《24.3 正多边形和圆》第1课时教学设计【初中数学人教版九年级上册】

合集下载

人教版九年级数学上册教案:24.3正多边形和圆课堂优秀教学案例

人教版九年级数学上册教案:24.3正多边形和圆课堂优秀教学案例
5.教学策略:本节课运用了多种教学策略,如情景创设、问题导向、小组合作、反思与评价等,使得学生在学习过程中能够充分参与,培养了自己的学习能力。同时,教师注重与学生的互动,鼓励学生积极参与课堂讨论,培养学生的团队合作意识和沟通能力。
3.结合学生的课堂表现、作业完成情况和小组合作情况,进行全面评价,关注学生的知识掌握、能力发展和情Байду номын сангаас态度。
四、教学内容与过程
(一)导入新课
1.利用图片展示正多边形的实际应用场景,如足球、蜂窝等,引发学生对正多边形的兴趣,激发学生的学习动机。
2.创设问题情境,如“为什么足球是正二十面体?”、“蜂窝为什么是正六边形?”等,引导学生思考正多边形的特征和性质。
3.小组合作:本节课鼓励学生进行小组合作学习和讨论,培养了学生的团队合作意识和沟通能力。通过小组合作,学生能够共同解决问题,分享自己的学习和研究成果,提高了学生的表达能力和批判性思维。
4.反思与评价:本节课在课堂结束前,引导学生进行自我反思,总结自己在课堂上的学习情况和收获。同时,设置了不同难度的题目,让学生在课后进行巩固练习。通过这种方式,学生能够及时巩固所学知识,提高自我认知和自我评价能力。
3.在解决问题的过程中,引导学生总结正多边形的性质和规律,提高学生的数学思维能力和逻辑推理能力。
(三)小组合作
1.将学生分成小组,鼓励学生进行合作学习和讨论,培养学生的团队合作意识和沟通能力。
2.设计小组合作任务,如:“观察并描述正多边形的性质”、“制作正多边形的模型”等,让学生在实践中掌握正多边形的知识。
3.利用多媒体课件展示正多边形的动态变化,让学生直观感受正多边形的魅力,引发学生的探究欲望。
(二)问题导向
1.设计一系列问题,引导学生逐步深入探究正多边形的定义、性质和与圆的关系。如:“正多边形有什么特点?”,“正多边形的边数与圆有什么关系?”,“如何判断一个多边形是正多边形?”等。

人教版数学九年级上册第24章圆24.3正多边形和圆教学设计

人教版数学九年级上册第24章圆24.3正多边形和圆教学设计
1.对正多边形的性质理解不够深入,难以把握正多边形与圆之间的内在联系。
2.在解决实际问题时,可能无法灵活运用所学的正多边形知识,需要加强练习和指导。
3.部分学生对几何图形的观察能力和空间想象力有待提高,需要在教学过程中给予关注和培养。
4.学生在小组合作中,可能存在沟通不畅、分工不明确等问题,需要教师在教学过程中引导学生形成良好的合作氛围。
3.培养学生的空间观念,提高学生对几何图形的观察力和想象力,为后续几何学习打下基础。
4.通过解决实际问题,培养学生的责任感、使命感和创新精神,使学生在面对问题时敢于挑战、勇于探索。
二、学情分析
九年级学生在经过前两年的数学学习后,已具备了一定的几何基础和逻辑思维能力。在本章节的学习中,他们能够运用已掌握的圆的相关知识,进一步探索正多边形与圆之间的关系。然而,学生在面对正多边形的性质和计算方法时,可能会出现以下情况:
-选择2-3道题目进行详细解答,要求步骤清晰,逻辑严谨。
-针对学生在课堂练习中出现的典型错误,设计类似题目进行针对性练习。
2.提高作业:结合生活实际,设计一道综合性的问题,让学生运用本节课所学的正多边形和圆的知识解决。
-鼓励学生运用数形结合、转化等数学思想方法,提高解决问题的能力。
-要求学生在解答过程中,注意逻辑推理和几何直观的运用。
3.通过小组合作,讨论解决正多边形和圆相关问题的方法,培养学生的团队协作能力和沟通能力。
4.运用数形结合、转化等数学思想方法,解决实际问题,提高学生解决问题的能力。
(三)情感态度与价值观
1.培养学生对正多边形和圆的美的认识,激发学生对数学美的追求,提高学生的审美情趣。
2.增强学生对数学学习的兴趣,使学生感受到数学与现实生活的密切联系,体会数学的实用价值。

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计一. 教材分析人教版九年级数学上册《第二十四章圆24.3正多边形和圆》的内容包括正多边形的定义、性质和圆的定义、性质。

本章节的目的是让学生理解正多边形和圆的关系,掌握正多边形的计算方法,以及了解圆的性质和应用。

本节课的教学内容是24.3正多边形和圆,主要包括正多边形的定义、性质和圆的定义、性质。

二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对于图形的理解和计算能力有一定的基础。

但是,对于正多边形和圆的关系,以及圆的性质和应用可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索正多边形和圆的性质,提高他们的空间想象能力和思维能力。

三. 教学目标1.知识与技能:使学生掌握正多边形的定义、性质,理解圆的定义、性质,能够运用正多边形和圆的知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:正多边形的定义、性质,圆的定义、性质。

