四边形知识点总结大全

合集下载

四边形知识点

四边形知识点

四边形知识点四边形是平面几何中的一个重要概念,它具有许多特征和性质。

在本文中,我们将一步一步地介绍四边形的定义、分类和相关性质。

让我们开始吧!什么是四边形?四边形是指一个有四条边的平面图形。

它由四条线段连接的四个顶点组成,并且每个顶点都与相邻的两个顶点通过一条边相连。

四边形是平面几何中最简单的多边形之一,也是许多更复杂形状的基础。

四边形的分类四边形可以根据其边长、角度和对称性进行分类。

下面是常见的四边形分类:1.矩形:具有四条相等的边和四个直角的四边形。

矩形是一种特殊的正方形,其对角线相等且互相平分。

2.正方形:具有四条相等的边和四个直角的四边形。

正方形是一种特殊的矩形,其对角线相等且互相平分。

3.平行四边形:具有对边平行的四边形。

它的对边长度相等,且对边之间的夹角相等。

4.长方形:具有对边平行且相等的四边形。

长方形也是一种特殊的平行四边形,其所有角都是直角。

5.梯形:具有两条平行边的四边形。

梯形的非平行边可以是不等长的。

6.菱形:具有四条相等的边的四边形。

菱形的对角线相互垂直且互相平分。

四边形的性质四边形有许多有趣的性质,下面是一些常见的性质:1.内角和:四边形的内角和等于360度。

2.对角线:四边形的对角线是相邻顶点之间的直线段。

对角线可以相互平分,并且它们的交点将四边形分割成两个三角形。

3.邻边夹角:相邻边之间的夹角的和等于180度。

4.对边平行:平行四边形的对边是平行的。

5.对边长度:矩形和正方形的对边长度相等。

如何计算四边形的面积?根据四边形的类型,我们可以使用不同的方法来计算其面积:•矩形和正方形的面积等于两条相邻边的乘积。

•平行四边形的面积等于底边乘以高度。

•梯形的面积等于上底与下底的平均值乘以高度。

•菱形的面积等于对角线的乘积的一半。

总结四边形是平面几何中重要的概念,具有丰富的性质和分类。

通过学习四边形的定义、分类和性质,我们可以更好地理解几何形状和计算其面积。

希望本文能帮助您深入了解四边形知识点,并在几何学习中发挥作用!。

八年级数学四边形知识点复习归纳

八年级数学四边形知识点复习归纳

一、四边形的基本概念1.四边形的定义:四边形是由四条线段所围成的一个闭合图形。

2.四边形的要素:四边形有四条边和四个角。

二、四边形的分类1.按边的性质分类(1)等边四边形:四条边都是相等的,如正方形、正菱形。

(2)等腰四边形:有两边相等,如等腰梯形。

(3)直角四边形:有一个角是直角,如矩形、正方形。

(4)平行四边形:对边都是平行的,如矩形、菱形。

2.按角的性质分类(1)直角四边形:有一个角是直角,如矩形、正方形。

(2)等角四边形:四个角都是相等的,如菱形。

(3)锐角四边形:四个角都是锐角,如平行四边形。

(4)钝角四边形:有一个角是钝角,如矩形。

三、四边形的性质和定理1.对边性质(1)平行四边形的对边相等。

(2)等腰梯形的非平行边相等。

(3)矩形的对边相等,且对角线相等。

2.对角线性质(1)矩形的对角线相等,且互相平分。

(2)菱形的对角线相等,且互相垂直。

(3)平行四边形的对角线互相平分。

(4)任意四边形的对角线互相延长交于一点。

3.角性质(1)平行四边形的对角线所夹角相等。

(2)矩形的对角线所夹角是直角。

(3)菱形的对角线所夹角是直角,且互相平分。

(4)任意四边形的一个角和它的补角合为180°。

四、四边形的面积计算方法1.矩形的面积:面积=长×宽。

2.正方形的面积:面积=边长×边长。

3.菱形的面积:面积=对角线1×对角线2÷24.平行四边形的面积:面积=底边×高。

