=f (1)=f (-1)=6-(-1)=6.7.(2019年广东模拟)已知曲线f (x )=a e x +b (a ,b ∈R )在点(0,f (0))处的切线方程为y =2x +1,则a -b =________.【答案】3【解析】由f (x )=a e x +b ,得f ′(x )=a e x .因为曲线f (x )在点(0,f (0))处的切线方程为y =2x+1,所以⎩⎪⎨⎪⎧ f (0)=a +b =1,f ′(0)=a =2,解得⎩⎪⎨⎪⎧a =2,b =-1.所以a -b =3.8.定义在R 内的可导函数f (x ),已知y =2f′(x )的图象如图所示,则y =f (x )的减区间是______.【答案】(2,+∞)【解析】令f ′(x )<0,则y =2f′(x )<1,由图知,当x >2时,2f′(x )<1,故y =f (x )的减区间是(2,+∞).9.已知函数f (x )=x e x -ax 2-x .(1)若f (x )在(-∞,-1]内单调递增,在[-1,0]上单调递减,求f (x )的极小值; (2)若x ≥0时,恒有f (x )≥0,求实数a 的取值范围.【解析】(1)∵f (x )在(-∞,-1]内单调递增,在[-1,0]上单调递减,∴f ′(-1)=0. ∵f ′(x )=(x +1)e x -2ax -1,∴2a -1=0,a =12.∴f ′(x )=(x +1)e x -x -1=(x +1)(e x -1).∴f (x )在(-∞,-1)内单调递增,在(-1,0)内单调递减,在(0,+∞)内单调递增,f (x )的极小值为f (0)=0.(2)f (x )=x (e x -ax -1),令g (x )=e x -ax -1,则g ′(x )=e x -a , 若a ≤1,则x ∈(0,+∞)时,g ′(x )>0,g (x )为增函数, 而g (0)=0,∴当x ≥0时,g (x )≥0.从而f (x )≥0. 若a >1,则x ∈(0,ln a )时,g ′(x )<0,g (x )为减函数, g (0)=0,当x ∈(0,ln a )时,g (x )<0,从而f (x )<0. 综上,实数a 的取值范围是(-∞,1].10.(2019年江苏节选)设函数f (x )=(x -a )(x -b )(x -c ),a ,b ,c ∈R ,f ′(x )为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和f ′(x )的零点均在集合{-3,1,3}中,求f (x )的极小值. 【解析】(1)若a =b =c ,则f (x )=(x -a )3. 由f (4)=8,得(4-a )3=8,解得a =2. (2)若a ≠b ,b =c ,f (x )=(x -a )(x -b )2. 令f (x )=0,得x =a 或x =b .f ′(x )=(x -b )2+2(x -a )(x -b )=(x -b )(3x -b -2a ). 令f ′(x )=0,得x =b 或x =2a +b3. f (x )和f ′(x )的零点均在集合A ={-3,1,3}中, 若a =-3,b =1,则2a +b 3=-53∉A ,舍去.若a =1,b =-3,则2a +b 3=-13∉A ,舍去.若a =-3,b =3,则2a +b3=-1∉A ,舍去.若a =3,b =1,则2a +b 3=73∉A ,舍去.若a =1,b =3,则2a +b 3=53∉A ,舍去.若a =3,b =-3,则2a +b3=1∈A .∴f (x )=(x -3)(x +3)2,f ′(x )=3(x +3)(x -1). 易知x =1时,f (x )取得极小值-32. B 卷11.(2019年甘肃兰州模拟)定义在(0,+∞)上的函数f (x )满足f ′(x )+1x 2>0,f (2)=52,则关于x 的不等式f (ln x )>1ln x+2的解集为( )A .(1,e 2)B .(0,e 2)C .(e ,e 2)D .(e 2,+∞)【答案】D【解析】设g (x )=f (x )-1x (x >0),则g ′(x )=f ′(x )+1x 2>0,所以函数g (x )在(0,+∞)上单调递增.由f (ln x )>1ln x +2,可得f (ln x )-1ln x >2,又g (2)=f (2)-12=2,所以待解不等式等价于解g (ln x )>g (2).所以ln x >2,解得x >e 2.故选D .12.(2018年江西师大附中月考)已知函数f (x )=⎪⎪⎪⎪2x -a2x 在[0,1]上单调递增,则a 的取值范围为________.【答案】[-1,1]【解析】令2x =t ,t ∈[1,2],则y =⎪⎪⎪⎪t -at 在[1,2]上单调递增.当a =0时,y =|t |=t 在[1,2]上单调递增显然成立;当a >0时,y =⎪⎪⎪⎪t -at ,t ∈(0,+∞)的单调递增区间是[a ,+∞),此时a ≤1,即0<a ≤1时成立;当a <0时,y =⎪⎪⎪⎪t -a t =t -at ,t ∈(0,+∞)的单调递增区间是[-a ,+∞),此时-a ≤1,即-1≤a <0时成立.综上,a 的取值范围是[-1,1].13.(2018年新课标Ⅰ)已知函数f (x )=1x -x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,求证:f (x 1)-f (x 2)x 1-x 2<a -2.【解析】(1)f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时f ′(x )=0,所以f (x )在(0,+∞)上单调递减.②若a >2,令f ′(x )=0得,x =a -a 2-42或x =a +a 2-42,易得0<a -a 2-42<a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. (2)证明:由(1)知,f (x )存在两个极值点当且仅当a >2.由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1. 由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x -x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减,又g (1)=0,则当x ∈(1,+∞)时,g (x )<0.所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.。
