多旋翼无人机理论分析
无人机应用知识:无人机多旋翼控制系统分析与设计
无人机应用知识:无人机多旋翼控制系统分析与设计随着无人机技术的发展和应用领域的扩大,无人机控制系统及其相关技术已经成为无人机研究和应用中不可或缺的一部分。
本文旨在分析和探讨无人机多旋翼控制系统的基本原理、工作过程以及相关的设计方法和技巧。
一、多旋翼控制系统基本原理多旋翼无人机控制系统可以分为四个部分:传感器、控制器、执行机构和电源。
其中传感器负责获取无人机的运动状态数据,控制器则根据传感器数据计算出运动控制信号,执行机构负责根据控制信号对无人机进行控制,电源则提供控制系统和执行机构所需的能量。
在多旋翼控制系统中,最基本的控制方式是PID控制。
PID控制根据当前偏差量,即参考信号和实际输出的差值,通过比例积分微分计算出控制信号,然后输出给执行机构对无人机进行动态调整。
二、多旋翼控制系统工作过程在多旋翼无人机起飞时,传感器系统通过加速度计、陀螺仪等获取无人机的各项运动参数,控制器则根据这些传感器数据计算出控制信号,通过电调控制无人机电机工作,从而完成飞行动作。
控制器系统根据预设好的姿态角和控制策略计算出欲输出的控制信号,该控制信号会载波调制,以无线电的方式传输给无人机上面的电调(电调是用于调节电机的电压、电流和功率,控制电机加减速的装置),电调接收到控制信号后再将处理后的指令信号传递给电机,从而实现对无人机运动状态的调整。
三、多旋翼控制系统设计方法与技巧1、传感器选择:重要的无人机传感器包括加速度计、陀螺仪、罗盘等。
这些传感器需要具备高精度、高稳定性、低功耗等特点,才能保证控制系统的准确性和鲁棒性。
2、控制器算法优化:为了更好的控制无人机,需要考虑采用更加高效、准确的PID算法。
一般来说,需要优化参数、增加控制算法等方法来提升控制算法的性能。
3、执行机构选择:执行机构包括电机、电调等。
需要考虑其所需要的功率、重量、响应速度等因素,以及相关的信号输入接口和管理软件等因素,才能满足无人机的特定需求。
4、系统稳定性:为了保证无人机控制系统的稳定性,需要对传感器、控制器和执行机构等部分进行调试和验证。
浅谈多旋翼无人机避障系统
浅谈多旋翼无人机避障系统1. 引言1.1 多旋翼无人机简介多旋翼无人机是一种以多个旋翼为主要推进装置的无人驾驶飞行器。
相比传统固定翼飞机,多旋翼无人机更为灵活多变,能够实现垂直起降和定点悬停等特殊飞行动作。
这种飞行器在军事、民用和科研领域有着广泛的应用。
多旋翼无人机不仅可以用于侦察、监测、搜救等任务,还可以用于航拍、地形测绘、农业喷洒等民用领域。
多旋翼无人机的工作原理是通过控制不同旋翼的转速实现飞行方向的调节。
通常,多旋翼无人机的旋翼数量在四个以上,最常见的为四旋翼和六旋翼。
这些旋翼通常由无刷电机驱动,可根据飞行任务的需要搭载各种传感器和设备。
多旋翼无人机的简单设计和易操作性使得它成为了无人机市场中的主力产品之一。
随着无人机技术的不断发展,多旋翼无人机的避障系统也日益完善,为其在复杂环境下的应用提供了更大的可能性。
1.2 避障系统概述避障系统是多旋翼无人机中至关重要的部分,其作用是保证无人机在飞行过程中能够避开障碍物,保证飞行的安全性和稳定性。
随着无人机技术的不断发展,避障系统也在不断改进和完善。
在避障系统中,传感器技术扮演着至关重要的角色,通过传感器对周围环境进行实时监测和感知,为无人机提供必要的信息,帮助其做出正确的飞行决策。
除了传感器技术,机载计算能力也是影响多旋翼无人机避障性能的重要因素。
机载计算能力的提升能够帮助无人机更快速地做出决策,提高避障的效率和准确性。
避障算法的研究也是避障系统中的关键内容,不断优化和改进避障算法能够使无人机更加灵活和智能地躲避障碍物。
避障系统是多旋翼无人机中不可或缺的一部分,其不仅关乎飞行安全和稳定性,也是无人机智能化和自主化的重要体现。
随着技术的不断进步和发展,多旋翼无人机的避障系统也将会不断提升和完善,为无人机的应用领域带来更广阔的发展空间。
2. 正文2.1 传感器技术在多旋翼无人机避障中的应用传感器技术在多旋翼无人机避障中的应用是非常关键的。
传感器可以实时获取周围环境的信息,包括距离、位置、速度等数据,为无人机提供准确的导航和避障能力。
涵道共轴多旋翼无人机设计研究
692023年4月上 第07期 总第403期工艺设计改造及检测检修China Science & Technology Overview的外围增加涵道,通过涵道减小不同轴上的气动干扰。
1.旋翼系统设计1.1 桨叶设计由于本文主要为验证共轴双旋翼式无人机旋翼系统的悬停状态下这种影响最为强烈[1];下旋翼对上旋翼的影响主要是流态的影响,其影响较小,和单旋翼的状态相差不多。
考虑到这些气动干扰,在对共轴多旋翼进行气动分析时就不能使用叶素理论及滑流理论,应采用涡流理论,计收稿日期:2022-10-09作者简介:李沂霏(1991—),男,云南昭通人,硕士研究生,助教,研究方向:旋翼动力学。
涵道共轴多旋翼无人机设计研究李沂霏 沈志华 王道榆 杨卫东(南通职业大学,江苏南通 226000)摘 要:多旋翼无人机凭借其较高的稳定性及操纵性,应用领域越来越广泛,但在广泛的应用中,也暴露出一些问题,螺旋桨无法改变桨距,使得其气动效率低于直升机旋翼,又加上多个螺旋桨相距较近,会产生较为严重的气动干扰,进一步降低了它的气动效率。
本文设计了一种涵道共轴多旋翼无人机系统,通过固定涡系理论,验证了其可行性,与当前的多旋翼无人机相比,具有一定的气动优势,可进一步进行相关研究。
