2014年宁夏回族自治区中考数学试卷(附答案与解析)

合集下载

2013-2014年宁夏银川市初三上学期期末数学试卷含答案解析

2013-2014年宁夏银川市初三上学期期末数学试卷含答案解析

2013-2014学年宁夏银川市初三上学期期末数学试卷一、选择题(下列各题中的四个选项只有一个是正确的,请将正确选项的字母标号填在题后的括号内.每小题3分,共24分)1.(3分)教学楼里的大型多功能厅建成阶梯形状是为了()A.美观B.宽敞明亮C.减小盲区D.容纳量大2.(3分)以下列各组数为边长,不能构成直角三角形的是()A.1,1,B.,2,C.m2﹣1,2m,m2+1D.4,5,6 3.(3分)如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3,则点D到AB的距离是()A.5B.4C.3D.24.(3分)从正面观察下图的两个物体,看到的是()A.B.C.D.5.(3分)关于频率和概率的关系,下列说法正确的是()A.频率等于概率B.实验得到的频率与概率不可能相等C.当实验次数很小时,概率稳定在频率附近D.当实验次数很大时,频率稳定在概率附近6.(3分)2010年某市政府投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x,根据题意,列出方程为()A.2(1+x)2=9.5B.2(1+x)+2(1+x)2=9.5C.2+2(1+x)+2(1+x)2=9.5D.8+8(1+x)+8(1+x)2=9.5 7.(3分)已知点A(x1,﹣1),B(x2,﹣3),C(x3,﹣7)在函数的图象上,则下列关系式正确的是()A.x2<x3<x1B.x3<x2<x1C.x1<x2<x3D.x1<x3<x28.(3分)袋中有8个红球和若干个黑球,小强从袋中任意摸出一球,记下颜色后又放回袋中,摇匀后又摸出一球,再记下颜色,做了50次,共有16次摸出红球,据此估计袋中有黑球()个.A.15B.17C.16D.18二、填空题(每小题3分,共24分)9.(3分)一元二次方程x2=x的根.10.(3分)身高1.6米的小华与同学一起利用旗杆的影子测量旗杆的高度,同一时刻,小华的影子长为3.2米,旗杆的影长为28米,则旗杆的高度是米.11.(3分)菱形的周长是20,一条对角线的长为6,则它的面积为.12.(3分)在Rt△ABC中,∠C=90°,sinA=,则∠A的度数为.13.(3分)反比例函数的图象在第二、四象限内,那么m的取值范围是.14.(3分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.15.(3分)(改编)如图,∠ABC=60°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是.16.(3分)某店出售甲、乙、丙三种不同型号的电动车,已知甲型车的第一季度销售额占这三种车总销售额的56%,第二季度乙、丙两种型号车的销售额比第一季度减少了a%,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%,则a的值为.三、解答题(每小题6分,共36分)17.(6分)解方程:x(x﹣2)=3.18.(6分)计算:.19.(6分)旗杆、树和竹竿都垂直于地面且一字排列,在路灯下树和竹竿的影子的方位和长短如图所示.请根据图上的信息标出灯泡的位置(用点P表示),再作出旗杆的影子(用线段字母表示).(不写作法,保留作图痕迹)20.(6分)小兵和小宁玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小兵先从中抽出一张,小宁从剩余的3张牌中也抽出一张.小宁说:“若抽出的两张牌上的数都是偶数,你获胜;否则,我获胜.”(1)请用树状图表示出抽牌可能出现的所有结果;(2)若按小宁说的规则进行游戏,这个游戏公平吗?请说明理由.21.(6分)近视眼镜的度数与镜片焦距成反比.小明到眼镜店调查了一些数据如下表:眼镜度数y(度)400625800镜片焦距x(cm)251612.5(1)求眼镜度数y(度)与镜片焦距x(cm)之间的函数关系式;(2)若小明所戴眼镜度数为500度,求该镜片的焦距.22.(6分)如图所示,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,若AC=.求线段AD的长.四、解答题(23、24小题每题8分,25、26小题每题10分,共36分)23.(8分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,且BE=DF,求证:四边形AECF是平行四边形.24.(8分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?25.(10分)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414)26.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b与反比例函数的图象交于点A,与x轴交于点B,AC⊥x轴于点C,,AB=,OB=OC.(1)求反比例函数和一次函数的解析式;(2)若一次函数与反比例函数的图象的另一交点为D,作DE⊥y轴于点E,连接OD,求△DOE的面积.2013-2014学年宁夏银川市初三上学期期末数学试卷参考答案与试题解析一、选择题(下列各题中的四个选项只有一个是正确的,请将正确选项的字母标号填在题后的括号内.每小题3分,共24分)1.(3分)教学楼里的大型多功能厅建成阶梯形状是为了()A.美观B.宽敞明亮C.减小盲区D.容纳量大【解答】解:大型多功能厅建成阶梯形状是为了使后面的观众有更大的视野,从而减少盲区.故选:C.2.(3分)以下列各组数为边长,不能构成直角三角形的是()A.1,1,B.,2,C.m2﹣1,2m,m2+1D.4,5,6【解答】解:A、12+12=()2,故是直角三角形,故此选项不合题意;B、()2+22=()2,故是直角三角形,故此选项不合题意;C、(m2﹣1)2+(2m)2=(m2+1)2,故是直角三角形,故此选项不合题意;D、42+52≠62,故不是直角三角形,故此选项符合题意.故选:D.3.(3分)如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3,则点D到AB的距离是()A.5B.4C.3D.2【解答】解:如图,过点D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,∴DE=CD=3,即点D到直线AB的距离是3.故选:C.4.(3分)从正面观察下图的两个物体,看到的是()A.B.C.D.【解答】解:由于正方体的正视图是个正方形,而竖着的圆柱体的正视图是个长方形,因此只有C的图形符合这个条件.故选:C.5.(3分)关于频率和概率的关系,下列说法正确的是()A.频率等于概率B.实验得到的频率与概率不可能相等C.当实验次数很小时,概率稳定在频率附近D.当实验次数很大时,频率稳定在概率附近【解答】解:A、频率只能估计概率,故此选项错误;B、实验得到的频率与概率可能相等,故此选项错误;C、当实验次数很大时,频率稳定在概率附近,故此选项错误;D、当实验次数很大时,频率稳定在概率附近,正确.故选:D.6.(3分)2010年某市政府投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x,根据题意,列出方程为()A.2(1+x)2=9.5B.2(1+x)+2(1+x)2=9.5C.2+2(1+x)+2(1+x)2=9.5D.8+8(1+x)+8(1+x)2=9.5【解答】解:(1)设每年市政府投资的增长率为x,根据题意,得:2+2(1+x)+2(1+x)2=9.5.故选:C.7.(3分)已知点A(x1,﹣1),B(x2,﹣3),C(x3,﹣7)在函数的图象上,则下列关系式正确的是()A.x2<x3<x1B.x3<x2<x1C.x1<x2<x3D.x1<x3<x2【解答】解:将点A(x1,﹣1),B(x2,﹣3),C(x3,﹣7)分别代入得,x1=1,x2=,x3=,∴x3<x2<x1,故选:B.8.(3分)袋中有8个红球和若干个黑球,小强从袋中任意摸出一球,记下颜色后又放回袋中,摇匀后又摸出一球,再记下颜色,做了50次,共有16次摸出红球,据此估计袋中有黑球()个.A.15B.17C.16D.18【解答】解:∵共摸了50次,其中16次摸到红球,∴有34次摸到黑球,∴摸到红球与摸到黑球的次数之比为8:17,∴口袋中红球和黑球个数之比为8:17,黑球的个数8÷=17(个).故选:B.二、填空题(每小题3分,共24分)9.(3分)一元二次方程x2=x的根x1=0,x2=1.【解答】解:由原方程得x2﹣x=0,整理得x(x﹣1)=0,则x=0或x﹣1=0,解得x1=0,x2=1.故答案是:x1=0,x2=1.10.(3分)身高1.6米的小华与同学一起利用旗杆的影子测量旗杆的高度,同一时刻,小华的影子长为3.2米,旗杆的影长为28米,则旗杆的高度是14米.【解答】解:根据相同时刻的物高与影长成比例,设旗杆的高度为xm,则=,解得x=14.故答案为:14.11.(3分)菱形的周长是20,一条对角线的长为6,则它的面积为24.【解答】解:∵菱形的周长是20∴边长=5∵一条对角线的长为6∴另一条对角线的长为8∴菱形的面积=×6×8=24.故答案为24.12.(3分)在Rt△ABC中,∠C=90°,sinA=,则∠A的度数为60°.【解答】解:∵∠C=90°,sinA=,∴∠A的度数为60°.故答案为60°.13.(3分)反比例函数的图象在第二、四象限内,那么m的取值范围是m<3.【解答】解:∵反比例函数的图象在第二、四象限内,∴m﹣3<0,解得,m<3;故答案是:m<3.14.(3分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为3.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S=S△COF,△AOE∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.15.(3分)(改编)如图,∠ABC=60°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是120°.【解答】解:∵∠ABC=60°,∠ABC的平分线BE交AD于点E,∴∠EBD=∠ABC=×60°=30°,∵点E在BC的垂直平分线上,∴BE=CE,∴∠C=∠EBD=30°,∴∠AEC=∠C+∠EDC=30°+90°=120°.故答案为:120°.16.(3分)某店出售甲、乙、丙三种不同型号的电动车,已知甲型车的第一季度销售额占这三种车总销售额的56%,第二季度乙、丙两种型号车的销售额比第一季度减少了a%,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%,则a的值为2.【解答】解:根据题意列方程得:56%×23%﹣(1﹣56%)×a%=12%解得:a=2.即a的值为2.三、解答题(每小题6分,共36分)17.(6分)解方程:x(x﹣2)=3.【解答】解:整理得:x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,∴x+1=0,x﹣3=0,解方程得:x1=﹣1,x2=3.18.(6分)计算:.【解答】解:原式=3×﹣2×+2×+﹣1=﹣++﹣1=3﹣﹣1.故答案为:3﹣﹣1.19.(6分)旗杆、树和竹竿都垂直于地面且一字排列,在路灯下树和竹竿的影子的方位和长短如图所示.请根据图上的信息标出灯泡的位置(用点P表示),再作出旗杆的影子(用线段字母表示).(不写作法,保留作图痕迹)【解答】解:线段MN是旗杆在路灯下的影子.20.(6分)小兵和小宁玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小兵先从中抽出一张,小宁从剩余的3张牌中也抽出一张.小宁说:“若抽出的两张牌上的数都是偶数,你获胜;否则,我获胜.”(1)请用树状图表示出抽牌可能出现的所有结果;(2)若按小宁说的规则进行游戏,这个游戏公平吗?请说明理由.【解答】解:(1)树状图为:∴共有12种等可能的结果.(2)游戏公平.∵两张牌的数字都是偶数有6种结果:(6,8),(6,10),(8,6),(8,10),(10,6),(10,8).∴小兵获胜的概率P==,∴小宁获胜的概率也为.∴游戏公平.21.(6分)近视眼镜的度数与镜片焦距成反比.小明到眼镜店调查了一些数据如下表:眼镜度数y(度)400625800镜片焦距x(cm)251612.5(1)求眼镜度数y(度)与镜片焦距x(cm)之间的函数关系式;(2)若小明所戴眼镜度数为500度,求该镜片的焦距.【解答】解:(1)设函数关系式为,将点(25,400)代入解得k=10000,即得函数关系式为y=.(2)若小明所戴眼镜度数为500度,即y=500,代入解析式中解得x=20cm.故该镜片的焦距为20cm.22.(6分)如图所示,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,若AC=.求线段AD的长.【解答】解∵△ABC中,∠C=90°∠B=30°,∴∠BAC=60°,∵AD是△ABC的角平分线,∴∠CAD=30°,∴在Rt△ADC中,AD==2.四、解答题(23、24小题每题8分,25、26小题每题10分,共36分)23.(8分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,且BE=DF,求证:四边形AECF是平行四边形.【解答】证明:连接AC,交BD于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF.又∵OA=OC,∴四边形AECF是平行四边形.24.(8分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?【解答】解:设每千克水果应涨价x元,依题意得方程:(500﹣20x)(10+x)=6000,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10.要使顾客得到实惠,应取x=5.答:每千克水果应涨价5元.25.(10分)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414)【解答】解:过点P作PC⊥AB,C是垂足.则∠APC=30°,∠BPC=45°,AC=PC•tan30°,BC=PC•tan45°.∵AC+BC=AB,∴PC•tan30°+PC•tan45°=100km,∴PC=100,∴PC=50(3﹣)≈50×(3﹣1.732)≈63.4km>50km.答:森林保护区的中心与直线AB的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.26.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b与反比例函数的图象交于点A,与x轴交于点B,AC⊥x轴于点C,,AB=,OB=OC.(1)求反比例函数和一次函数的解析式;(2)若一次函数与反比例函数的图象的另一交点为D,作DE⊥y轴于点E,连接OD,求△DOE的面积.【解答】解:(1)∵AC⊥x轴于点C,∴∠ACB=90°.在Rt△ABC中,,设AC=2a,BC=3a,则.∴.解得:a=2.∴AC=4,BC=6. …(2分)又∵OB=OC ,∴OB=OC=3.∴A (﹣3,4)、B (3,0). …(4分) 将A (﹣3,4)、B (3,0)代入y=kx +b ,∴解得:…(6分)∴直线AB 的解析式为:. …(7分) 将A (﹣3,4)代入得:.解得:m=﹣12.∴反比例函数解析式为. …(8分)(2)∵D 是反比例函数上的点,DE ⊥y 于点E ,∴由反例函数的几何意义,得S △DOE =.…(10分)附加:初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2014年宁夏中考数学试卷答案与解析

