模糊控制基础知识
模糊理论综述

模糊理论综述引言模糊理论(Fuzzy Logic)是在美国加州大学伯克利分校电气工程系的L.A.zadeh(扎德)教授于1965年创立的模糊集合理论的数学基础上发展起来的,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容.L.A.Zadeh教授在1965年发表了著名的论文,文中首次提出表达事物模糊性的重要概念:隶属函数,从而突破了19世纪末康托尔的经典集合理论,奠定模糊理论的基础。
1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机的控制,标志着模糊控制技术的诞生。
随之几十年的发展,至今为止模糊理论已经非常成熟,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容。
模糊理论是以模糊集合为基础,其基本精神是接受模糊性现象存在的事实,而以处理概念模糊不确定的事物为其研究目标,并积极的将其严密的量化成计算机可以处理的讯息,不主张用繁杂的数学分析即模型来解决问题。
二、模糊理论的一般原理由于客观世界广泛存在的非定量化的特点,如拔地而起的大树,人们可以估计它很重,但无法测准它实际重量。
又如一群人,男性女性是可明确划分的,但是谁是“老年人”谁又算“中年人”;谁个子高,谁不高都只能凭一时印象去论说,而实际人们对这些事物本身的判断是带有模糊性的,也就是非定量化特征。
因此事物的模糊性往往是人类推理,认识客观世界时存在的现象。
虽然利用数学手段甚至精确到小数点后几位,实际仍然是近似的。
特别是对某一个即将运行的系统进行分析,设计时,系统越复杂,它的精确化能力越难以提高。
当复杂性和精确化需求达到一定阈值时,这二者必将出现不相容性,这就是著名的“系统不相容原理”。
由于系统影响因素众多,甚至某些因素限于人们认识方法,水准,角度不同而认识不足,原希望繁荣兴旺,最后导致失败,这些都是客观存在的。
这些事物的现象,正反映了我们认识它们时存在模糊性。
所以一味追求精确,倒可能是模糊的,而适当模糊以达到一定的精确倒是科学的,这就是模糊理论的一般原理。
模糊系统及其应用研究

模糊系统及其应用研究一、引言随着科学技术的快速发展和社会的不断进步,人类社会已经正式步入信息化社会。
信息与知识已经成为社会发展的新要素和新引擎。
模糊系统,也称模糊逻辑或模糊数学,是信息科学中的一种新兴学科,是处理模糊信息的一种有效方法。
本文将详细介绍模糊系统及其应用研究。
二、模糊系统概述模糊系统是以模糊集合和模糊逻辑为基础的一种数学理论和方法,其主要特点是对信息的模糊性进行了有效处理,解决了传统集合和逻辑的不足。
模糊集合是指具有模糊性的集合,模糊逻辑是指运用模糊语言来表达的逻辑。
模糊系统的主要应用领域包括控制、决策、识别、智能优化、模式识别、数据挖掘等。
三、模糊系统的应用研究1. 模糊控制模糊控制是以模糊理论为基础的一种新的控制方法,其目的是解决传统控制方法对于非线性、大惯性、时变等复杂系统无法提供有效控制的问题。
模糊控制系统的最大特点是具有灵活性、自适应性、多功能性和鲁棒性等优势。
模糊控制在机械、航空、环保等领域都得到了广泛的应用。
2. 模糊决策模糊决策是以模糊数学为基础的一种决策分析方法,其主要特点是对决策过程中模糊性信息的处理能力较强。
模糊决策广泛应用于工程领域的高风险决策、金融投资决策、产品质量评估等方面。
3. 模糊识别模糊识别是一种针对未知模型的识别方法,主要特点是其对模型不确定性、非线性、时变等复杂模型的准确识别能力较强。
模糊识别广泛应用于质量控制、机械故障诊断、金融市场预测等领域。
4. 模糊优化模糊优化是以模糊集合理论为基础的一种优化方法,其主要特点是可以适应非线性、模糊或者不确定的优化问题。
模糊优化适用于生产计划、物流运输、供应链管理等复杂的管理决策问题。
5. 模糊数据挖掘模糊数据挖掘是一种基于模糊数学理论的数据分析方法,其主要特点是处理不完整数据,解决数据挖掘中的误导性和随机性问题。
模糊数据挖掘适用于企业管理、社会调查、市场预测等领域的数据处理。
四、总结模糊系统是人工智能、控制理论等领域的重要方法之一,其主要特点是处理模糊信息的能力强。
模糊控制简介

න
������������ (������)������������ (������) (������, ������)
������������
模糊逻辑与近似推理
➢ 近似推理过程: 前提1(事实):������是������’ 前提2(规则):������������ ������ 是 ������,������ℎ������������ ������ 是 ������ 结论:������是������’ 这里������’和������是论域������中的模糊集合,������’和������是论域������中的模
⋯ ������������ ������2, ������������
⋱
⋮
������������ ������������, ������1 ������������ ������������, ������2 ⋯ ������������ ������������, ������������
例:������ = {子,女},������ = {父,母},模糊关系������“子女与
父母长得相似”,用模糊矩阵表示则为:
父母
������
=
子 女
0.8 0.3
0.3 0.6
模糊控制的数学基础
➢ 模糊关系合成 设������、������、������是论域, ������是������到������的一个模糊关系, ������是������到������
模糊控制ppt课件