高考数学二轮专题训练:专题一 第2讲 不等式与线性规划
第2讲 不等式与线性规划考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题.1.四类不等式的解法 (1)一元二次不等式的解法先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法①变形⇒f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0);②变形⇒f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0.(3)简单指数不等式的解法 ①当a >1时,a f (x )>a g (x )⇔f (x )>g (x ); ②当0<a <1时,a f (x )>a g (x )⇔f (x )<g (x ). (4)简单对数不等式的解法①当a >1时,log a f (x )>log a g (x )⇔f (x )>g (x )且f (x )>0,g (x )>0; ②当0<a <1时,log a f (x )>log a g (x )⇔f (x )<g (x )且f (x )>0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2≥0(a ∈R ). (2)a 2+b 2≥2ab (a 、b ∈R ). (3)a +b 2≥ab (a >0,b >0).(4)ab ≤(a +b 2)2(a ,b ∈R ).(5)a 2+b 22≥a +b 2≥ab ≥2aba +b(a >0,b >0). 3.二元一次不等式(组)和简单的线性规划(1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.(2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定最优解;③求出目标函数的最大值或者最小值. 4.两个常用结论(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.热点一 一元二次不等式的解法例1 (1)(2013·安徽)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,则f (10x )>0的解集为( )A .{x |x <-1或x >-lg 2}B .{x |-1<x <-lg 2}C .{x |x >-lg 2}D .{x |x <-lg 2}(2)已知函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( ) A .{x |x >2或x <-2} B .{x |-2<x <2} C .{x |x <0或x >4}D .{x |0<x <4}思维启迪 (1)利用换元思想,设10x =t ,先解f (t )>0.(2)利用f (x )是偶函数求b ,再解f (2-x )>0. 答案 (1)D (2)C解析 (1)由已知条件0<10x <12,解得x <lg 12=-lg 2.(2)由题意可知f (-x )=f (x ).即(-x -2)(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立, 故2a -b =0,即b =2a ,则f (x )=a (x -2)(x +2). 又函数在(0,+∞)单调递增,所以a >0. f (2-x )>0即ax (x -4)>0,解得x <0或x >4. 故选C.思维升华 二次函数、二次不等式是高中数学的基础知识,也是高考的热点,“三个二次”的相互转化体现了转化与化归的数学思想方法.(1)不等式x -12x +1≤0的解集为( )A .(-12,1]B .[-12,1]C .(-∞,-12)∪[1,+∞)D .(-∞,-12]∪[1,+∞)(2)已知p :∃x 0∈R ,mx 20+1≤0,q :∀x ∈R ,x 2+mx +1>0.若p ∧q 为真命题,则实数m 的取值范围是( ) A .(-∞,-2) B .[-2,0) C .(-2,0) D .[0,2]答案 (1)A (2)C解析 (1)原不等式等价于(x -1)(2x +1)<0或x -1=0,即-12<x <1或x =1,所以不等式的解集为(-12,1],选A.(2)p ∧q 为真命题,等价于p ,q 均为真命题.命题p 为真时,m <0;命题q 为真时,Δ=m 2-4<0,解得-2<m <2.故p ∧q 为真时,-2<m <0. 热点二 基本不等式的应用例2 (1)(2014·湖北)某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000v v 2+18v +20l .①如果不限定车型,l =6.05,则最大车流量为________辆/时;②如果限定车型,l =5,则最大车流量比①中的最大车流量增加________辆/时.(2)(2013·山东)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1 C.94D .3思维启迪 (1)把所给l 值代入,分子分母同除以v ,构造基本不等式的形式求最值;(2)关键是寻找xyz 取得最大值时的条件.答案 (1)①1 900 ②100 (2)B解析 (1)①当l =6.05时,F =76 000vv 2+18v +121=76 000v +121v +18≤76 0002v ·121v +18=76 00022+18=1 900. 