712023年4月上 第07期 总第403期工艺设计改造及检测检修China Science & Technology Overview下旋翼只有一部分面积处于上旋翼的滑流里,但上旋翼则完全处在下旋翼的滑流里,在处理过程中,认为共轴旋翼系统的滑流边界和单旋翼结构是一致的[4],因此,直接使用单旋翼的滑流边界带入到本计算中,进一步减轻计算难度,通过计算验证,发现这样处理带来的误差不大,可以接受。
对于前飞情况,考虑到环量沿方位角变化,将环量表示成Fourier 级数的形式,并取到一阶。
011cos sin c s θθΓ=Γ+Γ+Γ (15)Abstract:Multi rotor UAV has been used more and more widely due to its high stability and maneuverability. However,some problems have also been exposed in the extensive application. The propeller cannot change the pitch, which makes its aerodynamic efficiency lower than that of the helicopter rotor. In addition, multiple propellers are close to each other, which will produce more serious aerodynamic interference, further reducing its aerodynamic efficiency. In this paper, a ducted coaxial multi rotor UAV system is designed, and its feasibility is verified by the fixed vortex system theory. Comparedwith the current multi rotor UAV , it has certain aerodynamic advantages, which can be further studied.Key words:coxial;fixed vortex;rotor;multirotor。
多旋翼农用植保无人机设计研究
多旋翼农用植保无人机设计研究一、设计理念多旋翼农用植保无人机的设计理念主要包括轻量化、高效化和智能化。
首先是轻量化设计,通过采用轻质材料和结构设计优化,尽量减小无人机自身的重量,以提高无人机的携载能力和飞行效率。
其次是高效化设计,通过优化无人机的动力系统、飞行控制系统和农药喷洒系统等,以提高无人机的工作效率和喷洒精度。
最后是智能化设计,通过引入先进的智能控制系统和无人机自主飞行技术,实现无人机自主飞行、自动喷洒和智能避障等功能,提高无人机的智能化水平和工作效率。
二、结构设计多旋翼农用植保无人机的结构设计主要包括机身结构、动力系统、飞行控制系统和载荷系统。
机身结构采用轻质碳纤维材料制作,并采用模块化设计,便于维修和更换零部件。
动力系统采用电动推进,通过多个无刷电机带动螺旋桨进行垂直起降和水平飞行。
飞行控制系统采用惯性导航和GPS定位技术,配合激光测距和避障传感器,实现无人机的自主飞行和智能避障。
载荷系统采用高精度喷雾器和农药液槽,通过电泵和喷洒控制系统实现农药的精准喷洒。
三、农药喷洒系统多旋翼农用植保无人机的农药喷洒系统主要包括喷雾器、液槽、泵浦和喷洒控制系统。
喷雾器采用高精度喷头,能够实现农药雾化喷洒,保证农药均匀覆盖在作物表面,并且能够根据作物的生长情况进行喷洒量的调整。
液槽采用轻质材料制作,并能够容纳足够的农药液体,以满足大面积作物的农药喷洒需求。
泵浦采用高效电泵,能够实现农药液的快速供给,保证喷洒系统的稳定运行。
喷洒控制系统采用先进的电子控制技术,能够实现农药喷洒量的精准控制,并能够根据作物的生长情况和作业环境的变化进行智能调整。
四、智能控制系统多旋翼农用植保无人机的智能控制系统主要包括飞行控制系统、导航定位系统和遥控调度系统。
飞行控制系统采用先进的惯性导航、GPS定位和飞行姿态控制技术,能够实现无人机的自主起飞、飞行和降落。
导航定位系统采用高精度的GPS和激光测距技术,能够实现无人机的精确定位和智能航线规划,以及对飞行环境的智能感知。
多旋翼无人机飞行原理
多旋翼无人机飞行原理
多旋翼无人机是一种通过多个旋翼进行飞行的无人机器,其飞行原理主要是通过旋翼的升力产生来实现飞行。
在多旋翼无人机中,旋翼的设计和工作原理对于飞行性能至关重要。
首先,多旋翼无人机的飞行原理涉及到空气动力学和机械工程的知识。
在飞行过程中,旋翼通过加速气流来产生升力,从而支撑无人机的重量。
旋翼的设计和布局直接影响着无人机的飞行性能,包括稳定性、操控性和飞行效率等方面。
其次,多旋翼无人机的飞行原理还涉及到飞行控制系统。
通过调节旋翼的转速和倾斜角度,飞行控制系统可以实现无人机的升降、前进、后退、转向等各种飞行动作。
飞行控制系统的精密度和稳定性直接影响着无人机的飞行性能和安全性。
另外,多旋翼无人机的飞行原理还涉及到能源系统。
旋翼的旋转需要消耗大量的能量,而无人机需要携带足够的能源来支撑飞行任务的完成。
因此,能源系统的设计和管理对于无人机的续航能力和飞行效率具有重要影响。
此外,多旋翼无人机的飞行原理还涉及到传感器和数据处理系统。