可编辑课件PPT
23
5. 建立模糊控制表 模糊控制规则可采用模糊规则表4-5来描述,共
49条模糊规则,各个模糊语句之间是或的关系,由第 一条语句所确定的控制规则可以计算出u1。同理,可 以由其余各条语句分别求出控制量u2,…,u49,则控制 量为模糊集合U可表示为
uu1u2 u49
可编辑课件PPT
规则模型化,然后运用推理便可对PID参数实现最佳
调整。
可编辑课件PPT
32
由于操作者经验不易精确描述,控制过程中各种 信号量以及评价指标不易定量表示,所以人们运用 模糊数学的基本理论和方法,把规则的条件、操作 用模糊集表示,并把这些模糊控制规则以及有关信 息(如初始PID参数等)作为知识存入计算机知识库中 ,然后计算机根据控制系统的实际响应情况,运用 模糊推理,即可自动实现对PID参数的最佳调整,这 就是模糊自适应PID控制,其结构如图4-15所示。
可编辑课件PPT
31
随着计算机技术的发展,人们利用人工智能的
方法将操作人员的调整经验作为知识存入计算机中
,根据现场实际情况,计算机能自动调整PID参数,
这样就出现了智能PID控制器。这种控制器把古典的
PID控制与先进的专家系统相结合,实现系统的最佳
控制。这种控制必须精确地确定对象模型,首先将
操作人员(专家)长期实践积累的经验知识用控制
糊控制的维数。
可编辑课件PPT
10
(1)一维模糊控制器 如图所示,一维模糊控制器的 输入变量往往选择为受控量和输入给定的偏差量E。由 于仅仅采用偏差值,很难反映过程的动态特性品质, 因此,所能获得的系统动态性能是不能令人满意的。 这种一维模糊控制器往往被用于一阶被控对象。
可编辑课件PPT
模糊控制系统及其MATLAB实现

1.模糊控制的相关理论和概念1.1 模糊控制的发展模糊控制理论是在美国加州伯克利大学的L. A.Zadeh教授于1965年建立的模糊集合论的数学基础上发展起来的。
之后的几年间Zadeh又提出了模糊算法、模糊决策、模糊排序、语言变量和模糊IF-THEN规则等理论,为模糊理论的发展奠定了基础。
1975年, Mamdan和Assilian创立了模糊控制器的基本框架,并用于控制蒸汽机。
1978年,Holmblad和Ostergaard为整个工业过程开发出了第一个模糊控制器——模糊水泥窑控制器。
20世纪80年代,模糊控制开始在工业中得到比较广泛的应用,日本仙台地铁模糊控制系统的成功应用引起了模糊领域的一场巨变。
到20世纪90年代初,市场上已经出现了大量的模糊消费产品。
近30 年来, 因其不依赖于控制对象的数学模型、鲁棒性好、简单实用等优点, 模糊控制已广泛地应用到图像识别、语言处理、自动控制、故障诊断、信息检索、地震研究、环境预测、楼宇自动化等学科和领域, 并且渗透到社会科学和自然科学许多分支中去, 在理论和实际运用上都取得了引人注目的成果。
1.2 模糊控制的一些相关概念用隶属度法来定义论域U中的集合A,引入了集合A的0-1隶属度函数,用A(x) 表示,它满足:A(x)用0-1之间的数来表示x属于集合A的程度,集合A等价与它的隶属度函数A(x)模糊系统是一种基于知识或基于规则的系统。
它的核心就是由所谓的IF-THEN规则所组成的知识库。
一个模糊的IF-THEN规则就是一个用连续隶属度函数对所描述的某些句子所做的IF-THEN形式的陈述。
例如:如果一辆汽车的速度快,则施加给油门的力较小。
这里的“快”和“较小”分别用隶属度函数加以描述。
模糊系统就是通过组合IF-THEN规则构成的。
构造一个模糊系统的出发点就是要得到一组来自于专家或基于该领域知识的模糊IF-THEN规则,然后将这些规则组合到单一系统中。
不同的模糊系统可采用不用的组合原则。
模糊数学例题大全

模糊数学例题大全标题:模糊数学例题大全模糊数学,又称为模糊性数学或者弗晰数学,是一个以模糊集合论为基础的数学分支。
它不仅改变了过去精确数学的观念,而且广泛应用于各个领域,从物理学、生物学到社会科学,甚至。
下面,我们将通过一些具体的例题来展示模糊数学的应用。
例1:模糊逻辑门在经典的逻辑门中,我们使用AND、OR和NOT等操作符来处理布尔值(0或1)。
然而,在现实世界中,很多情况并不是绝对的0或1。
例如,我们可以将“温度高”定义为大于25度,但24度是否算高呢?模糊逻辑门提供了更广泛的定义方式,允许我们使用模糊集合来描述这些边界情况。
例2:模糊聚类分析在统计学中,聚类分析是一种将数据集分类成几个组的方法,其中同一组内的数据点相似度高。
然而,在某些情况下,我们无法用精确的数值来描述数据点的相似度。
这时,模糊聚类分析就派上用场了。
它允许我们使用模糊矩阵来表示数据点之间的相似度,从而更准确地分类数据。
例3:模糊决策树在机器学习中,决策树是一种用于分类和回归的算法。
然而,在某些情况下,我们无法用精确的规则来描述决策过程。
这时,模糊决策树就派上用场了。
它允许我们在决策节点使用模糊规则来代替传统的布尔值规则,从而更好地模拟人类的决策过程。
例4:模糊控制系统在控制系统中,我们通常需要设计一个控制器来控制系统的行为。
然而,在某些情况下,系统的输入和输出并不是绝对的0或1。
这时,模糊控制系统就派上用场了。
它允许我们使用模糊集合来描述系统的输入和输出,从而更准确地控制系统的行为。
例5:模糊图像处理在图像处理中,我们通常需要分类、识别或分割图像中的对象。
然而,在某些情况下,图像中的对象边界并不清晰。
这时,模糊图像处理就派上用场了。
它允许我们使用模糊集合来描述图像中的对象边界,从而更准确地分类、识别或分割图像中的对象。
以上只是模糊数学众多应用的一小部分。
这个领域仍在不断发展,为解决各种复杂的现实问题提供了新的工具和方法。
通过学习模糊数学,我们可以更好地理解和处理那些边界模糊、难以用传统数学方法描述的问题。
模糊控制理论基础知识

