薄片和电镜的观察图片库
如何看电镜照片
小知识如何看电镜照片及其它电镜照片具有直观、通俗的特点,一般大家都能看明白。
但从电镜专业的角度来说,多了解一些电镜成像的基础知识,对于更好地从电镜照片中得到更多的信息是非常有好处的。
图1是一张电镜照片,在图中标出了亮、暗、黑不同的部位,并对形成亮、暗、黑的原因进行了解释。
上面电镜照片是由亮(白)、暗(灰)、黑几种不同色素集合而成,对于正常的二次电子图象来说:(1)亮是代表样品高凸部位、面向检侧器的部位、具有高原子序数元素的部位,导电性能好的部位。
(2)暗则反之。
(3)不同程度的亮暗,即为不同的差异,那些孔洞、缝隙、底下部位呈现黑色。
由于样品的电磁性能、荧光性能,边缘和尖端效应造成的亮度差异,了解、综合这些样品信息,然后才能获得有关该样品形貌的正确断论,从中得到更多的信息。
在区分图象上,还应该注意,对于样品有透明膜的表面或透光外壳等情况,在光学显微镜下可以无妨碍地看清下面或内部的细节形态,虽然有时常常难以分清该细节是在外表还是在内部。
但在扫描电镜中情况就不一样,由于电子显微镜只能“看到”5-10nm厚的深度,所以它只反映外表的形态,外表既使覆有很薄的透光层,电镜也是看不到下面细节的。
附:扫描电镜的优点及与光学和透射电镜的比较扫描电镜的优点很多,其中最重要的一点是景深特别大。
同样的放大倍数,扫描电镜的景深一般是光学显微镜的100倍,是透射电镜的1000倍左右。
景深大,拍摄出来的照片立体感强,具有更多细节。
表1列出了扫描电镜、光学显微镜和透射电镜的主要不同点。
表1 扫描电子显微镜与光学和透射电镜比较表项目光学显微镜(OM) 扫描电镜(SEM) 透射电镜(TEM) 1、分辨本领:最高熟练操作容易达到0.1um(紫外光显微镜)0.2 um5 um0.5nm10nm100nm0.1~0.2nm0.5~0.7nm5~7nm2、放大倍数1~2 000倍10~150 000倍100~800 000倍3、景深短:0.1mm(约10倍时)1um (约100倍时)长:10mm (约10倍时)1mm (约100倍时)10um (约1000倍时)1um (约10000倍时)短:接近扫描电镜,但实际上为样品厚度所限制,一般小于100nm4、视场100mm(1倍时)10mm (10倍时)1mm (100倍时)0.1mm (1000倍时)10mm (10倍时)1mm (100倍时)0.1mm (1 000倍时)10um (1 0 000倍时)1um (1 000 000倍时)2mm (100倍时)其它同扫描电镜说明:现在某些光学显微镜,经过光学系统特别是数字化处理后,据报到,其景深可以到达SEM的效果,但实际是否完全一样,尚待验证。
《透射电镜图象解释》课件
实验条件设置
根据样品特性和研究目的,合理设置加速电压、工作距 离、曝光时间等参数,以确保获得高质量的电镜图象。
正确解读图象并避免误解
熟悉电镜图象特点
了解不同实验条件下的电镜图象特点, 如分辨率、衬度等,有助于正确解读图 象。
VS
避免误解
注意区分真实结构和伪影,避免将伪影误 认为是真实结构,同时也要注意排除其他 干扰因素。
CHAPTER
03
透射电镜图象解释基础
晶体结构和空间群
晶体结构
晶体是由原子或分子在三维空间周期性排列形成的固体。晶 体结构决定了物质的物理和化学性质。
空间群
空间群是描述晶体内部原子或分子排列方式的对称性。不同 的空间群具有不同的对称元素,如镜面、旋转轴和反演中心 等。
原子和分子的电子密度分布
电子密度分布
提高透射电镜图象解释的准确性和可靠性
综合多种信息
结合其他相关实验数据和文献资料,对电镜 图象进行综合分析和解释,以提高准确性和 可靠性。