2014年宁夏中考数学试卷答案与解析

2014年宁夏中考数学试卷参考答案与试题解析一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)2.(3分)(2014•宁夏)已知不等式组,其解集在数轴上表示正确的是()....2=1+﹣,﹣±.4.(3分)(2014•宁夏)实数a,b在数轴上的位置如图所示,以下说法正确的是()5.(3分)(2014•宁夏)已知两点P1(x1,y1)、P2(x2,y2)在函数y=的图象上,当x1,,然后利用求差法比较得,,﹣,(6.(3分)(2014•宁夏)甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列B由题意得,=7.(3分)(2014•宁夏)如图是一个几何体的三视图,则这个几何体的侧面积是()πcm2Bπcm8.(3分)(2014•宁夏)已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能B二、填空题(每小题3分,共24分)9.(3分)(2014•宁夏)分解因式:x2y﹣y=y(x+1)(x﹣1).10.(3分)(2014•宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=5 cm.AC=4cm BO=11.(3分)(2014•宁夏)下表是我区八个旅游景点6月份某日最高气温(℃)的统计结果.该=2912.(3分)(2014•宁夏)若2a﹣b=5,a﹣2b=4,则a﹣b的值为3.13.(3分)(2014•宁夏)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.=故答案为:.=14.(3分)(2014•宁夏)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是200元.15.(3分)(2014•宁夏)如图,在四边形ABCD中,AD∥BC,AB=CD=2,BC=5,∠BAD的平分线交BC于点E,且AE∥CD,则四边形ABCD的面积为.×=(××=4.16.(3分)(2014•宁夏)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.故答案为:三、解答题(共24分)17.(6分)(2014•宁夏)计算:(﹣)﹣2+﹣2sin45°﹣|1﹣|.+﹣(﹣.18.(6分)(2014•宁夏)化简求值:(﹣)÷,其中a=1﹣,b=1+.••,﹣b=1+.19.(6分)(2014•宁夏)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.20.(6分)(2014•宁夏)在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.求BC的长.BD=2.BC=BD+DC=,四、解答题(共48分)21.(6分)(2014•宁夏)如图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.(1)求此人到达当天空气质量优良的天数;(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).22.(6分)(2014•宁夏)在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,A B′和CD相交于点O.求证:OA=OC.23.(8分)(2014•宁夏)在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算.AC AC CE=ACAD=BD=AD=AC AE==324.(8分)(2014•宁夏)在平面直角坐标系中,已知反比例函数y=的图象经过点A(1,).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.OB=1BD=,于是得到坐标为()代入,×,AC=OA=OB=1OD=,点坐标为(x=y=)在反比例函数(25.(10分)(2014•宁夏)某花店计划下个月每天购进80只玫瑰花进行销售,若下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x(0<x≤80)表示下个月内每天售出的只数,y(单位:元)表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内市场销售量的频率分布直方图(每个组距包含左边的数,但不包含右边的数)如图所示:(1)求y关于x的函数关系式;(2)根据频率分布直方图,计算下个月内销售利润少于320元的天数;=7526.(10分)(2014•宁夏)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值;(3)在Rt△ABC中,两条直角边BC、AC满足关系式BC=λAC,是否存在一个λ的值,使Rt△AQP既与Rt△ACP全等,也与Rt△BQP全等.BC==,即x=的面积最大,最大值是AC。

2014年中考数学试题(副卷)参考答案及评分标准

2014年中考数学试题(副卷)参考答案及评分标准

2014年初中毕业升学考试数学试题参考答案及评分标准说明:1本参考答案及评分标准仅供教师评卷时参考使用. 2其它正确的证法(解法),可参照本参考答案及评分标准酌情赋分. 一、选择题(每小题3分,共30分)1.A2.C3.B4.B5.D6.D7.C8.A9.C 10.D 二、填空题(每小题3分,共24分)11.x ≥-2且x ≠0 12.0.8 13. (2)(2)x x x +- 14.6060322x x -= 15.(4,1)16.217.50°18.222n -或2224n a或24n -三、解答题(19、20每小题9分,共18分)19.解:2213(2)242x x x x x -÷-+++ =(1)(1)(2)(2)32(2)22x x x x x x x x +--+⎡⎤÷+⎢⎥+++⎣⎦…………………………2分 =2(1)(1)432(2)22x x x x x x x ⎡⎤+--÷+⎢⎥+++⎣⎦…………………………3分 =2(1)(1)432(2)2x x x x x x +--+÷++ ……………………………4分 =(1)(1)22(2)(1)(1)x x x x x x x +-+⋅++- …………………………5分=12x…………………………6分 当x = tan45°+2cos60°=1+1=2 时, …………………………8分 原式=12x =14…………………………10分 20. 解:由树形图可知,所有可能出现的结果共有16个,且每种结果出现的可能性相等,其中两次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分∴P (A )=4116= ………………10分 次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分 ∴P (A )=41164= ………………………10分 四、解答题(本题14分) 21.解:(1)a=28%,b=200(2)设身体状况 “良好”的学生有x 人, “及格”的学生有y 人.3463%200200x y xy -=⎧⎪⎨+=⎪⎩ ………2分 解得:8046x y =⎧⎨=⎩ ……………4分 ………………………6分(3)……………………9分(4)200÷10%=2000( 人)……………………10分 2000×56200=560(人) ……………………12分 五、解答题(22小题10分,23小题14,共24分)22.解:(1)连结OF∵AC=BC ∠C=∠C CF=CE ,∴△ACF ≌△BCE …………………………3分 (2)证明:∵△ACF ≌△BCE∴∠B=∠A …………………………4分∵∠C=90°∴∠A+∠AFC=90° …………………………5分∵OB=OF∴∠B=∠OFB …………………………6分∴∠OFB+∠AFC=90° …………………………7分 第22题图E∴∠OFA=90° …………………………8分∴ AF ⊥OF ………………………………9分 ∴AF 是⊙O 的切线 ………………………………10分 23. 解:过点B 作BF ⊥CD,垂足为F. ∵ ∠ABC=120°∴ ∠FBC=30° ……………1分 在Rt △BCF 中,设BF=x ,则AD=x∴ CF=BFtan30°x ………3分在Rt △ABE 中,∠AEB=45°,∴AB=AE=8 ( ……4分 ) ∴DF=AB=8 ………5分∴x +8 …………………6分 在Rt △CDE 中,∠CED=60°ED=8-x∵ tan ∠CED =CDED∴CD=ED tan ∠…7分 第23题图 即3x 8-x ) …………………8分 解得x=6-………………9分∴CF=3x =3-=2………………10分 DC=CF+DF=6+≈9.5(米) ………………11分 答:路灯C 到地面的距离约为9.5米 …………………12分六、解答题(本题12分) 24.解:(1)∵10×1=10,10010330-=……………1分 ∴甲走完全程需4小时,∵甲出发3小时后乙开车追赶甲,两人同时到达目的地 ∴乙走完全程需1小时, ∴乙的速度是60601=(千米/时)………………2分 (2)设AB 的解析式为y=kx+b. ∵10×1=10,∴点A 的坐标是(1,10) …………………3分由(1)得点B 的坐标是(4,100) 第24题图 ∴104100k b k b +=⎧⎨+=⎩ …………………4分C解得3020 kb=⎧⎨=-⎩∴AB的解析式为y=30x-20. …………………6分当y=40时,30x-20=40 …………………5分∴X=2 …………………7分∴甲出发2小时后两人第一次相遇…………………8分(3)设OA的解析式为y=kx∵点A的坐标是(1,10)∴k=10,∴OA的解析式为y=10x, …………………9分设DB的解析式为y=mx+n.∵点D的坐标是(3,40),点B的坐标是(4,100)∴3404100m nm n+=⎧⎨+=⎩…………………10分解得60140 mn=⎧⎨=-⎩∴DB的解析式为y=60x-140. …………………11分①40-(30x-20)=12,解得x=1.6; …………………12分②30x-20-40=12,解得x=2.4; …………………13分③30x-20-(60x-140)=12;解得x=3.6 ……………14分∴甲出发1.6小时,2.4小时或3.6小时后两人相距12千米.七、解答题(本题14分)25. (1)如图1①证明:∵△ABC是等边三角形∴AB=AC,∠B=∠CAF=60°又∵AF=BE ……………2分∴△ABE≌△CAF ……………3分∴AE=CF ……………4分②证明:∵△ABE≌△CAF∴∠BAE=∠ACF ………………5分又∵∠BAC=∠FCG=60°即∴∠BAE+∠EAC=∠ACF+∠ACG∴∠EAC=∠ACG ……………6分第25题图1 ∴AE∥CG ……………7分又∵AE=CF=CG∴四边形AECG是平行四边形. ……………8分(2)四边形AECG是平行四边形………… 9分证明:如图2∵△ABC是等边三角形B∴AB=AC ,∠ABC=∠CAB=60°∴∠AEB=∠CAF=120°又∵AF=BE ∴ △ABE ≌△CAF∴AE=CF ,∠BAE=∠ACF ……………11分 又∵∠BAC=∠FCG=60°∴∠BAE+∠BAC=∠ACF+∠即 ∠EAC=∠ACG ……………12分∴AE ∥CG ……………13分 第25题图2 又∵AE=CG∴四边形AECG 是平行四边形. ……………14分八、解答题(本题14分)26. (1)解:∵抛物线的对称轴是2x =∴2122b-=⎛⎫⨯- ⎪⎝⎭∴b=2. …………………2分 (2)解: 延长DC 交x 轴于点H , ∵∠CAB=90°∴∠CAH+∠HAB=90°∵MN ⊥AF ∴∠FAB+∠ABF=90° ∴∠CAH=∠ABF∵∠AFB=∠AHC=90°,AC=AB∴△ACH ≌△ABF ………………4分∴CH=AF=32,AH=BF=-m ∴C (12-m ,32) …………………6分(3)解:如图1,当点D 在点C 上方时∵CD ∥y 轴,∵点D 在抛物线上,横坐标是12-m ,将x=12-m 代入21y =-得 2111()2()3222y m m =--+-+ ……………7分化简得:21331228y m m =--+∴D (12-m ,21331228m m --+)……………8分∴CD=21331228m m --+-32=21319228m m --+…9分∵四边形OEDC 是平行四边形∴OE=CD=3, 第26题图1E∴21319228m m --+=3 ……………9分 解得152m =-,212m =- ……………10分 ∴B(2, 12-)或B(2, 52-) …………………11分当点D 在点C 下方时 ∵C (12-m ,32),D (12-m ,21331228m m --+ 32-(21331228m m --+)=3 …………………12分解得1m =2m =∴B(2,32--)或B(2,32-+)………13分 第26题图2 综上,当四边形OEDC 是平行四边形时,点B 的坐标是(2, 12-),(2, 52-), (2,32--),(2,32-+) …………14分。

宁夏2014中考数学真题试题(答案)

宁夏2014中考数学真题试题(答案)

俯视图左视图主视图宁夏2014中考数学真题试题1.下列运算正确的是 ( )A .236a a a ⋅= B.326a a a =÷ C.235a a a += D.623)(a a =2.已知不等式组⎩⎨⎧≥+>-0103x x ,其解集在数轴上表示正确的是 ( )3.一元二次方程2210x x --=的解是 ( )A .121==x x B.211+=x ,212--=xC.211+=x ,212-=x D.211+-=x ,212--=x4.实数a b ,在数轴上的位置如图所示,以下说法正确的是 ( ) A . 0a b += B.b a < C.0ab > D. b a <5.已知两点111()P x y ,、222()Px y ,在函数xy 5=的图象上,当120x x >> 时,下列结论正确的是 ( )A .120y y << B. 210y y << C.120y y << D.210y y <<6.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x 吨/小时,依题意列方程正确的是A .203525-=x x B. 203525+=x x C.x x 352025=- D. xx 352025=+ 7.如图是一个几何体的三视图,则这个几何体的侧面积是 ( )A .π102cm B.2π102cm C.π62cmD.π32cm一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) ( )二、填空题(每小题3分,共24分)AB CDE 第15题图8.已知a ≠0,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( )9.分解因式:y y x -2= .10.菱形ABCD 中,若对角线长AC =8cm, BD =6cm, 则边长AB = cm .11.下表是我区八个旅游景点6月份某日最高气温(℃)的统计结果.该日这八个旅游景点最高气温的中位数12.若52=-b a ,42=-b a , 则b a -的值为 .13.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸出小球的标号和等于6的概率是 .14.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是 元.15.如下图,在四边形ABCD 中,AD BC ∥,AB =CD=2,BC =5,BAD ∠的平分线交BC 于点E ,且A E C D ∥,则四边形ABCD 的面积为 .16.如下图,将ABC △放在每个小正方形的边长为1的网格中,点A 、B 、C 均落在格点上,用一个圆面去覆盖ABC △,能够完全覆盖这个三角形的最小圆面的半径是 .17.(6分)得分 评卷人三、解答题(共24分)计算:|21|45sin 28)43(2---+--o18.(6分)化简求值:ba b a b a b b a a -+÷+--22)(,其中31-=a ,31+=b19.(6分)在平面直角坐标系中,ABC △的三个顶点坐标分别为A (-2,1),B (-4,5), C (-5,2). (1)画出△ABC 关于y 轴对称的△A 1B 1C 1; (2)画出△ABC 关于原点O 成中心对称的△A 2B 2C 2.20.(6分)在△ABC 中,AD 是BC 边上的高,∠C =45°,1sin 3B ,AD =1.求BC 的长.四、解答题(共48分)21.(6分)下图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气B 'O D CB A 质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.(1)求此人到达当天空气质量优良的天数 ;(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).22.(6分)在平行四边形ABCD 中,将△ABC 沿AC 对折,使点B 落在'B 处,A 'B ‘和CD 相交于点O . 求证:OA =OC .23.(8分)在等边△ABC 中,以BC 为直径的⊙O 与AB 交于点D ,DE ⊥AC ,垂足为点E . (1)求证:DE 为⊙O 的切线; (2)计算AECE.24.(8分)在平面直角坐标系中,已知反比例函数ky x的图象经过点A (1,3). (1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是 否在此反比例函数的图象上,并说明理由.25.(10分)某花店计划下个月每天购进80只玫瑰花进行销售,若下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x (0<x ≤80)表示下个月内每天售出的只数,y (单位:元)表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内市场销售量的频率分布直方图(每个组距包含左边的数,但不包含右边的数)如下图:PQBCA(1)求y 关于x 的函数关系式;(2)根据频率分布直方图,计算下个月内销售利润少于320元的天数;计算该组内平均每天销售玫瑰花的只数. 26.(10分)在Rt ABC △中,∠C =90°,P 是BC 边上不同于B、C 的一动点,过P 作PQ ⊥AB ,垂足为Q ,连接AP . (1)试说明不论点P 在BC 边上何处时,都有△PBQ 与△ABC 相似; (2)若AC =3,BC =4,当BP 为何值时,△AQP 面积最大,并求出最大值;(3)在Rt ABC △中,两条直角边BC 、AC 满足关系式BC =λAC ,是否存在一个λ的值,使Rt △AQP 既与Rt △ACP 全等,也与Rt △BQP 全等.宁夏族回族自治区2014年初中毕业暨高中阶段招生考试数学试题参考答案及评分标准说明:1. 除本参考答案外,其它正确解法可根据评分标准相应给分。