2.难点:正多边形和圆的关系,圆的性质和应用。

五. 教学方法1.情境教学法:通过实物、图片、几何画板等直观教具,引导学生观察、操作、思考,激发学生的学习兴趣。

2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。

3.合作学习法:学生进行小组讨论,培养学生的团队合作意识和交流能力。

4.归纳总结法:引导学生通过总结归纳,形成系统的知识结构。

六. 教学准备1.教学课件:制作精美的课件,包括图片、几何画板等直观教具。

2.教学素材:准备相关的实物、图片等教学素材。

3.教学用具:准备黑板、粉笔、直尺、圆规等教学用具。

七. 教学过程1.导入(5分钟)利用实物、图片等教学素材,引导学生观察正多边形和圆的实例,激发学生的学习兴趣。

人教版数学九年级上册第24章圆24.3正多边形和圆优秀教学案例

人教版数学九年级上册第24章圆24.3正多边形和圆优秀教学案例
2.强调正多边形和圆的内在联系,提醒学生在解题过程中注意运用。
3.总结本节课的学习方法,如观察、操作、探究、合作等。
4.布置课后作业,巩固所学知识。
(五)作业小结
1.教师发放课后作业,要求学生运用所学知识解决实际问题。
2.提醒学生在完成作业过程中注意审题、仔细计算、规范书写。
3.鼓励学生遇到问题时互相讨论、请教教师,提高解题能力。 Nhomakorabea五、案例亮点
1.生活情境的创设:本节课通过展示生活中的正多边形实例,让学生感受到了数学与生活的紧密联系,激发了学生的学习兴趣。这种情境的创设,不仅让学生在课堂上保持高度的热情,而且有助于提高学生的应用能力,使他们在解决实际问题时能够自然而然地想到运用所学知识。
1.教师展示一系列生活中常见的正多边形图片,如正方形、正三角形、正六边形等,引导学生关注正多边形的美感及其在生活中的应用。
2.提问:“同学们,你们能找出这些图片中的共同特征吗?这些图形有什么特别之处?”让学生思考并回答。
3.总结:正多边形具有对称性、边长相等、内角相等等特征。这些特征使得正多边形在生活中的应用非常广泛。
4.最后提问:“如何用圆规和直尺绘制正多边形?请同学们尝试绘制一个正六边形。”激发学生的动手操作欲望。
(三)小组合作
1.将学生分成若干小组,每组选定一个正多边形进行研究。
2.给出研究任务:“请同学们探究你们所选的正多边形的性质,并尝试用数学语言表达。”
3.组织小组讨论,鼓励学生发表自己的观点,培养学生的合作精神和团队意识。
本节课的教学策略旨在激发学生的学习兴趣,培养学生的探究能力和合作精神。通过情景创设、问题导向、小组合作和反思与评价等环节,引导学生主动参与课堂,提高学生的数学素养。同时,关注学生的情感态度与价值观的培养,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。

24.3 多边形和圆 第1课时 初中数学人教版九年级上册教学课件

24.3 多边形和圆 第1课时 初中数学人教版九年级上册教学课件
6
△OBC是等边三角形,从而正六边形的边长等于 它半径.
因此,亭子地基的周长 l 6 4 24(m)

解:如图,连接OB,OC.因为六边形ABCDE是正六边形,所 以它的中心角等于 360 60
6 △OBC是等边三角形,从而正六边形的边长等于它半径.
因此,亭子地基的周长 l 6 4 24(m)
边形ABCDE的 边心距 , 它是正五边形ABCDE的 内切 圆的半径
2.∠AOB叫做正五边形ABCDE的 中心 角, 它的度数是 72°.

如图,有一个亭子,它的地基是半径为4m的正六边形, 求地基的周长和面积(结果保留小数点后一位).
解:如图,连接OB,OC.因为六边形ABCDE是 正六边形,所以它的中心角等于 360 60
∴OA=OB=OC=OD.
∴正方形ABCD有一个以点O为圆 心的外接圆.
问题3
任何正多边形都有一个外接圆和内切圆
以正四边形为例,根据对称轴的性质,你能得出什么结论?
A
E
B
O
G
H
DF
C
AC是∠DAB及∠DCB的角平分线, BD是∠ABC及∠ADC的角平分线, ∴OE=OH=OF=OG.
∴正方形ABCD还有一个以点O为圆心 的内切圆.
(3)OD叫作正△ABC 边心距,它是正△ABC的 内切圆的半径
(4)∠BOC是正△ABC 中心 角,∠BOC=120 度; ∠BOD= 60 度
及时练
1.正方形ABCD的外接圆圆心O叫做正方形ABCD
的 内心 .
2.正方形ABCD的内切圆的半径OE叫
做正方形ABCD的 边心距 .
及时练
1. O是正五边形ABCDE的外接圆,弦心距OF叫正五