建立标准化操作流程
制定详细的操作流程和规范,确保实验过程 的一致性和可重复性,从而获得更加可靠的 结果。
电子枪产生电子束,经过聚光镜和物镜的聚焦后,穿过样品到
达投影镜,最后在荧光屏幕上形成图像。
透射电镜的分辨率和放大倍数取决于各透镜的焦距和放大倍数
03 。
透射电镜的优缺点
优点
高分辨率、高放大倍数、能够观察活 细胞和细胞内部的超微结构。
缺点
样品制备复杂、价格昂贵、操作和维 护成本高。
CHAPTER
02
材料晶体结构的透射电镜图象解释,主要是利用电镜技术 观察材料的晶体结构和相变过程。通过分析图象中晶格条 纹、晶面间距等特征,可以推断出材料的晶体结构和物理 性质,为材料科学研究和应用提供重要依据。
电镜技术及超薄切片技术
肾组织取材法
1、灌注固定或浸泡固定(主要是肾穿刺活检)
2、位置选择:根据需要切取皮质或髓质进行观 察。动物肾组织取材要注意的是,一要取材位置 选择在肾的上极,二要准确判定皮质与髓质的位 置,如果是皮质部位,只要将包膜分离后,将肾 最外层组织取下来即可,这里一般都会有肾小球 存在。一般要求切长条形。
透射电镜样品制备(包埋块制作)操作流程:
取材——漂洗(生理盐水)——前固定(2.5% 戊二醛,4ºC冰箱2小时以上)——漂洗(0.1M 磷酸 缓冲液,3次,45分钟)——后固定(1%锇酸1小时左 右)——漂洗(0.1M 磷酸缓冲液,3次,45分 钟)——块染(1%醋酸铀2小时)——梯度脱水 (50%、70%、80%、90%、100%丙酮各15分钟, 100% 2次,各10分钟)——浸透(丙酮:包埋液=1: 1,37 ºC烘箱2小时;丙酮:包埋液=1:4, 37ºC烘 箱过夜;纯包埋液45ºC烘箱2小时)——包埋聚合 (45ºC烘箱3小时,65ºC烘箱48小时)
辅助系统
1、真空系统:低真空 高真空
2、供电系统:1)高压电源 2)磁透镜激励磁电源 3)辅助电源
3、水冷系统 4、气动系统
透 射 与 扫 描 电 镜 原 理 图 解
扫描电子显微镜工作原理及结构
通过极细的电子束扫描射击标本表面而 激发出二次电子或产生反射电子,并通 过一定途径被接收到阴极射线管而成像。
(1000KV)的点分辨率可高达0.001nm。
电镜基本类型
一、透射式电子显微镜 二、扫描式电子显微镜 三、根据电子枪发射方式不同,
电子显微镜
透射式电子显微镜镜筒的顶部是电子枪,电子由钨丝热阴极发射出、通过第一,第二两个聚光镜使电子束聚 焦。电子束通过样品后由物镜成像于中间镜上,再通过中间镜和投影镜逐级放大,成像于荧光屏或照相干版上。 中间镜主要通过对励磁电流的调节,放大倍数可从几十倍连续地变化到几十万倍;改变中间镜的焦距,即可在同 一样品的微小部位上得到电子显微像和电子衍射图像。
因此,透射电子显微镜突破了光学显微镜分辨率低的限制,成为了诊断疑难肿瘤的一种新的工具。有研究报 道,无色素性肿瘤、嗜酸细胞瘤、肌原性肿瘤、软组织腺泡状肉瘤及神经内分泌肿瘤这些在光镜很难明确诊断的 肿瘤,利用电镜可以明确诊断电镜主要是通过对超微结构的精细观察,寻找组织细胞的分化标记,确诊和鉴别相 应的肿瘤类型。细胞凋亡与肿瘤有着密切的关系,电镜对细胞凋亡的研究起着重要的作用,因此利用电镜观察细 胞的超微结构病理变化和细胞凋亡情况,将为肿瘤的诊断和治疗提供科学依据。
电子显微镜
光学仪器Βιβλιοθήκη 01 组成03 参数 05 缺点
目录
02 种类 04 样本处理 06 应用
基本信息
电子显微镜,简称电镜,英文名Electron Microscope(简称EM),经过五十多年的发展已成为现代科学技 术中不可缺少的重要工具。电子显微镜由镜筒、真空装置和电源柜三部分组成。