当且仅当v =11 米/秒时等号成立,此时车流量最大为1 900辆/时. ②当l =5时,F =76 000vv 2+18v +100=76 000v +100v +18≤76 0002v ·100v +18=76 00020+18=2 000. 当且仅当v =10 米/秒时等号成立,此时车流量最大为2 000 辆/时.比①中的最大车流量增加100 辆/时.(2)由已知得z =x 2-3xy +4y 2,(*)则xy z =xy x 2-3xy +4y 2=1x y +4yx -3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2, 所以2x +1y -2z =1y +1y -1y 2=-⎝⎛⎭⎫1y -12+1≤1, 所以当y =1时,2x +1y -2z的最大值为1.思维升华 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.(1)若点A (m ,n )在第一象限,且在直线x 3+y4=1上,则mn 的最大值为________.(2)已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.52答案 (1)3 (2)B解析 (1)因为点A (m ,n )在第一象限,且在直线x 3+y 4=1上,所以m ,n >0,且m 3+n4=1.所以m 3·n 4≤(m 3+n42)2(当且仅当m 3=n 4=12,即m =32,n =2时,取等号).所以m 3·n 4≤14,即mn ≤3,所以mn 的最大值为3.(2)2x +2x -a =2(x -a )+2x -a +2a≥2·2(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,得a ≥32,即实数a 的最小值为32,故选B.热点三 简单的线性规划问题例3 (2013·湖北)某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( ) A .31 200元 B .36 000元 C .36 800元D .38 400元思维启迪 通过设变量将实际问题转化为线性规划问题. 答案 C解析 设租A 型车x 辆,B 型车y 辆时租金为z 元, 则z =1 600x +2 400y, x 、y 满足⎩⎪⎨⎪⎧x +y ≤21y -x ≤736x +60y ≥900,x ,y ≥0,x 、y ∈N画出可行域如图直线y =-23x +z2 400过点A (5,12)时纵截距最小,所以z min =5×1 600+2 400×12=36 800, 故租金最少为36 800元.思维升华 (1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2)解决线性规划问题首先要找到可行域,再注意目标函数所表示的几何意义,利用数形结合找到目标函数的最优解.(3)对于应用问题,要准确地设出变量,确定可行域和目标函数.(1)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >04x +3y ≤4y ≥0,则w =y +1x的最小值是( )A .-2B .2C .-1D .1(2)(2013·北京)设关于x 、y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( ) A.⎝⎛⎭⎫-∞,43 B.⎝⎛⎭⎫-∞,13 C.⎝⎛⎭⎫-∞,-23 D.⎝⎛⎭⎫-∞,-53 答案 (1)D(2)C解析 (1)画出可行域,如图所示.w =y +1x 表示可行域内的点(x ,y )与定点P (0,-1)连线的斜率,观察图形可知P A 的斜率最小为-1-00-1=1,故选D. (2)当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.如图所示的阴影部分为不等式组表示的平面区域. 要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23.1.几类不等式的解法一元二次不等式解集的端点值是相应一元二次方程的根,也是相应的二次函数图象与x 轴交点的横坐标,即二次函数的零点;分式不等式可转化为整式不等式(组)来解;以函数为背景的不等式可利用函数的单调性进行转化. 2.基本不等式的作用二元基本不等式具有将“积式”转化为“和式”或将“和式”转化为“积式”的放缩功能,常常用于比较数(式)的大小或证明不等式或求函数的最值或解决不等式恒成立问题.解决问题的关键是弄清分式代数式、函数解析式、不等式的结构特点,选择好利用基本不等式的切入点,并创造基本不等式的应用背景,如通过“代换”、“拆项”、“凑项”等技巧,改变原式的结构使其具备基本不等式的应用条件.利用基本不等式求最值时要注意“一正、二定、三相等”的条件,三个条件缺一不可. 3.线性规划问题的基本步骤(1)定域——画出不等式(组)所表示的平面区域,注意平面区域的边界与不等式中的不等号的对应;(2)平移——画出目标函数等于0时所表示的直线l ,平行移动直线,让其与平面区域有公共点,根据目标函数的几何意义确定最优解,注意要熟练把握最常见的几类目标函数的几何意义; (3)求值——利用直线方程构成的方程组求解最优解的坐标,代入目标函数,求出最值.真题感悟1.(2014·山东)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1 B .ln(x 2+1)>ln(y 2+1) C .sin x >sin y D .x 3>y 3答案 D解析 因为0<a <1,a x <a y ,所以x >y .采用赋值法判断,A 中,当x =1,y =0时,12<1,A 不成立.B 中,当x =0,y =-1时,ln 1<ln 2,B 不成立.C 中,当x =0,y =-π时,sin x =sin y =0,C 不成立.D 中,因为函数y =x 3在R 上是增函数,故选D. 2.(2014·浙江)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________. 