无人机需要通过传感器获取周围环境的信息,并通过数据处理系统实现自主飞行、避障和任务执行等功能。
传感器的精度和数据处理系统的算法对于无人机的智能化和自主性具有重要影响。
总的来说,多旋翼无人机的飞行原理是一个复杂的系统工程,涉及到空气动力学、机械工程、飞行控制、能源系统、传感器和数据处理等多个领域。
只有在这些方面都取得了良好的平衡和协调,无人机才能够实现稳定、高效、安全的飞行。
随着科技的不断进步,多旋翼无人机的飞行原理也在不断完善和创新,为无人机的发展开辟了更加广阔的空间。
多旋翼无人机的原理
多旋翼无人机的原理
多旋翼无人机是一种通过多个旋翼来产生升力和控制飞行的飞行器。
其原理基于飞行器在空气中产生升力,并通过改变旋翼的转速和姿态来控制飞行方向。
多旋翼无人机通常由一个或多个旋翼组成,每个旋翼由一个电动马达驱动,通过螺旋桨产生向上的推力。
这些旋翼安装在飞行器的平衡板上,通过控制各个旋翼的转速和提升力分配来实现飞行。
在飞行过程中,通过调整各个旋翼的转速,可以使飞行器在空中悬停、上升或下降。
通过改变旋翼的倾斜角,可以实现向前、后、左、右等方向的飞行。
旋翼的倾斜角度可以通过改变飞行器的姿态来实现,通常通过控制机身前后倾斜、左右倾斜和偏航来控制。
多旋翼无人机还可以通过配备陀螺仪和加速度计等传感器来实现自稳定和姿态控制。
陀螺仪可以感知飞行器的姿态变化,通过自动调整旋翼的转速来保持平衡。
加速度计可以感知飞行器的速度和加速度变化,通过自动调整旋翼的转速来保持稳定飞行。
此外,多旋翼无人机还可以通过配备GPS导航系统来实现自
动导航和定位。
通过GPS系统,飞行器可以获取自身的位置
信息,并根据预设的航点来自动飞行。
总之,多旋翼无人机通过调整旋翼的转速和姿态来实现升力和
飞行控制。
搭配各种传感器和导航系统,可以实现自稳定、自动导航和定位等功能,广泛应用于航拍、物流、农业等领域。
无人机飞行原理—多旋翼无人机飞行原理
方式安排,抵消反转矩。如图所示,电机1和电机3逆时针转动、电动机2和4则顺时针转动,四个电机的反
转矩彼此抵消。
左 + 右 = 右 + 左
四、多旋翼无人机飞行原理
操纵性
1、垂直运动
垂直运动,是指无人机克服自身重力进行上升和下降的运动。是其最基本的功能,X型四旋翼
1 = 2 , 3 = 4
1 + 2 + 3 +4 =
当3 + 4 > 1 +2 时,则无人机在转矩的作用下将绕着纵轴(X轴)产生转动,即右横滚运动;若
3 + 4 < 1 +2 ,则无人在转矩的作用下将绕着纵轴(X轴)产生转动,将实现左横滚运动。
四、多旋翼无人机飞行原理
调节电机转速,来改变总升力 的大小实现。
四、多旋翼无人机飞行原理
操纵性
2、俯仰运动
俯仰运动,是指无人机能绕横轴(Y轴)转动,以无人机机体纵轴(X轴)正方向为无人机前
进方向,X型四旋翼无人机的俯仰运动示意图。
要做俯仰运动,通过改变电动机的转速,使得升力 1 、 2 、 3 、 4 变化,不再保持相等,
相等,并且升力的合力大于重力,但仍然保持对角的反转矩之和相同,即:
1 = 2 , 3 = 4
1 + 2 > 3 +4
1 + 2 + 3 +4 >
1 + 3 = 2 +4
此时,无人机做横滚运动,升力在水平方向的分力,对左右位移进行修正和控制,横滚角为 ,当满足
升力的垂直分力与重力相等时,即 = ,在没有外力干扰的情况下,四旋翼无人机将在水平分力
多旋翼无人机飞行原理
多旋翼无人机飞行原理
多旋翼无人机是一种利用多个旋翼进行升降和悬停的飞行器,它在军事、民用、科研等领域有着广泛的应用。
其飞行原理主要涉及到空气动力学、控制系统和飞行动力学等方面的知识。
下面将详细介绍多旋翼无人机的飞行原理。
首先,多旋翼无人机的飞行原理与传统飞机有所不同。
传统飞机通过翅膀产生
升力,而多旋翼无人机则是通过旋翼产生升力。
每个旋翼都由一根旋翼桨叶和一个马达组成,它们可以通过控制旋翼桨叶的转速和倾斜角来调节飞行器的升力和姿态。
多旋翼无人机通常有四个以上的旋翼,这样可以提高飞行器的稳定性和操控性。
其次,多旋翼无人机的飞行原理涉及到空气动力学。
旋翼在飞行中产生升力的
过程中,会受到空气的阻力和扭矩的影响。
为了保持飞行器的稳定性,需要对旋翼的转速和倾斜角进行精确控制。
此外,飞行器的机身设计、气动外形和布局也会对飞行性能产生重要影响。
再次,多旋翼无人机的飞行原理还涉及到飞行动力学。
飞行器在飞行过程中需
要保持平衡、稳定和灵活。
这就需要通过控制系统对飞行器进行精确的控制。
控制系统通常包括姿态稳定系统、导航系统、飞行控制系统等,它们可以通过传感器获取飞行器的状态信息,并通过电子控制器对旋翼进行精确控制。
综上所述,多旋翼无人机的飞行原理涉及到空气动力学、控制系统和飞行动力
学等多个方面的知识。
通过对这些知识的深入理解和应用,可以设计出性能优良、稳定可靠的多旋翼无人机。
未来随着科技的不断发展,多旋翼无人机的飞行原理也将得到进一步完善和提升,为人类带来更多的便利和帮助。
多旋翼无人机原理
多旋翼无人机原理
多旋翼无人机是一种由多个旋翼组成的飞行器,它通过改变每个旋翼的旋转速度和方向,来实现飞行控制。
多旋翼无人机的旋翼通常由电动机和螺旋桨组成,通过电机驱动螺旋桨旋转产生升力。
通常,多旋翼无人机的旋翼数量为四或六个,不同数量的旋翼会对其飞行性能和稳定性产生影响。
多旋翼无人机的飞行原理基于空气动力学和动力学原理。
当旋翼旋转产生升力时,无人机可以在空中悬停、上升、下降、向前、向后、向左、向右等方向飞行。