电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2μm,透射电子显微镜 的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。
生物学
在分子生物学、分子遗传学及遗传工程方面的研究;昆虫分类的研究:人工合成蛋白质方面的研究以及对各 种细菌;病毒、噬菌体等微生物的研究 。
细胞生物学实验手册:细胞器的光镜切片和电镜照片观察
实验五细胞器的光镜切片和电镜照片观察【实验目的】观察除了实验二~五以外的其它细胞器在光学显微镜和电子显微镜下的基本形态结构。
【实验内容】一、三种细胞器的光镜切片(一)高尔基复合体(Golgi Complex)用镀银法染色的豚鼠脊神经节光镜切片:神经细胞因合成运输大量的蛋白质而含有发达的内质网和高尔基复合体,在低倍镜下观察,神经节的假单极细胞体被神经束分隔成群。
神经细胞的胞体呈圆形或椭圆形。
转换高倍镜观察,细胞中央不着色的圆形区为细胞核。
在核的周围有黑褐色颗粒状或呈不规则的条索状结构即为高尔基复合体。
图5一l神经节细胞(示高尔基复合体)(二)尼氏小体(Nissl’s Body)甲苯胺兰染色的牛脊髓涂片,尼氏小体即光镜下的粗面内质网。
在低倍镜卡观察,染成蓝色的大三角形、星形细胞就是脊髓前角神经细胞,染色较深的小细胞为神经胶质细胞。
转换高倍镜观察,可见脊髓前角神经细胞的细胞质中许多蓝色颗粒或网状结构即为尼氏小体。
图5—2 脊髓前角神经细胞的尼氏小体(三)中心体(Centrosome)铁苏木素染色的马蛔虫子宫切片,在低倍镜下观察可见许多受精卵细胞,细胞的外面有卵壳,细胞与卵壳之间的腔叫卵壳腔。
在某些卵细胞内,于核附近有圆形的小粒——中心粒,它与周围致密的细胞质——中心球,组成中心体。
转换高倍镜观察,可见中心体的外围还有星状的放射细丝即星体。
染色体中心体图5—3马蛔虫受精卵细胞、分裂中期(示中心体)二、六种细胞器的电镜照片(一)高尔基复合体(Golgi Complex)人体胃粘膜细胞高尔基复合体电镜照片:细胞质中有散在的高尔基复合体,其结构要由三部分组成:扁平囊、大囊泡和小囊泡,它们共同构成紧密重叠的囊泡结构。
扁平囊约3~8层,它们平行排列,略弯曲成弓形。
凸出的一侧为形成面,可见许多小囊泡,凹入的一侧为成熟面,可见扁平囊末端呈球形膨大,在分泌细胞中膨大部分不断脱离扁平囊,形成分泌泡。
(二)内质网(Endoplasmic Reticulum)人胃壁细胞、恒河猴脊髓前角运动神经细胞粗面内质网电镜照片:粗面内质网在分泌蛋白质的细胞中较发达,在细胞核周围可见有较密集的膜层结构即为粗面内质网,它们大都呈片状排列,粗面内质网可与细胞核膜相通连。
03-电子显微分析-基础知识与TEM(3-TEM)
二、透射电子显微像的质厚衬度及透射电镜样品
使用透射电镜观察分析材料的形貌、组织、结构,需具备以 下两个前提: 一是制备适合TEM观察的试样,厚度100-200nm,甚至更薄;
TEM试样大致有三种类型: 粉末颗粒 材料薄膜 复型膜
二是建立电子图像的衬度理论
24
二、像衬度及复型像
(一)电子像衬度(像衬度)——质厚衬度
一般都采用双聚光镜系统。
②成象放大系统
主要组成:
➢ 物镜
成
➢ 中间镜(1-2个)
像
放
➢ 投影镜(1-2个)
大 系
统
11
物镜
①形成显微像
将来自试样同一点的不同方向的弹性散射束会聚于其像
作用:平面上,构成与试样组织结构相对应的显微像。 ②形成衍射花样
将来自试样不同点的同方向、同相位的弹性散射束会聚 于其后焦面上,构成含有试样晶体结构信息的衍射花样
22
(2)放大倍数
透射电镜的放大倍数是指电子图象对于所观察试样区的 线性放大率。