《24.3 正多边形和圆》第1课时教学设计【初中数学人教版九年级上册】

《24.3 正多边形和圆》第1课时教学设计【初中数学人教版九年级上册】

第二十四章圆24.3 正多边形和圆教学设计第1课时一、教学目标1.了解正多边形与圆的关系,了解正多边形的中心、半径、边心距、中心角等概念.2.正多边形与圆有关的计算.二、教学重点及难点重点:正多边形的概念及正多边形与圆有关的计算.难点:正多边形与圆有关的计算.三、教学用具多媒体课件,三角板、直尺、圆规.四、相关资源多张《生活中的正多边形》图片,《画圆内接正五边形》动画,《正多边形与圆的相关概念》动画,《地基为正六边形的亭子》图片.五、教学过程【创设情境,引入新课】观看下列美丽的图案.问题这些美丽的图案,都是日常生活中我们经常能看到的、利用正多边形得到的物体.你能从这些图案中找出正多边形来吗?师生活动:教师演示课件或展示图片,提出问题.学生观察图案,思考并指出找到的正多边形.教师关注:①学生能否从这些图案中找到正多边形;②学生能否从这些图案中发现正多边形和圆的关系.设计意图:通过观看美丽的图案,欣赏生活中正多边形形状的物体,让学生感受到数学来源于生活,并从中感受到数学美.【合作探究,形成新知】1.正多边形与圆的关系【知识点解析】正多边形和圆,微课全面的讲解正多边形与圆相关知识.(1)你知道正多边形和圆有什么关系吗?你能借助圆作出一个正多边形吗?师生活动:教师提出问题,让学生观察、思考.学生讨论、交流,发表各自见解.引导学生只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,把问题转化为已经解决的问题,建立知识点之间的联系.教师把问题引到如何等分一个圆——依次作相等的圆心角.教师关注:学生能否联想到等分圆周作出正多边形来.设计意图:问题的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索,研究的热情,调动学生学习的积极性,并有意将注意力集中在正多边形与圆的关系上.(2)将一个圆五等分,依次连接各分点得到一个五边形,这个五边形一定是正五边形吗?如果是,请你证明这个结论.师生活动:教师提出问题后,学生认真思考、交流,充分发表自己的见解,并互相补充.教师在学生归纳的基础上进行补充,并以正五边形为例进行证明.证明:如图,====,∵AB BC CD DE EA====,∴AB BC CD DE EA==.3BAD CAE AB∠=∠.∴C D∠=∠=∠=∠=∠.同理可证:A B C D E∴五边形ABCDE是正五边形.∵A、B、C、D、E在⊙O上,∴五边形ABCDE是圆内接正五边形.设计意图:学生在教师的指导下进行逻辑推理,论证所发现的结论的正确性,从而培养学生科学严谨的治学态度,和运用所学知识解决问题的能力.(3)如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?师生活动:教师提出问题,学生思考,同学间交流,回答问题.教师关注:学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.归纳:将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形.设计意图:将结论由特殊推广到一般,这符合学生的认知规律,并教给学生一种研究问题的方法:由特殊到一般.2.正多边形与圆的概念学生观看课件,理解概念.【数学探究】用等分圆周法作正六边形和正方形,交互动画展现正多边形与圆的性质.师生活动:教师用课件显示要解决的概念,学生自学课本第105页,回答问题.教师演示课件,给出正多边形的中心、半径、中心角、边心距等概念.归纳:正多边形的中心:正多边形的外接圆的圆心叫做正边形的中心.正多边形的半径:外接圆的半径叫做正多边形的半径.正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.设计意图:通过自主学习概念,培养了学生的归纳能力,加深了对概念的理解,充分发展了学生的发散思维.【例题分析,深化提升】例有一个亭子(如图),它的地基是半径为4 m的正六边形,求地基的周长和面积(结果保留小数点后一位).师生活动:教师引导学生画出正六边形图形,进行分析.教师关注:①学生能否知道欲求地基的周长和面积,需要先求正六边形的边长和边心距;②学生能否将正六边形的边长、半径和边心距集中在一个三角形中来研究;③学生能否将正六边形的中心与顶点连接起来,将正六边形分割成6个全等的等腰三角形,去发现每个等腰三角形的顶角就是中心角,腰是半径,底边是边长,底边上的高是边心距,从而可以利用勾股定理进行计算,进而能够求得正多边形的周长和面积.思考:正n边形的中心角度数如何计算?正n边形的一个外角度数如何计算?正n边形的中心角与外角的大小有什么关系?归纳:中心角的度数=360n.外角的度数=360n.正n边形的中心角与外角的大小相等.设计意图:让学生在了解有关正多边形的概念后,通过例题的练习,巩固所学到的知识.教师引导学生将实际问题转化成数学问题,将多边形化归成三角形来解决.体现了化归思想在解题中的应用.【练习巩固,综合应用】1.下列命题正确的是().A.各边相等的多边形是正多边形B.各角相等的多边形是正多边形C.既是轴对称图形又是中心对称图形的多边形是正多边形D.各边相等,各角也相等的多边形是正多边形2.圆的半径扩大一倍,则它的相应的圆内接正n边形的边长与半径之比().A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化3.如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().A.60°B.45°C.30°D.22.5°4.正十二边形每个内角的度数为.5.在半径为R的圆中,内接正方形与内接正六边形的边长之比为.6.分别求出半径为R的圆内接正三角形、正方形的边长、边心距和面积.参考答案1.D 2.D 3.C 4.150°5.2∶1设计意图:巩固了正多边形与圆的有关概念的理解和应用.6.解:(1)作等边△ABC的边BC上的高AD,垂足为D.连接OB ,则OB =R .如图:在Rt △OBD 中,∠OBD =30°,边心距OD =12OB =12R . 在Rt △ABD 中,∠BAD =30°, AD =OA +OD =R +12R =32R . 由勾股定理,得AB =3R ,所以2113333222ABC S BC AD R R R ==⨯⨯=△. (2)连接OB ,OC ,过点O 作OE ⊥BC ,垂足为E .如图:则∠OEB =90°,∠OBE =∠BOE =45°,即Rt △OBE 为等腰直角三角形.则有222BE OE OB +=.所以边心距22=OE BE OB R ==, BC =2BE =2222R R ⨯=. 所以()2222ABCD S AB BC R R ===正方形.师生活动:学生独立完成,教师批改、总结,重点关注:①对学生在练习中出现的问题,有针对性地给予分析;②学生面对探究性问题的解决方法.设计意图:考查对圆与正多边形有关的概念的掌握,巩固本节课所学的内容.六、课堂小结学完这节课你有哪些收获?1.正多边形相关定义中心的定义:正多边形的外接圆的圆心叫做正多边形的中心.半径的定义:外接圆的半径叫做正多边形的半径.中心角的定义:正多边形每一边所对的圆心角叫做正多边形的中心角.边心距的定义:中心到正多边形的一边的距离叫做正多边形的边心距.2.正n 边形的中心角与外角的大小相等.师生活动:学生自己总结,不全面的由其他学生补充完善.教师重点关注:不同层次学生对本节知识的理解、掌握程度.设计意图:让学生总结出自己的收获,理清思路、整理经验,从而形成良好的学习习惯,同时也提出自己的疑问和困惑便于教师及时反馈.七、板书设计24.3 正多边形和圆(1)1.正多边形相关定义2.正n 边形的中心角与外角的大小相等.。

九年级数学人教版上册24.3正多边形和圆优秀教学案例

九年级数学人教版上册24.3正多边形和圆优秀教学案例
3.通过数学学科的学习,培养学生追求真理、勇于探索的精神,培养学生的创新意识和创新能力。
在实际教学过程中,我将以知识与技能、过程与方法、情感态度与价值观为目标,设计丰富多样的教学活动和实例,引导学生积极参与,主动探究,使学生在掌握知识的同时,也能提高自身的综合素质和能力。同时,注重因材施教,关注每个学生的个体差异,充分调动学生的积极性和主动性,使每个学生都能在数学学科的学习中得到充分的发展和提高。
2.培养学生的动手操作能力,提高学生运用数学知识解决实际问题的能力。
3.引导学生运用归纳、推理等方法,总结正多边形的性质和规律,培养学生的创新思维能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,激发学生学习数学的内在动力。
2.培养学生独立思考、合作交流的习惯,提高学生的人际沟通能力和团队合作精神。
2.组织学生进行自我评价和同伴评价,让学生了解自己的学习成果和不足之处,提高学生的自我认知和评价能力。
3.教师对学生的学习情况进行总结和评价,关注学生的个体差异,给予有针对性的指导和鼓励,激发学生的学习动力和信心。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示各种正多边形的实物图片,如正方形、正三角形等,引导学生关注正多边形在现实生活中的应用。
2.问题导向与小组合作相辅相成:在教学过程中,教师引导学生提出问题并自主探究,通过小组合作的形式进行研究讨论。这样的教学方式既培养了学生的提问意识和自主学习能力,又提高了学生的团队合作和交流沟通能力。
3.反思与评价注重个体差异:教师在教学过程中注重引导学生进行反思和评价,关注学生的个体差异,给予有针对性的指导和鼓励。这种教学方式既激发了学生的学习动力,又培养了学生的自我认知和评价能力。
2.设计一个正多边形的拼图游戏,让学生在游戏中体会正多边形的性质和特点,激发学生的学习兴趣。