宁夏近5年中考数学试题含答案2010-2014年

宁夏近5年中考数学试题含答案2010-2014年

1宁夏回族自治区2010年初中毕业暨高中阶段招生数学试卷一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.下列运算正确的是 ( ) A .236a a a ⋅= B .532a a a ÷= C .235a a a += D .235()a a =2.把多项式322x x x -+分解因式结果正确的是 ( ) A .2(2)x x x - B .2(2)x x - C .(1)(1)x x x +- D .2(1)x x -3. 把61万用科学记数法可表示为 ( ) A .4101.6⨯ B .5101.6⨯ C .5100.6⨯ D . 41061⨯4.用一个平面去截一个几何体,不能截得三角形截面的几何体是 ( ) A .圆柱 B .圆锥 C .三棱柱 D .正方形5.为了解居民节约用水的情况,增强居民的节水意识,下表是某个单元的住户当月用水量的调查结果:则关于这12户居民月用水量,下列说法错误..的是 ( ) A .中位数 6方 B .众数6方 C .极差8方 D .平均数5方6.点A 、B 、C 是平面内不在同一条直线上的三点,点D 是平面内任意一点,若A 、B 、C 、D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点D 有 ( ) A .1个 B .2个 C .3个 D .4个7.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式( ) A .2(1)3y x =--+ B .2(1)3y x =-++ C .2(1)3y x =--- D .2(1)3y x =-+-. 8.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x 元、y 元,则下列方程组正确的是 ( ) A .⎩⎨⎧+⨯=-++=+)201(100401(101(100000000y x y x B .⎩⎨⎧⨯=++-=+00000020100)401(101(100y x y x C .⎩⎨⎧+⨯=++-=+201(100)401()101(100000000y x y x D .⎩⎨⎧⨯=-++=+0000020100)401()101(100y x y x 二、填空题(每小题3分,共24分) 9.若分式12-x 与1互为相反数,则x 的值是 . 10.如图,BC ⊥AE ,垂足为C ,过C 作CD ∥AB .若∠ECD =48°则∠B = .11.矩形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是 .12.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折. 如果用27元钱,最多可以购买该商品的件数是 . 13.若关于x 的不等式组⎩⎨⎧>>m x x 2的解集是2>x ,则m 的取值范围是 . 14.将半径为10cm ,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角的余弦值是 . 15.如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是 米.16.关于对位似图形的表述,下列命题正确的是 .(只填序号)① 相似图形一定是位似图形,位似图形一定是相似图形; ② 位似图形一定有位似中心;③ 如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④ 位似图形上任意两点与位似中心的距离之比等于位似比.三、解答题(共24分) 17.(6分) 计算:011( 3.14)()12π--+---.18.(6分)解不等式组3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩ .EDC B A219.(6分)先化简,再求代数式的值:222111a a a a a+⎛⎫-÷ ⎪-+-⎝⎭ ,其中1a =. 20.(6分)在一个不透明的盒子里,装有3个写有字母A 、2个写有字母B 和1个写有字母C 的小球, 它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下字母后放回盒子,摇匀后再随机取出一个小球,记下字母.请你用画树状图或列表的方法,求摸出的两个小球上分别写有字母B 、C 的概率.四、解答题(共48分)21.(6分)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市24000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:(1)表中a 和b 所表示的数分别为:a = ,b = ; (2)请在图中,补全频数分布直方图;(3)如果把成绩在90分以上(含90分)定为优秀,那么该市24000名九年级考生数学成绩为优秀的学生约有多少名?22.(6分)已知:正方形ABCD 中,E 、F 分别是边CD 、DA 上的点,且CE =DF ,AE 与BF 交于点M .(1)求证:△ABF ≌△DAE ;(2)找出图中与△ABM 相似的所有三角形(不添加任何辅助线).23.(8分)如图,已知:⊙O 的直径AB 与弦AC 的夹角∠A =30°,过点C 作⊙O 的切线交AB 的延长线于点P .(1) 求证:AC =CP ;(2) 若PC =6,求图中阴影部分的面积(结果精确到0.1). 1.73= 3.14π=)24.(8分)如图,已知:一次函数:4y x =-+的图像与反比例函数:2y x=(0)x >的图像分别交于A 、B 两点,点M 是一次函数图像在第一象限部分上的任意一点,过M 分别向x 轴、y 轴作垂线,垂足分别为M 1、M 2,设矩形MM 1OM 2的面积为S 1;点N 为反比例函数图像上任意一点,过N 分别向x 轴、y 轴作垂线,垂足分别为N 1、N 2,设矩形NN 1ON 2的面积为S 2;(1)若设点M 的坐标为(x ,y ),请写出S 1关于x 的函数表达式,并求x 取何值时,S 1的最大值;(2)观察图形,通过确定x 的取值,试比较S 1、S 2的大小.M FE D CBAAP325.(10分)小明想知道湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.26. (10分)在△ABC 中,∠BAC =45°,AD ⊥BC 于D ,将△ABD 沿AB 所在的直线折叠,使点D 落在点E 处;将△ACD 沿AC 所在的直线折叠,使点D 落在点F 处,分别延长EB 、FC 使其交于点M . (1)判断四边形AEMF 的形状,并给予证明.(2)若BD =1,CD =2,试求四边形AEMF 的面积.宁夏回族自治区2011年初中毕业暨高中阶段招生考试数 学 试 题一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) 1. 计算223a a +的结果是( )A. 23a B. 24a C. 43a D. 44a 2. 如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =60°,AD =2,则AB 的长是( ) A .2 B .4C. D.3. 等腰梯形的上底是2cm ,腰长是4cm ,一个底角是60︒,则等腰梯形的下底是( ) A .5cm B . 6cm C . 7cm D . 8cm4. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A.B.C. D.5. 将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创”相对的字是( ) A . 文 B . 明 C . 城 D . 市6. 已知⊙O 1、⊙O 2的半径分别是1r =3、52=r .若两圆相切,则圆心距O 1O 2的值是( )A .2 或4B .6或8C .2或8D .4或67. 某校A 、B 两队10名参加篮球比赛的同学,他们的身高(单位:cm )如下表所示:设两队队员身高的平均数分别为A x -,B x -,身高的方差分别为A s2,B s 2,则正确的选项是A .A x -=B x -,A s2>B s2B .A x -<B x -,A s 2<B s 2A B C D 18=+y x yx xy =+18 8=+y x y x y x +=++101810 18=+y xyx y x =+)(108=+y x yx y =++18104C .A x ->B x -,A s2>B s2D .A x -=B x -,A s2<B s28. 如图,△ABO 的顶点坐标分别为A (1,4)、B (2,1)、O (0,0),如果将△ABO 绕点O 按逆时针方向旋转90°,得到△O B A '',那么点A 、B 的对应点'A 、'B 的坐标是( ).A .'A (-4, 2)、 'B (-1,1) B. 'A (-4,1)、 'B (-1,2) C. 'A (-4,1)、'B (-1,1) D. 'A (-4,2)、'B (-1,2)二、填空题(每小题3分,共24分)9.分解因式:a a -3= .10.数轴上A B 、两点对应的实数分别是2和2,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为 .11. 若线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (3,6),则点B (-5,-2)的对应点D 的坐标是 .12. 在一次社会实践活动中,某班可筹集到的活动经费最多900元.此次活动租车费300元,每个学生活动期间需经费15元,则参加这次活动的学生人数最多为 . 13. 某商场在促销活动中,原价36元的商品,连续两次降价%m 后售价为25元.根据题意可列方程为 . 14. 如图,点A 、D 在⊙O 上,BC 是⊙O 的直径,若∠D = 35°,则∠OAB 的度数是 .15. 如图,在△ABC 中,DE ∥AB ,CD ︰DA =2︰3,DE =4,则AB 的长为 .16. 如图是一个几何体的三视图,这个几何体的全面积为 .(π取3.14)三、解答题(共24分)17.(6分) 计算:02011-3o30tan +2)31(--|23|-- 18.(6分)解方程:2311+=--x x x19.(6分)解不等式组20.(6分)有一个均匀的正六面体,六个面上分别标有数字1,2,3,4,5,6,随机地抛掷一次,把朝上一面的数字记为x ;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片,将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y ;然后计算出S =x +y 的值.(1)用树状图或列表法表示出S 的所有可能情况; (2)求出当S <2时的概率.四、解答题(共48分)21.(6分)我市某中学九年级学生对市民“创建精神文明城市”知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”、“从未听说”五个等级,统计后的数据整理如下表:(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数;(3)根据上述统计结果,请你对政府相关部门提出一句话建议.x x --37≤1 228+-x >35PNM CBA22.(6分)已知,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF , BE = DF , BE ∥DF . 求证:四边形ABCD 是平行四边形23.(8分)在ABC △中,AB AC =,以AB 为直径的⊙O 交BC 于点P ,PD ⊥AC 于点D . (1)求证:PD 是⊙O 的切线;(2)若∠CAB =120°,AB =2,求BC 的值.24.(8分)在Rt △AB C 中,∠C =90°, ∠A =30°, BC =2.若将此直角三角形的一条直角边BC 或AC 与x 轴重合,使点A 或点B 恰好在反比例函数xy 6=(0)x >的图象上时,设ABC △在第一象限部分的面积分别记作1s 、2s (如图1、图2所示),D 是斜边与y 轴的交点,通过计算比较1s 、2s 的大小.25.(10分)甲、乙两人分别乘不同的冲锋舟同时从A 地逆流而上前往B 地.甲所乘冲锋舟在静水中的速度为1211千米/分钟,甲到达B 地立即返回.乙所乘冲锋舟在在静水中的速度为127千米/分钟.已知A 、B 两地的距离为20千米,水流速度为121千米/分钟,甲、乙乘冲锋舟行驶的距离y (千米)与所用时间x (分钟)之间的函数图象如图所示.(1)求甲所乘冲锋舟在行驶的整个过程中,y 与x 之间的函数关系式;(2)甲、乙两人同时出发后,经过多少分钟相遇?26.(10分) 在等腰△ABC 中,,AB =AC=5,BC =6.动点M 、N 分别在两腰AB 、AC 上(M 不与A 、B 重合,N 不与A 、C 重合),且M N ∥BC . 将△A MN 沿MN 所在的直线折叠,使点A 的对应点为P . (1)当MN 为何值时,点P 恰好落在BC 上?(2)设MN =x ,△MNP 与等边△ABC 重叠部分的面积为y .试写出y 与x 的函数关系式.当x 为何值时,y 的值最大,最大值是多少?F E D C BA6第6题宁夏回族自治区2012年初中毕业暨高中阶段招生考试 数学 试 题一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.下列运算正确的是( )A .32a -2a =3B .32)(a =5aC .⋅3a 6a =9aD .22)2(a =24a 2.根据人民网-宁夏频道2012年1月18日报道,2011年宁夏地区生产总值为2060亿元,比上年增长12%,增速高于全国平均水平.2060亿元保留两个有效数字用科学记数法表示为( )A .2.0×109元 B . 2.1×103元 C .2.1×1010元 D .2.1×1011元 3.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是( ) A .13 B .17 C .22 D .17或224、小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )A .⎩⎨⎧=+=+16120053y x y xB .⎩⎨⎧=+=+162.1605603y x y xC .⎩⎨⎧=+=+162.153y x y x D .⎩⎨⎧=+=+161200605603y x y x5.如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积是( ) A.1217πm 2 B.617πm 2C.425πm 2D.1277πm 26.如图,AB为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠ACP =( ) A .30 B .45 C .60 D .67.57.一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是( )A .24.0B .62.8C .74.2D .113.08.运动会上,初二 (3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为( ). A .20305.140=-x x B.205.13040=-x x C .205.14030=-x x D.20405.130=-xx 二、填空题(每小题3分,共24分) 9.当a 时,分式21+a 有意义. 10.已知菱形的边长为6,一个内角为60°,则菱形较短的对角线长是 .11.已知a 、b 为两个连续的整数,且b a <<11,则a b += . 12. 点B (-3,4)关于y 轴的对称点为A ,则点A 的坐标是 . 13.在△ABC 中∠C =90°,AB =5,BC =4,则tan A =_________.14. 如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A 、B 两岛的视角∠ACB =__________度. 15.如图,在矩形ABCD 中,对角线AC 、BD 相较于O ,DE ⊥AC 于E ,∠EDC ∶∠EDA =1∶2,且AC =10,则DE 的长度是 .16.如图,将等边△ABC 沿B C 方向平移得到△A 1B 1C 1.若BC =3,31=∆C PB S ,则BB 1= .三、解答题(共24分) 17.(6分)计算: 18.(6分)化简,求值: 11222+-+--x xx x x x ,其中x=219.(6分)解不等式组 ⎪⎩⎪⎨⎧≤--+-+131211312x x x x )(>20)21(21)2012(45sin 22--+----︒∙第5题第15题第16题 A A 1 11 第7题720.(6分)某商场为了吸引顾客,设计了一种促销活动,在一个不透明的箱子里放有4个相同的小球,在球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本商场同一天内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和,返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到 元购物券,至多可得到 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.四、解答题(共48分)21.(6分)商场对每个营业员在当月某种商品销售件数统计如下: 解答下列问题 (1)设营业员的月销售件数为x(单位:件),商场规定:当x <15时为不称职;当15≤x <20时为基本称职;当20≤x <25为称职;当x ≥25时为优秀.试求出优秀营业员人数所占百分比; (2)根据(1)中规定,计算所有优秀和称职的营业员中月销售件数的中位数和众数; (3)为了调动营业员的工作积极性,商场决定制定月销售件数奖励标准,凡达到或超过这个标准的营业员将受到奖励。