最高放大倍数表示电镜的放大极限。实际工作中,一般 都是在低于最高放大倍数下观察,以得到清晰的图像。
(3)加速电压
电镜的加速电压指电子枪的阳极相对于阴极的电压 决定电子枪发射的电子束的波长和能量 200kV电镜是一种比较理想的电镜(0.00251nm )
三、电子衍射
四、透射电子 显微像
电子衍射和X-ray衍射异同点 电子衍射基本公式 电子衍射花样 阿贝显微镜成像原理 透射电子显微镜中选区电子衍射 电子衍射花样的标定
像衬度:质厚衬度、衍射衬度、相位衬度 选择衍射成像原理 双光束条件 电子衍射分析的特点
一、透射电子显微镜
结构组成与工作原理 ➢ 光学成像系统 ➢ 真空系统 ➢ 电气系统
透射电镜(TEM)
⑥其它斑点确定.利用矢量相加法则,
R1 R2 R3
H1 H2 H3
K1 K 2 K3 L1 L2 L3
⑦根据晶带轴定律,确定零层倒易截面法线
方向. uvw 任选两晶面(HKL)1、(HKL)2
u K1L2 K 2 L1 v H 2 L1 H1L2 w H1K 2 H 2 K1
§透射电镜的显微成像
M M 物M中M 投影 物镜 中间镜 投影镜
衬度光阑 物镜焦平面
选区光阑 物镜像平面 中间镜物平面
◆衍衬成像
晶体试样各部分满足布拉 格反射条件不同和结构振幅的 差异。
衍衬成像----明、暗场像
明场像(BF)——上述采用物镜光栏将衍射束 挡掉,只让透射束通过而得到图象衬度的方法 称为明场成像,所得的图象称为明场像。
gHKL (HKL)
g HKL
1 d HKL
倒易基矢和正空间基矢之间的关系
*晶带定律与零层倒易界面
在正点阵中同时平行于某一晶向的一组晶面构 成一个晶带,这一晶向称为这一晶带的晶轴。
如果电子束沿晶轴方向入射,通过原点O*的倒 易平面只有一个,被称为零层倒易面,用(uvw) *表示。
0
g·r=0晶带定律
此外,散射强度高导致电子透射能力有限, 要求试样薄,这就使试样制备工作较X射 线复杂;在精度方面也远比X射线低。
◆电子衍射原理
◆ Bragg定律 ◆ 倒易点阵与爱瓦尔德球图解法 ◆ 晶带定律与零层倒易界面 ◆ 结构因子 ◆ 偏离矢量与倒易点阵扩展 ◆ 电子衍射基本公式
*Bragg定律
选择反射 满足 2d sinq n ,2dHKL sinq ,这是发生 衍射的必要条件,但不是充分条件。
FH2KL反映各晶面衍射强度大小, 将 FH2KL
电镜
1、电子显微镜(electron microscope), 简称电镜, 是使用电子来展示物件的内部或表面结构的显微镜。
是显微镜的一种!但电镜是大型精密仪器,其原理、结构与光镜显著不同。
2、原理: 高速运动的电子在电场或磁场的作用下,会发生折射,并且能被聚焦,能聚焦即能成像。
高速运行的电子的波长比可见光的波长短(波粒二象性), 电子显微镜的分辨率(约0.1纳米)远高于光学显微镜的分辨率(约200纳米, 光学显微镜的分辨率受其使用波长的限制)。
3、电镜的种类:按目的分:透射电镜、扫描电镜 分析装置:X-rays 波谱仪、能谱仪;按用途分:生物医学用电子显微镜、非生物医学用电子显微镜; 按原理分:场发射、非场发射; 分辨率:显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。
其计算公式是σ=λ/NA 式中σ为最小分辨距离;λ为光线的波长;NA 为物镜的数值孔径。
可见物镜的分辨率是由物镜的NA 值与照明光源的波长两个因素决定。
NA 值越大,照明光线波长越短,则σ值越小,分辨率就越高。
要提高分辨率,即减小σ值,可采取以下措施:(1) 降低波长λ值,使用短波长光源。
(2) 增大介质n 值以提高NA 值(NA=nsinu/2)。