第二章 模糊控制理论基础知识2.1 模糊关系一、模糊关系R ~所谓关系R ,实际上是A 和B 两集合的直积A ×B 的一个子集。
现在把它扩展到模糊集合中来,定义如下:所谓A ,B 两集合的直积A ×B={(a,b)|a ∈A ,b ∈B} 中的一个模糊关系R ~,是指以A ×B 为论域的一个模糊子集,其序偶(a,b)的隶属度为),(~b a Rμ,可见R ~是二元模糊关系。
若论域为n 个集合的直积,则A 1×A 2×A 3×……A n 称为n 元模糊关系R ~,它的隶属函数是n 个变量的函数。
例如,要求列出集合X={1,5,7,9,20}“序偶”上的“前元比后元大得多”的关系R ~。
因为直积空间R=X ×X 中有20个“序偶”,序偶(20,1)中的前元比后元大得多,可以认为它的隶属度为1,同理认为序偶(9,5)的隶属于“大得多”的程度为0.3,于是我们可以确定“大得多”的关系R ~为R ~=0.5/(5,1)+ 0.7/(7,1)+ 0.8/(9,1)+ 1/(20,1)+ 0.1/(7,5)+0.3/(9,5)+ 0.95/(20,5)+ 0.1/(9,7)+0.9/(20,7)+ 0.85/(20,9)综上所述,只要给出直积空间A ×B 中的模糊集R ~的隶属函数),(~b a R μ,集合A 到集合B 的模糊关系R ~也就确定了。
由于模糊关系,R ~实际上是一个模糊子集,因此它们的运算完全服从第一章所述的Fuzzy 子集的运算规则,这里不一一赘述了。
一个模糊关系R ~,若对∀x ∈X ,必有),(~x x R μ=1,即每个元素X 与自身隶属于模糊关系R ~的隶属度为1。
称这样的R ~为具有自返性的模糊关系。
一个模糊R ~,若对∀x ,y ∈X ,均有),(~y x Rμ=),(~x y Rμ 即(x,y)隶属于Fuzzy 关系R ~和(y,x)隶属于Fuzzy 关系R ~的隶属度相同,则称R ~为具有对称性的Fuzzy 关系。
模糊PID基本原理及matlab仿真实现(新手!新手!新手!)

模糊PID基本原理及matlab仿真实现(新⼿!新⼿!新⼿!)有关模糊pid的相关知识就把⾃⼰从刚接触到仿真出结果看到的⼤部分资料总结⼀下,以及⼀些⾃⼰的ps以下未说明的都为转载内容在讲解模糊PID前,我们先要了解PID控制器的原理(本⽂主要介绍模糊PID的运⽤,对PID控制器的原理不做详细介绍)。
PID控制器(⽐例-积分-微分控制器)是⼀个在⼯业控制应⽤中常见的反馈回路部件,由⽐例单元P、积分单元I和微分单元D组成。
PID控制的基础是⽐例控制;积分控制可消除稳态误差,但可能增加超调;微分控制可加快⼤惯性系统响应速度以及减弱超调趋势。
1.1传统PID控制传统PID控制器⾃出现以来,凭借其结构简单、稳定性好、⼯作可靠、调整⽅便等优点成为⼯业控制主要技术。
当被控对象的结构和参数具有⼀定的不确定性,⽆法对其建⽴精确的模型时,采⽤PID控制技术尤为⽅便。
PID控制原理简单、易于实现,但是其参数整定异常⿇烦。
对于⼩车的速度控制系统⽽⾔,由于其为时变⾮线性系统不同时刻需要选⽤不同的PID参数,采⽤传统的PID控制器,很难使整个运⾏过程具有较好的运⾏效果。
1.2模糊PID控制模糊PID控制,即利⽤模糊逻辑并根据⼀定的模糊规则对PID的参数进⾏实时的优化,以克服传统PID参数⽆法实时调整PID参数的缺点。
模糊PID控制包括模糊化,确定模糊规则,解模糊等组成部分。
⼩车通过传感器采集赛道信息,确定当前距赛道中线的偏差E以及当前偏差和上次偏差的变化ec,根据给定的模糊规则进⾏模糊推理,最后对模糊参数进⾏解模糊,输出PID控制参数。
2.1模糊化模糊控制器主要由三个模块组成:模糊化,模糊推理,清晰化。
具体如下图所⽰。
⽽我们将⼀步步讲解如何将模糊PID算法运⽤到智能车上。
(最好⽤笔⼀步步⾃⼰写⼀遍)⾸先我们的智能车会采集到赛道的相关数据,例如摄像头车,其采集到的数据经过算法处理之后会得到与中线的偏差E,以及当前偏差和上次偏差的变化(差值)EC两个值(即此算法为2维输⼊,同理也可以是1维和3维,但2维更适合智能车)。
【精品论文】智能控制题目及解答