2014年宁夏回族自治区中考数学试卷-答案

2014年宁夏回族自治区中考数学试卷-答案

宁夏回族自治区2014年初中毕业暨高中阶段招生考试数学答案解析第Ⅰ卷(选择题)一、选择题 1.【答案】D【解析】2356a a a a =≠g ,故选项A 错误;6243a a a a ÷=≠,故选项B 错误;2a 与3a 不是同类项,不能合并,故选项C 错误;32326()a a a ⨯==,D 正确,故选D. 【考点】幂的运算,合并同类项. 2.【答案】B【解析】先求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即3010x x -⎧⎨+⎩>①,≥②,解不等式①的3x >,解不等式②得1x -≥,∴不等式组的解集为3x >,在数轴上表示不等式组的解集应选B.【考点】在数轴上解一元一次不等式(组),在数轴上表示不等式组的解集. 3.【答案】C【解析】方程2210x x --=,配方得2(1)2x -=,解得11x =+21x = C. 【考点】解一元二次方程. 4.【答案】D【解析】根据图形可知,a 是一个负数,且12a <<,b 是一个正数,且01b <<,即可得出b a <,故选D.【考点】实数,数轴. 5.【答案】A【解析】因为反比例函数ky x=,当0k >时,图象位于第一、三象限,且在每一个象限,函数值y 随x 的增大而减小,由条件可知点1P ,2P 都在第一象限内,故它们的纵坐标0y >,因为12x x >,所以12y y <,故120y y <<,故选A.【考点】反比例函数图象的性质.【解析】设甲种污水处理器的污水处理效率为x 吨/小时,则乙种污水处理器的污水处理效率为(20)x +吨/小时,根据甲种污水处理器25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,列出方程253520x x =+,故选B. 【考点】实际问题抽象出分式方程. 7.【答案】A【解析】根据三视图可知此几何体为圆锥,底面半径1cm r =,高3cm h =,∴圆锥母线长cm l ,2=cm S rl π∴=侧,故选A.【考点】三视图,圆锥的计算. 8.【答案】C【解析】A 选项,函数y ax =中,0a >,2y ax =中,0a >,但当1x =时,两函数图象有交点(1,)a ,A 错误;B 选项,函数y ax =中,0a <,2y ax =中,0a >,B 错误;C 选项,函数y ax =中,0a <,2y ax =中,0a <,当1x =时,两函数图象有交点(1,)a ,C 正确;D 选项,函数y ax =中,0a >,2y ax =中,0a <,D 错误,故选C.【考点】二次函数的图象,正比例函数的图象.【提示】本题除了判别a 的符号外,还应注意两个函数的交点个数及坐标,故易错.第Ⅱ卷(非选择题)二、填空题9.【答案】(1)(1)y x x +-.【解析】一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.故原式2(1)(1)(1)y x y x x =-=+-. 【考点】用提公因式法和公式法进行因式分解.【提示】本题易忽视用平方差公式进一步分解而得答案2(1)y x -. 10.【答案】5.【解析】根据菱形的对角线互相垂直且平分求出对角线一半的长度分别是4 cm 和3 cm ,然后利用勾股定理,5cm AB =.【考点】菱形的性质.【解析】将一组数据按照从小到大(或从大到小)的顺序排列,最中间的一个数或中间两个数据的平均数就是这组数据的中位数.将这组数据按照从小到大的顺序排列为24,28,28,28,30,32,32,32,则中位数为2830292+=.【考点】中位数. 12.【答案】3.【解析】本题利用了消元的思想,将两个方程的左右两边分别相加得339a b -=,故3a b -=. 【考点】解二元一次方程组.13.【答案】316.【解析】随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种可能的结果数,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),其中两次摸出的小球标号的和等于6的有3种,(2,4),(3,3),(4,2),故两次摸出的小球标号的和等于6的概率是316. 【考点】列表法或树状图法求概率. 14.【答案】200.【解析】设这款服装每件的进价为x 元,根据-=售价进价利润可得方程3000.820%x x ⨯-=,解得200x =.即这款服装每件的进价是200元.【考点】列一元一次方程解实际问题的运用(销售问题).15.【答案】【解析】过点A 作AF BC ⊥于点F ,AD BC ∥Q ,DAE AEB ∴∠=∠,又BAE DAE ∠=∠Q ,BAE AEB ∴∠=∠,AE CD ∥Q ,AEB C ∴∠=∠,AD BC ∥Q ,2AB CD ==,∴四边形ABCD 是等腰梯形,B C ∴∠=∠,ABE ∴△是等边三角形,2AB AE BE ∴===,60B ∠=︒,sin 602AF AB ∴=︒==g AD BC ∥Q ,AE CD ∥,∴四边形AECD 是平行四边形,523AD EC BC BE ∴==-=-=,∴梯形的面积11()(35)22AD BC AF =+⨯=⨯+【考点】等边三角形的判定和性质,平行四边形的判定和性质,等腰梯形的性质.16.【解析】如图所示,点O 为ABC △外接圆圆心,则AO 为外接圆半径,利用勾股定理得出能够完全覆盖这个三角形的最小圆面的半径为OA =【考点】三角形的外接圆与圆心. 三、解答题 17.【答案】259.【解析】解:23()2sin 4514--︒-161)9=+ (4分) 259=.(6分)【考点】实数的综合运算.18.【答案】12.【解析】解:22()a b a b a b a b a b +-÷-+- 22()()()()a a b b a b a b a b a b a b +--+=÷-+- 2222()()a b a ba b a b a b +-=⨯-++ 1a b=+.(5分)当1a =1b =+12=.(6分)【考点】分式的化简求值. 19.【答案】(1)画图正确. (2)画图正确. 【解析】(1)画图正确. (3分) (2)画图正确.(6分)【考点】利用旋转变换、轴对称变换作图.20.【答案】1.【解析】解:在Rt ABD △中,1sin 3AD B AB ==Q ,又1AD =, 3AB ∴=.(2分)222BD AB AD =-Q ,BD ∴==(4分)在Rt ADC △中,45C ∠=︒Q ,1CD AD ∴==.1BC BD DC ∴=+=. (6分)【考点】三角形的高的定义,勾股定理,解直角三角形.21.【答案】(1)第1天、第2天、第3天、第7天、第12天,共5天.(2)27.(3)从第5天开始的第5天、第6天、第7天连续三天的空气质量指数方差最大.【解析】解:(1)此人到达当天空气质量优良的有:第1天、第2天、第3天、第7天、第12天,共5天.(2分)(2)此人在银川停留2天的空气质量指数是(86,25),(25,57),(57,143),(143,220),(220,158),(158,40),(40,217),(217,160),(160,128),(128,167),(167,75),(75,106),(106,180),(180,175),共14个停留时间段,期间只有一个空气质量重度污染的有:第4天到、第5天到、第7天到及第8天到.因此42147P ==(在银川停留期间只有一天空气质量重度污染).(4分) (3)从第5天开始的第5天、第6天、第7天连续三天的空气质量指数方差最大.(6分)【考点】折线统计图,概率,方差. 22.【答案】见解析.【解析】证法一:AB C '△Q 是由ABC △沿AC 对折得到的图形,BAC B AC '∴∠=∠. (2分)在平行四边形ABCD 中,AB CD ∥Q ,BAC DCA ∴∠=∠, (4分) DCA B AC '∴∠=∠.OA OC ∴=.(6分)证法二:Q 四边形ABCD 是平行四边形,AD BC ∴=,D B ∠=∠.又AB C '△是由ABC △沿AC 对折得到的图形,BC B C '∴=,B B '∠=∠. (2分)AD B C '∴=,D B '∠=∠.又AOD COB '∠=∠,AOD COB '∴≅△△.OA OC ∴=. (6分)【考点】平行四边形的性质,等腰三角形的判定与性质,折叠的性质. 23.【答案】(1)见解析. (2)3.【解析】(1)证明:连接OD ,ABC △Q 为等边三角形,60ABC ∴∠=︒.又OD OB =Q ,OBD ∴△为等边三角形.60BOD ACB ∴∠=︒=∠,OD AC ∴∥.(2分)又DE AC ⊥Q ,90ODE AED ∴∠=∠=︒,DE ∴为O e 的切线. (4分)(2)连接CD ,BC Q 为O e 的直径,90BDC ∠=︒.又ABC △Q 为等边三角形,12AD BD AB ∴==. (6分)在Rt AED △中,60A ∠=︒,30ADE ∴∠=︒,111244AE AD AB AC ∴===.1344EC AC AC AC ∴=-=. 3CEAE∴=.(8分)【考点】切线的判定的应用,等边三角形的性质和判定,平行线的判定.24.【答案】(1)y =(2)点B 在反比例函数y =.【解析】(11k=,即k =.∴反比例函数的解析式为y =. (3分)(2)过点A 作x 轴的垂线交x 轴于点C .在Rt AOC △中,1OC =,AC =由勾股定理,得2OA =,60AOC ∠=︒. 过点B 作x 轴的垂线交x 轴于点D . 由题意,30AOB ∠=︒,2OB OA ==,30BOD ∴∠=︒.在Rt BOD △中,1BD =,OD =∴B 点坐标为.(6分)将x y =1y =,∴点B 在反比例函数y =的图象上. (8分)【考点】反比例函数图象上的点的坐标特征,待定系数法求反比例函数解析式,勾股定理,坐标与图形变化.25.【答案】(1)5(80)38240y x x x =--⨯=-(080x <≤). (2)75.【解析】(1)5(80)38240y x x x =--⨯=-(080x <≤). (2)根据题意,得8240320x -<,解得70x <. 表明玫瑰花的售出量小于70只时的利润少于320元,(5分)则5060x ≤<的天数为0.1303⨯=(天),6070x ≤<的天数为0.2306⨯=(天). ∴利润少于320元的天数为369+=(天).(7分)(3)该组内平均每天销售玫瑰花:51(3)2(1)3042342757515-⨯+-⨯+-⨯+⨯+⨯+⨯+=(只)(10分)【考点】读频数分布直方图,利用统计图获取信息. 26.【答案】(1)见解析.(2)当258x =时,APQ △的面积最大,最大值是7532.(3)存在,λ=【解析】(1)证明:不论点P 在BC 边上何处时,都有90PQB C ∠=∠=︒,B B ∠=∠, PBQ ABC ∴△△:.(2分)(2)设BP x =(04x <<), 由勾股定理得5AB =.PBQ ABC △△Q :.PQ QB PBAC BC AB∴==, 即345PQ QB x ==,35PQ x ∴=,45QB x =, (4分) 21632252APQ S PQ AQ x x =⨯=-+△(6分)262575()25832x =--+. ∴当258x =时,APQ △的面积最大,最大值是7532. (8分)(3)存在.Rt Rt AQP ACP ≅△△Q ,AQ AC ∴=.又Rt Rt AQP BQP ≅△△,AQ QB ∴=.AQ QB AC ∴==.在Rt ABC △中,由勾股定理得222BC AB AC =-,BC ∴=.λ∴=Rt AQP △既与Rt ACP △全等,也与Rt BQP △全等.(10分)【考点】相似三角形的判定与性质,全等三角形的性质,三角形的面积公式,二次函数的最值的求法.。

2014银川中考数学试题及答案发布预告

2014银川中考数学试题及答案发布预告

地区中考试题中考答案银川语文数学英语化学物理历史政治语文数学英语化学物理历史政治随着银川中考考试的脚步越来越近,中考频道第一时间搜集整理2014年银川中考数学真题并作出独家权威答案解析,供广大考生参考!收藏(CTRL+D即可)中考真题栏目及中考答案栏目,随时了解中考真题及中考答案最新动态。

2014年银川中考数学试题及答案发布入口中考注意事项:超常考场发挥小技巧认真审题,每分必争审题是生命线。

审题是正确答题的前导。

从一个角度看,审题甚至比做题更重要。

题目审清了,解题就成功了一半。

认真审准题,才能正确定向,一举突破。

每次考试,总有一些考生因为审题失误而丢分。

尤其是那些似曾相识的题,那些看似很简单的题,考试要倍加细心,以防“上当受骗”。

我曾给学生一副对联:似曾相识“卷”归来,无可奈何“分”落去。

横批:掉以轻心。

越是简单、熟悉的试题,越要倍加慎重。

很多学生看题犹如“走马观花”,更不思考命题旨意,待到走出考场才恍然大悟,但为时已晚矣。

考试应努力做到简单题不因审题而丢分。

“两先两后”,合理安排中考不是选拔性考试,在新课改背景下,试卷的难度理应不会太大。

基础题和中等难度题的分值应占到80%。

考生拿到试卷,不妨整体浏览,此时大脑里的思维状态由启动阶段进入亢奋阶段。

只要听到铃声一响就可开始答题了。

解题应注意“两先两后”的安排:1.先易后难一般来说,一份成功的试卷,题目的排列应是遵循由易到难,但这是命题者的主观愿望,具体情况却因人而异。

同样一个题目,对他人来说是难的,对自己来说也许是容易的,所以当被一个题目卡住时就产生这样的念头,“这个题目做不出,下面的题目更别提了。

”事实情况往往是:下面一个题目反而容易!由此,不可拘泥于从前往后的顺序,根据情况可以先绕开那些难攻的堡垒,等容易题解答完,再集中火力攻克之。

2.先熟后生通览全卷后,考生会看到较多的驾轻就熟的题目,也可能看到一些生题或新型题,对前者——熟悉的内容可以采取先答的方式。

2014 2014年中招考试数学试卷及答案

2014   2014年中招考试数学试卷及答案

2014年数学试卷及答案一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是()7.如图, ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。