(3) 增大孔径角u 值以提高NA 值。
(4)增加明暗反差。
放大倍数到一定程度时就图像模糊,而电子显微镜用电子做光源,可以清晰。
5、常见电镜技术 1、超薄切片技术2、负染色技术3、冰冻复型技术4、冷冻超薄切片技术5、电镜酶细胞化学技术6、免疫电子显微镜技术7、电镜放射自显影技术8、核酸大分子的电镜样品制备技术9、SEM 电镜样品制备技术10、电子探针;11、电镜原位杂交技术。
7、EM 在医学中的应用 ①在基础医学方面:a.观察细胞的亚微结构:线粒体、内质网、高尔基体、溶酶体等细胞器的接构及病理变化。
b.观察药物的代谢机理及对亚微结构的影响。
c. 研究病毒的作用机理及作用靶。
d.探讨分子病理学的发生机制。
实验二细胞的超微结构—透射电镜下的细胞器
实验二细胞的超微结构—透射电镜下的细胞器实验目的:通过使用透射电子显微镜观察和研究细胞的超微结构,了解细胞器的形态和组织,以及其在细胞功能中的作用。
实验原理:透射电子显微镜是一种利用电子束通过样品的原理进行显微观察的仪器。
相比传统光学显微镜,透射电子显微镜具有更高的分辨率和放大倍数。
实验步骤:1.准备样品:使用透射电子显微镜需要制备薄片样品。
将细胞或组织固定、切片和上染色剂等。
2.调整放大倍数:根据需要观察的细胞器,调整透射电子显微镜的放大倍数。
3.开始观察:将样品放入透射电子显微镜中,调整焦距和对比度,开始观察细胞超微结构。
4.记录结果:使用电子显微镜拍摄或记录所见到的细胞器的图像和形态。
根据观察结果,对细胞器的结构和功能进行分析和讨论。
实验结果:观察细胞的超微结构可以看到许多细胞器,如细胞核、线粒体、内质网、高尔基体、溶酶体等。
细胞核是细胞的控制中心,一般位于细胞的中央。
在透射电镜下观察,可以看到核膜(由内核膜和外核膜组成)、核孔、核仁等结构。
核膜通过核孔与细胞质相连,核仁是RNA合成的地方。
线粒体是细胞的能量中心,通过细胞呼吸产生ATP。
在透射电镜下观察,线粒体呈棒状或梭形,内部含有许多内膜,并形成一系列被称为嵴(cristae)的褶层。
嵴上含有许多氧化酶,参与细胞呼吸。
内质网是细胞的重要细胞器之一,两个片层之间的空腔称为内质网腔。
内质网膜上覆盖着许多小颗粒,称为核糖体。
内质网分为粗面内质网和平滑内质网,前者存在核糖体,用于蛋白质合成,后者没有核糖体,参与脂质代谢和钙离子存储。
高尔基体是细胞的分泌细胞器,具有分泌蛋白质、糖蛋白质和磷脂等功能。
高尔基体由多个平面被膜囊构成,形成一系列被称为囊泡的结构。
在透射电镜下可以看到高尔基体具有一层由囊泡组成的堆叠结构。
溶酶体是细胞的消化系统,其内部含有多种水解酶。
溶酶体呈球状或椭圆形,在透射电镜下可以看到其内部含有酶泡。
溶酶体参与细胞内的废物降解和吞噬体的形成。
透射电镜主体剖面图三级放大成像示意图
有的样品杆本身还带有使样品倾斜或原位旋转的 装置。这些样品杆和倾斜样品台组合在一起成为 侧插式双倾样品台和单倾旋转样品台。
目前,双倾台是最常用的,沿X和Y轴倾转 450。 样品台的倾斜和旋转装置可以进行三维立体分析,
测定晶体的位向、相变时的惯习面以及析出相的 方位等。
电子束倾2.斜2与.2平电移装子置 束倾斜与平移装置
托
供电控制系统
电子枪加速电子用小电 流高电压电源 透镜激磁用大电流低压 电源
附加仪器系统
EDS WDS
EELS
JEM-2010主要部件名称
透 射 电 镜 主 体 剖 面 图
电子光学系统
包括:照明系统 成像系统 观察记录系统
2.1.1 照明系统 组成:电子枪
子枪还可以倾斜2—30,以
3.电子束倾斜与平移的原理图
2.1.2 成像系统
由物镜、物镜光栏、选区光栏、中间镜和投影镜组成.