智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制?2.智能控制系统有哪几种类型,各自的特点是什么?3.比较智能控制与传统控制的特点。
4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么?5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能。
1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。
智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。
智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。
是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。
2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。
(2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。
(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务。
3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。
在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。
在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的和行为是否达到。
模糊控制基本原理

模糊控制的基本原理模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础的控制,它是模糊数学在控制系统中的应用,是一种非线性智能控制。
模糊控制是利用人的知识对控制对象进行控制的一种方法,通常用“if条件,then结果”的形式来表现,所以又通俗地称为语言控制。
一般用于无法以严密的数学表示的控制对象模型,即可利用人(熟练专家)的经验和知识来很好地控制。
因此,利用人的智力,模糊地进行系统控制的方法就是模糊控制。
模糊控制的基本原理如图所示:模糊控制系统原理框图它的核心部分为模糊控制器。
模糊控制器的控制规律由计算机的程序实现,实现一步模糊控制算法的过程是:微机采样获取被控制量的精确值,然后将此量与给定值比较得到误差信号E;一般选误差信号E作为模糊控制器的一个输入量,把E的精确量进行模糊量化变成模糊量,误差E的模糊量可用相应的模糊语言表示;从而得到误差E的模糊语言集合的一个子集e(e实际上是一个模糊向量)。
再由e和模糊控制规则R(模糊关系)根据推理的合成规则进行模糊决策,得到模糊控制量u为:式中u为一个模糊量;为了对被控对象施加精确的控制,还需要将模糊量u进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确的模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制……。
这样循环下去,就实现了被控对象的模糊控制。
模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制。
模糊控制同常规的控制方案相比,主要特点有:(1)模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据,不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或结构参数不很清楚等场合。
(2)模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,不用传递函数与状态方程,只要对人们的经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。
模糊集合基础知识您需要知道的五个概念

模糊集合基础知识您需要知道的五个概念模糊集合是模糊数学的一个重要分支,广泛应用于信息处理、人工智能、控制科学等领域。
本文将介绍五个重要的概念,帮助读者更好地理解模糊集合。
概念一:模糊集合模糊集合是指具有模糊性质的集合,即其中的元素不是非黑即白,而是具有一定的灰色程度。
模糊集合用μ(x)表示,表示元素x属于该集合的程度,取值范围在[0,1]之间。
如果μ(x)等于0,表示元素x不属于该集合;如果μ(x)等于1,表示元素x完全属于该集合。
概念二:隶属函数隶属函数是指用来描述元素x隶属于模糊集合的程度的函数,也称为隶属度函数或者隶属度值函数。
通常用符号μ(x)表示,μ(x)的大小反映了元素x在模糊集合中的隶属程度。
概念三:模糊关系模糊关系是指一个元素与另一个元素之间存在的模糊连接,其定义可以用一个矩阵来表示。
该矩阵的每个元素都是一个隶属于[0,1]之间的值,描述了两个元素之间的某种程度上的相互作用关系。
概念四:模糊逻辑运算模糊逻辑运算是指在模糊集合上进行的逻辑运算。
常用的模糊逻辑运算包括取反、交集和并集等。
在模糊集合上进行逻辑运算时,需要对隶属度函数进行计算。
概念五:模糊系统模糊系统是指以模糊逻辑为基础的控制系统,其输入和输出可以是模糊集合,通过模糊逻辑的运算和推理,实现对过程的模糊控制。
模糊系统广泛应用于自动控制、模式识别等领域。
结语了解模糊集合的基本概念对于理解和研究模糊数学具有重要的意义。
在实际应用中,模糊集合可以用于处理具有模糊性质的信息,提高信息处理的精度和效率。
在模糊集合的基础上,人们还可以进一步研究模糊度量、模糊拓扑、模糊代数等方面的内容,从而推进模糊数学的不断发展和应用。
模糊控制中隶属度函数的确定方法