5.梯形的面积:面积=上底+下底×高÷2五、问题求解1.根据形状和条件,判断图形是否为四边形。

2.根据已知条件,利用四边形的性质和定理进行证明。

3.根据已知条件,计算四边形的面积。

4.根据已知条件,计算未知边长或角度大小。

六、常见的四边形误区1.平行四边形的对边相等:虽然平行四边形的对边是平行的,但并不一定相等。

2.矩形和正方形是同一个图形:矩形和正方形都是矩形的特例,但它们的四边长度并不相等。

四边形基本知识点

四边形基本知识点

第四章四边形性质探索知识点归纳 一.四边形的相关概念和性质(1)在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形.四边形用表示它的各顶点的字母来表示.注意:表示四边形必须按顶点的顺序书写,可按照顺时针或逆时针的顺序.如图读作“四边形ABCD ” .(2)在四边形中,连结不相邻两个顶点的线段叫做四边形的对角线.注意:①四边形共有两条对角线.②连结四边形的对角线也是一种常用的辅助线作法.(3)四边形的不稳定性:三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性.但是,四边形四边长确定后,它的形状不能确定.这就是四边形具有不稳定性,它在生产、生活方面有很多的应用.(4)四边形的内角和等于 360.(5)四边形的外角和等于 360.注意:1、四边形内角中最多有三个钝角,四个直角,三个锐角;2、四边形外角中最多有三个钝角、四个直角、三个锐角,最少没有钝角,没有直角,没有锐角;3、四边形内角与同一个顶点的一个外角互为邻补角.二.多边形的概念和性质:(1)n 边形的内角和等于 180)2(⋅-n .(2)任意多边形的外角和等于 360.(3)n 边形共有2)3(-n n 条对角线.(4)在平面内,内角都相等且边都相等的多边形叫做正多边形。

(5)正多边形的每个内角等于n n 180).2(-三、平行四边形.1.平行四边形的性质(1)平行四边形的邻角互补,对角相等.(2)平行四边形的对边平行且相等.(3)夹在两条平行线间的平行线段相等.(4)平行四边形的对角线互相平分.(5)中心对称图形,对称中心是对角线的交点。

(6)若一直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分四边形的面积.2.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形.(2)定理1:两组对角分别相等的四边形是平行四边形.(3)定理2:两组对边分别相等的四边形是平行四边形.(4)定理3:对角线互相平分的四边形是平行四边形.(5)定理4:一组对边平行且相等的四边形是平行四边形.3.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离.平行线间的距离处处相等.注意:(1)距离是指垂线段的长度,是正值.(2)两条平行线的位置确定后,它们的距离是定值,不随垂线段位置改变.(3)平行线间的距离处处相等,因此在作平行四边形的高时,可根据需要灵活选择位置.4.平行四边形的面积S=底边长×高=ah(a是平行四边形任何一边长,h必须是a边与其对(1)、平行四边形边的距离).(2)、同底(等底)同高(等高)的平行四边形面积相等.四.矩形、1.矩形的定义:_________________________________2.矩形的性质:(1)对边平行且相等。

八年级数学下册知识点总结-四边形

八年级数学下册知识点总结-四边形

第19章四边形知识点
一、平行四边形
1、平行四边形定义:(即是性质又是判定)
2、平行四边形的性质:边:
角:
对角线:
对称性:
面积公式:
3、平行四边形的判定:
4、中位线定理:。