•物镜:放大倍数100—300倍。 作用:形成第一幅放大像 •物镜光栏:物镜背焦面。 作用:a.提高像衬度,
b.减小孔经角从而减小像差。 c.进行暗场成像 •选区光栏:物镜像平面上。 作用:进行微区衍射分析。 •中间镜:放大倍数0—20倍 作用a.控制电镜总放大倍数。
由光阑架和光阑孔组成:
阑孔组成
抗污染光阑
无磁金属制成(Pt、Mo等)制造。由于小光阑孔容易 污染,高性能电镜常用抗污染光阑或自洁光阑。
光阑孔周围开口,电子束照射后热量不易散出,处 于高温状态,污染物不易沉积。
光阑常做成四个一组的光阑孔,安装在光阑杆的支 架上。使用时,通过光阑杆的分档机构按需要依次 插入。
电镜 都新带式有电电镜磁都偏转带器有,电使磁入偏射电转子器束,平使移入和射倾 电子束平移和 原理见倾图转,,上其、下原两理线见圈图联,动的上。、利下用两电线子束圈原联位动倾的。利用电 进行中子心束暗原场位成像倾操斜作可。以进行中心暗场成像操作。
薄片鉴定与扫描电镜图片观察自我总结
砂岩中的成岩成分
1、原生胶结物:它所占据的空间是被它首次占据的
常见的有:石英、方解石、铁质、海绿石、石膏、白云石等 较少见的有:玉髓、菱铁矿、重晶石、天青石、沸石等等 ◆原生胶结物重结晶的产物仍被看成是原生的 ◆同一砂岩可以有一种或多种胶结物
2、次生矿物:交代碎屑、基质或原生胶结物形成的矿物
常见的有:方解石、白云石、石膏、菱铁矿等等
亮晶生屑
泥晶生屑
螺壳
双壳
头足
粗枝藻
海松藻
海松藻 珊瑚藻
正交偏光
0.25mm
珊瑚藻
亮晶砂屑 亮晶砂屑
核形石
返回要点
成岩结构
渗滤粉砂 石膏假晶
残鲕 白云环带 硅化腕足 硅化叠层
压碎鲕
结束
硅化藻粘结结构硅化叠层源自灰岩沉积结构成岩结构
亮晶生屑
渗滤粉砂
泥晶生屑 螺壳 双壳
单偏光
单偏光
石膏假晶 残鲕
头足 粗枝藻 海松藻
螺壳
双壳
头足
粗枝藻
海松藻 海松藻
单偏光 0.25mm
珊瑚藻
珊瑚藻
亮晶砂屑 亮晶砂屑
核形石
返回要点
成岩结构
渗滤粉砂 石膏假晶
残鲕 白云环带 硅化腕足 硅化叠层
压碎鲕
结束
核形石
沉积结构
亮晶生屑
泥晶生屑
螺壳
双壳
头足
粗枝藻
海松藻
海松藻
珊瑚藻
珊瑚藻
亮晶砂屑
单偏光 5mm
亮晶砂屑
核形石
返回要点
成岩结构
渗滤粉砂 石膏假晶
2. 共同特征: 板状,无色,两组解理完全(夹角近90度), 突起低(±),干涉色一级灰,,轴晶(+)。
扫描电镜与透射电镜
制片过程
1.石蜡切片术 (paraffin sectioning)
(3)染色(staining): 是用染料使无色组织切片着色,增加对 比度, 便于镜下观察。染色方法很多,但没有 一种 能使细胞全部结构同时着色。 常用的染色方法:
Байду номын сангаас
H.E
苏木精(hematoxylin):细胞核和胞质内的嗜 碱性物质着蓝紫色 。 伊红(eosin):细胞质基质和间质内的胶 原纤维等着红色。
(二)电子显微镜技术
(electron microscopy)
光镜:分辨率为0.2μ m,放大倍数约为1000倍; 电镜:分辨率为0.2nm,比光镜高1000倍,可放 大几万倍到几十万倍,因此电镜能观察到细胞 的更微细结构。 在光镜与电镜下进行观察,常用的长度计量单 位为毫米(mm)、微米(μ m)和纳米(nm)。 这些单位间的关系如下: μ m( 微米 ) = 10-3mm( 毫 米);nm(纳米)=10-3μ m(微米)
结构; • 放大倍数1000倍; • 分辨率0.2μm; • 组织制成薄片,以利光线通过。
(1)取材(1.0cm) 固定(甲醛) 酒精脱水 (低-高) 透明(二甲苯) 浸蜡包埋 切 片(5-10 um) 展片;
(2)脱蜡(二甲苯) 酒精(高-低) 水 苏木精-伊红染色 酒精脱水(低-高) 透明 (二甲苯) 封片(树胶)
形态与结构形态与结构特殊结构spore脱水而成为细菌休眠形式对外界的抵抗力增加可发芽成繁殖体有致病性有鉴别作用应以杀死芽胞为灭菌效果的指标组织化学术histochemistry通过化学或物理反应原理在切片上加某种试剂和组织中的待检物质发生化学反应其最终产物或为有色沉淀物以光镜观察