设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分) 9.计算:2-= . 10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC,则图中阴影部分的面积为 .15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 .三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中117.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形; ②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。

2013-2014年宁夏银川市八年级上学期期末数学试卷带答案word版

2013-2014年宁夏银川市八年级上学期期末数学试卷带答案word版

2013-2014学年宁夏银川市八年级(上)期末数学试卷一、填空题(每小题3分,共18分)1.(3分)0.01的平方根是,﹣3的立方根是,1﹣的相反数是.2.(3分)比较大小:25(选填“>”、“=”、“<”).3.(3分)边形的内角和等于外角和.4.(3分)在平面直角坐标系中,点(0,﹣1)在轴上,点(﹣1,0)在轴上,点(1,﹣1)在第象限.5.(3分)已知y与x成正比例,且当x=1时,y=3.则y与x的关系式是.6.(3分)初二年级某班开展献爱心活动,为“5.12”汶川大地震捐款,全班同学捐款情况统计如下表.则全班平均每人捐款元.(精确到0.1元)二、选择题(下列各题中的四个选项只有一个是正确的,请将正确选项的字母标号填在题后的括号内,每小题3分,共18分)7.(3分)下列选项中是中心对称图形的是()A.等边三角形B.等腰直角三角形C.平行四边形D.等腰梯形8.(3分)在直角坐标系中,将点P(3,2)沿x轴的负方向平移4个单位,再沿y轴正方向平移4个单位,所得到点的坐标是()A.(﹣1,2)B.(3,﹣2)C.(﹣2,﹣1)D.(﹣1,6)9.(3分)估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间10.(3分)若直线y=kx+b(k≠0)的图象经过点(2,0)和(﹣1,1),则这个函数的解析式为()A.y=B.y=C.y=D.y=11.(3分)二元一次方程2x+y=10的一个解是()A.x=﹣2,y=6B.x=3,y=﹣4C.x=4,y=3D.x=6,y=﹣2 12.(3分)能判定一个四边形是正方形的条件是()A.对角线互相垂直平分B.对角线互相垂直平分且相等C.对角线互相平分且相等D.对角线相等且四个角都是直角三、解答题(每小题6分,共36分)13.(6分)如图,要在高AC为2米,斜坡AB长8米的楼梯表面铺地毯,地毯的长度至少需要多少米?14.(6分)用两种方法计算:.15.(6分)解方程组:16.(6分)在平面直角坐标系中,已知直线经过A(﹣3,7)、B(2,﹣3)两点.(1)求经过A、B两点的一次函数关系式;(2)画出该一次函数的图象.17.(6分)如图,请作出将△ABC绕点D按顺时针方向旋转90°后的图形.(不写作法保留作图痕迹)18.(6分)如图,四边形ABCD中,已知AB∥CD,AD∥EC,∠CEB=∠CBE,四边形ABCD是等腰梯形吗?如果是,请说明理由.四、解答题(每小题分别有A、B、C三类题目,可任选一类解答,多解的题目不记分.第19、20小题各9分,第21小题10分,共28分)19.(7分)如图,在矩形ABCD中,AF=DE.BE与CF相等吗?如果相等请说明理由.20.(7分)列方程组解应用题某校初二年级一、二两个班参加义务劳动,若从一班调10人到二班,则二班的人数是一班人数的2倍;若从二班调3人到一班,则两班的人数正好相等,求这两个班各有多少人?21.(10分)某工厂有甲、乙两个蓄水池,将甲池中的水以每小时5立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题:(1)分别求出甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数关系式(不写自变量x的取值范围);(2)算出注水多长时间后甲、乙两个蓄水池水的深度相同;(3)当两个蓄水池水深相同时,水深是多少并求出甲蓄水池刚开始里面的蓄水量是多少立方米?(A类6分)完成(1).(B类8分)完成(1),(2).(C类10分)完成(1),(2),(3)五、解决问题.22.(12分)为体现党和政府对农民健康的关心,解决农民看病难问题,我市某县全面实行新型农村合作医疗,对农民的住院医疗费实行分段报销制.例如:某人住院医疗费8000元,按规定可以报销;500×20%+1500×30%+3000×35%+3000×40%=2800(元)该县有四位农民看病分别花去了1800元、2500元、6000元、22000元住院医药费,请计算应该给这四位农民各报销多少元?23.(8分)如图,在▱ABCD中,AE=CF.四边形BFDE是平行四边形吗?如果是请说明理由.24.(9分)如图,在△ABC中,BC的垂直平分线EF交BC于D,且CF=BE.试说明四边形BFCE是菱形.25.(8分)李师傅家去年种苹果的收入扣除各项支出后结余5000元,今年他家苹果又喜获丰收,收入比去年增加了20%,由于实行了科学管理,今年的支出比去年减少了5%,因此今年结余比去年多1750元,求李师傅家去年种植苹果的收入和支出各是多少元?26.(9分)上午6时甲、乙两人分别从A、B两地同时相向而行,上午9时他们相距48千米,两人继续前进,到12时又相距48千米,已知甲每小时比乙快2千米,求A、B两地间的距离.2013-2014学年宁夏银川市八年级(上)期末数学试卷参考答案与试题解析一、填空题(每小题3分,共18分)1.(3分)0.01的平方根是±0.1,﹣3的立方根是,1﹣的相反数是.【分析】分别根据平方根的定义、立法规范的定义、相反数的定义即可求解.【解答】解:∵(±0.1)2等于0.01,∴0.01的平方根等于±0.1;∵﹣的立方等于﹣3,∴﹣3的立方根等于﹣.根据相反数的定义1﹣的相反数是﹣(1﹣)故答案:±0.1;﹣3;或﹣1+.2.(3分)比较大小:2<5(选填“>”、“=”、“<”).【分析】先把两数值化成带根号的形式,再根据实数的大小比较方法即可求解.【解答】解:∵2=,5=,而24<25,∴2<5.故填空答案:<.3.(3分)四边形的内角和等于外角和.【分析】利用多边形的外角和以及四边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴四边形的内角和等于外角和.故答案为:四.4.(3分)在平面直角坐标系中,点(0,﹣1)在y轴上,点(﹣1,0)在x轴上,点(1,﹣1)在第四象限.【分析】横坐标为0的点在y轴上,纵坐标为0的点在x轴上,横纵坐标为正,负的点在第四象限.【解答】解:∵点(0,﹣1)横坐标为0,∴点(0,﹣1)在y轴上;∵点(﹣1,0)纵坐标为0,∴点(﹣1,0)在x轴上;∵点(1,﹣1)横纵坐标为正,负,∴点(1,﹣1)在第四象限.故各空依次填y、x、四.5.(3分)已知y与x成正比例,且当x=1时,y=3.则y与x的关系式是y=3x.【分析】本题可设y=kx,然后利用y与x间的对应关系,列出方程,进而求解.【解答】解:∵y与x成正比例,∴设y=kx,∵当x=1时,y=3,∴k=3,即y与x的关系式是y=3x.6.(3分)初二年级某班开展献爱心活动,为“5.12”汶川大地震捐款,全班同学捐款情况统计如下表.则全班平均每人捐款13.4元.(精确到0.1元)【分析】根据平均数的定义求解.用所有捐款的金额除以45即可.【解答】解:由题意知,全班平均每人捐款=(100+50×3+20×5+10×15+5×21)÷(1+3+5+15+21)≈13.4(元).故答案为13.4.二、选择题(下列各题中的四个选项只有一个是正确的,请将正确选项的字母标号填在题后的括号内,每小题3分,共18分)7.(3分)下列选项中是中心对称图形的是()A.等边三角形B.等腰直角三角形C.平行四边形D.等腰梯形【分析】根据中心对称图形的概念求解,只有平行四边形是中心对称图形.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、B、D都符合;不是中心对称图形的只有C.故选:C.8.(3分)在直角坐标系中,将点P(3,2)沿x轴的负方向平移4个单位,再沿y轴正方向平移4个单位,所得到点的坐标是()A.(﹣1,2)B.(3,﹣2)C.(﹣2,﹣1)D.(﹣1,6)【分析】直接利用平移中点的变化规律求解即可.【解答】解:根据题意:将点P(3,2)沿x轴的负方向即向左平移4个单位,再沿y轴正方向即向上平移4个单位,得到点的坐标是(3﹣4,2+4)即为(﹣1,6).故选:D.9.(3分)估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间【分析】先估计的整数部分,然后即可判断+3的近似值.【解答】解:∵42=16,52=25,所以,所以+3在7到8之间.故选:C.10.(3分)若直线y=kx+b(k≠0)的图象经过点(2,0)和(﹣1,1),则这个函数的解析式为()A.y=B.y=C.y=D.y=【分析】把点(2,0)和(﹣1,1)的坐标代入直线y=kx+b(k≠0)中,求出k 和b的值,即可确定这个函数的解析式.【解答】解:由题可得方程组,解得,这个函数的解析式为y=﹣x+.故选:A.11.(3分)二元一次方程2x+y=10的一个解是()A.x=﹣2,y=6B.x=3,y=﹣4C.x=4,y=3D.x=6,y=﹣2【分析】由于二元一次方程2x+y=10是不定方程,所以有无数组解.本题思路是将四个选项分别代入方程验证,能使方程成立的即是方程的解.反之,则不是方程的解.【解答】解:A、把x=﹣2,y=6代入,左边=﹣4+6=2≠10,故选项错误;B、把x=3,y=﹣4代入,左边=6﹣4=2≠10,故选项错误;C、把x=4,y=3代入,左边=8+3=11≠10,故选项错误;D、当x=6,y=﹣2时,方程左边=2×6+(﹣2)=10=右边.故选:D.12.(3分)能判定一个四边形是正方形的条件是()A.对角线互相垂直平分B.对角线互相垂直平分且相等C.对角线互相平分且相等D.对角线相等且四个角都是直角【分析】根据正方形的判定对角线相等且互相垂直平分的四边形是正方形,对各个选项进行分析从而得到最后答案.【解答】解:A不正确,也可能是菱形;B正确,能判定是正方形;C不正确,也可能是菱形,矩形等;D不正确,可能是矩形;故选:B.三、解答题(每小题6分,共36分)13.(6分)如图,要在高AC为2米,斜坡AB长8米的楼梯表面铺地毯,地毯的长度至少需要多少米?【分析】根据题意,知还需要求出BC的长,根据勾股定理即可.【解答】解:由勾股定理AB2=BC2+AC2,得BC===2,AC+BC=2+2(米).答:所需地毯的长度为(2+2)米.14.(6分)用两种方法计算:.【分析】解法一:开方、化简原式即可;解法二:分子提取,消分母即可.【解答】解:解法一:原式===5;解法二:原式===5;解法三:原式===2.15.(6分)解方程组:【分析】用加减法,先把x的系数转化成相同的或相反的数,然后两式相加减消元,从而求出y的值,然后把y的值代入一方程求x的值.【解答】解:将方程组变形为,②×2,得4x+6y=4③,③﹣①,得y=6,把y=6代入②,得x=﹣8.∴原方程组的解是.16.(6分)在平面直角坐标系中,已知直线经过A(﹣3,7)、B(2,﹣3)两点.(1)求经过A、B两点的一次函数关系式;(2)画出该一次函数的图象.【分析】(1)因为直线经过A(﹣3,7)、B(2,﹣3)两点,所以可设一次函数的表达式为y=kx+b,进而利用方程组求得k、b的值,最终解决问题;(2)建立平面直角坐标系,描出A(﹣3,7)、B(2,﹣3)两点,画直线AB 即可.【解答】解:(1)设一次函数的表达式为y=kx+b,由题意,得,解得.∴一次函数的表达式为y=﹣2x+1.(2)如上图,过A(﹣3,7)、B(2,﹣3)两点画直线,得到一次函数y=﹣2x+1的图象.17.(6分)如图,请作出将△ABC绕点D按顺时针方向旋转90°后的图形.(不写作法保留作图痕迹)【分析】连接三角形各点与点D的连线,并绕点D按顺时针方向旋转90°后找到对应点,顺次连接得到的图形.【解答】解:如图所示.18.(6分)如图,四边形ABCD中,已知AB∥CD,AD∥EC,∠CEB=∠CBE,四边形ABCD是等腰梯形吗?如果是,请说明理由.【分析】先证明该四边形是梯形,再利用同一底上的两角相等来判定该四边形是等腰梯形.【解答】解:四边形ABCD是等腰梯形(2分)∵在四边形ABCD中AB∥CD∴四边形ABCD是梯形∵AD∥EC∴∠A=∠CEB(3分)∵∠CEB=∠CBE即∠B=∠CEB(4分)∴∠A=∠B(5分)∴四边形ABCD是等腰梯形.(6分)四、解答题(每小题分别有A、B、C三类题目,可任选一类解答,多解的题目不记分.第19、20小题各9分,第21小题10分,共28分)19.(7分)如图,在矩形ABCD中,AF=DE.BE与CF相等吗?如果相等请说明理由.【分析】只要证出△ABE≌△DCF就可以了,由于四边形ABCD是矩形,所以已经具备两个条件,再利用已知条件AE=DE,等量加等量和相等,可以得到另外一个条件,利用SAS可证三角形全等.【解答】解:BE与CF相等,理由如下:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC.∵AF=DE,∴AE=DF,在△BAE和△CDF中,,∴△BAE≌△CDFSAS),∴BE=CF.20.(7分)列方程组解应用题某校初二年级一、二两个班参加义务劳动,若从一班调10人到二班,则二班的人数是一班人数的2倍;若从二班调3人到一班,则两班的人数正好相等,求这两个班各有多少人?【分析】设一班去了x人,二班去了y人,根据从一班调10人到二班,二班的人数是一班人数的2倍;若从二班调3人到一班,则两班的人数正好相等,列方程组求解.【解答】解:设一班去了x人,二班去了y人,由题意,得,解得:.答:一班去了36人,二班去了42人.21.(10分)某工厂有甲、乙两个蓄水池,将甲池中的水以每小时5立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题:(1)分别求出甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数关系式(不写自变量x的取值范围);(2)算出注水多长时间后甲、乙两个蓄水池水的深度相同;(3)当两个蓄水池水深相同时,水深是多少并求出甲蓄水池刚开始里面的蓄水量是多少立方米?(A类6分)完成(1).(B类8分)完成(1),(2).(C类10分)完成(1),(2),(3)【分析】(1)直接利用待定系数法求解;(2)深度相同的几何意义是两个直线相交处的位置,利用解析式联立方程组求解即可;(3)直接根据(2)可求出甲水池刚开始的蓄水量=3×5=15(立方米).=k1x+b1,【解答】解:(1)设y甲把(0,2)、(3,0)代入得∴,b1=2,=(3分)∴y甲=k2x,设y乙把(3,4)代入,得,∴y=;乙(2)根据题意得,解得x=1.答:1小时后甲、乙两个蓄水池水的深度相同;(3)由(2)知当x=1时,水深(米),甲水池刚开始的蓄水量=3×5=15(立方米).五、解决问题.22.(12分)为体现党和政府对农民健康的关心,解决农民看病难问题,我市某县全面实行新型农村合作医疗,对农民的住院医疗费实行分段报销制.例如:某人住院医疗费8000元,按规定可以报销;500×20%+1500×30%+3000×35%+3000×40%=2800(元)该县有四位农民看病分别花去了1800元、2500元、6000元、22000元住院医药费,请计算应该给这四位农民各报销多少元?【分析】分别用百分数表示出每人的每段报销的金额后用加法计算.【解答】解:应给花1800元医药费的农民报销的金额=500×20%+1300×30%=490(元);应给花2500元医药费的农民报销的金额=500×20%+1500×30%+500×35%=725(元);应给花6000元医药费的农民报销的金额=500×20%+1500×30%+3000×35%+1000×40%=2000(元);应给花22000元医药费的农民报销的金额=500×20%+1500×30%+3000×35%+5000×40%+12000×45%=9000(元).故给这四位农民各报销490元、725元、2000元、9000元.23.(8分)如图,在▱ABCD中,AE=CF.四边形BFDE是平行四边形吗?如果是请说明理由.【分析】由于在平行四边形ABCD中AD=BC,而AE=CF,由此可以得到DE=BF,根据平行四边形的判定方法即可判定其实平行四边形【解答】答:四边形BFDE是平行四边形.证明:∵在□ABCD中,AD∥BC,AD=BC,又∵AE=CF,∴DE=BF,∴四边形BFDE是平行四边形.24.(9分)如图,在△ABC中,BC的垂直平分线EF交BC于D,且CF=BE.试说明四边形BFCE是菱形.【分析】因为EF是BC的垂直平分线,所以BC⊥EF,且CE=BE.又因为CF=BE,故CF=CE.所以BC也是EF的垂直平分线,那么四边形BECF是菱形.【解答】解:∵EF是BC的垂直平分线,∴FC=FB,EB=EC.∵CF=BE,∴FC=CE=EB=BF.∴四边形BECF是菱形.25.(8分)李师傅家去年种苹果的收入扣除各项支出后结余5000元,今年他家苹果又喜获丰收,收入比去年增加了20%,由于实行了科学管理,今年的支出比去年减少了5%,因此今年结余比去年多1750元,求李师傅家去年种植苹果的收入和支出各是多少元?【分析】两个等量关系为:去年种植苹果的收入﹣支出=5000;今年种植苹果的收入﹣支出=5000+1750,进而求出即可.【解答】解:设去年收入x元,支出y元.由题意得:,解得:.答:去年收入7500元,支出2500元.26.(9分)上午6时甲、乙两人分别从A、B两地同时相向而行,上午9时他们相距48千米,两人继续前进,到12时又相距48千米,已知甲每小时比乙快2千米,求A、B两地间的距离.【分析】本题中的等量关系有两个:上午6时到9时,3小时甲乙两人的路程和=AB两地之间的路程﹣48千米;上午6时到中午12时6小时甲乙所行路程和=AB两地之间的路程+48千米,依据这两个等量关系可列方程组求解.【解答】解:设A、B两地相距xkm,乙每小时走ykm,则甲每小时走(y+2)km.根据题意,得解这个方程组得:.答:A、B两地之间的路程为144千米.附赠数学基本知识点1知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。