二、矩形
1、矩形的定义:。

矩形判定定理:
推论:
三、菱形
1、菱形的定义 :
2、菱形的性质:
3、菱形的判定:
4、菱形的面积公式:
四、正方形
1、正方形定义: 。

2、正方形的性质:
3、正方形判定定理:
(1)先证四边形是 ,再证 。

(2)先证四边形是 ,再证 。

五、中点四边形
顺次连接任意一个四边形各边的中点所得的四边形是 。

平行四边形的中点四边形是 。

矩形的中点四边形是 。

菱形的中点四边形是 。

四边形知识点归纳

四边形知识点归纳

四边形知识点归纳四边形是中学数学中的基本图形之一,它具有固定的形状和特定的性质。

在学习四边形的过程中,需要掌握其各种性质和分类方法。

本文将从四边形的定义开始,逐步介绍其相关知识点,方便读者全面了解和掌握这个重要概念。

一、四边形的定义四边形是由四条线段围成的封闭图形,其中相邻两条线段交成一个点,四个角分别存在于这些点上。

四边形的特征是它有四条边和四个角,其中每个角为两条相邻边的夹角。

四边形可以分为凸四边形和凹四边形。

如果四边形的对角线相交于一个点,那么这个四边形是一个凸四边形。

二、四边形的性质1. 对角线对角线是四边形中连接两个对角线顶点的线段。

对于凸四边形,任意两条对角线都相交于一个点。

对于凹四边形,任意两条对角线可能不相交或交于一点。

如果四边形的对角线互相垂直,那么它就是一个矩形。

如果对角线平分,且两组对边相等,那么它就是一个菱形。

2. 边四边形的任意两边之和大于其余两边。

这是一个基本性质,在解四边形的问题时常常需要用到。

3. 内角和四边形的内角和等于360度。

这意味着四边形的任意两个内角之和等于180度。

4. 周长与面积四边形的周长等于其四条边的长度之和。

四边形的面积等于对角线所构成的两个三角形面积之和,可以使用海伦公式进行计算。

三、四边形的分类1. 矩形矩形是一种具有四条相等边和四个直角的四边形。

矩形还具有对角线相等和平分的性质。

如果矩形的宽和长相等,那么矩形就变成了正方形。

2. 平行四边形平行四边形是一种具有相对边平行的四边形。

平行四边形的对角线互相平分,而其周长等于对边长度之和。

平行四边形的面积等于其底边长度乘以高。

3. 梯形梯形是一种具有一对平行边和另一对不平行边的四边形。

梯形的面积等于底边长度之和乘以高的一半。

4. 长方形长方形是一种具有对边相等且对角线相等和平分的四边形。

它的面积等于宽乘以长。

5. 菱形菱形是一种具有相等对边和对角线相等和平分的四边形。

它的面积等于两条对角线长度之积除以2。

最全《四边形》全章知识点、定义、性质、判定

最全《四边形》全章知识点、定义、性质、判定

平行四边形平行四边形的定义:在同一平面内有两组对边分别平行的四边形叫做平行四边形。

平行四边形的定义、性质:(1)平行四边形对边平行且相等。

(2)平行四边形两条对角线互相平分。

(菱形和正方形)(3)平行四边形的对角相等,两邻角互补(4)连接任意四边形各边的中点所得图形是平行四边形。

(推论)(5)平行四边形的面积等于底和高的积。

(可视为矩形)(6)平行四边形是旋转对称图形,旋转中心是两条对角线的交点。

(7)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。

(8)平行四边形是中心对称图形,对称中心是两对角线的交点。

(9)一般的平行四边形不是轴对称图形,菱形是轴对称图形。

(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和(可用余弦定理证明)。

(11)平行四边形对角线把平行四边形面积分成四等分。

判定:(1)两组对边分别相等的四边形是平行四边形;(2)对角线互相平分的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对边分别平行的四边形是平行四边形;(5)两组对角分别相等的四边形是平行四边形;(6)一组对边平行一组对角线互相平分的四边形是平行四边形;(7)一组对边平行一组对角相等的四边形是平行四边形;矩形定义有一个角是直角的平行四边形叫做矩形性质1.矩形的四个角都是直角,对边相等2.矩形的对角线相等3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线)。

5.对边平行且相等6.对角线互相平分7.矩形具有平行四边形的所有性质判定1.有一个角是直角的平行四边形是矩形2.对角线相等的平行四边形是矩形3.有三个角是直角的四边形是矩形4.四个内角都相等的四边形为矩形5.关于任何一组对边中点的连线成轴对称图形的平行四边形是矩形6.对于平行四边形,若存在一点到两双对顶点的距离的平方和相等,则此平行四边形为矩形7.对角线互相平分且相等的四边形是矩形8.对角线互相平分且有一个内角是直角的四边形是矩形四边形由四条线段围成的平面图形叫四边形。