通过调整旋翼的旋转速度和方向,无人机可以实现各种复杂飞行动作,如盘旋、飞行路径的变换、悬停等。
多旋翼无人机的飞行控制通常使用惯性测量单元(IMU)和飞行控制系统。
IMU可以通过加速度计和陀螺仪等传感器来测量无人机的姿态、加速度和旋转速度等参数,将这些参数传输给飞行控制系统进行实时分析和处理。
根据预设的飞行控制指令,飞行控制系统可以调整每个旋翼的旋转速度和方向,以实现精确的姿态和飞行控制。
除了飞行控制系统,多旋翼无人机还配备了其他关键组件,如电池、电调和遥控器。
电池为无人机提供能量,电调可以控制电机的转速和方向,而遥控器则用于远程操控无人机的飞行。
总之,多旋翼无人机的飞行原理是通过调整每个旋翼的旋转速度和方向,来实现飞行控制。
飞行控制系统根据传感器测量参数和预设指令,对无人机进行精确的姿态和飞行调整。
这些动
作的实施需要依赖其他关键组件的配合,如电池、电调和遥控器。
多旋翼无人机理论教材
1.2 无人机的分类
按活动半径分类:超近程(活动半径在15km以内)、近程(活动半径在1550km之间)、短程(活动半径在50-200km之间)、中程(活动半径在200800km之间)和远程(活动半径大于800km) 按任务高度分类:超低空(任务高度在0-100m之间)、低空(100-1000m之 间)、中空(1000-7000m之间)、高空(7000-18000m之间)、超高空(大于 18000m)。
行记录,飞行时远离干扰源(高压线对飞行器飞控IMU、图传、遥控信号均 会产生不同程度干扰)。
3)、规划飞行航线时,不要从人口密集地方飞过(飞行器失事仅仅是经济
损失,锋利的螺旋桨划伤人就是重大损失),非镜头需要不要从水库、江河、 湖泊等地方飞过(航拍作业所有数据存储于SD卡上,飞行器失事会导致前面
的的数据全部丢失)。
(5)前后运动:要想实现飞行器在水平面内前后、左右的运动, 必须在水平面内对飞行器施加一定的力。在图 e中,增加电机 3转速, 使拉力增大,相应减小电机 1转速,使拉力减小,同时保持其它两个 电机转速不变,反扭矩仍然要保持平衡。按图 b的理论,飞行器首 先发生一定程度的倾斜,从而使旋翼拉力产生水平分量,因此可以 实现飞行器的前飞运动。向后飞行与向前飞行正好相反。(在 图 b 图 c中,飞行器在产生俯仰、翻滚运动的同时也会产生沿 x、y 轴的水平运动。) (6)倾向运动:在图 f 中,由于结构对称,所以倾向飞行的工作 原理与前后运动完全一样。
1.2 无人机的分类 无人机可按飞行平台构型、用途、尺度、活动半径、任务高度 等方法进行分类。 按飞行平台构型分类:固定翼、旋翼机、无人飞艇、伞翼无人 机、扑翼无人机。 按用途分类:军用和民用两大类 按尺度分类(民航法规):微型(空机质量小于等于7Kg的无人 机)、轻型(空机质量大于7Kg,小于等于116kg)、小型(空机质 量小于等于5700kg)、大型无人机(空机质量大于5700kg)。
多旋翼无人机理论资料
操作空间。避免无关人员与工作人员进行身体接触(有时候会出现有
人轻拍飞手手臂进行询问的情况)。
4.1无人机安全飞行要领 7)、对山区进行拍摄时,起飞升空后你需要在监视器上仔细辨认 飞行器起飞点,了解大概位置。当飞行器飞远后在回航途中起飞点 会隐藏于绿色植物中,此时就无法找到降落点(起飞点与降落点是
同一地方)。
4.1无人机安全飞行要领 4)、当风速高于四级风(5.5-7.9m/s)建议不进行航怕作业。 5)、雨天建议不进行航拍作业,如特殊要求需在雨天进行拍摄,必 须对飞控、电调、飞行器马达、相机、云台马达做防水处理。 6)、航拍作业时,你需要全神灌注对飞机进行操作。在市区航拍可 能会引起其他无关人员的好奇心。会对飞手、云台手及助理进行各种 询问,请无视他们。并维护好操作现场的秩序,给工作人员留出好的
(一)起飞前基础检查 4、展开飞行器,检查飞行器螺旋桨、电调、马达是否完好。螺 丝是否有松动现象(飞行器飞行时产生高频振动,可能会使螺丝 松动)。检查飞行器机架结构是否完整。云台防分离卡扣是否锁 死。(特别检查highonepro力臂转动螺丝是否松动、云台重心调 整好) 5、检查GPS天线方向是否与机头一致,如图GPS天线方向与机 头方向存在夹角,逆时针旋转θ°即可。 6、电量显示报警器是否插于飞行器 动力电池的平衡口。
行记录,飞行时远离干扰源(高压线对飞行器飞控IMU、图传、遥控信号均 会产生不同程度干扰)。
3)、规划飞行航线时,不要从人口密集地方飞过(飞行器失事仅仅是经济
损失,锋利的螺旋桨划伤人就是重大损失),非镜头需要不要从水库、江河、 湖泊等地方飞过(航拍作业所有数据存储于SD卡上,飞行器失事会导致前面
的的数据全部丢失)。
无刷电机(4个)电机型号:6210/380kv 动力总成 电子调速器 (4个) 螺旋桨(4个,两正两反) 控制系统 飞行控制器(飞控) 遥控器 动力储备 3逆时针旋转的同时,电机 2和电机 4顺 时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被 抵消。 在上图中,电机 1和电机 3作逆时针旋转,电机 2和电机 4作顺时针旋 转,规定沿 x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表 示此电机转速提高,在下方表示此电机转速下降。 (1)垂直运动:同时增加四个电机的输出功率, 旋翼转速增加使得总的拉力增大,当总拉力足以克 服整机的重量时,四旋翼飞行器便离地垂直上升; 反之,同时减小四个电机的输出功率,四旋翼飞行 器则垂直下降,直至平衡落地,实现了沿 z轴的垂直 运动。当外界扰动量为零时,在旋翼产生的升力等于 飞行器的自重时,飞行器便保持悬停状态。