(一)一般光学显微镜术 • 镜下结构称光镜(light microscope LM)
透射电子显微镜
•电子束倾斜与平移装置
利用电子束原位倾斜可以进行中心暗场成像操作
•消像散器
用来消除或减小透镜磁场的非轴对称性,把固 有的椭圆形磁场校正成旋转对称磁场的装置。 消像散器可以是机械式的,可 以是电磁式的。机械式的是在 电磁透镜的磁场周围放置几块 位置可以调节的导磁体,用它 们来吸引一部分磁场,把固有 的椭圆形磁场校正成接近旋转 对称的磁场。电磁式的是通过 电磁极间的吸引和排斥来校正 椭圆形磁场的
图9-3 双聚光镜原理图 聚光镜的作用是以最小的损失, 减小和调节束斑尺寸、调节照明 强度和照明孔径半角
•成像系统
由物镜、物镜光栏、选区光栏、中间镜(1、2)和投影镜组成 1.物镜
•
•
电镜的最关键的部分,其作用是将来自试样的弹性散射 束会聚于其后焦面上,构成含有试样结构信息的衍射花 样;将来自透过试样的电子束会聚于其像平面上,构成 与试样组织相对应的显微图像。 物镜是用来形成第一幅高分辨率电子显微图像或电子衍 射花样的透镜,透射电子显微镜分辨本领的高低主要取 决于物镜。因为物镜的任何缺陷都被成像系统中其它透 镜进一步放大。欲获得物镜的高分辨率,必须尽可能降 低像差(主要取决于极靴的形状和加工精度)。
很大,虽然荧光屏和底片之间有一些的间距,仍能得到清 晰的图像 .现代电镜已开始装有电子数码照相装置,即 CCD相机。
第二节
主要部件结构与工作原理
•样品台
电镜样品小而薄,通常用外径3mm的 样品铜网支持,网孔或方或园,约 0.075mm,见图。
样品台的作用是承载样品,并使样 品能作平移、倾斜、旋转,以选择 感兴趣的样品区域或位向进行观察 分析。透射电镜的样品是放置在物 镜的上下极靴之间,由于这里的空 间很小,所以透射电镜的样品也很 小,通常是直径3mm的薄片。
电镜精美图片
肺吞噬细胞吞噬大肠杆菌
人卵子的电子显微镜彩色强化扫描图
电镜下的细胞
昆虫复眼
花粉
菜青虫体表
谢谢观赏
电镜精美图片
La Crosse virus Poliovirus 1.
Influenza virus
Ebola virus CoronavirusSmal源自pox virus大肠杆菌
电子显微镜下放大 10000倍的JBC菌
电子显微镜下的蚊子
第一支SARS病毒灭活疫苗中的 SARS灭活病毒颗粒的电子显微镜照片。
电子显微镜下 放大2500倍的酵母
精子在向卵子进攻
吸附在大肠杆菌上的噬菌体 (电子显微镜25000倍)
电子显微镜下的 金黄色葡萄球菌
凋亡肌细胞 爱滋病毒
血管
中性粒细胞 T淋巴细胞与激活的血小板
细胞病毒攻击 T淋巴细胞
巨噬细胞攻击大肠杆菌
中性粒细胞、 血小板等
T细胞、红细胞、 血小板
大肠内膜
气管内膜 生长中的毛发 小肠内膜
毛发
神经细胞
子宫内膜 汗孔
HIV侵袭免疫细胞
T细胞与B细胞
白血球
巨噬细胞
自然杀手细胞纤灭癌细胞
一种钟形虫 (伪彩色)
植物气孔SEM照片 (伪彩色)
大肠杆菌
淋病球菌
弧形霍乱菌
一种细菌的负染照片,显示荚膜
肺炎支原体
附着在内皮细胞表面的立克次氏体和 细胞内包含立克次氏体的内吞体
如何看电镜照片
小知识如何看电镜照片及其它电镜照片具有直观、通俗的特点,一般大家都能看明白。
但从电镜专业的角度来说,多了解一些电镜成像的基础知识,对于更好地从电镜照片中得到更多的信息是非常有好处的。
图1是一张电镜照片,在图中标出了亮、暗、黑不同的部位,并对形成亮、暗、黑的原因进行了解释。
上面电镜照片是由亮(白)、暗(灰)、黑几种不同色素集合而成,对于正常的二次电子图象来说:(1)亮是代表样品高凸部位、面向检侧器的部位、具有高原子序数元素的部位,导电性能好的部位。
(2)暗则反之。
(3)不同程度的亮暗,即为不同的差异,那些孔洞、缝隙、底下部位呈现黑色。
由于样品的电磁性能、荧光性能,边缘和尖端效应造成的亮度差异,了解、综合这些样品信息,然后才能获得有关该样品形貌的正确断论,从中得到更多的信息。
在区分图象上,还应该注意,对于样品有透明膜的表面或透光外壳等情况,在光学显微镜下可以无妨碍地看清下面或内部的细节形态,虽然有时常常难以分清该细节是在外表还是在内部。