答案 [1,32]解析 画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.押题精练1.为了迎接2014年3月8日的到来,某商场举行了促销活动,经测算某产品的销售量P 万件(生产量与销售量相等)与促销费用x 万元满足P =3-2x +1,已知生产该产品还需投入成本(10+2P )万元(不含促销费用),产品的销售价格定为(4+20P)万元/万件.则促销费用投入 万元时,厂家的利润最大?( ) A .1 B .1.5 C .2D .3答案 A解析 设该产品的利润为y 万元,由题意知,该产品售价为2×(10+2PP)万元,所以y =2×(10+2P P )×P -10-2P -x =16-4x +1-x (x >0),所以y =17-(4x +1+x +1)≤17-24x +1×(x +1)=13(当且仅当4x +1=x +1,即x =1时取等号),所以促销费用投入1万元时,厂家的利润最大,故选A.2.若点P (x ,y )满足线性约束条件⎩⎨⎧3x -y ≤0,x -3y +2≥0,y ≥0,点A (3,3),O 为坐标原点,则OA →·OP→的最大值为________. 答案 6解析 由题意,知OA →=(3,3),设OP →=(x ,y ),则OA →·OP →=3x +3y . 令z =3x +3y ,如图画出不等式组所表示的可行域,可知当直线y =-3x +33z 经过点B 时,z 取得最大值. 由⎩⎨⎧ 3x -y =0,x -3y +2=0,解得⎩⎨⎧x =1,y =3,即B (1,3),故z 的最大值为3×1+3×3=6.即OA →·OP →的最大值为6.(推荐时间:50分钟)一、选择题1.(2014·四川)若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c答案 D解析 令a =3,b =2,c =-3,d =-2, 则a c =-1,bd =-1, 所以A ,B 错误; a d =-32,b c =-23, 所以a d <b c,所以C 错误.故选D.2.下列不等式一定成立的是( ) A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0) B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 答案 C解析 应用基本不等式:x ,y >0,x +y2≥xy (当且仅当x =y 时取等号)逐个分析,注意基本不等式的应用条件及取等号的条件. 当x >0时,x 2+14≥2·x ·12=x ,所以lg ⎝⎛⎭⎫x 2+14≥lg x (x >0),故选项A 不正确; 运用基本不等式时需保证一正二定三相等,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确; 由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确.3.(2013·重庆)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于( ) A.52 B.72 C.154 D.152答案 A解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52.4.(2014·重庆)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3 D .7+4 3答案 D解析 由题意得⎩⎪⎨⎪⎧ab >0,ab ≥0,3a +4b >0,所以⎩⎪⎨⎪⎧a >0,b >0.又log 4(3a +4b )=log 2ab , 所以log 4(3a +4b )=log 4ab ,所以3a +4b =ab ,故4a +3b =1.所以a +b =(a +b )(4a +3b )=7+3a b +4ba≥7+23a b ·4ba=7+43, 当且仅当3a b =4ba时取等号.故选D.5.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤0x -2y +1≤0x -1≥0,则z =x +2y -1的最大值为( )A .9B .8C .7D .6答案 B解析 约束条件⎩⎪⎨⎪⎧x +y -5≤0x -2y +1≤0x -1≥0所表示的区域如图,由图可知,当目标函数过A (1,4)时取得最大值,故z =x +2y -1的最大值为1+2×4-1=8. 二、填空题6.已知f (x )是R 上的减函数,A (3,-1),B (0,1)是其图象上两点,则不等式|f (1+ln x )|<1的解集是________. 答案 (1e,e 2)解析 ∵|f (1+ln x )|<1, ∴-1<f (1+ln x )<1, ∴f (3)<f (1+ln x )<f (0), 又∵f (x )在R 上为减函数, ∴0<1+ln x <3,∴-1<ln x <2, ∴1e<x <e 2. 7.若x ,y 满足条件⎩⎪⎨⎪⎧x -y ≤0,x +y ≥0,y ≤a ,且z =2x +3y 的最大值是5,则实数a 的值为________.答案 1解析 画出满足条件的可行域如图阴影部分所示,则当直线z =2x +3y 过点A (a ,a )时,z =2x +3y 取得最大值5,所以5=2a +3a ,解得a =1.8.若点A (1,1)在直线2mx +ny -2=0上,其中mn >0,则1m +1n 的最小值为________.答案 32+ 2解析 ∵点A (1,1)在直线2mx +ny -2=0上, ∴2m +n =2,∵1m +1n =(1m +1n )2m +n 2=12(2+2m n +n m +1) ≥12(3+22m n ·n m )=32+2, 当且仅当2m n =nm ,即n =2m 时取等号,∴1m +1n 的最小值为32+ 2. 三、解答题9.设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集.(1)求A ∩B ;(2)若C ⊆∁R A ,求a 的取值范围. 