多旋翼无人飞行器关键技术研究共3篇
多旋翼无人飞行器关键技术研究共3篇多旋翼无人飞行器关键技术研究1多旋翼无人飞行器关键技术研究随着人们对高效、安全、精准定位的需求不断增强,无人飞行器逐渐被广泛应用于各个领域。
其中最为常见的多旋翼无人飞行器,也因其灵活性高、适应性强等特点受到广泛青睐。
然而,要想实现无人飞行器的完美飞行,必须依托于多项关键技术的研究。
一、多旋翼无人飞行器的控制系统多旋翼无人飞行器的控制系统是实现其高级控制算法的基础。
由于多旋翼无人飞行器在飞行过程中需要快速地根据环境的变化做出相应的控制调整,因此其控制系统需要具有高性能、高可靠性的特点。
常见的多旋翼无人飞行器控制系统分为两种:定姿控制和导航控制。
“定姿控制”主要用于保证无人飞行器,在飞行过程中保持稳定的姿态;“导航控制”则关注如何将无人飞行器引导到正确位置。
两种控制方法均需要精准的测量数据和嵌入式算法实现。
二、无人飞行器数据的实时采集和处理多旋翼无人飞行器的控制系统所依托的,是从传感器中采集到的数据。
因此,实现多旋翼无人飞行器的高级控制算法必须在采集数据的同时对其进行实时处理。
无人飞行器需要采集各种类型的数据包括但不限于:空气动力学、加速度、地磁、陀螺仪以及飞行期间的位置反馈和姿态指引等数据。
而这些数据的实时采集和处理是实现无人飞行器高效控制算法的基础,不同的传感器的高效组合,决定了多旋翼无人飞行器的智能化程度。
三、碰撞风险识别与避免技术的研究多旋翼无人飞行器在飞行过程中,必然会遇到各种障碍物,如高楼、电线杆、天桥等,这些障碍物将带来碰撞风险。
如果无人飞行器在遇到障碍物时不能及时识别,那么就会发生碰撞事故。
通过识别并避免障碍物,无人飞行器可以在障碍物间高速舞动,从而保证飞行的安全。
四、机器视觉技术多旋翼无人飞行器整个过程中受到的物理和科技因素都是需要用机器视觉手段进行图像的重构和处理,而多旋翼无人飞行器内部的传感器、控制器以及导航器往往受到“遮挡”“模糊”等诸多不利因素,导致机器视觉技术难以顺利实现。
多旋翼无人机的介绍和航拍应用浅谈
飞行器航空器
无人多
旋翼轻于
空气
气球
飞艇
重于
空气
旋翼
固定翼
共轴、纵列、
横列双旋翼
多旋翼
自转旋
翼机
直升机
航天器
卫星
火箭
有人多
旋翼
升力的标准公式Lift=1/2 CyρV²S
结构子系统
机载链
路子系统遥控接收机、机载数传模块及天线、机载图传模块和天线
典型多
旋翼无人机系统链路
分系
统
飞行
器平
台分
系统
飞控子
系统
动力子
系统
机架、脚架、云台
主板控、飞控软件、外接式IMU、
GPS、其他外接传感器
桨、电机、电调、电池、充电器
地面
站分
系统
地面链
路子系
统
遥控子
系统
(操纵)
遥测子
系统
(显示)
遥控发射机杆、开关、键盘、鼠
标等
遥控发射机、地面数传模块和天
线、地面图传模块及天线
飞控地面站界面、图传显示屏、
OSD
飞控内外回路(姿态、位置)均不参与控制飞控内回路稳定姿态,外回路稳定位置,人来影响修正位置飞控内回路稳定姿态,人来影响姿态以改变位置军用:舵面遥控民用:纯手动模式
军用:姿态遥控
民用:姿态或曾稳模式
军用:人工修正
民用:GPS 模式
飞控内回路稳定姿态,外回路根据航点设置控制位置
军用:自主
民用:航线飞行
注意线的顺序
thanks。
多旋翼无人机的飞行控制(二)
一、多旋翼无人机的飞行控制
多旋翼无人机的螺旋桨也会产生这样的反扭矩,使无 人机疯狂自旋。为克服旋翼旋转时的反作用力矩问题,多 旋翼无人机让多个旋翼按照不同方式转动,来克服彼此之 间的反扭矩,使总扭矩为0。
在四旋翼无人机中,相邻的两个 螺旋桨旋转方向是相反的。如右图所 示,三角形红箭头表示飞机的机头朝 向,螺旋桨M1、M3的旋转方向为逆 时针,螺旋桨M2、M4的旋转方向为 顺时针。当飞行时,M2、M4所产生 的逆时针反作用力(反扭矩)和M1、 M3产生的顺时针反作用力(反扭矩) 相抵消,飞机机身就可以保持稳定, 不会像“大雄“那样“疯狂”自转了。
一、多旋翼无人机的飞行控制
3、滚转运动:与图 b 的原理相同,在图 c 中,改变 电机 2和电机 4的转速,保持电机1和电机 3的转速不变, 则可使机身绕 x 轴旋转(正向和反向),实现飞行器的滚 转运动。
一、多旋翼无人机的飞行控制
4、偏航运动:旋翼转动过程中由于空气阻力作用会形成与转 动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两 个正转,两个反转,且对角线上的各个旋翼转动方向相同。反扭矩 的大小与旋翼转速有关,当四个电机转速相同时,四个旋翼产生的 反扭矩相互平衡,四旋翼飞行器不发生转动;当四个电机转速不完 全相同时,不平衡的反扭矩会 引起四旋翼飞行器转动。在 图 d中,当电机 1和电机 3 的转速上升,电机 2 和电机 4 的转速下降时,旋翼 1和 旋翼3对机身的反扭矩大于 旋翼2和旋翼4对机身的反扭 矩,机身便在富余反扭矩的 作用下绕 z轴转动,实现飞 行器的偏航运动,转向与 电机 1、电机3的转向相反。
一、多旋翼无人机的飞行控制
6、侧向运动:在图 f 中,由于结构对称,所以倾向 飞行的工作原理与前后运动完全一样。
简述多旋翼无人机的飞行原理
简述多旋翼无人机的飞行原理多旋翼无人机是一种利用多个电动螺旋桨产生升力和控制飞行姿态的飞行器。