四边形基本图形知识点总结

四边形基本图形知识点总结

四边形基本图形知识点总结四边形是几何学中常见的图形,它有许多重要的性质和知识点。

本文将带您深入了解四边形的基本概念、分类和特性。

一、四边形的基本概念四边形是指具有四条边的图形。

它是多边形的一种特殊情况,由四个顶点和四条边构成。

尽管四边形是一个广义的概念,但在几何学中我们通常讨论的是平面四边形。

二、四边形的分类根据四边形的性质,我们可以将其分类为以下几种常见类型:1.矩形:四个角都是直角的四边形。

矩形的对边相等且平行。

2.正方形:具有四个相等边长和四个直角的矩形。

3.平行四边形:有两组对边分别平行的四边形。

4.梯形:有一对对边平行的四边形。

5.菱形:四个边长相等的梯形。

6.不规则四边形:没有对边平行或边长相等的四边形。

三、四边形的性质和特性1.内角和:四边形的内角和等于360度。

2.外角和:四边形的外角和等于360度。

3.对角线:四边形的对角线是相邻顶点之间的直线段。

对角线有以下重要性质:–矩形的对角线相等;–平行四边形的对角线互相平分;–菱形的对角线互相垂直且平分;–梯形的对角线不相交。

4.邻边和对边:在平行四边形中,邻边是指两个相邻的边,对边是指不相邻但平行的边。

在矩形和正方形中,邻边和对边是相同的。

5.矩形和正方形的特性:–矩形的对边相等且平行;–矩形的对角线相等;–正方形是一种特殊的矩形,具有四个相等的边长和四个直角。

四、四边形的计算在解决与四边形相关的问题时,我们经常需要计算其面积和周长。

下面是一些常见四边形的计算公式:1.矩形的面积为长度乘以宽度,周长为两倍长度加两倍宽度。

2.正方形的面积为边长的平方,周长为四倍边长。

3.平行四边形的面积为底边乘以高,周长为两倍底边加两倍高。

4.梯形的面积为上底加下底乘以高的一半,周长为所有边长之和。

五、应用实例四边形的概念和性质在日常生活和工作中都有广泛的应用。

例如:1.建筑设计:在建筑设计中,矩形和正方形的特性被广泛应用于房屋的布局和结构设计。

2.地理测量:平行四边形的特性可用于测量地块面积或河流的宽度。

四边形的性质知识点

四边形的性质知识点

四边形的性质知识点四边形是平面几何中常见的图形,它具有许多独特的性质和特点。

在本文中,我们将探讨四边形的性质,包括各类四边形的定义、特征、性质和关联定理等。

一、四边形的定义和分类四边形是由四条线段所组成的封闭图形,它具有以下两个基本性质:1. 四边形的四条边相互连接而形成的线段叫做对边。

对边具有相等的性质,即相对的两条边长度相等。

2. 四边形的四个顶点两两相连而形成的线段叫做对角线。

对角线的特点是相交于一点,并且在这个交点处相互平分。

根据四边形的边长和角度,我们可以将其分为以下几类:1. 矩形:具有四个直角(即90度)的四边形,对边相等并且对角线相等。

2. 正方形:具有四个直角和四条相等的边的四边形,对角线相等且相互平分。

3. 平行四边形:具有对边平行的四边形,对边相等但对角线不相等。

4. 菱形:具有对角线相等的四边形,相邻边相等但对角线不平分。

5. 梯形:具有两对平行边的四边形,没有边相等但对边平行。

6. 不规则四边形:指既不是矩形、正方形、平行四边形、菱形或梯形的四边形。

二、四边形的性质和关联定理1. 矩形的性质:矩形的对边相等且平行,对角线相等、相互平分且垂直于对边。

2. 正方形的性质:正方形是矩形的特例,具有所有矩形的性质,同时具有四条相等的边和四条相等的对角线。

3. 平行四边形的性质:平行四边形的对边相等且平行,对角线不相等但相互平分。

4. 菱形的性质:菱形的对边相等且平行,对角线相等且相互平分。

5. 梯形的性质:梯形的两对边分别有一对平行边,底边上的两个角相等,对角线无特殊性质。

对于某些具体的四边形,还有一些额外的性质和关联定理:1. 矩形的关联定理:矩形的对边对角线关联定理,即对边互相垂直,并且对角线相等。

2. 正方形的关联定理:正方形的对边对角线关联定理,即对边互相垂直,并且对角线相等。

3. 平行四边形的关联定理:平行四边形的对角线关联定理,即对角线互相平分。

4. 菱形的关联定理:菱形的对边对角线关联定理,即对边互相垂直,并且相交角为直角。

(完整版)四边形知识点总结

(完整版)四边形知识点总结

四边形
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四
边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于
这一点对称. 三 公式:
1.S 菱形 =2
1
ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =2
1
(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:
※1.若n 是多边形的边数,则对角线条数公式是:2
)3n (n -. 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.
平行四边形矩形
菱形正


※5.梯形中常见的辅助线:
※。

四边形知识点总结[1]

四边形知识点总结[1]

四边形一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的相关定理※1.关于中心对称的两个图形是全等形.※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.※3.如果两个图形的对应点连线都经过某一点,并且被这个点平分,那么这两个图形关于这个点对称. 三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n -. 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.平行四边形矩形菱形正方形四边形知识点归纳平行四边形平行四边形定义:两组对边分别平行的四边形叫做平行四边形。