解 (1)由-x 2-2x +8>0得-4<x <2,即A =(-4,2). y =x +1x +1=(x +1)+1x +1-1, 当x +1>0,即x >-1时y ≥2-1=1, 此时x =0,符合要求;当x +1<0,即x <-1时,y ≤-2-1=-3, 此时x =-2,符合要求. 所以B =(-∞,-3]∪[1,+∞), 所以A ∩B =(-4,-3]∪[1,2).(2)(ax -1a )(x +4)=0有两根x =-4或x =1a 2.当a >0时,C ={x |-4≤x ≤1a 2},不可能C ⊆∁R A ;当a <0时,C ={x |x ≤-4或x ≥1a 2},若C ⊆∁R A ,则1a 2≥2,∴a 2≤12,∴-22≤a <0.故a 的取值范围为[-22,0). 10.已知函数f (x )=13ax 3-bx 2+(2-b )x +1在x =x 1处取得极大值,在x =x 2处取得极小值,且0<x 1<1<x 2<2. (1)证明:a >0;(2)若z =a +2b ,求z 的取值范围. (1)证明 求函数f (x )的导数 f ′(x )=ax 2-2bx +2-b .由函数f (x )在x =x 1处取得极大值, 在x =x 2处取得极小值, 知x 1、x 2是f ′(x )=0的两个根, 所以f ′(x )=a (x -x 1)(x -x 2). 当x <x 1时,f (x )为增函数,f ′(x )>0, 由x -x 1<0,x -x 2<0得a >0.(2)解 在题设下,0<x 1<1<x 2<2等价于⎩⎪⎨⎪⎧f ′(0)>0,f ′(1)<0,f ′(2)>0,即⎩⎪⎨⎪⎧ 2-b >0,a -2b +2-b <0,4a -4b +2-b >0,化简得⎩⎪⎨⎪⎧2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上的三条直线:2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为 A ⎝⎛⎭⎫47,67,B (2,2),C (4,2). z 在这三点的值依次为167,6,8.所以z 的取值范围为(167,8).11.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 的函数关系式S =⎩⎪⎨⎪⎧3x +k x -8+5,0<x <6,14,x ≥6.已知每日的利润L =S -C ,且当x =2时,L =3. (1)求k 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值. 解 (1)由题意可得L =⎩⎪⎨⎪⎧2x +k x -8+2,0<x <6,11-x ,x ≥6.因为当x =2时,L =3,所以3=2×2+k2-8+2,解得k =18.(2)当0<x <6时,L =2x +18x -8+2,所以L =2(x -8)+18x -8+18=-[2(8-x )+188-x ]+18≤-22(8-x )·188-x+18=6,当且仅当2(8-x )=188-x ,即x =5时取得等号.当x ≥6时,L =11-x ≤5. 所以当x =5时L 取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大,最大值为6万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 不等式与线性规划考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题.1.四类不等式的解法 (1)一元二次不等式的解法先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法①变形⇒f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0);②变形⇒f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0.(3)简单指数不等式的解法 ①当a >1时,a f (x )>a g (x )⇔f (x )>g (x ); ②当0<a <1时,a f (x )>a g (x )⇔f (x )<g (x ). (4)简单对数不等式的解法①当a >1时,log a f (x )>log a g (x )⇔f (x )>g (x )且f (x )>0,g (x )>0; ②当0<a <1时,log a f (x )>log a g (x )⇔f (x )<g (x )且f (x )>0,g (x )>0. 2.五个重要不等式(1)|a |≥0,a 2≥0(a ∈R ). (2)a 2+b 2≥2ab (a 、b ∈R ). (3)a +b 2≥ab (a >0,b >0).(4)ab ≤(a +b 2)2(a ,b ∈R ).(5)a 2+b 22≥a +b 2≥ab ≥2aba +b(a >0,b >0). 3.二元一次不等式(组)和简单的线性规划(1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.(2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定最优解;③求出目标函数的最大值或者最小值. 4.两个常用结论(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.热点一 一元二次不等式的解法例1 (1)(2013·安徽)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,则f (10x )>0的解集为( )A .{x |x <-1或x >-lg 2}B .{x |-1<x <-lg 2}C .{x |x >-lg 2}D .{x |x <-lg 2}(2)已知函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( ) A .{x |x >2或x <-2} B .{x |-2<x <2} C .{x |x <0或x >4}D .