其飞行原理主要涉及到气动学、动力学和控制理论等方面。
一、气动学原理1. 空气动力学基础空气是一种流体,当物体在空气中运动时,会受到空气的阻力和升力的作用。
升力是垂直于流体运动方向的力,它是由于物体表面上方的流体速度比下方快而产生的。
根据伯努利定律,速度越快的流体压强越低,因此在物体表面上方形成了一个低压区域,从而产生了升力。
2. 旋翼产生升力原理多旋翼无人机利用电动螺旋桨产生升力。
螺旋桨是一种叶片形状呈扁平椭圆形的转子,在转动时会将周围空气向下推送,从而产生反作用力使得无人机获得向上的升力。
同时,螺旋桨还可以通过改变叶片角度来调节升降速度。
3. 旋翼产生的气流对姿态控制的影响旋翼产生的气流会对无人机的姿态控制产生影响。
例如,当无人机向前飞行时,前方螺旋桨产生的气流会使得无人机头部上仰;而后方螺旋桨产生的气流则会使得无人机头部下俯。
因此,通过调节各个螺旋桨的转速和叶片角度来实现姿态控制。
二、动力学原理1. 动力学基础动力学是研究物体运动状态和运动规律的学科。
在多旋翼无人机中,电动螺旋桨提供了推力,从而使得无人机具有向上飞行的能力。
2. 电动螺旋桨推力计算电动螺旋桨推力与其转速和叶片角度有关。
一般来说,推力与转速成正比,与叶片角度成平方关系。
因此,在设计多旋翼无人机时需要根据所需升降速度和搭载重量等因素来确定电动螺旋桨数量、大小和转速等参数。
三、控制理论原理1. 控制理论基础控制理论是研究如何使系统达到期望状态的学科。
在多旋翼无人机中,通过调节各个螺旋桨的转速和叶片角度来实现姿态控制和飞行控制。
2. 姿态控制姿态控制是指调节无人机的姿态,使其保持稳定飞行。
一般来说,可以通过加速度计、陀螺仪和罗盘等传感器来获取无人机的姿态信息,然后通过PID控制器等算法来调节螺旋桨转速和叶片角度。
3. 飞行控制飞行控制是指调节无人机的飞行状态,包括升降、前进、后退、左右平移等动作。
多旋翼无人机标准
多旋翼无人机标准无人机技术的迅猛发展,使得无人机已经成为现代社会中举足轻重的一部分。
作为无人机的重要分类之一,多旋翼无人机的应用越来越广泛。
然而,由于无人机市场的迅速膨胀和多样化,缺乏统一的标准和规范,给无人机的设计、生产和应用带来了种种问题。
为了确保多旋翼无人机的安全、稳定和可靠性,制定和遵守多旋翼无人机的标准变得尤为重要。
一、背景及意义现代多旋翼无人机广泛应用于军事、民用、商业等领域。
无论是用于军事侦察,还是用于航拍摄影,多旋翼无人机都承担着重要任务。
然而,由于飞行器的特殊性质和复杂性,其设计、生产、操作等方面存在着一定的风险和挑战。
因此,制定多旋翼无人机标准显得十分必要。
二、标准的制定多旋翼无人机标准的制定应该综合考虑多个因素,包括但不限于以下几个方面:1. 设计标准:包括机身结构、材料选择、电路设计等方面的要求,确保无人机的机械强度和电气安全。
2. 制造标准:包括生产工艺、装配要求、质量控制等方面,确保无人机在生产过程中的一致性和质量。
3. 操作标准:包括驾驶员培训、操作规程、飞行限制等方面的规定,确保飞行安全和操作规范。
4. 通信标准:包括与其他无人机或地面设备的通信协议和接口标准,确保无人机与其他设备的互操作性。
5. 安全标准:包括飞行安全、隐私保护、数据安全等方面的规定,确保无人机使用的安全性和可信性。
三、标准的应用与益处制定和遵守多旋翼无人机标准有助于推动无人机技术的发展和应用。
具体的应用与益处包括但不限于以下几个方面:1. 缩小市场差异:统一的标准有助于不同制造商和供应商的无人机产品之间的互操作性和兼容性,缩小市场差异,提高市场竞争力。
2. 提高产品质量:符合标准的设计、生产和操作,有助于确保无人机的质量和性能,并且降低故障和事故的风险。
3. 保障飞行安全:制定操作标准,包括培训和规程等,有助于提高驾驶员的技能水平和飞行安全意识,减少飞行事故的发生。
4. 维护隐私和保护数据:合理的安全标准可以保护用户的隐私和数据安全,防止未经授权的数据收集和滥用。
无人机飞行原理 项目4 旋翼无人机飞行原理
螺旋桨升力产生的原理
转速固定的情况下,螺距越大,升力越大。
多旋翼无人机拉力控制原理
● 螺旋桨旋转产生拉力,拉力随着转速的 增加而增加; ● 当螺旋桨的拉力等于其所承受的重力时, 无人机处于悬停状态; ● 当转速增加进一步提高时,拉力则持续 上升,这时无人机就会上升; ● 对于多旋翼无人机而言通过控制螺旋桨 转速就可以实现对无人机升力的控制。
◆桨叶的空气动力 • 阻力 (1)空气动力R在发动机垂直于轴线方向的分力。 (2)阻力的方向与桨叶切向速度的方向相反。 • 阻力力矩 (1)阻力与到桨轴中心距离的乘积就是阻力力矩,
它由发动机轴的旋转力矩来克服。 (2)只有发动机输出力矩与其平衡,螺旋桨才能保
持等速旋转。
4. 螺旋桨产生升力和阻力的原理
φ
桨弦 α γ
相对气流 旋转平面
3. 螺旋桨理论
• 飞行速度为v,螺旋桨转速为w时, 某一截面处桨叶旋转切速度u, 螺旋桨运动的速度三角形:
wuv
3. 螺旋桨理论 ①桨叶迎角α随桨叶角φ的变化
为常数时 为常数时
φ
桨弦
α r
相对气流
旋转平面
3. 螺旋桨理论 ②桨叶迎角α随飞行速度v的变化
本节知识 点
01 螺 旋 桨 简 述
02 螺 旋 桨 的 几 何 参 数
03 螺 旋 桨 理 论
04 螺 旋 桨 产 生 拉 力 和 旋 转 阻 力 的 原 理
05 影 响 螺 旋 桨 拉 力 和 阻 力 的 因 素
螺旋桨用在哪些方面?