平行四边形是中心对称图形,对称中心是两条对角线的交点。

平行四边形性质1:平行四边形的两组对边分别相等。

平行四边形性质2:平行四边形的两组对角分别相等。

平行四边形性质3:平行四边形的两条对角线互相平分。

平行四边形判定1:两组对边分别平行的四边形是平行四边形。

平行四边形判定2:两组对边分别相等的四边形是平行四边形。

平行四边形判定3:两组对角分别相等的四边形是平行四边形。

平行四边形判定4:两条对角线互相平分的四边形是平行四边形。

八年级数学下册第十九章四边形知识点总结

八年级数学下册第十九章四边形知识点总结

第9章 四边形(请记熟前两页)对边不平行的四边形一般梯形 梯形 等腰梯形 四边形 特殊梯形 直角梯形矩形平行四边形 }正方形菱形一、平行四边形 定义:有两组对边分别平行的四边形叫做平行四边形。

性质:1、对边:分别平行且相等;2、对角:分别相等;3、对角线:互相平分;4、对称性:中心对称图形。

判定定理 1、两组对边分别平行的四边形是平行四边形(定义);2、两组对边分别相等的四边形是平行四边形;3、一组对边平行且相等的四边形是平行四边形;4、两组对角分别相等的四边形是平行四边形;5、对角线互相平分的四边形是平行四边形。

三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

二、矩形定义:有一个角是直角的平行四边形。

性质:1、具有平行四边形的所有性质;2、四个角都是直角;3、对角线互相平分且相等;4、对称性:中心对称图形,轴对称图形。

判定定理: 1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

直角三角形斜边上的中线等于斜边的一半。

三、菱形定义:邻边相等的平行四边形。

性质:1、具有平行四边形的所有性质;2、四条边都相等;3、对角线互相垂直,并且每一条对角线平分一组对角;4、对称性:中心对称图形、轴对称。

⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩判定定理: 1.一组邻边相等的平行四边形是菱形(定义);2.对角线互相垂直的平行四边形是菱形;3.四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)4.每组对角线平分一组对角的四边形是菱形四、正方形定义:一个角是直角的菱形或邻边相等的矩形。

性质:1、四条边都相等;2、四个角都是直角;3、正方形既是矩形,又是菱形。

判定定理:1、邻边相等的矩形是正方形。

2、有一个角是直角的菱形是正方形。

八年级上册数学四边形知识点总结大全

八年级上册数学四边形知识点总结大全

四边形知识点总结大全行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二 定理:中心对称的有关定理※1.关于中心对称的两个图形是全等形.※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高)2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线)四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n . 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴. ※5.梯形中常见的辅助线:平行四边形矩形菱形正方形正方形、矩形、菱形和平行四边形四者知识点串联汇总平行四边形、菱形、矩形、正方形的有关概念平行四边形、菱形、矩形、正方形的有关性质平行四边形、菱形、矩形、正方形的判别方法两组对边分别相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形对角线互相平分的四边形是平行四边形菱形一组邻边相等的平行四边形是菱形四条边都相等的四边形是菱形对角线互相垂直的平行四边形是菱形矩形一个内角是直角的平行四边形是矩形对角线相等的平行四边形是矩形正方形一组邻边相等的矩形是正方形对角线互相垂直的矩形是正方形有一个角是直角的菱形是正方形对角线相等的菱形是正方形二、梯形常见的辅助线1.延长两腰交于一点作用:使梯形问题转化为三角形问题。