模糊控制中隶属度函数的确定方法一、引言模糊控制是一种利用模糊逻辑进行控制的方法,广泛应用于各个领域。
其中,隶属度函数是模糊控制中的重要组成部分,用于描述输入和输出变量之间的隶属关系。
确定合适的隶属度函数对于模糊控制系统的稳定性和性能至关重要。
本文将详细探讨模糊控制中隶属度函数的确定方法。
二、隶属度函数的概念隶属度函数(Membership Function )是模糊集合中最核心的概念之一。
它用于描述一个元素对于某个模糊集合的隶属度程度。
在模糊控制中,输入和输出变量的隶属度函数决定了输入输出之间的映射关系。
三、常用的隶属度函数在模糊控制中,常用的隶属度函数包括三角隶属度函数、梯形隶属度函数、高斯隶属度函数等。
下面将分别介绍这些常用的隶属度函数。
3.1 三角隶属度函数三角隶属度函数是一种常见且简单的隶属度函数形式。
它以一个三角形为基础,通常具有两个参数:峰值和宽度。
三角隶属度函数的形状如图1所示。
3.1.1 三角隶属度函数公式三角隶属度函数的数学表达式如下所示:μ(x )={0,x ≤a or x ≥c x −a b −a ,a ≤x ≤b c −x c −b ,b ≤x ≤c 其中,a 、b 、c 分别表示三角隶属度函数的左脚、峰值和右脚的位置。
3.2 梯形隶属度函数梯形隶属度函数是一种介于三角隶属度函数和矩形隶属度函数之间的形式。
它以一个梯形为基础,通常具有四个参数:左脚、上升边沿、下降边沿和右脚。
梯形隶属度函数的形状如图2所示。
3.2.1 梯形隶属度函数公式梯形隶属度函数的数学表达式如下所示:μ(x )={ 0,x ≤a or x ≥d x −a b −a ,a ≤x ≤b 1,b ≤x ≤cd −x d −c ,c ≤x ≤d其中,a 、b 、c 、d 分别表示梯形隶属度函数的左脚、上升边沿、下降边沿和右脚的位置。
3.3 高斯隶属度函数高斯隶属度函数是一种基于高斯分布的隶属度函数形式。
它通常具有两个参数:峰值和方差。
模糊自适应PID控制器

模糊自适应PID控制器的设计模糊自适应PID 控制器的设计一、 模糊自适应原理模糊控制是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机控制方法,作为智能控制的一个重要分支,在控制领域获得了广泛应用,模糊控制与传统控制方式相比具有以下突出优点: ·不需要精确的被控对象的数学模型;·使用自然语言方法,控制方法易于掌握; ·鲁棒性好,能够较大范围的适应参数变化; ·与常规PID 控制相比,动态响应品质优良。
常规模糊控制器的原理如图1所示:图1 模糊控制系统框图PID 控制规律:101()[()()()]p D I du t k e t e t dt T e t T dt=++⎰式中:p k---比例系数;I T---积分时间常数;D T---微分时间常数。
在工业生产中过程中,许多被控对象随着负荷变化或干扰因素影响,其对象特性参数或结构发生改变。
自适应控制运用现代控制理论在线辨识对象特征参数,实时改变其控制策略,使控制系统品质指标保持在最佳范围内,但其控制效果的好坏取决于辨识模型的精确度,这对于复杂系统是非常困难的。
因此,在工业生产中过程中,大量采用的仍然是PID 算法,PID 参数的整定方法很多,但大多数都以对象特性为基础。
随着计算机技术的以展,人们利用人工智能的方法将操作人员的调整经验作为知识存入计算机中,根据现场实际情况,计算机能自动调整PID 参数,这样就出现了智能PID.这种控制器把古典的PID 控制与先进的专家系统相结合,实现系统的最佳控制。
这种控制必须精确地确定模型,首先将操作人员长期实践积累的经验知识用控制然后运用推理便可对PID参数实现最佳调整。
由于操作者经验不易精确描述,控制过程中各种信号量及评价指标不易定量表示,模糊理念是解决这一问题的有效途径,所以人们运用学的基本理论和方法,把规则的条件、操作用模糊集表示,并把这些模糊有关信息作为知识存入计算机知识库中,然后计算机根据控制系统的实际响应情况,运用模糊推理,即可自动实现对PID参数的最佳调整,这就是模糊自适应PID控制,目前模糊自适应PID 控制器有多种结构,但其工作原理基本一致。
自动化专业考试知识点总结

自动化专业考试知识点总结一、自动控制基础知识1、控制系统的基本概念(1)控制系统的定义和组成(2)控制系统的分类(3)控制系统的特点2、控制系统的数学模型(1)动态系统的数学建模(2)常见控制系统的数学模型(3)系统的时域分析和频域分析3、控制系统的稳定性分析(1)系统的稳定性概念(2)连续时间系统的稳定性分析(3)离散时间系统的稳定性分析4、控制系统的性能指标(1)阶跃响应的性能指标(2)频率响应的性能指标(3)系统的灵敏度分析二、自动化技术1、传感器与执行器(1)传感器的分类及特点(2)传感器的工作原理(3)执行器的分类及特点(4)执行器的工作原理2、PLC技术(1)PLC的基本概念(2)PLC的组成和工作原理(3)PLC的程序设计语言(4)PLC的应用3、人机界面技术(1)人机界面的基本概念(2)人机界面的设计原则(3)人机界面的开发工具(4)人机界面的应用4、工业控制网络(1)工业控制网络的分类(2)工业控制网络的组成和工作原理(3)工业控制网络的应用5、自动化生产系统(1)自动化生产系统的基本概念(2)自动化生产系统的组成和特点(3)自动化生产系统的应用案例三、控制系统设计1、控制系统的设计方法(1)经验设计方法(2)分析与合成法(3)优化设计方法2、根轨迹法(1)根轨迹法的基本原理(2)根轨迹法的应用3、频域法(1)Bode图的绘制及应用(2)Nyquist图的绘制及应用(3)频域法的应用4、状态空间法(1)状态空间模型的建立(2)状态反馈控制器(3)状态观测器设计5、系统辨识与参数估计(1)系统辨识的基本原理(2)参数估计的方法(3)系统辨识与参数估计的应用四、自动控制系统的应用1、机械运动控制系统(1)位置控制系统(2)速度控制系统(3)力控制系统2、温度控制系统(1)恒温控制系统(2)恒湿控制系统(3)温度变送器的特性及应用3、流量控制系统(1)开环控制系统(2)反馈控制系统(3)流量变送器的特性及应用4、压力控制系统(1)压力控制的方法(2)压力传感器的特性及应用5、光电控制系统(1)光电传感器的特性及应用(2)光电控制系统的设计原则(3)光电控制系统的应用案例五、现代控制理论1、模糊控制(1)模糊集合的概念(2)模糊控制系统的基本原理(3)模糊控制系统的应用2、神经网络控制(1)神经元的模型(2)感知器的工作原理(3)神经网络控制系统的应用3、自适应控制(1)自适应控制系统的基本原理(2)自适应控制系统的应用4、鲁棒控制(1)鲁棒控制系统的基本原理(2)鲁棒控制系统的应用5、多变量控制(1)多输入多输出系统的模型(2)多变量控制系统的设计原则(3)多变量控制系统的应用案例六、自动化系统的维护与管理1、维护管理的基本概念(1)维护管理的目标(2)维护管理的原则(3)维护管理的方法2、故障诊断与排除(1)故障诊断方法(2)故障排除技术3、安全防护技术(1)安全控制系统的基本原理(2)安全防护措施的设计原则(3)安全防护技术的应用4、自动化系统的管理与优化(1)自动化系统的数据采集与分析(2)自动化系统的绩效评估与改进(3)自动化系统的管理与优化案例以上就是自动化专业考试知识点的总结,希望能帮助大家系统地复习和掌握相关知识。
27. 模糊控制的基本组成部分是什么?