{x |0<x <4}思维启迪 (1)利用换元思想,设10x =t ,先解f (t )>0.(2)利用f (x )是偶函数求b ,再解f (2-x )>0. 答案 (1)D (2)C解析 (1)由已知条件0<10x <12,解得x <lg 12=-lg 2.(2)由题意可知f (-x )=f (x ).即(-x -2)(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立, 故2a -b =0,即b =2a ,则f (x )=a (x -2)(x +2). 又函数在(0,+∞)单调递增,所以a >0. f (2-x )>0即ax (x -4)>0,解得x <0或x >4. 故选C.思维升华 二次函数、二次不等式是高中数学的基础知识,也是高考的热点,“三个二次”的相互转化体现了转化与化归的数学思想方法.(1)不等式x -12x +1≤0的解集为( )A .(-12,1]B .[-12,1]C .(-∞,-12)∪[1,+∞)D .(-∞,-12]∪[1,+∞)(2)已知p :∃x 0∈R ,mx 20+1≤0,q :∀x ∈R ,x 2+mx +1>0.若p ∧q 为真命题,则实数m 的取值范围是( ) A .(-∞,-2) B .[-2,0) C .(-2,0) D .[0,2]答案 (1)A (2)C解析 (1)原不等式等价于(x -1)(2x +1)<0或x -1=0,即-12<x <1或x =1,所以不等式的解集为(-12,1],选A.(2)p ∧q 为真命题,等价于p ,q 均为真命题.命题p 为真时,m <0;命题q 为真时,Δ=m 2-4<0,解得-2<m <2.故p ∧q 为真时,-2<m <0. 热点二 基本不等式的应用例2 (1)(2014·湖北)某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000v v 2+18v +20l .①如果不限定车型,l =6.05,则最大车流量为________辆/时;②如果限定车型,l =5,则最大车流量比①中的最大车流量增加________辆/时.(2)(2013·山东)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1 C.94D .3思维启迪 (1)把所给l 值代入,分子分母同除以v ,构造基本不等式的形式求最值;(2)关键是寻找xyz 取得最大值时的条件.答案 (1)①1 900 ②100 (2)B解析 (1)①当l =6.05时,F =76 000vv 2+18v +121=76 000v +121v +18≤76 0002v ·121v +18=76 00022+18=1 900. 当且仅当v =11 米/秒时等号成立,此时车流量最大为1 900辆/时. ②当l =5时,F =76 000vv 2+18v +100=76 000v +100v +18≤76 0002v ·100v +18=76 00020+18=2 000. 当且仅当v =10 米/秒时等号成立,此时车流量最大为2 000 辆/时.比①中的最大车流量增加100 辆/时.(2)由已知得z =x 2-3xy +4y 2,(*)则xy z =xy x 2-3xy +4y 2=1x y +4yx -3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2, 所以2x +1y -2z =1y +1y -1y 2=-⎝⎛⎭⎫1y -12+1≤1, 所以当y =1时,2x +1y -2z的最大值为1.思维升华 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.(1)若点A (m ,n )在第一象限,且在直线x 3+y4=1上,则mn 的最大值为________.(2)已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.52答案 (1)3 (2)B解析 (1)因为点A (m ,n )在第一象限,且在直线x 3+y 4=1上,所以m ,n >0,且m 3+n4=1.所以m 3·n 4≤(m 3+n42)2(当且仅当m 3=n 4=12,即m =32,n =2时,取等号).所以m 3·n 4≤14,即mn ≤3,所以mn 的最大值为3.(2)2x +2x -a =2(x -a )+2x -a +2a≥2·2(x -a )·2x -a +2a =4+2a ,由题意可知4+2a ≥7,得a ≥32,即实数a 的最小值为32,故选B.热点三 简单的线性规划问题例3 (2013·湖北)某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( ) A .31 200元 B .36 000元 C .36 800元D .38 400元思维启迪 通过设变量将实际问题转化为线性规划问题. 答案 C解析 设租A 型车x 辆,B 型车y 辆时租金为z 元, 则z =1 600x +2 400y, x 、y 满足⎩⎪⎨⎪⎧x +y ≤21y -x ≤736x +60y ≥900,x ,y ≥0,x 、y ∈N画出可行域如图直线y =-23x +z2 400过点A (5,12)时纵截距最小,所以z min =5×1 600+2 400×12=36 800, 故租金最少为36 800元.思维升华 (1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2)解决线性规划问题首先要找到可行域,再注意目标函数所表示的几何意义,利用数形结合找到目标函数的最优解.(3)对于应用问题,要准确地设出变量,确定可行域和目标函数.(1)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >04x +3y ≤4y ≥0,则w =y+1x的最小值是( )A .-2B .2C .-1D .1(2)(2013·北京)设关于x 、y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( ) A.⎝⎛⎭⎫-∞,43 B.