人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计

人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计

人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计一. 教材分析《正多边形和圆》是人教版九年级数学上册第24章第三节的第一课时内容,主要介绍了正多边形的定义、性质以及与圆的关系。

本节课的内容是学生对几何图形学习的进一步深化,对于培养学生的空间想象能力和抽象思维能力具有重要意义。

教材通过生活中的实例引入正多边形和圆的概念,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。

二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的深度。

但是,对于正多边形和圆的性质和关系,可能还比较陌生。

因此,在教学过程中,需要教师通过生动形象的实例和直观的图形,帮助学生理解和掌握正多边形和圆的概念和性质。

三. 教学目标1.了解正多边形的定义和性质,能够识别和判断正多边形。

2.理解圆的概念,掌握圆的性质。

3.掌握正多边形与圆的关系,能够运用正多边形和圆的知识解决实际问题。

四. 教学重难点1.重难点:正多边形的定义和性质,圆的概念和性质。

2.难点:正多边形与圆的关系的理解和运用。

五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探索,激发学生的学习兴趣和积极性。

2.采用直观演示法,通过实物和图形的展示,帮助学生直观地理解和掌握正多边形和圆的概念和性质。

3.采用归纳总结法,通过总结和归纳,使学生对正多边形和圆的知识有一个系统的认识。

六. 教学准备1.准备相关的图形和图片,如正多边形和圆的实物图片,正多边形和圆的模型等。

2.准备相关的教学PPT,内容包括正多边形和圆的定义、性质和关系等。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学过的几何图形,如三角形、四边形等,激发学生的学习兴趣。

然后,展示一些生活中的实例,如五角星、车轮等,引导学生思考这些图形的共同特征。

2.呈现(10分钟)教师展示正多边形和圆的实物图片和模型,引导学生观察和描述正多边形和圆的特征。

然后,教师通过PPT呈现正多边形和圆的定义和性质,让学生初步了解和掌握。

人教版九年级数学上册教案:24.3《正多边形和圆》第一课时参考教案

人教版九年级数学上册教案:24.3《正多边形和圆》第一课时参考教案

24.3 正多边形和圆第一课时教学目标:1、使学生理解正多边形概念;2、使学生了解依次连结圆的n等分点所得的多边形是正多边形;过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.3、通过正多边形定义教学培养学生归纳能力;4、通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力.教学重点:(1)正多边形的定义;(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n 边形.教学难点:对正n边形中泛指“n”的理解.教学过程:一、新课引入:同学们思考以下问题:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?[安排中下生回答] 3.等边三角形与正方形的边、角性质有什么共同点?[安排中上生回答:各边相等、各角相等].各边相等,各角相等的多边形叫做正多边形.这就是我们今天学习的内容“24.3正多边形和圆”.二、新课讲解:正多边形在生产实践中有广泛的应用性,因此,正多边形的知识对学生进一步学习和参加生产劳动都是必要的.因此本节课首先给出正多边形的定义,然后根据正多边形的定义和圆的有关知识推导出正多边形与圆的第一个关系定理,即n等分圆周就可得到圆的内接或外切正n边形,它是正多边形画图的理论依据,因此也是本节课的重点之一.同学回答:什么是正多边形?[安排中下生回答:各边相等、各角也相等的多边形叫做正多边形.]如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.幻灯展示图形:上面这些图形都是正几边形?[安排中下生回答:正三角形,正四边形,正五边形,正六边形.]矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?[安排中下生回答:矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.]哪位同学记得在同圆中,圆心角、弧、弦、弦心距关系定理?[安排记起来的学生回答:在同圆中,圆心角、弧、弦、弦心距有一组量相等,那么其余量都相等.]要将圆三等分,那么其中一等份的弧所对圆心角度数是多少?要将圆四等分、五等分、六等分呢?[安排中下生回答:将圆三等分,其中每等份弧所对圆心角120°、将圆四等分,每等份弧所对圆心角90°、五等分,圆心角72°、六等分,圆心角60°] 哪位同学能用量角器将黑板上的圆三等分、四等分、五等分、六等分?[接排四名上等生上黑板完成,其余学生在下面练习本上用量角器等分圆周.]大家依次连结各分点看所得的圆内接多边形是什么样的多边形?[学生答:正多边形.]求证:五边形ABCDE是⊙O的内接正五边形.以幻灯所示五边形为例,哪位同学能证明这五边形的五条边相等?[安排中等生回答:]哪位同学能证明这五边形的五个角相等?[安排中等生回答:]前面的证明说明“依次连结圆的五等分点所得的圆内接五边形是正五边形”的观察后的猜想是正确的.如果n等分圆周,(n ≥3)、n=6,n=8……是否也正确呢?[安排学生们充分讨论].因为在同圆中,弧等弦等,n等分圆就得到n条弦等,也就是n边形的各边都相等.又n边形的每个内角对圆的(n-2)条弧,而每一内角所对的弧都相等,根据弧等、圆周角相等,证明了n边形的各角都相等,因此圆内接正五边形的证明具有代表性.定理:把圆分成n(n≥3)等份:(1)依次连结各分点所得的多边形是这个圆的内接正n边形;为何要“依次”连结各分点呢?缺少“依次”二字会出现什么现象?大家讨论讨论看看.经过圆的五等分点作圆的切线,大家观察以相邻切线的交点为顶点的五边形是不是正五边形?PQ、QR、RS、ST分别是经过分点A、B、C、D、E的⊙O的切线.求证:五边形PQRST是⊙O的外切正五边形.由弧等推得弦等、弦切角等,哪位同学能说明五边形PQRST 的各角都相等?[安排中上生回答]哪位同学能证明五边形PQRST 的各边都相等?[安排中等生回答.]前面同学的证明,说明“经过圆的五等分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正五边形.”同样根据弧等弦等、弦切角等就可证明经过圆的n等分点作圆的切线,以相邻切线的交点为顶点的n个等腰三角形全等,从而证明了这个圆的以它n等分点为切点的外切n边形是正n边形.(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.定理(2)中少“相邻”两字行不行?少“相邻”两字会出现什么现象?同学们相互间讨论研究看看.三、课堂小结:本堂课我们学习的知识:1.学习了正多边形的定义.2.n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n 边形.四、布置作业教材P.105.练习2、3;。