27. 模糊控制的基本组成部分是什么?27、模糊控制的基本组成部分是什么?在现代控制领域中,模糊控制作为一种智能控制方法,具有独特的优势和广泛的应用。
要理解模糊控制,首先需要了解它的基本组成部分。
模糊控制主要由以下几个关键部分构成:一、模糊化接口模糊化接口是将输入的精确量转换为模糊量的环节。
在实际的控制系统中,我们所获取的输入量往往是精确的数值,比如温度、压力、速度等。
但模糊控制需要处理的是模糊概念,因此需要将这些精确的输入值转化为模糊语言变量。
例如,对于温度这个输入量,如果我们规定“低温”“中温”“高温”这三个模糊语言变量,那么模糊化接口就要根据输入的具体温度值,确定它在这三个模糊语言变量中的隶属度。
隶属度表示了输入值对于某个模糊语言变量的归属程度。
这个过程就像是给一个明确的数值穿上了一层模糊的外衣,使其能够与模糊控制的规则进行匹配和处理。
二、知识库知识库是模糊控制的核心组成部分之一,它包含了领域专家的知识和经验。
知识库主要由两部分组成:一是数据库,用于存储模糊控制中用到的各种定义和参数,比如模糊语言变量的隶属函数、量化因子等;二是规则库,存放了一系列模糊控制规则。
规则库中的规则通常以“如果……那么……”的形式表述。
例如,“如果温度低且压力小,那么输出功率大”。
这些规则是基于专家的经验和对系统的理解制定的。
数据库中的参数和定义为规则的执行提供了必要的基础和支持,使得规则能够准确地应用于实际的控制过程。
三、模糊推理机模糊推理机是模糊控制中进行模糊推理的部分。
当输入经过模糊化接口转换为模糊量后,模糊推理机根据知识库中的规则进行推理。
它的工作原理类似于人类的逻辑推理,但处理的是模糊信息。
通过对输入的模糊量与规则库中的规则进行匹配和综合,模糊推理机得出模糊的输出结果。
这个过程并不是简单的一对一匹配,而是综合考虑多个规则和输入的情况,进行复杂的模糊逻辑运算。
四、解模糊接口解模糊接口的作用是将模糊推理机得到的模糊输出结果转换为精确的控制量。
模糊控制基础知识

∫
µ A ( x) ∧ µ B ( y )
( x, y )
(2)模糊蕴含积运算
~ ~ ~ ~ ~ Rp = A → B = A × B =
X ×Y )
( x, y )
利用MATLAB软件中的模糊控制工具箱可以方便的完 成上述运算。
3.模糊推理 模糊推理就是利用某种模糊推理算法和模糊规则进行 推理,得出最终的控制量。模糊推理算法与模糊规则直接相 关。它的复杂性依赖于模糊规则语句中模糊集合隶属函数的 确定。选择一些简单的又能反映模糊推理结果的隶属函数可 以大大简化模糊推理的计算过程。 (1)广义前向推理(GMP): 对于GMP推理,
模糊控制器的控制规律是由计算机的程序实现的,具体步 骤如下: (1)根据本次采样值得到模糊控制器的输入量,并进行输入 量化处理; (2)量化后的变量进行模糊化处理,得到模糊量; (3)根据输入的模糊量及模糊控制规则,按模糊推理合成规 则计算控制量(输出的模糊量); (4)对得到的模糊输出量进行反模糊化处理,得到控制量的 精确量,并进行输出量化处理,得到实际控制量。
式中, x 并不表示分数,而是表示论域中的元素 xi 与其隶属 度 µ A ( xi ) 之间的对应关系;“+”也不表示“求和”,而是表示 模糊集合在论域上的整体。
i
µ A ( xi )
2.几种典型的隶属函数 (1)高斯型隶属函数
f ( x;σ , c) = e
− ( x −c) 2 2σ 2
图3 高斯型隶属函数
~ ~ ~ ~ ~ ~ B′ = A′ o ( A → B ) = A′ o R
(2)广义反向推理(GMT): 对于GMT推理,
~ ~ ~ ~ ~ ~ A′ = ( A → B ) o B′ = R o B′
模糊控制基础知识