⎝⎛⎭⎫-∞,13 C.⎝⎛⎭⎫-∞,-23 D.⎝⎛⎭⎫-∞,-53 答案 (1)D (2)C解析 (1)画出可行域,如图所示.w =y +1x 表示可行域内的点(x ,y )与定点P (0,-1)连线的斜率,观察图形可知P A 的斜率最小为-1-00-1=1,故选D. (2)当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.如图所示的阴影部分为不等式组表示的平面区域. 要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23.1.几类不等式的解法一元二次不等式解集的端点值是相应一元二次方程的根,也是相应的二次函数图象与x 轴交点的横坐标,即二次函数的零点;分式不等式可转化为整式不等式(组)来解;以函数为背景的不等式可利用函数的单调性进行转化. 2.基本不等式的作用二元基本不等式具有将“积式”转化为“和式”或将“和式”转化为“积式”的放缩功能,常常用于比较数(式)的大小或证明不等式或求函数的最值或解决不等式恒成立问题.解决问题的关键是弄清分式代数式、函数解析式、不等式的结构特点,选择好利用基本不等式的切入点,并创造基本不等式的应用背景,如通过“代换”、“拆项”、“凑项”等技巧,改变原式的结构使其具备基本不等式的应用条件.利用基本不等式求最值时要注意“一正、二定、三相等”的条件,三个条件缺一不可. 3.线性规划问题的基本步骤(1)定域——画出不等式(组)所表示的平面区域,注意平面区域的边界与不等式中的不等号的对应;(2)平移——画出目标函数等于0时所表示的直线l ,平行移动直线,让其与平面区域有公共点,根据目标函数的几何意义确定最优解,注意要熟练把握最常见的几类目标函数的几何意义; (3)求值——利用直线方程构成的方程组求解最优解的坐标,代入目标函数,求出最值.真题感悟1.(2014·山东)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1 B .ln(x 2+1)>ln(y 2+1) C .sin x >sin y D .x 3>y 3答案 D解析 因为0<a <1,a x <a y ,所以x >y .采用赋值法判断,A 中,当x =1,y =0时,12<1,A 不成立.B 中,当x =0,y =-1时,ln 1<ln 2,B 不成立.C 中,当x =0,y =-π时,sin x =sin y =0,C 不成立.D 中,因为函数y =x 3在R 上是增函数,故选D. 2.(2014·浙江)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________. 答案 [1,32]解析 画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.押题精练1.为了迎接2014年3月8日的到来,某商场举行了促销活动,经测算某产品的销售量P 万件(生产量与销售量相等)与促销费用x 万元满足P =3-2x +1,已知生产该产品还需投入成本(10+2P )万元(不含促销费用),产品的销售价格定为(4+20P)万元/万件.则促销费用投入 万元时,厂家的利润最大?( ) A .1 B .1.5 C .2D .3答案 A解析 设该产品的利润为y 万元,由题意知,该产品售价为2×(10+2PP)万元,所以y =2×(10+2P P )×P -10-2P -x =16-4x +1-x (x >0),所以y =17-(4x +1+x +1)≤17-24x +1×(x +1)=13(当且仅当4x +1=x +1,即x =1时取等号),所以促销费用投入1万元时,厂家的利润最大,故选A.2.若点P (x ,y )满足线性约束条件⎩⎨⎧3x -y ≤0,x -3y +2≥0,y ≥0,点A (3,3),O 为坐标原点,则OA →·OP→的最大值为________. 答案 6解析 由题意,知OA →=(3,3),设OP →=(x ,y ),则OA →·OP →=3x +3y . 令z =3x +3y ,如图画出不等式组所表示的可行域,可知当直线y =-3x +33z 经过点B 时,z 取得最大值. 由⎩⎨⎧ 3x -y =0,x -3y +2=0,解得⎩⎨⎧x =1,y =3,即B (1,3),故z 的最大值为3×1+3×3=6.即OA →·OP →的最大值为6.(推荐时间:50分钟)一、选择题1.(2014·四川)若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c答案 D解析 令a =3,b =2,c =-3,d =-2, 则a c =-1,bd =-1, 所以A ,B 错误; a d =-32,b c =-23, 所以a d <b c,所以C 错误.故选D.2.下列不等式一定成立的是( ) A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0) B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 答案 C解析 应用基本不等式:x ,y >0,x +y2≥xy (当且仅当x =y 时取等号)逐个分析,注意基本不等式的应用条件及取等号的条件. 当x >0时,x 2+14≥2·x ·12=x ,所以lg ⎝⎛⎭⎫x 2+14≥lg x (x >0),故选项A 不正确; 运用基本不等式时需保证一正二定三相等,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确; 由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确.3.(2013·重庆)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于( ) A.52 B.72 C.154 D.152答案 A解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52.4.