四边形章节涉及的15个易错点总结

四边形章节涉及的15个易错点总结

四边形章节涉及的15个易错点精编精讲【知识点1】一、多边形与正多边形的概念1.在平面内,由一些线段首尾顺次相接组成的封闭图形叫作多边形2.在平面内,边相等,角也相等的多边形叫作正多边形二、多边形的内角和1.n边形的内角和等于(n-2)·180o2.任意多边形的外角和等于360o三、四边形的不稳定性三角形具有稳定性,四边形具有不稳定性易错点1 对多边形的截线问题考虑不全面,从而漏解例题1一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5B.5或6C.5或7D.5或6或7【错解】A【错因】首先求得内角和为720°的多边形的边数,即可确定原多边形的边数,设内角和为720°的多边形的边数是n,则(n-2)·180°=720°,解得n=6.错解是错误地认为截去一个角,多边形的内角就少了一个,从而得出原多边形的变数为5.由图2-1可知,五边形、六边形、七边形截去一个角后都可以得到六边形,故原边形的边数为5或6或7.【正解】由图2-1可知,五边形、六边形、七边形截去一个角后都可以得到六边形,故原边形的边数为5或6或7,故选D巩固1 内角和为540°的多边形截去一个角后,形成的新多边形的边数为()A.4B.5C.6D.4或5或6【错解】A【正解】D【小结】结合图形很容易得出,一个多边形截去一个内角后,边数可能减l,可能不变,可能加1,反之,截去一个内角所得的多边形的边数比原多边形的边数可能少1,可能多1,也有可能相等。

易错点2 对多边形内角及内角和的取值(范围)认识不够全面,解题陷入误区例题2小华在进行多边形内角和计算时,求得的内角和为1680°,当发现错了之后,重新检查,发现少加了一个内角,则这个内角是多少度?他求的是几边形的内角和?【错解】设这个多边形的边数为n.由题意,得(n-2)×180°=1680°1680°不是180°的整数倍此题无解。

三年级数学四边形知识点大全

三年级数学四边形知识点大全

三年级数学四边形知识点大全三年级数学四边形知识点【正方形】概念:四条边都相等四个角都是直角的四边形是正方形。

特点:有4个直角,4条边相等。

(正方形既是长方形,也是菱形)周长:正方形的周长=边长×4【长方形】概念:有一个角是直角的平行四边形叫做长方形。

特点:长方形有两条长,两条宽,四个直角,对边相等。

周长:长方形的周长=(长+宽)×2【平行四边形】概念:两组对边互相平行的四边形,它的对边平行且相等,对角相等。

(正方形长方形数属于特殊的平行四边形)特点:①对边相等对角相等。

②平行四边形容易变形。

周长:平行四边形的周长=两条边的边长相加×2【梯形】概念:有一组对边平行,另一组对边不平行的四边形。

特点:只有一组对边平行。

周长:上底+下底+两腰长度【等腰梯形】概念:两条腰相等的梯形,它的两个底角相等,是轴对称图形,有一条对称轴。

特点:有一组对边平行且两腰等长。

周长:上底+下底+两腰长度【菱形】概念:一组邻边相等的平行四边行是菱形。

特点:①四条边都相等②对角线互相垂直平分③一条对角线分别平分一组对角周长:两条不同的边长相加×2【每个四边形都有哪些联系】1正方形既是长方形,也是菱形。

2正方形长方形数属于特殊的平行四边形。

3正方形还是特殊的长方形。

三年级数学四边形教案一教学内容1.四边形平行四边形的认识2.周长的概念,长方形正方形的周长计算3.长度的估计二教学目标1.使学生认识四边形的特征,初步认识平行四边形,会用不同的方式表示平行四边形。

2.使学生了解周长的概念,会计算长方形正方形的周长。

3.通过对长度和周长的估计,培养学生的长度观念。

三编排特点1.从日常生活中引入几何概念,使学生在熟悉的情境中学习几何知识。

利用校园的情境认识四边形和平行四边形。

利用学生熟悉的事物(树叶教科书小国旗钟面)来认识和计算周长。

2.利用活动巩固对几何概念的认识。

教材中设计了各种形式的活动:涂色分类拉一拉平行四边形在钉子板上围平行四边形在方格纸上画平行四边形用长方形纸剪平行四边形用七巧板拼图实际测量一个物体的周长,等等。

初中数学知识点:四边形

初中数学知识点:四边形

初中数学知识点:四边形初中数学四边形知识点一、平行四边形的定义、性质及判定1.两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.对称性:平行四边形是中心对称图形.二、矩形的定义、性质及判定1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:矩形的四个角都是直角,矩形的对角线相等.3.判定:(1)有一个角是直角的平行四边形叫做矩形;(2)有三个角是直角的四边形是矩形;(3)两条对角线相等的平行四边形是矩形.4.对称性:矩形是轴对称图形也是中心对称图形.三、菱形的定义、性质及判定1.定义:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)菱形的四条边都相等;(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角;(3)菱形被两条对角线分成四个全等的直角三角形;(4)菱形的面积等于两条对角线长的积的一半:3.判定:(1)有一组邻边相等的平行四边形叫做菱形;(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.4.对称性:菱形是轴对称图形也是中心对称图形.要判定四边形是菱形的方法是:法一:先证出四边形是平行四边形,再证出有一组邻边相等。