1. 螺旋桨简述 • 螺旋桨
• 螺旋桨是一种旋转的翼型(aerofoil), 它固定在中心桨毂(hub)上, 桨毂直接或通过减速器安装在发动机轴上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微风,通过峡谷的聚拢作用风速会上升。当上升气流速度达到
1.5m/s时,此时下降速度同上升气流速度抵消,飞行器会保持高度 无法降落。
4.1无人机安全飞行要领 9)、对于特别复杂的拍摄环境(如高楼、烟囱、塔等),需指派一
1.2 无人机的分类
按活动半径分类:超近程(活动半径在15km以内)、近程(活动半径在1550km之间)、短程(活动半径在50-200km之间)、中程(活动半径在200800km之间)和远程(活动半径大于800km) 按任务高度分类:超低空(任务高度在0-100m之间)、低空(100-1000m之 间)、中空(1000-7000m之间)、高空(7000-18000m之间)、超高空(大于 18000m)。
(一)起飞前基础检查 4、展开飞行器,检查飞行器螺旋桨、电调、马达是否完好。螺 丝是否有松动现象(飞行器飞行时产生高频振动,可能会使螺丝 松动)。检查飞行器机架结构是否完整。云台防分离卡扣是否锁 死。(特别检查highonepro力臂转动螺丝是否松动、云台重心调 整好) 5、检查GPS天线方向是否与机头一致,如图GPS天线方向与机 头方向存在夹角,逆时针旋转θ°即可。 6、电量显示报警器是否插于飞行器 动力电池的平衡口。
电流单独对样时,再整组电池充电,充满后,再用小电流放电,如此两三个 循环,一般几个循环下来,电池的电压就能保存一致了。这是存 储中造成的电压不平衡,而不是电池本身有问题。
(三)起飞前的通电检查 打开遥控器器电源(打开前将油门保持在低位),监视器电 源,相机电源。飞行器上电后检查LED模块闪灯序列,如为 证明飞控系统初始化正常。再观察监视 器有无图像传出,有图像及证明云台初始化正常。 (四)飞行器的磁场校准 每天进行拍摄任务时第一个起落,应对飞行器进行磁场校准。 当更换拍摄场地,且场地与第一个起落场地直线距离大于100km 时,请进行磁场校准。
行记录,飞行时远离干扰源(高压线对飞行器飞控IMU、图传、遥控信号均 会产生不同程度干扰)。
3)、规划飞行航线时,不要从人口密集地方飞过(飞行器失事仅仅是经济
损失,锋利的螺旋桨划伤人就是重大损失),非镜头需要不要从水库、江河、 湖泊等地方飞过(航拍作业所有数据存储于SD卡上,飞行器失事会导致前面
的的数据全部丢失)。
1.2 无人机的分类 无人机可按飞行平台构型、用途、尺度、活动半径、任务高度 等方法进行分类。 按飞行平台构型分类:固定翼、旋翼机、无人飞艇、伞翼无人 机、扑翼无人机。 按用途分类:军用和民用两大类 按尺度分类(民航法规):微型(空机质量小于等于7Kg的无人 机)、轻型(空机质量大于7Kg,小于等于116kg)、小型(空机质 量小于等于5700kg)、大型无人机(空机质量大于5700kg)。
(4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转 动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两 个正转,两个反转,且对角线上的各个旋翼转动方向相同。反扭矩 的大小与旋翼转速有关,当四个电机转速相同时,四个旋翼产生的 反扭矩相互平衡,四旋翼飞行器不发生转动;当四个电机转速不完 全相同时,不平衡的反扭矩会引起四旋翼飞行器转动。在图 d中, 当电机 1和电机 3 的转速上升,电机 2 和电机 4 的转速下降时,旋 翼 1和旋翼3对机身的反扭矩大于旋翼2和旋翼4对机身的反扭矩,机 身便在富余反扭矩的作用下绕 z轴转动,实现飞行器的偏航运动, 转向与电机 1、电机3的转向相反。
5. 水平校准:将飞行器放平(姿态误差在 5 度以内,可以用手抱 着),然后缓慢地转两到三圈。转动过程中,保证外接 LED 灯蓝灯常 亮, 否则,须重新调整好飞行器后,再继续转动。 垂直校准:将飞行器的机头垂直朝下(姿态误差在 5 度以内), 然后缓慢地转两到三圈。转动过程中,保持蓝灯常亮。否则,先停下 来,调整好飞行器后再继续转动。等待飞控处理记录下来的磁数据。 处理过程中紫灯长亮,紫灯熄灭后,校准结束。地面站会自动切换到 遥控界面,显示一 蓝一红两个圆圈,如下图所示。如果红蓝两圈基本 重合,说明校准成功;如果不是,需要重新执行一次校准操作。
飞行器校准方法:(手机地面站校准)
1.遥控器切到手动模式,油门收到底。 2.点击“设置”页签,进入“设置” 界面,如图所示。 3.点击“磁罗盘”,弹出执行校准对 话框,如图所示。 4.选中“水平校准磁罗盘”,点击“确 定”,进入水 平校准环节。如果不 想继续执行,可以选择“放弃” 并 确定。
飞行器磁罗盘校准方法:
图依次为优、合格、不合格
(五)飞行器的保养
飞行器使用时间较长后,中心板等角落会积累灰尘,需要 定期将设备进行拆卸对角落灰尘进行清理。此外飞行器螺 丝使用时间过长由于重庆地区空气湿润,易产生锈蚀,需 要进行更换。马达与电调的接头处,由于长期的振动,需 要不定期的进行维护。