人教版九年级数学上册24.3.1《正多边形和圆(1)》说课稿

人教版九年级数学上册24.3.1《正多边形和圆(1)》说课稿

人教版九年级数学上册24.3.1《正多边形和圆(1)》说课稿一. 教材分析《正多边形和圆》是人民教育出版社九年级数学上册第24章第3节的一个内容。

本节课主要介绍正多边形的定义、性质以及与圆的关系。

通过学习本节课,学生能够理解正多边形的定义,掌握正多边形的性质,以及了解正多边形与圆的密切关系。

二. 学情分析九年级的学生已经具备了一定的几何图形的基础知识,对图形的性质和概念有一定的了解。

但是,对于正多边形的定义和性质,以及与圆的关系,可能还比较陌生。

因此,在教学过程中,我需要根据学生的实际情况,逐步引导学生理解和掌握这些概念和性质。

三. 说教学目标1.知识与技能:理解正多边形的定义,掌握正多边形的性质,了解正多边形与圆的关系。

2.过程与方法:通过观察、思考、交流等方法,培养学生的几何思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 说教学重难点1.重点:正多边形的定义和性质,以及正多边形与圆的关系。

2.难点:正多边形与圆的关系的推导和理解。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、引导发现法等教学方法,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、几何画板等教学手段,直观展示正多边形的性质和与圆的关系,帮助学生理解和掌握。

六. 说教学过程1.导入:通过展示一些生活中的正多边形图片,如正方形、正三角形等,引导学生思考什么是正多边形,激发学生的学习兴趣。

2.新课导入:正式引入正多边形的定义和性质,引导学生通过观察、思考、交流等方法,探索正多边形的性质。

3.知识拓展:引导学生思考正多边形与圆的关系,通过几何画板等教学手段,直观展示正多边形与圆的关系。

4.课堂练习:设计一些相关的练习题,让学生巩固所学知识,提高解题能力。

5.总结:对本节课的内容进行总结,强调正多边形的定义和性质,以及与圆的关系。

七. 说板书设计板书设计主要包括正多边形的定义、性质,以及与圆的关系。

人教版数学九年级上册24.3《正多边形和圆》教学设计

人教版数学九年级上册24.3《正多边形和圆》教学设计

人教版数学九年级上册24.3《正多边形和圆》教学设计一. 教材分析《正多边形和圆》是人教版数学九年级上册第24.3节的内容。

本节内容是在学生已经掌握了圆的概念和性质的基础上进行学习的,主要让学生了解正多边形的定义、性质及其与圆的关系。

通过本节内容的学习,学生能够理解正多边形的对称性,掌握正多边形的计算方法,并为后续学习圆的周长、面积等知识打下基础。

二. 学情分析九年级的学生已经具备了一定的几何基础知识,对圆的概念和性质有一定的了解。

但是,对于正多边形的定义和性质,以及与圆的关系,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过观察、思考、探究,逐步理解正多边形的性质,并能够运用到实际问题中。

三. 教学目标1.知识与技能:让学生掌握正多边形的定义、性质及其与圆的关系,能够运用正多边形的性质解决实际问题。

2.过程与方法:通过观察、思考、探究,培养学生的几何思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:正多边形的定义、性质及其与圆的关系。

2.难点:正多边形的计算方法及其在实际问题中的应用。

五. 教学方法1.引导发现法:通过引导学生观察、思考、探究,发现正多边形的性质及其与圆的关系。

2.案例分析法:通过分析实际问题,让学生学会运用正多边形的性质解决实际问题。

3.小组合作学习:让学生在小组内进行讨论、交流,培养团队合作精神。

六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示。

2.教学素材:准备一些关于正多边形的实际问题,用于巩固和拓展。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中常见的正多边形,如正方形、正三角形等,引导学生关注正多边形,激发学生的学习兴趣。

2.呈现(10分钟)介绍正多边形的定义和性质,引导学生通过观察、思考,发现正多边形的特点。

3.操练(10分钟)让学生分组讨论,分析一些实际问题,运用正多边形的性质解决问题。

人教版数学九年级上册24.3.1《正多边形和圆》教学设计

人教版数学九年级上册24.3.1《正多边形和圆》教学设计

人教版数学九年级上册24.3.1《正多边形和圆》教学设计一. 教材分析《正多边形和圆》是人民教育出版社九年级上册数学教材第24章第三节的第一课时内容。

本节课的主要内容是让学生掌握正多边形的定义,了解正多边形与圆的关系,以及掌握正多边形的性质。

这一节课的内容是学生对几何图形学习的进一步拓展,对于培养学生的空间想象能力和抽象思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了多边形的基本概念,并对平面几何图形有了一定的了解。

同时,学生通过前面的学习,已经具备了一定的观察、思考、归纳和总结的能力。

但是,对于正多边形的定义和性质,以及与圆的关系,学生可能还比较陌生,需要通过本节课的学习来逐步理解和掌握。

三. 教学目标1.让学生了解正多边形的定义,掌握正多边形的性质。

2.让学生了解正多边形与圆的关系,能够运用正多边形的性质解决实际问题。

3.培养学生的空间想象能力和抽象思维能力,提高学生的数学素养。

四. 教学重难点1.正多边形的定义和性质。

2.正多边形与圆的关系。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、归纳和总结来掌握正多边形的定义和性质。