2014年中考数学二轮复习:圆的选择题训练学习(1)、

2014年中考数学二轮复习:圆的选择题训练学习(1)、

第一讲:圆的选择题训练学习----2014年中考数学圆的二轮复习一、知识点睛1.相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙中,∵弦AB 、CD 相交于点P ,∴ =2.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

即:在⊙中,∵PA 是切线,PCB 是割线∴ =3.(沈阳市)如图,PA 切⊙O 于点A ,PBC 是⊙O 的割线且过圆心,PA =4,PB =2,则⊙O 的半径等于 ( )(A )3 (B )4 (C )6 (D )8二、专 项 训 练1一、选择题1.(西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O于点A ,如果PA =3,PB =1,那么∠APC 等于 ( )(A ) 15 (B ) 30 (C ) 45 (D )602.(朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( )(A )6 (B )25 (C )210 (D )2143.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于 ( )(A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米4.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C =90,AO 的延长线交 BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )(A )54 (B )45 (C )43 (D )655.(河北省)如图,AB 是⊙O 直径,CD 是弦.若AB =10厘米,CD =8厘米,那么A 、B 两点到直线CD 的距离之和为 ( )(A )12厘米 (B )10厘米 (C )8厘米 (D )6厘米6.(河北省)某工件形状如图所示,圆弧BC 的度数为 60,AB =6厘米,点B 到点C 的距离等于AB ,∠BAC = 30,则工件的面积等于 ( )(A )4π (B )6π(C )8π (D )10π8.(哈尔滨市)已知⊙O 的半径为35厘米,⊙O '的半径为5厘米.⊙O与⊙O '相交于点D 、E .若两圆的公共弦DE 的长是6厘米(圆心O 、O '在公共弦DE 的两侧),则两圆的圆心距O O '的长为 ( )(A )2厘米 (B )10厘米 (C )2厘米或10厘米 (D )4厘米9.(甘肃省)弧长为6π的弧所对的圆心角为 60,则弧所在的圆的半径为 ( )(A )6 (B )62 (C )12 (D )1810.(甘肃省)如图,在△ABC 中,∠BAC = 90,AB =AC =2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为 ( )(A )1 (B )2 (C )1+4π (D )2-4π 11.(宁夏回族自治区)已知圆的内接正六边形的周长为18,那么圆的面积为 ( )(A )18π (B )9π (C )6π (D )3π12.(南京市)如图,正六边形ABCDEF 的边长的上a ,分别以C 、F 为圆心,a 为半径画弧,则图中阴影部分的面积是 ( )(A )261a π (B )231a π (C )232a π (D )234a π13.(安徽省)已知圆锥的底面半径是3,高是4,则这个圆锥侧面展开图的面积是 ( )(A )12π (B )15π (C )30π (D )24π14.(安微省)已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交P .PC =5,则⊙O 的半径为 ( )(A )335 (B )635 (C )10 (D )5 15.(福州市)如图:PA 切⊙O 于点A ,PBC 是⊙O 的一条割线,有PA =32,PB =BC ,那么BC 的长是 ( )(A )3 (B )32(C )3 (D )3216.(河南省)如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是 ( )(A )π (B )1.5π(C )2π (D )2.5π17.(新疆乌鲁木齐)在半径为2的⊙O 中,圆心O 到弦AB 的距离为1,则弦AB 所对的圆心角的度数可以是 ( )(A ) 60 (B ) 90 (C ) 120 (D )15018.(成都市)如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD =10厘米, AP ∶PB =1∶5,那么⊙O 的半径是 ( )(A )6厘米 (B )53厘米(C )8厘米 (D )35厘米19.(成都市)在Rt △ABC 中,已知AB =6,AC =8,∠A = 90.如果把Rt △ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把Rt △ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( )(A )2∶3 (B )3∶4 (C )4∶9 (D )5∶1220.(苏州市)如图,⊙O 的弦AB =8厘米,弦CD 平分AB 于点E .若CE =2厘米.ED 长为 ( )(A )8厘米 (B )6厘米 (C )4厘米 (D )2厘米21.(镇江市)如图,正方形ABCD 内接于⊙O ,E 为DC 的中点,直线BE 交⊙O 于点F .若⊙O 的半径为2,则BF 的长为 ( )(A )23 (B )22 (C )556 (D )55422(扬州市)如图,AB 是⊙O 的直径,∠ACD = 15,则∠BAD 的度数为 ( )(A ) 75 (B )72(C ) 70 (D ) 6523.(昆明市)如图,扇形的半径OA =20厘米,∠AOB = 135,用它做成一个圆锥的侧面,则此圆锥底面的半径为 ( )(A )3.75厘米 (B )7.5厘米(C )15厘米 (D )30厘米24.(昆明市)如图,正六边形ABCDEF 中.阴影部分面积为123平方厘米,则此正六边形的边长为 ( )(A )2厘米 (B )4厘米(C )6厘米 (D )8厘米25.(广东省)如图,若四边形ABCD 是半径为1和⊙O 的内接正方形,则图中四个弓形(即四个阴影部分)的面积和为 ( )(A )(2π-2)厘米 (B )(2π-1)厘米(C )(π-2)厘米 (D )(π-1)厘米。

宁夏中考数学试题及答案3.doc

宁夏中考数学试题及答案3.doc

2014年宁夏中考数学试题及答案第3页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

八年级数学试卷答案2014.6.25

八年级数学试卷答案2014.6.25

银川市2013—2014学年度第二学期期末检测八年级数学试题 答案一、选择题(每小题3分,共24分)三、解答题(17、18每题5分, 19、20每题6分,21、22每题7分,共36分) 17.解:去分母,得:222x x ⨯=+,(2分)移项,得:32x =. 化系数为1得:23x =.(3分) 检验:把23x =代入2(2)0x x +≠,(4分) 23x ∴=是原分式方程的解.(5分) 18.解:由不等式210,x +>得12x >-. (2分)由不等式25,x x >-得5x <.(4分)则不等式组的解集为152x -<<. (5分) 19.解:原式=333)3)(3(31+=-+⨯-x x x x (3分) 将1-=x 代入原式=33+x (4分) 得原式=32.(5分)20.解:因为DE 是线段AB 的垂直平分线,所以DA=DB(线段垂直平分线上的点到线段两端的距离相等)(2分) 又因为BD =AC=5,DC =2 所以AD=BD =AC=5 (4分) 所以△ADC 的周长=5+5+2=12 (6分) 21.证明:(1) 在□ABCD 中, CD AB //, ∴.2FEC ∠=∠………2分由折叠,得.1FEC ∠=∠ …………………………4分 ∴.21∠=∠ ……………………………………6分 ∴GE=GF ………………………………………7分 (用其它方法证明的也按相应得分点给分)22.解:由不等式得312>+x . 得 1>x (1分) 由不等式x x ≥--221,得5-≤x .(3分) 则不等式组的解集为空集. (5分) 画图(略) (7分)四、解答题(23、24小题各8分,共16分)23.解:2+()224x x x +=-.(2分) 22224x x x ++=-.3x =-.(4分) 经检验,3x =-是原分式方程的根.(5分)24. 解应用题(分别有A 、B 、C 三类题目,只任选一类解答,多解的题目不记分). (A 类6分)解:设现在平均每天植树x 棵,则原计划平均每天植树)5(-x 棵.依题意得:54560-=x x .(2分) 解这个方程,得20=x .(4分)经检验,20=x 是方程的解,且符合题意.(5分) 答:现在平均每天植树20棵.(6分)(B 类7分)解:设原计划每天种树x 棵,(1分)则()100010005125%x x-=+.(3分) 解得40x =.(5分)经检验,40x =是原方程的解,且符合题意.(6分) 答:原计划每天种40棵树.(7分)(C 类8分)解:设小李进了xkg 硒沙瓜,(2分)根据题意得:900%203000)500(500%403000=⨯⨯--⨯⨯xx x (4分) 解得:600=x (5分) 经检验:600=x 是方程的解. (6分) 答:小李所进硒沙瓜的数量是600kg . (8分)五、解答题(25、26小题各10分,共20分)25.证明:∵AC ⊥BC ,BD ⊥AD ∴ ∠D =∠C =90︒ (2分)在Rt △ACB 和 Rt △BDA 中,AB = BA ,AC =BD ,∴ △ACB ≌ △BDA (HL ) (5分) ∴BC =AD (6分)(2)由△ACB ≌ △BDA 得 ∠C AB =∠D BA (8分) ∴△OAB 是等腰三角形.(10分)26.证明:(1)∵AB=CD ,BE=DF ,AE ⊥BD ,CF ⊥BD , 所以∠AEB=∠CDF=90 (3分) 在Rt △ABE 和 Rt △CDF 中,AB=CD ,BE=DF ,∴ △ABE △C DF (HL ) (5分) (2)∵△ABE △C DF (已证)∴AE =CF (全等三角形的对应边相等) (6分)又∵AE ⊥BD ,CF ⊥BD ,∴AE//CF (7分)∴四边形AECF 是平行四边形(有一组对边平行且相等的四边形是平行四边形)(8分) ∵AC 与BD 交于点O ,∴AO=CO (平行四边形的对角线互相平分)(10分)。