(2014·重庆)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3 D .7+4 3答案 D解析 由题意得⎩⎪⎨⎪⎧ab >0,ab ≥0,3a +4b >0,所以⎩⎪⎨⎪⎧a >0,b >0.又log 4(3a +4b )=log 2ab , 所以log 4(3a +4b )=log 4ab ,所以3a +4b =ab ,故4a +3b =1.所以a +b =(a +b )(4a +3b )=7+3a b +4ba≥7+23a b ·4ba=7+43, 当且仅当3a b =4ba时取等号.故选D.5.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤0x -2y +1≤0x -1≥0,则z =x +2y -1的最大值为( )A .9B .8C .7D .6答案 B解析 约束条件⎩⎪⎨⎪⎧x +y -5≤0x -2y +1≤0x -1≥0所表示的区域如图,由图可知,当目标函数过A (1,4)时取得最大值,故z =x +2y -1的最大值为1+2×4-1=8. 二、填空题6.已知f (x )是R 上的减函数,A (3,-1),B (0,1)是其图象上两点,则不等式|f (1+ln x )|<1的解集是________. 答案 (1e,e 2)解析 ∵|f (1+ln x )|<1,∴-1<f (1+ln x )<1,∴f (3)<f (1+ln x )<f (0),又∵f (x )在R 上为减函数,∴0<1+ln x <3,∴-1<ln x <2,∴1e<x <e 2. 7.若x ,y 满足条件⎩⎪⎨⎪⎧ x -y ≤0,x +y ≥0,y ≤a ,且z =2x +3y 的最大值是5,则实数a 的值为________.答案 1解析 画出满足条件的可行域如图阴影部分所示,则当直线z =2x +3y 过点A (a ,a )时,z =2x +3y 取得最大值5,所以5=2a +3a ,解得a =1.8.若点A (1,1)在直线2mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________. 答案 32+ 2 解析 ∵点A (1,1)在直线2mx +ny -2=0上,∴2m +n =2,∵1m +1n =(1m +1n )2m +n 2=12(2+2m n +n m+1) ≥12(3+22m n ·n m )=32+2, 当且仅当2m n =n m,即n =2m 时取等号, ∴1m +1n 的最小值为32+ 2. 三、解答题9.设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a)(x +4)≤0的解集. (1)求A ∩B ;(2)若C ⊆∁R A ,求a 的取值范围.解 (1)由-x 2-2x +8>0得-4<x <2,即A =(-4,2).y =x +1x +1=(x +1)+1x +1-1, 当x +1>0,即x >-1时y ≥2-1=1,此时x =0,符合要求;当x +1<0,即x <-1时,y ≤-2-1=-3,此时x =-2,符合要求.所以B =(-∞,-3]∪[1,+∞),所以A ∩B =(-4,-3]∪[1,2).(2)(ax -1a )(x +4)=0有两根x =-4或x =1a 2. 当a >0时,C ={x |-4≤x ≤1a 2},不可能C ⊆∁R A ; 当a <0时,C ={x |x ≤-4或x ≥1a 2}, 若C ⊆∁R A ,则1a 2≥2,∴a 2≤12, ∴-22≤a <0.故a 的取值范围为[-22,0). 10.已知函数f (x )=13ax 3-bx 2+(2-b )x +1在x =x 1处取得极大值,在x =x 2处取得极小值,且0<x 1<1<x 2<2.(1)证明:a >0;(2)若z =a +2b ,求z 的取值范围.(1)证明 求函数f (x )的导数f ′(x )=ax 2-2bx +2-b .由函数f (x )在x =x 1处取得极大值,在x =x 2处取得极小值,知x 1、x 2是f ′(x )=0的两个根,所以f ′(x )=a (x -x 1)(x -x 2).当x <x 1时,f (x )为增函数,f ′(x )>0,由x -x 1<0,x -x 2<0得a >0.(2)解 在题设下,0<x 1<1<x 2<2等价于⎩⎪⎨⎪⎧ f ′(0)>0,f ′(1)<0,f ′(2)>0,即⎩⎪⎨⎪⎧ 2-b >0,a -2b +2-b <0,4a -4b +2-b >0,化简得⎩⎪⎨⎪⎧ 2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上的三条直线:2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为A ⎝⎛⎭⎫47,67,B (2,2),C (4,2).z 在这三点的值依次为167,6,8. 所以z 的取值范围为(167,8). 11.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C=3+x ,每日的销售额S (单位:万元)与日产量x 的函数关系式S =⎩⎪⎨⎪⎧ 3x +k x -8+5,0<x <6,14,x ≥6.已知每日的利润L =S -C ,且当x =2时,L =3.(1)求k 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.解 (1)由题意可得L =⎩⎪⎨⎪⎧ 2x +k x -8+2,0<x <6,11-x ,x ≥6.因为当x =2时,L =3,所以3=2×2+k 2-8+2, 解得k =18.(2)当0<x <6时,L =2x +18x -8+2,所以 L =2(x -8)+18x -8+18=-[2(8-x )+188-x]+18≤-22(8-x )·188-x +18=6, 当且仅当2(8-x )=188-x,即x =5时取得等号. 当x ≥6时,L =11-x ≤5.所以当x =5时L 取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大,最大值为6万元.。