2.利用多媒体辅助教学,通过动画演示和图形展示,帮助学生直观地理解正多边形与圆的关系。

3.采用小组合作学习的方式,让学生在讨论和交流中提高对正多边形的理解和应用能力。

六. 教学准备1.多媒体教学设备。

2.正多边形的模型或图片。

3.圆的相关教学材料。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾多边形的基本概念,为新课的学习做好铺垫。

例如:“你们知道什么是多边形吗?多边形有哪些性质?”2.呈现(10分钟)展示正多边形的模型或图片,引导学生观察和思考正多边形的特征。

同时,通过提问方式引导学生了解正多边形与圆的关系。

例如:“你们观察到正多边形有哪些特征?它们与圆有什么联系?”3.操练(10分钟)让学生通过自主学习或小组合作学习的方式,总结正多边形的性质。

24.3 正多边形和圆 人教版数学九年级上册说课稿

24.3 正多边形和圆 人教版数学九年级上册说课稿

正多边形和圆说课稿尊敬的各位评委、各位老师:大家好!我是号选手.我说课的内容是人教版数学教材九年级上册第二十四章第三节:正多边形和圆(板书)。

根据教材编排,本节课分两课时完成。

在此,我说第一课时。

下面,我将从教材分析、教法和学法、教学过程、板书设计四个方面对本课时的设计进行说明。

首先来说教材分析.教材所处的地位和作用正多边形是和圆是在学生学习了三角形、四边形、多边形以及圆的相关知识后的内容,是前一阶段知识的运用和提高。

正多边形是一种特殊的多边形,它有一些类似于圆的特性;研究正多边形和圆的关系,掌握有关正多边形的计算是进一步学习数学及其它学科的重要基础。

根据新课标要求,结合教材特点,我把教学目标定为以下三个方面。

知识与技能让学生经历正多边形的形成过程;理解正多边形的有关概念及正多边形和圆的关系;掌握正多边形的有关计算方法。

过程与方法通过正多边形定义的教学,培养学生的归纳能力;通过正多边形与圆的关系教学,培养学生观察、猜想、推理、迁移能力,以及从具体到抽象,从特殊到一般,从部分到整体的认识事物规律的能力.情感态度与价值观通过“寻找生活中的正多边形”等活动,使学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,培养学生细心观察生活的习惯,使学生了解数学对促进社会进步和发展人类理性精神的作用.同时,向学生渗透“特殊到一般”再“一般到特殊”的唯物辩证法思想.再来看教学重点和难点本节课的教学重点是:了解正多边形的有关概念;理解正多边形和圆的关系;掌握有关正多边形的计算方法。

难点是:对正多边形和圆的关系的理解及正多边形相关概念计算的准确性.教法学法按照新的课程理论和九年级学生的特点,我确定如下教法学法:教法:本节课我采用发现式教学法,让学生经历正多边形的定义以及正多边形和圆的关系的探索过程,并积极为学生创设再发现的机会和条件,在探索发现过程中培养学生的思维能力和创新精神的培养。

学法:采用自主探索、合作交流的学习方法,并在此过程中培养学生动脑、动口的能力,发展学生的形象思维。

九年级数学人教版上册24.3正多边形和圆教学设计

九年级数学人教版上册24.3正多边形和圆教学设计
作业布置要求:
1.学生需独立完成作业,确保作业质量。
2.作业完成后,认真检查,确保解答过程正确、书写规范。
3.教师批改作业后,学生要认真对待反馈,及时改正错误,巩固知识点。
4.鼓励学生积极参与课堂讨论,分享自己的学习心得和作业成果。
4.通过正多边形在实际生活中的应用,让学生认识到数学与生活的紧密联系,增强学生学以致用的意识。
二、学情分析
九年级的学生已经具备了一定的几何知识和逻辑思维能力,他们已经熟悉了三角形、四边形等基本多边形的性质和计算方法。在此基础上,学习正多边形和圆的相关知识,对学生来说是几何学习的深入和拓展。学生在这个阶段好奇心强,求知欲旺盛,对新鲜事物充满探索欲望。因此,本章节的教学应注重激发学生的兴趣,引导他们通过观察、思考、实践,发现正多边形的规律和性质,提高学生的几何素养和解决问题的能力。同时,考虑到学生的个体差异,教学中应关注不同层次学生的需求,设置适宜的难度,使每个学生都能在原有基础上得到提高。
4.小组合作:
-以小组为单位,讨论以下问题:正多边形与圆有哪些互为内外切的关系?这些关系在实际问题中如何应用?
-小组共同完成一份关于正多边形与圆的性质、应用的研究报告。
5.创新思维:
-鼓励学生运用正多边形的知识,设计一个独特的几何图案,并说明其寓意。
-学生可以尝试利用正多边形制作一个简易的装饰品或模型,培养动手能力和创新能力。
2.讨论主题:正多边形的性质、正多边形与圆的关系、正多边形周长与面积的计算方法等。
3.教师指导:在学生讨论过程中,教师巡回指导,引导学生发现规律,解答学生的疑问。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
-基础题:计算给定正多边形的周长、面积。

人教版九年级数学上册教案:24.3正多边形和圆课堂教学设计

人教版九年级数学上册教案:24.3正多边形和圆课堂教学设计
-实施课后延伸活动,如研究性学习、数学日记等,让学生将所学知识拓展到课外。
3.教学评价设想:
-采用多元化评价方式,包括课堂提问、课后作业、小组讨论表现、小测验等,全面评估学生的学习效果。
-注重过程性评价,关注学生在探究活动中的表现,鼓励学生展示思考过程,而非仅仅关注答案的正确性。
-定期进行教学反思,根据学生的反馈调整教学策略,确保教学效果的最优化。
3.正多边形的构造和证明问题,需要学生具备较高的逻辑思维和几何直观。
-重难点突破设想:采用启发式教学,引导学生通过画图、猜想、验证的步骤,自己发现和总结构造方法,同时结合数学证明,强化逻辑推理训练。
(二)教学设想
1.教学方法设想:
-采用探究式学习,鼓励学生通过观察、实验、推理等手段自主探索正多边形和圆的性质。
-重难点突破设想:通过动态几何软件或实物模型演示,让学生直观感受正多边形与圆之间的关系,逐步引导学生发现并理解性质,通过例题讲解和练习巩固,加深对这一关系的认识。
2.正多边形和圆相关的计算问题是难点,尤其是涉及面积和周长的计算。
-重难点突破设想:设计不同难度的计算题,从基础计算入手,逐步提升至综合应用题,让学生在解决问题的过程中掌握计算方法,并通过错题分析,帮助学生理清思路,避免常见错误。
1.学生在空间想象能力上的差异,针对不同学生的认知特点,设计合适的教学活动,帮助学生在直观感知的基础上,逐步提升抽象思维能力。
2.学生在几何证明方面的能力参差不齐,需要针对这一点进行有针对性的指导,引导学生运用已掌握的几何知识,通过严密的逻辑推理,完成正多边形和圆的性质证明。
3.学生在解决实际问题时,可能难以将理论知识与生活实际相结合。教学中应注重培养学生的应用意识,引导学生将所学知识应用于解决生活中的问题。