宁夏中考数学试题及答案4.doc

宁夏中考数学试题及答案4.doc

2014年宁夏中考数学试题及答案第4页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

2014年中考数学压轴题精编--新疆、宁夏、山西、青海篇(试题及答案)

2014年中考数学压轴题精编--新疆、宁夏、山西、青海篇(试题及答案)

2014年中考数学压轴题精编—新疆、宁夏、山西、青海篇91.(新疆维吾尔自治区、新疆生产建设兵团)如图是一个量角器和一个含30°角的直角三角板放置在一起的示意图,其中点B 在半圆O 的直径DE 的延长线上,AB 切半圆O 于点F ,且BC =OE 。

(1)求证:DB ∥CF ;(2)当OE =2时,若以O ,B ,F 为顶点的三角形与△ABC 相似,求OB 的长;(3)若OE =2,移动三角板ABC 且使AB 边始终与半圆O 相切,直角顶点B 在直径DE 的延长线上移动,求出点B 移动的最大距离。

91.解:(1)证明:如图1,连接OF∵AB 切半圆O 于点F ,∴OF ⊥AB ·········· 1分 又∵BC ⊥AB ,∴BC ∥OF ∵BC =OE ,OE =OF ,∴BC =OF∴四边形OBCF 是平行四边形 ···················· 3分 ∴DB ∥CF ····················································· 4分(2)解:∵以O ,B ,F 为顶点的三角形与△ABC 相似,∠OFB =∠ABC =90°∴∠OBF =∠A 或∠BOF =∠A∵∠OBF =∠BFC ,∠BFC >∠A ,∴∠OBF >∠A∴∠OBF 与∠A 不可能是对应角 ···································································· 6分 ∴∠BOF 与∠A 是对应角,∴∠BOF =30° ∴OB =30cos OF=334 ································ 8分 (3)解:点B 移动的距离即线段BE 的长,当点A 与点F 重合时,点B 移动的距离最大,如图2∵在Rt △ABC 中,BC =OE =2,∠A =30° ∴AC =2BC =4∵四边形OBCF 是平行四边形,∴OB =AC =4 ∴BE =OB -OE =4-2=2即点B 移动的最大距离为2 ······························· 10分92.(新疆维吾尔自治区、新疆生产建设兵团)张师傅在铺地板时发现,用8块大小一样的长方形瓷砖恰好可以拼成一个大的长方形,如图(1)。

宁夏回族自治区2014年初中毕业暨高中阶段招生考试

宁夏回族自治区2014年初中毕业暨高中阶段招生考试

宁夏回族自治区2014年初中毕业暨高中阶段招生考试化学试题参考答案及评分标准说明:1.考生用其它方法作出正确答案的同样得分。

2.化学方程式中化学式(或元素符号)有错误不得分;未配平或未写反应条件扣1分;“↑”或“↓”漏标两个以上扣1分。

二、填空(共13分) 14.(4分)(1)黄瓜(1分);钙(Ca )(1分)。

(2)汽油(或洗涤剂)(1分);油渍溶解于汽油(或乳化作用)(1分)。

15.(4分)(1)乙、甲、丙(1分)。

(2)升高(1分)。

(3)5(1分);16.7%(1分)。

16.(5分)(1)达到它的着火点(1分);氧气耗尽(或缺少氧气)(1分)。

(2)水进入集气瓶中约1/5 (1分);氧气约占空气总体积的1/5 (1分)。

(3)生成二氧化碳气体,集气瓶内的气体没有减少(1分)(其他合理的答案也得分)。

三、应用(共14分) 17.(7分)(1)置换(1分);0(1分);-1(1分)。

(2)Zn 、Cu 、Ag (1分);活动性较强的金属把活动性较弱的金属从它们的盐溶液中置换出来(或Zn 能置换出Cu ,Cu 能置换出Ag )(1分);Cl 2、Br 2、I 2(1分)。

(3)Cl 2 + 2NaI = 2NaCl + I 2(1分)。

18.(7分)(1)解:设碳酸钠的质量为xNa 2CO 3 + 2HCl = 2NaCl + H 2O + CO 2↑ (1分) 106 44x 2.2g (1分)gx2.244106= (1分)g x 3.5= (1分) (2)样品中氢氧化钠的质量为:10 g -5.3g =4.7g (1分)样品中氢氧化钠的质量分数为:%47%100107.4=⨯gg(1分)答:(略)(3)与空气中的二氧化碳反应而变质(写化学方程式也正确)(1分) 四、实验探究(共20分) 19.(9分)(1)氢气(或H 2)(1分);集气瓶口向下放置,说明气体的密度比空气小(1分);氧气(或O 2)或二氧化碳(或CO 2)(1分)。

2014年宁夏中考数学试题及参考答案(word解析版)

2014年宁夏中考数学试题及参考答案(word解析版)

2014年宁夏回族自治区中考数学试题及参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.下列运算正确的是( )A .a 2•a 3=a 6B .a 8÷a 4=a 2C .a 3+a 3=2a 6D .(a 3)2=a 62.已知不等式组3010x x -⎧⎨+≥⎩>,其解集在数轴上表示正确的是( ) A . B .C .D .3.一元二次方程x 2﹣2x ﹣1=0的解是( )A .x 1=x 2=1B .x 1=1x 2=1-C .x 1=1x 2=1D .x 1=1-,x 2=1-4.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .a+b=0B .b <aC .ab >0D .|b|<|a|5.已知两点P 1(x 1,y 1)、P 2(x 2,y 2)在函数5y x=的图象上,当x 1>x 2>0时,下列结论正确的是( )A .0<y 1<y 2B .0<y 2<y 1C .y 1<y 2<0D .y 2<y 1<06.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x 吨/小时,依题意列方程正确的是( )A .253520x x =-B .253520x x =+C .253520x x =-D .253520x x=+ 7.如图是一个几何体的三视图,则这个几何体的侧面积是( )A πcm 2B .2C .6πcm 2D .3πcm 28.已知a≠0,在同一直角坐标系中,函数y=ax 与y=ax 2的图象有可能是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分)9.分解因式:x 2y ﹣y= .10.菱形ABCD 中,若对角线长AC=8cm ,BD=6cm ,则边长AB= cm .11.下表是我区八个旅游景点6月份某日最高气温(℃)的统计结果.该日这八个旅游景点最高气温的中位数是 ℃.12.若2a ﹣b=5,a ﹣2b=4,则a ﹣b 的值为 .13.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是 .14.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是 元.15.如图,在四边形ABCD 中,AD ∥BC ,AB=CD=2,BC=5,∠BAD 的平分线交BC 于点E ,且AE ∥CD ,则四边形ABCD 的面积为 .16.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A 、B 、C 均落在格点上,用一个圆面去覆盖△ABC ,能够完全覆盖这个三角形的最小圆面的半径是 .三、解答题(本大题共4小题,每小题6分,共24分)17.(6分)计算:232sin 45|14-⎛⎫-+︒- ⎪⎝⎭.18.(6分)化简求值:22a b a b a b a b a b+⎛⎫-÷ ⎪-+-⎝⎭,其中1a =1b =.19.(6分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.20.(6分)在△ABC中,AD是BC边上的高,∠C=45°,sinB=13,AD=1.求BC的长.四、解答题(本大题共6小题,共48分)21.(6分)如图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.(1)求此人到达当天空气质量优良的天数;(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).22.(6分)在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,A B′和CD相交于点O.求证:OA=OC.23.(8分)在等边△ABC 中,以BC 为直径的⊙O 与AB 交于点D ,DE ⊥AC ,垂足为点E .(1)求证:DE 为⊙O 的切线;(2)计算CE AE.24.(8分)在平面直角坐标系中,已知反比例函数k y x的图象经过点A (1. (1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.25.(10分)某花店计划下个月每天购进80只玫瑰花进行销售,若下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x (0<x≤80)表示下个月内每天售出的只数,y (单位:元)表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内市场销售量的频率分布直方图(每个组距包含左边的数,但不包含右边的数)如图所示:(1)求y 关于x 的函数关系式;(2)根据频率分布直方图,计算下个月内销售利润少于320元的天数;(3)根据历史资料,在70≤x <80这个组内的销售情况如下表:计算该组内平均每天销售玫瑰花的只数.26.(10分)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值;(3)在Rt△ABC中,两条直角边BC、AC满足关系式BC=λAC,是否存在一个λ的值,使Rt△AQP 既与Rt△ACP全等,也与Rt△BQP全等.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.下列运算正确的是()A.a2•a3=a6B.a8÷a4=a2C.a3+a3=2a6D.(a3)2=a6【知识考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方【思路分析】分别根据合并同类项、同底数幂的乘法和除法、幂的乘方法则进行计算即可.【解答过程】解:A、a2•a3=a5≠a6,故本选项错误;B、a8÷a4=a4≠a2,故本选项错误;C、a3+a3=2a3≠2a6,故本选项错误;D、(a3)2=a3×2=a6,正确.故选D.【总结归纳】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算法则是解题的关键,合并同类项时,只把系数相加减,字母与字母的次数不变.2.已知不等式组3010xx-⎧⎨+≥⎩>,其解集在数轴上表示正确的是()A.B.C.D.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答过程】解:3010xx-⎧⎨+≥⎩>①②,。

宁夏回族自治区2014年初中毕业暨高中阶段招生考试

宁夏回族自治区2014年初中毕业暨高中阶段招生考试

宁夏回族自治区2014年初中毕业暨高中阶段招生考试化学试题参考答案及评分标准说明:1.考生用其它方法作出正确答案的同样得分。

2.化学方程式中化学式(或元素符号)有错误不得分;未配平或未写反应条件扣1分;“↑”或“↓”漏标两个以上扣1分。

二、填空(共13分) 14.(4分)(1)黄瓜(1分);钙(Ca )(1分)。

(2)汽油(或洗涤剂)(1分);油渍溶解于汽油(或乳化作用)(1分)。

15.(4分)(1)乙、甲、丙(1分)。

(2)升高(1分)。

(3)5(1分);16.7%(1分)。

16.(5分)(1)达到它的着火点(1分);氧气耗尽(或缺少氧气)(1分)。

(2)水进入集气瓶中约1/5 (1分);氧气约占空气总体积的1/5 (1分)。

(3)生成二氧化碳气体,集气瓶内的气体没有减少(1分)(其他合理的答案也得分)。

三、应用(共14分) 17.(7分)(1)置换(1分);0(1分);-1(1分)。

(2)Zn 、Cu 、Ag (1分);活动性较强的金属把活动性较弱的金属从它们的盐溶液中置换出来(或Zn 能置换出Cu ,Cu 能置换出Ag )(1分);Cl 2、Br 2、I 2(1分)。