(这就是定义证明)。

法二:先证出四边形是平行四边形,再证出对角线互相垂直。

(这是判定定理2)法三:只需证出四边都相等。

(这是判定定理1)四、正方形定义、性质及判定1.定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.性质:(1)正方形四个角都是直角,四条边都相等;(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形;(4)正方形的对角线与边的夹角是45°;(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.3.判定:(1)先判定一个四边形是矩形,再判定出有一组邻边相等;(2)先判定一个四边形是菱形,再判定出有一个角是直角.4.对称性:正方形是轴对称图形也是中心对称图形.要判定四边形是正方形的方法有方法一:第一步证出有一组邻边相等;第二步证出有一个角是直角;第三步证出是平行四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

望牛墩中学四边形知识点总结大全
3.平行四边形的性质:
因为ABCD 是平行四边形
⎪⎪⎪⎩⎪
⎪⎪⎨⎧.
54321)邻角互补()对角线互相平分;()两组对角分别相等;
()两组对边分别相等;()两组对边分别平行;( A
B
D
O
C
5.矩形的性质:
因为ABCD 是矩形
⎪⎩

⎨⎧.3;
2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所(
⇒⎪⎭

⎬⎫
+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321四边形ABCD 是矩形
7.菱形的性质:
因为ABCD 是菱形
⎪⎩

⎨⎧.321角)对角线垂直且平分对()四个边都相等;
(有通性;)具有平行四边形的所( 8.菱形的判定:
⎪⎭

⎬⎫
+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321四边形四边形ABCD 是菱形.
9.正方形的性质:
因为ABCD 是正方形
⎪⎩

⎨⎧.321
分对角)对角线相等垂直且平(角都是直角;
)四个边都相等,四个(有通性;)具有平行四边形的所( 10.正方形的判定:
C
D
B
A
O
C
D
B
A
O
A D B
C
A
D B
C
O
C
D
A
B
⎪⎭



++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321四边形ABCD 是正方形.
(3)∵ABCD 是矩形 又∵AD=AB
∴四边形ABCD 是正方形 11.等腰梯形的性质:
因为ABCD 是等腰梯形
⎪⎩

⎨⎧.321)对角线相等(;
)同一底上的底角相等(两底平行,两腰相等;
)( 12.等腰梯形的判定:
⎪⎭⎪
⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等
)梯形(321四边形ABCD 是等腰梯形
(3)∵ABCD 是梯形且AD ∥BC ∵AC=BD
∴ABCD 四边形是等腰梯形
二 定理:中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
A
A B
C
D O
A
B
C D O
A
B
C
D
O
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形
关于这一点对称. 三 公式:
1.S 菱形 =2
1
ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高)
2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)
3.S 梯形 =2
1
(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线)
四 常识:
※1.若n 是多边形的边数,则对角线条数公式是:
2
)
3n (n . 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系. ※5.梯形中常见的辅助线:
正方形、矩形、菱形和平行四边形四者知识点串联汇总
平行四边形、菱形、矩形、正方形的有关概念
平行四边形、菱形、矩形、正方形的有关性质
平行四边形、菱形、矩形、正方形的判别方法
一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形对角线互相平分的四边形是平行四边形
菱形一组邻边相等的平行四边形是菱形四条边都相等的四边形是菱形
对角线互相垂直的平行四边形是菱形
矩形
一个内角是直角的平行四边形是矩形
对角线相等的平行四边形是矩形
正方形一组邻边相等的矩形是正方形对角线互相垂直的矩形是正方形有一个角是直角的菱形是正方形对角线相等的菱形是正方形
二、梯形常见的辅助线
1.延长两腰交于一点
作用:使梯形问题转化为三角形问题。

若是等腰梯形则得到等腰三角形。

2.平移一腰
作用:使梯形问题转化为平行四边形及三角形问题。

3.作高
作用:使梯形问题转化为直角三角形及矩形问题。

4.平移一条对角线
作用:(1)得到平行四边形ACED,使CE=AD,BE等于上、下底的和
(2)S
梯形ABCD =S
△DBE
5.当有一腰中点时,连结一个顶点与一腰中点并延长交一个底的延长线。

作用:可得△ADE≌△FCE,所以使S
梯形ABCD =S
△ABF。

相关文档
最新文档