人教版九年级上册数学24.3正多边形和圆(1)教案

人教版九年级上册数学24.3正多边形和圆(1)教案
五、教学反思
今天的课程中,我发现学生们对正多边形和圆的概念掌握得还不错,但在具体的计算和应用方面,部分学生仍然存在一些困难。在讲解正多边形性质时,我尽量用直观的图形和生活中的例子来帮助他们理解,这样的教学方法似乎效果不错,学生们能够更直观地感受到几何图形的魅力。
然而,当进行到正多边形面积和周长的计算时,我注意到一些学生在转换公式和应用公式上遇到了难题。这可能是因为他们对公式背后的原理理解不够深入。在今后的教学中,我需要更加注重让学生理解公式的来源和推导过程,而不仅仅是记住公式。
二、核心素养目标
1.培养学生的空间想象力和图形观察能力,通过正多边形和圆的学习,使学生能够直观想象几何图形在空间中的形态和结构;
2.提高学生的逻辑思维能力和推理能力,在学习正多边形性质和计算方法的过程中,引导学生运用逻辑推理和数学证明的方法解决问题;
3.增强学生的数学应用意识,通过解决实际问题时运用正多边形和圆的知识,培养学生将数学知识应用于现实生活的能力;
-实际应用:将正多边形和圆的知识应用于解决实际问题,如设计图案、计算土地面积等。
举例解释:
-正多边形的内角和公式:(n-2)×180°,其中n为正多边形的边数,这是计算正多边形内角的基础。
-正多边形的周长和面积计算:通过半径或边长求解,强调公式应用的正确性。
2.教学难点
-正多边形内角与外角关系的理解:特别是外角等于360°除以边数,这是学生容易混淆的地方。
4.培养学生的团队协作能力,在小组讨论和合作完成练习题的过程中,提高学生沟通交流和协作解决问题的能力。
三、教学难点与重点
1.教学重点
-正多边形的性质:包括对称轴、对称中心、内角与外角、边心距等概念,以及它们之间的关系。
-正多边形与圆的关系:圆的内接正多边形和外切正多边形的性质,以及如何通过半径和边长计算正多边形的面积和周长。

人教版九年级数学上册教师备课教案24.3正多边形和圆 第1课时

人教版九年级数学上册教师备课教案24.3正多边形和圆 第1课时

第1课时教学内容24.3 正多边形和圆(1).教学目标1.理解正多边形概念,知道正多边形的中心、半径、中心角和边心距.2.掌握正五边形的画法.3.利用正多边形解决有关问题.教学重点正五边形的画法.教学难点利用正多边形解决有关问题.教学过程一、导入新课日常生活中,我们经常能看到正多边形形状的物体,利用正多边形,也可以得到许多美丽的图案.你还能举出一些这样的例子吗?通过生活中的实际例子导入新课的教学.二、新课教学1.正五边形的画法.正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.如图,把⊙O分成相等的5段弧,依次连接各分点得到五边形ABCDE.求证:五边形ABCDE是⊙O的内接正五边形.证明:∵=,∴AB=BC=CD=DE=EA,=3=.∴∠A=∠B.同理∠B=∠C=∠D=∠E.又五边形ABCDE的顶点都在⊙O上,∴五边形ABCDE是⊙O的内接正五边形,⊙O是正五边形ABCDE的外接圆.2.正多边形的有关概念.我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距(如图).3.实例探究.例如图,有一个亭子,它的地基是半径为4 m的正六边形,求地基的周长和面积(结果保留小数点后一位).解:如图,连接OB,OC.因为六边形ABCDEF是正六边形,所以它的中心角等于=60°,△OBC是等边三角形,从而正六边形的边长等于它的半径.因此,亭子地基的周长l=6×4=24(m).作OP⊥BC,垂足为P,在Rt△OPC中,OC=4 m,PC===2(m),利用勾股定理,可得边心距r==2(m).亭子地基的S=lr=×24×2≈41.6(m2).三、巩固练习教材第106页练习2、3.四、课堂小结今天学习了什么,有什么收获?五、布置作业习题24.3 第1、2题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四章圆
24.3 正多边形和圆教学设计
第1课时
一、教学目标
1.了解正多边形与圆的关系,了解正多边形的中心、半径、边心距、中心角等概念.2.正多边形与圆有关的计算.
二、教学重点及难点
重点:正多边形的概念及正多边形与圆有关的计算.
难点:正多边形与圆有关的计算.
三、教学用具
多媒体课件,三角板、直尺、圆规.
四、相关资源
多张《生活中的正多边形》图片,《画圆内接正五边形》动画,《正多边形与圆的相关概念》动画,《地基为正六边形的亭子》图片.
五、教学过程
【创设情境,引入新课】
观看下列美丽的图案.
问题这些美丽的图案,都是日常生活中我们经常能看到的、利用正多边形得到的物体.你能从这些图案中找出正多边形来吗?
师生活动:教师演示课件或展示图片,提出问题.学生观察图案,思考并指出找到的正多边形.教师关注:①学生能否从这些图案中找到正多边形;②学生能否从这些图案中发现正多边形和圆的关系.
设计意图:通过观看美丽的图案,欣赏生活中正多边形形状的物体,让学生感受到数学来源于生活,并从中感受到数学美.
【合作探究,形成新知】
1.正多边形与圆的关系
【知识点解析】正多边形和圆,微课全面的讲解正多边形与圆相关知识.
(1)你知道正多边形和圆有什么关系吗?你能借助圆作出一个正多边形吗?
师生活动:教师提出问题,让学生观察、思考.学生讨论、交流,发表各自见解.引导学生只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,把问题转化为已经解决的问题,建立知识点之间的联系.教师把问题引到如何等分一个圆——依次作相等的圆心角.教师关注:学生能否联想到等分圆周作出正多边形来.
设计意图:问题的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索,研究的热情,调动学生学习的积极性,并有意将注意力集中在正多边形与圆的关系上.
(2)将一个圆五等分,依次连接各分点得到一个五边形,这个五边形一定是正五边形吗?如果是,请你证明这个结论.
师生活动:教师提出问题后,学生认真思考、交流,充分发表自己的见解,并互相补充.教师在学生归纳的基础上进行补充,并以正五边形为例进行证明.
证明:如图,
====,
∵AB BC CD DE EA
====,
∴AB BC CD DE EA
==.
3
BAD CAE AB
∠=∠.
∴C D
∠=∠=∠=∠=∠.
同理可证:A B C D E
∴五边形ABCDE是正五边形.
∵A、B、C、D、E在⊙O上,
∴五边形ABCDE是圆内接正五边形.
设计意图:学生在教师的指导下进行逻辑推理,论证所发现的结论的正确性,从而培养学生科学严谨的治学态度,和运用所学知识解决问题的能力.
(3)如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?
师生活动:教师提出问题,学生思考,同学间交流,回答问题.教师关注:学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.
归纳:将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形.设计意图:将结论由特殊推广到一般,这符合学生的认知规律,并教给学生一种研究问题的方法:由特殊到一般.
2.正多边形与圆的概念
学生观看课件,理解概念.
【数学探究】用等分圆周法作正六边形和正方形,交互动画展现正多边形与圆的性质.
师生活动:教师用课件显示要解决的概念,学生自学课本第105页,回答问题.教师演示课件,给出正多边形的中心、半径、中心角、边心距等概念.
归纳:
正多边形的中心:正多边形的外接圆的圆心叫做正边形的中心.
正多边形的半径:外接圆的半径叫做正多边形的半径.
正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.
正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.
设计意图:通过自主学习概念,培养了学生的归纳能力,加深了对概念的理解,充分发展了学生的发散思维.
【例题分析,深化提升】
例有一个亭子(如图),它的地基是半径为4 m的正六边形,求地基的周长和面积(结果保留小数点后一位).
师生活动:教师引导学生画出正六边形图形,进行分析.教师关注:①学生能否知道欲求地基的周长和面积,需要先求正六边形的边长和边心距;②学生能否将正六边形的边长、半径和边心距集中在一个三角形中来研究;③学生能否将正六边形的中心与顶点连接起来,将正六边形分割成6个全等的等腰三角形,去发现每个等腰三角形的顶角就是中心角,腰是半径,底边是边长,底边上的高是边心距,从而可以利用勾股定理进行计算,进而能够求得正多边形的周长和面积.
思考:正n边形的中心角度数如何计算?正n边形的一个外角度数如何计算?正n边形的中心角与外角的大小有什么关系?
归纳:中心角的度数=360
n