但在扫描电镜中情况就不一样,由于电子显微镜只能“看到”5-10nm厚的深度,所以它只反映外表的形态,外表既使覆有很薄的透光层,电镜也是看不到下面细节的。
附:扫描电镜的优点及与光学和透射电镜的比较扫描电镜的优点很多,其中最重要的一点是景深特别大。
同样的放大倍数,扫描电镜的景深一般是光学显微镜的100倍,是透射电镜的1000倍左右。
景深大,拍摄出来的照片立体感强,具有更多细节。
表1列出了扫描电镜、光学显微镜和透射电镜的主要不同点。
表1 扫描电子显微镜与光学和透射电镜比较表项目光学显微镜(OM) 扫描电镜(SEM) 透射电镜(TEM) 1、分辨本领:最高熟练操作容易达到0.1um(紫外光显微镜)0.2 um5 um0.5nm10nm100nm0.1~0.2nm0.5~0.7nm5~7nm2、放大倍数1~2 000倍10~150 000倍100~800 000倍3、景深短:0.1mm(约10倍时)1um (约100倍时)长:10mm (约10倍时)1mm (约100倍时)10um (约1000倍时)1um (约10000倍时)短:接近扫描电镜,但实际上为样品厚度所限制,一般小于100nm4、视场100mm(1倍时)10mm (10倍时)1mm (100倍时)0.1mm (1000倍时)10mm (10倍时)1mm (100倍时)0.1mm (1 000倍时)10um (1 0 000倍时)1um (1 000 000倍时)2mm (100倍时)其它同扫描电镜说明:现在某些光学显微镜,经过光学系统特别是数字化处理后,据报到,其景深可以到达SEM的效果,但实际是否完全一样,尚待验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
显示了强烈的石英再生胶结物(OV)。注意局部的 厚层页岩覆层阻碍了石英胶结作用(箭头处)
编辑ppt
20
显示孔隙搭桥作用的纤维状的伊利石胶
结物(A)和环碎屑颗粒的伊利石(B)
编辑ppt
21
白云岩
编辑ppt
22
长石砂岩
编辑ppt
23
海绿石石英砂岩
编辑ppt
24
石英岩
编辑ppt
25
竹叶状灰岩
编辑ppt
26
方解石溶解所形成的次生孔隙,方解石
微红污色,蓝色区域为孔隙)
编辑ppt
27
多类型的孔隙,粒内孔隙(BP)和次生的粒
内孔隙(SWP)。注意超孔隙(OS)
编辑ppt
28
生物扰动砂岩,含超过10%的碎屑粘土。
注意看不到孔隙。
编辑ppt
29
镜下观察
——薄片和扫描电镜
编辑ppt
1
薄片具有微晶石英颗粒
编辑ppt
2
钙化的长石颗粒,注意长石在溶解和交
代后的不溶残留(箭头)
编辑ppt
3
薄片显示了新鲜的、黄色污点的钾长石
(正常光)
编辑ppt
4
被钙(C)部分交代的斜长石颗粒
编辑ppt
5
显微图像:显示了部分、乃至几乎完全被溶
解的长石颗粒(F),蓝色部分微孔隙
编辑ppt
10
含丰富牡蛎残片的砂岩
编辑ppt
11
显微图像:方解石胶结的砾岩
编辑ppt
12
显微图像:A显示了含有蠕虫状氯化物的脉状石英 (箭头处) ;B显示了拉伸状的多晶石英颗粒。
编辑ppt
13
洁净的、分选好的砂岩:石英胶结物(OV
)几乎完全占据了原生孔隙,破坏了储层性质
编辑ppt
14
显微图像:中等幅度(0.5mm)的缝合
线
编辑ppt
15
1类方解石(红污色)。注意颗粒之间
的点接触(p)和凹凸接触(C)
编辑ppt
16
2类方解石胶结物(红污色),滞后于
石英再生长(OV)
编辑ppt
17
具有微孔隙的高岭石胶结物(A)和成
形良好的假六边形的板状高岭石(B)
编辑ppt
18
充填了高岭石(Ch)的孔隙。注意高岭石叠 覆在石英之上,且滞后编辑于ppt石英胶结物(OV) 19
编辑ppt
6
显微图像:显示变质了的粉砂岩颗粒(M)。注意红 污色方解石和蠕虫状高岭石(箭头)。蓝色为孔隙。
编辑ppt
7
显微图像:显示黑色燧石(B)和绿色
燧石(G),注意红污色的方解石。
编辑ppt
8Hale Waihona Puke 显微图像:显示了介于坚硬石英颗粒之
间的弯环状的白云母(箭头)
编辑ppt
9
某些重矿物颗粒的部分溶解(箭头处)