1965年美国自动控制理论专家L.A. Zadeh首次提出了模糊集合理论,
1974年英国E.H.Mamdani首先将模糊控制应用于锅炉和蒸汽机的自动控 制。目前,模糊控制(Fuzzy Control)作为90年代的高新技术,得到非常广泛 的应用,被公认为简单而有效的控制技术。
模糊控制是以模糊集合论模糊语言变量和模糊逻辑推理为基础的 微机数字控制。它是模拟人的思维,构造一种非线性控制,以满足 复杂的,不确定的过程控制的需要。
A
i 1 5
论域 X 是离散的,则A可表示为
A ( xi )
xi
0 0 0.6 0.8 1 1 2 3 4 5
(2) 模糊集合的运算 A B A ( x) B ( x) ① 等集: ② 子集: A B A ( x) B ( x) A A ( x) 0 ③ 空集: ④ 并集: C A B c ( x) A ( x) B ( x) max[ A ( x), B ( x)] ⑤ 交集: c ( x) A ( x) B ( x) min[ A ( x), B ( x)] C A B ⑥ 补集: B A B ( x) 1 A ( x)
用模糊关系矩阵表示:
RAB ( A B) ( A E)
一些常见的模糊规则的关系矩阵的表达式: •如果x为A,则y为B, 否则y为C, A X , B Y , C Y •如果x为A,y为B, 则z为C
R ( A B) ( A C) :
A X , B Y ,C Z
计算机控制技术
第 4章 计算机控制系统的控制算法
Ex5 设X为横轴,Y为纵轴,直积 X Y即整个平面。模糊关系“x远远大于y” 的隶属函数确定为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A ( x) {0,0,0.6,0.8,1}, B ( x) {1,0.8,0.6,0,0}, C ( x) {0,0.8,1,0.8,0}
A
i 1 5
论域 X 是离散的,则A可表示为
A ( xi )
xi
0 0 0.6 0.8 1 1 2 3 4 5
4 极老 ( x) 年老 ( x) 3/ 4 比较老 ( x) 年老 ( x)
计算机控制技术
(1) 模糊蕴含
第 4章 计算机控制系统的控制算法
模糊命题:“如果 x 是 A ,则 y 是B”,表示模糊集合A和B 之间有蕴含关系 :
AB ( x, y) [ A ( x) B ( y)] [1 A ( x)]
x
T(x)
X
图3 模糊语言变量的五元体
计算机控制技术
第 4章 计算机控制系统的控制算法
3 模糊关系 (1) 模糊关系的定义 设X、Y为两非空集合,各任取一元素组成序对(x,y),称所有序对构 成的集合为X和Y的直积,并记为:
X Y {( x, y) | x X , y Y }
定义: 从X到Y的模糊关系R是指在直积XxY中的一个模糊子集,其模糊
计算机控制技术
b. 幂运算
第 4章 计算机控制系统的控制算法
设R是 X X 上的模糊关系,则它的模糊关系矩阵为方阵,R的幂定义为:
R2 R R R3 R R R R n R R R(n个R的合成) R m R n R mn
c.逆运算 设R是X到Y的模糊关系,则其逆模糊关系 R 函数为
A ( x) 0 A ( x) 1 Ex1 青年集合A A {x | 15岁 x 25岁 } 经典集合: x 20 2 ( ) 模糊集合: 7
A ( x) e
图1 青年的特征函数和隶属函数 a) 特征函数 b)隶属函数
计算机控制技术
②常用的隶属函数
第 4章 计算机控制系统的控制算法
计算机控制技术
第 4章 计算机控制系统的控制算法
Ex5 设X为横轴,Y为纵轴,直积 X Y即整个平面。模糊关系“x远远大于y” 的隶属函数确定为
0, x y 1 , x y A ( x, y ) 100 1 2 ( x y)
在X中取10,20,40,80四个点,在Y中取10,20,30,40四个点,则模糊关系 矩阵为
0 0 0 0 0.5 0 0 0 R 0.9 0.8 0.5 0 0 . 98 0 . 97 0 . 96 0 . 94
计算机控制技术
(2)模糊关系的运算
第 4章 计算机控制系统的控制算法
模糊关系是积空间上的模糊集合,它的运算法则与一般的模糊集合完全相 同。
A 0.8 0.6 0.1 0.5 x1 x2 x3 x5
0.2 0.1 0.4 0 0.9 0.7 0 1 0.5 0.3 0.2 0.4 0.9 1 0.5 x1 x2 x3 x4 x5 x1 x2 x3 x 4 x5
0.1 0.7 0.3 x1 x3 x5
R : X Y [0,1] 关系由隶属函数:
(x,y)具有关系R的程度。
R ( x, y) 表示序对 来刻划,隶属度
当X,Y 是有限的离散集合时,X和Y的模糊关系R可以用矩阵表示,称 为关系矩阵,即
RX Y (rij ) mn ( R (ai , b j ))mn i 1,2,...,m; j 1,2,...,n
计算机控制技术
0.2 0.4 0.9 0.5 x1 x2 x3 x5
第 4章 计算机控制系统的控制算法