(3)Cl 2 + 2NaI = 2NaCl + I 2(1分)。

18.(7分)(1)解:设碳酸钠的质量为xNa 2CO 3 + 2HCl = 2NaCl + H 2O + CO 2↑ (1分) 106 44x 2.2g (1分)gx2.244106= (1分)g x 3.5= (1分) (2)样品中氢氧化钠的质量为:10 g -5.3g =4.7g (1分)样品中氢氧化钠的质量分数为:%47%100107.4=⨯gg(1分)答:(略)(3)与空气中的二氧化碳反应而变质(写化学方程式也正确)(1分) 四、实验探究(共20分) 19.(9分)(1)氢气(或H 2)(1分);集气瓶口向下放置,说明气体的密度比空气小(1分);氧气(或O 2)或二氧化碳(或CO 2)(1分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前宁夏回族自治区2014年初中毕业暨高中阶段招生考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列运算正确的是( ) A .236aa a =B .623a a a ÷= C .235a a a +=D .326()a a =2.已知不等式组30,10,x x -⎧⎨+⎩>≥其解集在数轴上表示正确的是()ABC D3.一元二次方程2210x x --=的解是( ) A .121x x ==B.11x =+21x =-C.11x =+21x =D.11x =-,21x =-4.实数a ,b 在数轴上的位置如图所示,以下说法正确的是()A .0a b +=B .b a <C .0ab >D .||||b a <5.已知两点111(,)P x y ,222(,)P x y 在函数5y x=的图象上,当120x x >>时,下列结论正确的是( ) A .120y y << B .210y y << C .120y y <<D .210y y <<6.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x 吨/小时,依题意列方程正确的是( )A .253520x x =- B .253520x x =+ C .253520x x=-D .253520x x=+ 7.如图是一个几何体的三视图,则这个几何体的侧面积是()主视图左视图俯视图A2cmB.2cmC .26πcmD .23πcm8.已知0a ≠,在同一直角坐标系中,函数y ax =与2y ax =的图象有可能是()ABCD第Ⅱ卷(非选择题 共96分)毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 9.分解因式:2x y y -= .10.菱形ABCD 中,若对角线长8cm AC =,6cm BD =,则边长AB = cm . 11.下表是我区八个旅游景点6月份某日最高气温(℃)的统计结果.该日这八个旅游景点12.若25a b -=,24a b -=,则a b -的值为 .13.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸出小球的标号和等于6的概率是 . 14.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是 元.15.如图,在四边形ABCD 中,AD BC ∥,2AB CD ==,5BC =,BAD ∠的平分线交BC 于点E ,且AE CD ∥,则四边形ABCD 的面积为.16.如图,将ABC △放在每个小正方形的边长为1的网格中,点A ,B ,C 均落在格点上,用一个圆面去覆盖ABC △,能够完全覆盖这个三角形的最小圆面的半径是 .三、解答题(本大题共10小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分6分)计算:23()2sin45|14--+-.18.(本小题满分6分)化简求值:22()a b a b a b a b a b+-÷-+-,其中1a =1b =+.19.(本小题满分6分)在平面直角坐标系中,ABC △的三个顶点坐标分别为(2,1)A -,(4,5)B -,(5,2)C -. (1)画出ABC △关于y 轴对称的111A B C △; (2)画出ABC △关于原点O 成中心对称的222A B C △.20.(本小题满分6分)在ABC △中,AD 是BC 边上的高,45C ∠=,1sin 3B =,1AD =.求BC 的长.21.(本小题满分6分)下图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.(1)求此人到达当天空气质量优良的天数;(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).22.(本小题满分6分)数学试卷 第5页(共24页) 数学试卷 第6页(共24页)在平行四边形ABCD 中,将ABC △沿AC 对折,使点B 落在B '处,AB '和CD 相交于点O .求证:OA OC =.23.(本小题满分8分)在等边ABC △中,以BC 为直径的O 与AB 交于点D ,DE AC ⊥,垂足为点E . (1)求证:DE 为O 的切线; (2)计算CEAE.24.(本小题满分8分)在平面直角坐标系中,已知反比例函数ky x=的图象经过点A . (1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.25.(本小题满分10分)某花店计划下个月每天购进80只玫瑰花进行销售,若下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x (080x <≤)表示下个月内每天售出的只数,y (单位:元)表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内市场销售量的频率分布直方图(每个组距包含左边的数,但不包含右边的数)如下图:(1)求y 关于x 的函数关系式;(2)根据频率分布直方图,计算下个月内销售利润少于320元的天数; (3)计算该组内平均每天销售玫瑰花的只数.26.(本小题满分10分)在Rt ABC △中,90C ∠=,3AC =,4BC =,P 是BC 边上不同于B ,C 的一动点,过P 作PQ AB ⊥,垂足为Q ,连接AP . (1)试说明不论点P 在BC 边上何处时,都有PBQ △与ABC △相似; (2)当BP 为何值时,AQP △面积最大,并求出最大值;(3)在Rt ABC △中,两条直角边BC ,AC 满足关系式BC AC λ=,是否存在一个λ的值,使Rt AQP △既与Rt ACP △全等,也与Rt BQP △全等.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共24页)数学试卷 第8页(共24页)宁夏回族自治区2014年初中毕业暨高中阶段招生考试数学答案解析第Ⅰ卷(选择题)一、选择题 1.【答案】D【解析】2356a a a a =≠g ,故选项A 错误;6243a a a a ÷=≠,故选项B 错误;2a 与3a 不是同类项,不能合并,故选项C 错误;32326()a a a ⨯==,D 正确,故选D. 【考点】幂的运算,合并同类项. 2.【答案】B【解析】先求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即3010x x -⎧⎨+⎩>①,≥②,解不等式①的3x >,解不等式②得1x -≥,∴不等式组的解集为3x >,在数轴上表示不等式组的解集应选B.【考点】在数轴上解一元一次不等式(组),在数轴上表示不等式组的解集. 3.【答案】C【解析】方程2210x x --=,配方得2(1)2x -=,解得11x =+21x = C. 【考点】解一元二次方程. 4.【答案】D【解析】根据图形可知,a 是一个负数,且12a <<,b 是一个正数,且01b <<,即可得出b a <,故选D.【考点】实数,数轴. 5.【答案】A【解析】因为反比例函数ky x=,当0k >时,图象位于第一、三象限,且在每一个象限,函数值y 随x 的增大而减小,由条件可知点1P ,2P 都在第一象限内,故它们的纵坐标0y >,因为12x x >,所以12y y <,故120y y <<,故选A. 【考点】反比例函数图象的性质.5 / 126.【答案】B【解析】设甲种污水处理器的污水处理效率为x 吨/小时,则乙种污水处理器的污水处理效率为(20)x +吨/小时,根据甲种污水处理器25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,列出方程253520x x =+,故选B. 【考点】实际问题抽象出分式方程. 7.【答案】A【解析】根据三视图可知此几何体为圆锥,底面半径1cm r =,高3cm h =,∴圆锥母线长l =,2=cm S rl π∴=侧,故选A.【考点】三视图,圆锥的计算. 8.【答案】C【解析】A 选项,函数y ax =中,0a >,2y ax =中,0a >,但当1x =时,两函数图象有交点(1,)a ,A 错误;B 选项,函数y ax =中,0a <,2y ax =中,0a >,B 错误;C 选项,函数y ax =中,0a <,2y ax =中,0a <,当1x =时,两函数图象有交点(1,)a ,C 正确;D 选项,函数y ax =中,0a >,2y ax =中,0a <,D 错误,故选C.【考点】二次函数的图象,正比例函数的图象.【提示】本题除了判别a 的符号外,还应注意两个函数的交点个数及坐标,故易错.第Ⅱ卷(非选择题)二、填空题9.【答案】(1)(1)y x x +-.【解析】一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.故原式2(1)(1)(1)y x y x x =-=+-. 【考点】用提公因式法和公式法进行因式分解.【提示】本题易忽视用平方差公式进一步分解而得答案2(1)y x -. 10.【答案】5.【解析】根据菱形的对角线互相垂直且平分求出对角线一半的长度分别是4 cm 和3 cm ,然后利用勾股定理,5cm AB .【考点】菱形的性质.数学试卷 第11页(共24页)数学试卷 第12页(共24页)11.【答案】29.【解析】将一组数据按照从小到大(或从大到小)的顺序排列,最中间的一个数或中间两个数据的平均数就是这组数据的中位数.将这组数据按照从小到大的顺序排列为24,28,28,28,30,32,32,32,则中位数为2830292+=.【考点】中位数. 12.【答案】3.【解析】本题利用了消元的思想,将两个方程的左右两边分别相加得339a b -=,故3a b -=. 【考点】解二元一次方程组.13.【答案】316.【解析】随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种可能的结果数,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),其中两次摸出的小球标号的和等于6的有3种,(2,4),(3,3),(4,2),故两次摸出的小球标号的和等于6的概率是316. 【考点】列表法或树状图法求概率. 14.【答案】200.【解析】设这款服装每件的进价为x 元,根据-=售价进价利润可得方程3000.820%x x ⨯-=,解得200x =.即这款服装每件的进价是200元.【考点】列一元一次方程解实际问题的运用(销售问题). 15.【答案】【解析】过点A 作AF BC ⊥于点F ,AD BC ∥Q ,DAE AEB ∴∠=∠,又BAE DAE ∠=∠Q ,BAE AEB ∴∠=∠,AE CD ∥Q ,AEB C ∴∠=∠,AD BC ∥Q ,2AB CD ==,∴四边形ABCD 是等腰梯形,B C ∴∠=∠,ABE ∴△是等边三角形,2AB AE BE ∴===,60B ∠=︒,sin 602AF AB ∴=︒==g AD BC ∥Q ,AE CD ∥,∴四边形AECD 是平行四边形,523AD EC BC BE ∴==-=-=,∴梯形的面积11()(35)22AD BC AF =+⨯=⨯+【考点】等边三角形的判定和性质,平行四边形的判定和性质,等腰梯形的性质. 16.【解析】如图所示,点O 为ABC △外接圆圆心,则AO 为外接圆半径,利用勾股定理得出能够完全覆盖这个三角形的最小圆面的半径为OA ==7 / 12【考点】三角形的外接圆与圆心. 三、解答题 17.【答案】259.【解析】解:23()2sin 4514--︒-161)9=+ (4分) 259=.(6分)【考点】实数的综合运算.18.【答案】12.【解析】解:22()a b a b a b a b a b +-÷-+- 22()()()()a a b b a b a b a b a b a b +--+=÷-+- 2222()()a b a ba b a b a b +-=⨯-++ 1a b=+.(5分)当1a =1b =+12=.(6分)【考点】分式的化简求值. 19.【答案】(1)画图正确. (2)画图正确. 【解析】(1)画图正确. (3分) (2)画图正确.(6分)数学试卷 第15页(共24页)数学试卷 第16页(共24页)【考点】利用旋转变换、轴对称变换作图. 20.【答案】1.【解析】解:在Rt ABD △中,1sin 3AD B AB ==Q ,又1AD =, 3AB ∴=.(2分) 222BD AB AD =-Q,BD ∴==(4分)在Rt ADC △中,45C ∠=︒Q ,1CD AD ∴==.1BC BD DC ∴=+=. (6分)【考点】三角形的高的定义,勾股定理,解直角三角形.21.【答案】(1)第1天、第2天、第3天、第7天、第12天,共5天.(2)27.(3)从第5天开始的第5天、第6天、第7天连续三天的空气质量指数方差最大.【解析】解:(1)此人到达当天空气质量优良的有:第1天、第2天、第3天、第7天、第12天,共5天.(2分)(2)此人在银川停留2天的空气质量指数是(86,25),(25,57),(57,143),(143,220),(220,158),(158,40),(40,217),(217,160),(160,128),(128,167),(167,75),(75,106),(106,180),(180,175),共14个停留时间段,期间只有一个空气质量重度污染的有:第4天到、第5天到、第7天到及第8天到.因此42147P ==(在银川停留期间只有一天空气质量重度污染).(4分) (3)从第5天开始的第5天、第6天、第7天连续三天的空气质量指数方差最大.(6分)9 / 12【考点】折线统计图,概率,方差. 22.【答案】见解析.【解析】证法一:AB C '△Q 是由ABC △沿AC 对折得到的图形,BAC B AC '∴∠=∠. (2分)在平行四边形ABCD 中,AB CD ∥Q ,BAC DCA ∴∠=∠, (4分) DCA B AC '∴∠=∠.OA OC ∴=.(6分)证法二:Q 四边形ABCD 是平行四边形,AD BC ∴=,D B ∠=∠.又AB C '△是由ABC △沿AC 对折得到的图形,BC B C '∴=,B B '∠=∠. (2分)AD B C '∴=,D B '∠=∠.又AOD COB '∠=∠,AOD COB '∴≅△△.OA OC ∴=. (6分)【考点】平行四边形的性质,等腰三角形的判定与性质,折叠的性质. 23.【答案】(1)见解析. (2)3.【解析】(1)证明:连接OD ,ABC △Q 为等边三角形,60ABC ∴∠=︒.又OD OB =Q ,OBD ∴△为等边三角形.60BOD ACB ∴∠=︒=∠,OD AC ∴∥.(2分)又DE AC ⊥Q ,90ODE AED ∴∠=∠=︒,DE ∴为O e 的切线. (4分)(2)连接CD ,数学试卷 第19页(共24页)数学试卷 第20页(共24页)BC Q 为O e 的直径,90BDC ∠=︒.又ABC △Q 为等边三角形,12AD BD AB ∴==. (6分)在Rt AED △中,60A ∠=︒,30ADE ∴∠=︒,111244AE AD AB AC ∴===.1344EC AC AC AC ∴=-=. 3CEAE∴=.(8分)【考点】切线的判定的应用,等边三角形的性质和判定,平行线的判定. 24.【答案】(1)y =(2)点B在反比例函数y =. 【解析】(11k=,即k =. ∴反比例函数的解析式为y =. (3分)(2)过点A 作x 轴的垂线交x 轴于点C .在Rt AOC △中,1OC =,AC =由勾股定理,得2OA =,60AOC ∠=︒. 过点B 作x 轴的垂线交x 轴于点D . 由题意,30AOB ∠=︒,2OB OA ==,30BOD ∴∠=︒.在Rt BOD △中,1BD =,OD =∴B点坐标为. (6分)11 / 12将xy =1y =, ∴点B在反比例函数y x=的图象上.(8分)【考点】反比例函数图象上的点的坐标特征,待定系数法求反比例函数解析式,勾股定理,坐标与图形变化.25.【答案】(1)5(80)38240y x x x =--⨯=-(080x <≤). (2)75.【解析】(1)5(80)38240y x x x =--⨯=-(080x <≤). (2)根据题意,得8240320x -<,解得70x <. 表明玫瑰花的售出量小于70只时的利润少于320元,(5分)则5060x ≤<的天数为0.1303⨯=(天),6070x ≤<的天数为0.2306⨯=(天). ∴利润少于320元的天数为369+=(天).(7分)(3)该组内平均每天销售玫瑰花:51(3)2(1)3042342757515-⨯+-⨯+-⨯+⨯+⨯+⨯+=(只)(10分)【考点】读频数分布直方图,利用统计图获取信息. 26.【答案】(1)见解析.(2)当258x =时,APQ △的面积最大,最大值是7532.(3)存在,λ=【解析】(1)证明:不论点P 在BC 边上何处时,都有90PQB C ∠=∠=︒,B B ∠=∠, PBQ ABC ∴△△:.(2分)(2)设BP x =(04x <<), 由勾股定理得5AB =.数学试卷 第23页(共24页)数学试卷 第24页(共24页)PBQ ABC △△Q :.PQ QB PBAC BC AB∴==, 即345PQ QB x ==,35PQ x ∴=,45QB x =, (4分) 21632252APQ S PQ AQ x x =⨯=-+△(6分)262575()25832x =--+. ∴当258x =时,APQ △的面积最大,最大值是7532. (8分)(3)存在.Rt Rt AQP ACP ≅△△Q ,AQ AC ∴=.又Rt Rt AQP BQP ≅△△,AQ QB ∴=.AQ QB AC ∴==.在Rt ABC △中,由勾股定理得222BC AB AC =-,BC ∴=.λ∴=Rt AQP △既与Rt ACP △全等,也与Rt BQP △全等.(10分)【考点】相似三角形的判定与性质,全等三角形的性质,三角形的面积公式,二次函数的最值的求法.。

相关文档
最新文档