外角的度数=360
n

正n边形的中心角与外角的大小相等.
设计意图:让学生在了解有关正多边形的概念后,通过例题的练习,巩固所学到的知识.教师引导学生将实际问题转化成数学问题,将多边形化归成三角形来解决.体现了化归思想在解题中的应用.
【练习巩固,综合应用】
1.下列命题正确的是().
A.各边相等的多边形是正多边形B.各角相等的
多边形是正多边形
C.既是轴对称图形又是中心对称图形的多边形是正多边形
D.各边相等,各角也相等的多边形是正多边形
2.圆的半径扩大一倍,则它的相应的圆内接正n边形的边长
与半径之比().
A.扩大了一倍B.扩大了两倍C.扩大
了四倍D.没有变化
3.如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数
是().
A.60°B.45°C.30°D.22.5°
4.正十二边形每个内角的度数为.
5.在半径为R的圆中,内接正方形与内接正六边形的边长之比为.
6.分别求出半径为R的圆内接正三角形、正方形的边长、边心距和面积.
参考答案
1.D 2.D 3.C 4.150°5.2∶1
设计意图:巩固了正多边形与圆的有关概念的理解和应用.
6.解:(1)作等边△ABC的边BC上的高AD,垂足为D.
连接OB ,则OB =R .如图:
在Rt △OBD 中,∠OBD =30°,
边心距OD =12OB =12R . 在Rt △ABD 中,∠BAD =30°, AD =OA +OD =R +
12R =32R . 由勾股定理,得AB =3R ,
所以2113333222ABC S BC AD R R R ==⨯⨯=△. (2)连接OB ,OC ,过点O 作OE ⊥BC ,垂足为E .如图:
则∠OEB =90°,∠OBE =∠BOE =45°,即Rt △OBE 为等腰直角三角形.
则有222BE OE OB +=.
所以边心距22=OE BE OB R ==, BC =2BE =2222
R R ⨯=. 所以()2222ABCD S AB BC R R ===正方形.
师生活动:学生独立完成,教师批改、总结,重点关注:①对学生在练习中出现的问题,有针对性地给予分析;②学生面对探究性问题的解决方法.
设计意图:考查对圆与正多边形有关的概念的掌握,
巩固本节课所学的内容.
六、课堂小结
学完这节课你有哪些收获?
1.正多边形相关定义
中心的定义:正多边形的外接圆的圆心叫做正多边形
的中心.
半径的定义:外接圆的半径叫做正多边形的半径.
中心角的定义:正多边形每一边所对的圆心角叫做正多边形的中心角.
边心距的定义:中心到正多边形的一边的距离叫做正多边形的边心距.
2.正n 边形的中心角与外角的大小相等.
师生活动:学生自己总结,不全面的由其他学生补充完善.教师重点关注:不同层次学生对本节知识的理解、掌握程度.
设计意图:让学生总结出自己的收获,理清思路、整理经验,从而形成良好的学习习惯,同时也提出自己的疑问和困惑便于教师及时反馈.
七、板书设计
24.3 正多边形和圆(1)
1.正多边形相关定义
2.正n 边形的中心角与外角的大小相等.。

相关文档
最新文档