Ex3 设论域 X {x1 , x2 , x3 , x4 , x5 } ,A和B是论域X上的两个模糊集合,已知
A
0.1 0.7 1 0.3 B x1 x3 x4 x5
yY
计算机控制技术
第 4章 计算机控制系统的控制算法
Ex 6 已知模糊关系矩阵
1 0 .2 0 .5 R1 0 . 1 0 . 4 0 . 1 0 .3 0 .9 0
0 . 4 0 .9 R2 0 . 7 1 0 .1 0 . 3
1 0.2 0.5 0.4 0.9 0.7 1 R1 R2 0 . 1 0 . 4 0 . 1 0.3 0.9 0 0.1 0.3 (0.4,0.2,0.1) (0.9,0.2,0.3) ( 0 . 1 , 0 . 4 , 0 . 1 ) ( 0 . 1 , 0 . 4 , 0 . 1 ) (0.3,0.7,0) (0.3,0.9,0) 0.4 0.9 0 . 4 0 . 4 0.7 0.9
用模糊关系矩阵表示:
RAB ( A B) ( A E)
一些常见的模糊规则的关系矩阵的表达式: •如果x为A,则y为B, 否则y为C, A X , B Y , C Y •如果x为A,y为B, 则z为C
R ( A B) ( A C) :
A X , B Y ,C Z
1
是Y到X的一个模糊关系,其隶属
R ( y, x) R ( x, y),
1
( y, x) Y X
计算机控制技术
第 4章 计算机控制系统的控制算法
Ex 7 设X为横轴,Y为纵轴,直积 X Y 即整个平面。模糊关系“y远远小 于x”的隶属函数确定为
0 1 A1 ( y, x) 100 1 2 ( x y)
(1) (2)
x X A n A ( xi ) X 离散 xi i 1
Ex1 青年模糊集合
A {( x, e A
(
x 20 2 ) 7
) | x 0}
x 0
e
(
x 20 2 ) 7
x
计算机控制技术
第 4章 计算机控制系统的控制算法
Ex2 设论域 X={1,2,3,4,5},可定义 X上的如下模糊集,A表 示“大”,B 表示“小”,C 表示“中”,并设各元素的隶属函数分别为
计算机控制技术
4.5 模糊控制 4.5 Fuzzy Control
第 4章 计算机控制系统的控制算法
1965年美国自动控制理论专家L.A. Zadeh首次提出了模糊集合理论,
1974年英国E.H.Mamdani首先将模糊控制应用于锅炉和蒸汽机的自动控 制。目前,模糊控制(Fuzzy Control)作为90年代的高新技术,得到非常广泛 的应用,被公认为简单而有效的控制技术。
,b 0
A
隶属函数曲线图如图2a所示。
A
μ
A
1-
1-
A
0
b
a
(a)
c x
0 (b)
a
x
图2 隶属函数曲线图
计算机控制技术
③模糊集合的定义 定义1: 给定论域 X,
第 4章 计算机控制系统的控制算法
A {x}是 X 中的模糊集合是指用 A : X [0,1]
这样的隶属函数表示其特征的集合。 ④模糊集合的表示形式 i A {( x, A ( x)) | x X } ii A ( x) X 连续
上的模糊集合分别为: X {a1, a2, a3, a4, a5}, Y {b1, b2, b3, b4} 1 0.8 0.4 0 .3 0 .9 A “大” B “小”= 。模糊关系“如果x为小, b3 b 4 a1 a 2 a3 则y为大”的模糊关系矩阵为: R A B ( A B ) ( A E )
A B
A B
A A ? A A ?
A A A A
0.8 0.6 0.9 0.5 x1 x2 x3 x5 0.2 0.4 0.1 0.5 x1 x2 x3 x5
计算机控制技术
第 4章 计算机控制系统的控制算法
2. 模糊语言 定义2 语言变量是以五元组(x, T (x), X, G, M ) 来表征的,其中x是变量的名称, T (x) 是语言变量值的集合,每个语言变量值是定义在论域 X 上的一个模糊集 合,G 是用以产生语言变量 x 值名称的语法规则,而 M 是语义规则,用以产 生模糊集合的隶属度函数。 Ex4
(2) 模糊集合的运算 A B A ( x) B ( x) ① 等集: ② 子集: A B A ( x) B ( x) A A ( x) 0 ③ 空集: ④ 并集: C A B c ( x) A ( x) B ( x) max[ A ( x), B ( x)] ⑤ 交集: c ( x) A ( x) B ( x) min[ A ( x), B ( x)] C A B ⑥ 补集: B A B ( x) 1 A ( x)
x b a b ,b x a a.三角型 c x ( x ) ,a x c 隶属函数的解析式 A c a 隶属函数曲线图如图2a所示。 0, x b或x c b.正态型
隶属函数的解析式 μ
A ( x) e
(
x a 2 ) b
:
R A B C
•如果x为A,y为B, z为C ,否则z为D A X , B Y , C Z , D Z
( A C ) ( B C )( A, B维数相同)
:
R ( A B C) (( A B) D)
计算机控制技术
Ex 8 设论域
第 4章 计算机控制系统的控制算法