五、Li电池的保养问题 1)、新电池的正确认识 一般出厂的模型锂电池,电压保存在3.75-3.85V左右,这个是最 佳的保存电压。拿到新电池,如果每片电池电压不平衡可以用小
4.2无人机地面检查操作规范和要领 良好的地情检查是飞行安全的保障,减少安全事故,延长设备使 用寿命。 (一)起飞前基础检查 飞行器起飞前你需要做好如下检查 1、监视器上电,检查监视器电量是否充足。 2、遥控器发射机开机,检查遥控器电量是否充足。 3、检查每一块飞行器使用的动力电池电量是否充足,电池有无 鼓包胀气现象。
2.1结构形式:
旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度 平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的 支架端,支架中间空间安放飞行控制计算机和外部设备。结构形式如图1.1 所示。(以十字型为例)
2.2工作原理:
四旋翼飞行器通过调节四个电机转速来改变旋 翼转速,实现升力的变化,从而控制飞行器的姿态 和位置。四旋翼飞行器是一种六自由度的垂直升降 机,但只有四个输入力,同时却有六个状态输出, 所以它又是一种欠驱动系统。
第一章:概述 第二章:飞行原理 第三章:旋翼机飞控的安装调试 第四章:旋翼无人机航拍应用 第五章:Li电池的维护和保养
1.1 无人机的定义
无人驾驶飞机简称“无人机”,是利用无线电遥控设备和自备 的程序控制装置操纵的不载人飞机。机上无驾驶舱,但安装有自动 驾驶仪、程序控制装置等设备。地面、舰艇上或母机遥控站人员通 过雷达等设备,对其进行跟踪、定位、遥控、遥测和数字传输。可 在无线电遥控下像普通飞机一样起飞或用助推火箭发射升空,也可 由母机带到空中投放飞行。回收时,可用与普通飞机着陆过程一样 的方式自动着陆,也可通过遥控用降落伞或拦网回收。可反覆使用 多次。广泛用于空中侦察、监视、通信、反潜、电子干扰等。
1.零度双子星产品介绍 产品清单
4.1无人机安全飞行要领
1)、航拍目标进行拍摄前,应对飞行器起飞场地进行选择。场地应尽可能
的平整、空旷。不要从电杆、树木下进行起飞。 2)、对大型目标进行拍摄时,尽可能的了解(如驾车、步行等方式)目
标周边空域情况。对手机基站、无线电基站、雷达基站、高压线等干扰源进
名观察员。随时了解飞行器的方位,避免撞上大型障碍物。切勿绕到大 型障碍物后方,如果障碍物够大。此时飞行器的图传、遥控器信号会全 部消失。 10)、飞行器从高楼群里(如解放碑)起飞时,请使用姿态模式。在 高楼群里,GPS可能无法搜到信号,即使能搜到大于6颗卫星的信号顺 利起飞,也不能保证在飞行途中卫星信号不丢失。由于姿态模式与GPS 模式控制方式的不同(GPS可悬停,姿态模式无法悬停),频繁的自动 切换两种姿态模式可能会引飞行器失事。
(2)俯仰运动:在图(b)中,电机 1的转速上升,电机 3 的转 速下降(改变量大小应相等),电机 2、电机 4 的转速保持不变。 由于旋翼1 的升力上升,旋翼 3 的升力下降,产生的不平衡力矩使机 身绕 y 轴旋转,同理,当电机 1 的转速下降,电机 3的转速上升,机 身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。 (3)滚转运动:与图 b 的原理相同,在图 c 中,改变电机 2和电 机 4的转速,保持电机1和电机 3的转速不变,则可使机身绕 x 轴旋 转(正向和反向),实现飞行器的滚转运动。
(5)前后运动:要想实现飞行器在水平面内前后、左右的运动, 必须在水平面内对飞行器施加一定的力。在图 e中,增加电机 3转速, 使拉力增大,相应减小电机 1转速,使拉力减小,同时保持其它两个 电机转速不变,反扭矩仍然要保持平衡。按图 b的理论,飞行器首 先发生一定程度的倾斜,从而使旋翼拉力产生水平分量,因此可以 实现飞行器的前飞运动。向后飞行与向前飞行正好相反。(在 图 b 图 c中,飞行器在产生俯仰、翻滚运动的同时也会产生沿 x、y 轴的水平运动。) (6)倾向运动:在图 f 中,由于结构对称,所以倾向飞行的工作 原理与前后运动完全一样。
无刷电机(4个)电机型号:6210/380kv 动力总成 电子调速器 (4个) 螺旋桨(4个,两正两反) 控制系统 飞行控制器(飞控) 遥控器 动力储备 电池 充电器
结构件:机架
四旋翼飞行器的电机 1和电机 3逆时针旋转的同时,电机 2和电机 4顺 时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被 抵消。 在上图中,电机 1和电机 3作逆时针旋转,电机 2和电机 4作顺时针旋 转,规定沿 x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表 示此电机转速提高,在下方表示此电机转速下降。 (1)垂直运动:同时增加四个电机的输出功率, 旋翼转速增加使得总的拉力增大,当总拉力足以克 服整机的重量时,四旋翼飞行器便离地垂直上升; 反之,同时减小四个电机的输出功率,四旋翼飞行 器则垂直下降,直至平衡落地,实现了沿 z轴的垂直 运动。当外界扰动量为零时,在旋翼产生的升力等于 飞行器的自重时,飞行器便保持悬停状态。
操作空间。避免无关人员与工作人员进行身体接触(有时候会出现有
人轻拍飞手手臂进行询问的情况)。