Allegro电流传感器芯片
怎么选择适合自己的霍尔电流传感器
怎么选择合适自己的霍尔电流传感器目前,霍尼韦尔电流传感器主要采用了霍尔效应和磁阻效应两种工作原理,是分别利用两种原理对电流产生的磁场大小进行检测,并通过电磁互感的关系得到电流的大小。
在工作模式上,霍尼韦尔电流传感器主要有两种方式,其分别是:直接检测式和磁平衡式。
由于霍尼韦尔霍尔电流传感器有诸多优点,目前广泛应用于变频调速装置、逆变装置、UPS 电源、逆变焊机、电解电镀、电动汽车、数控机床、微机监测系统、电网监控系统和需要隔离检测电流电压的各个领域中。
泰德兰电子科技代理霍尼韦尔的霍尔电流传感器主要优点如下:1、测量范围广:它可以测量任意波形的电流和电压,如直流、交流、脉冲、三角波形等,甚至对瞬态峰值电流、电压信号也能忠实地进行反映。
2、响应速度快:快者响应时间只为1us。
3、测量精度高:其测量精度优于1%,该精度适合于对任何波形的测量。
4、线性度好:优于0.2%。
5、动态性能好:响应时间快,可小于1us;普通互感器的响应时间为10~20ms。
6、工作频带宽:在0~1MHz 频率范围内的信号均可以测量。
7、可靠性高,平均无故障工作时间长:平均无故障时间>5 10 小时。
8、过载能力强、测量范围大:0~几十安培~上千安培。
9、体积小、重量轻、易于安装。
那么,作为硬件工程师,我们该如何选择一款合适的霍尔电流传感器呢?下面我们根据霍尔电流传感器的参数来介绍一下如何选择。
1,先选择工作温度范围霍尔电流传感器一般有3种工作稳定范围,分别是-40°C ~ 85°C,-40°C ~ 125°C 和-40°C ~ 150°C。
工程师根据应用是消费类或者工业类和汽车类的温度范围来选择合适的型号。
例如Allegro的霍尔电流传感器ACS712ELCTR-30A-T,712后面的E就是表示-40°C ~ 85°C温度范围,ACS733KLATR-40AB-T中733后面的K表示-40°C ~ 125°C温度范围,ACS724LLCTR-30AB-T中724后的L表示-40°C ~ 150°C的温度范围。
霍尔电流传感器选型【大全】
霍尔电流传感器基于磁平衡式霍尔原理,根据霍尔效应原理,从霍尔元件的控制电流端通入电流Ic,并在霍尔元件平面的法线方向上施加磁场强度为B的磁场,那么在垂直于电流和磁场方向(即霍尔输出端之间),将产生一个电势VH,称其为霍尔电势,其大小正比于控制电流I。
与磁场强度B的乘积。
即有式中:K为霍尔系数,由霍尔元件的材料决定;I。
为控制电流;B为磁场强度;VH为霍尔电势。
霍尔电流传感器工作原理:霍尔器件是一种采用半导体材料制成的磁电转换器件。
如果在输入端通入控制电流IC,当有一磁场B穿过该器件感磁面,则在输出端出现霍尔电势VH。
霍尔电势VH的大小与控制电流IC和磁通密度B的乘积成正比,即:VH=KHICBsinΘ。
霍尔电流传感器是按照霍尔效应原理制成,对安培定律加以应用,即在载流导体周围产生一正比于该电流的磁场,而霍尔器件则用来测量这一磁场。
因此,使电流的非接触测量成为可能。
通过测量霍尔电势的大小间接测量载流导体电流的大小。
因此,电流传感器经过了电-磁-电的绝缘隔离转换。
1、直放式(开环)电流传感器(CS系列)当原边电流IP流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件进行测量并放大输出,其输出电压VS精确的反映原边电流IP。
一般的额定输出标定为4V。
2、磁平衡式(闭环)电流传感器(CSM系列)磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件处于检测零磁通的工作状态。
具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。
这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。
霍尔电流传感器ACS712技术资料
霍尔电流传感器ACS712 应用技术资料•低噪音模拟信号路径•可通过新的滤波引脚设置器件带宽• 5 μs 输出上升时间,对应步进输入电流•80 千赫带宽•总输出错误1.5%(当T A = 25°C 时)及•小型低厚度SOIC8 封装• 1.2 mΩ 内部传导电阻•引脚1-4 至5-8 之间2.1 V RMS最小绝缘电压• 5.0 伏特,单电源操作•66 至185 mV/A 输出灵敏度•输出电压与交流或直流电流成比例•出厂时精确度校准•极稳定的输出偏置电压•近零的磁滞•电源电压的成比例输出描述Allegro? ACS712 可为工业、汽车、商业和通信系统中的交流或直流电流感测提供经济实惠的精密解决方案。
该器件封装便于客户轻松实施。
典型应用包括电动机控制、载荷检测和管理、开关式电源和过电流故障保护。
该器件具有精确的低偏置线性霍尔传感器电路,且其铜制的电流路径*近晶片的表面。
通过该铜制电流路径施加的电流能够生成可被集成霍尔IC 感应并转化为成比例电压的磁场。
通过将磁性信号*近霍尔传感器,实现器件精确度优化。
精确的成比例电压由稳定斩波型低偏置BiCMOS 霍尔IC 提供,该IC 出厂时已进行精确度编程。
当通过用作电流感测通路的主要铜制电流路径(从引脚 1 和2,到3 和4)的电流不断上升时,器件的输出具有正斜率(>V IOUT(Q))。
该传导通路的内电阻通常是1.2 mΩ,具有较低的功耗。
铜线的粗细允许器件在可达5×的过电流条件下运行。
传导通路的接线端与传感器引脚(引脚5 到8)是电气绝缘的。
这让ACS712 电流传感器可用于那些要求电气绝缘却未使用光电绝缘器或其它昂贵绝缘技术的应用。
ACS712 采用小型的表面安装SOIC8 封装。
引脚架镀采用100% 雾锡电镀,可与标准无铅(Pb) 印刷电路板装配流程兼容。
在内部,该器件为无铅产品,倒装法使用当前豁免于RoHS 的高温含铅焊球除外。
霍尔IC著名厂家产品功能特性汇总(MELEXIS, ALLEGRO, INFENION,AKM, HONEYWELL)
ALLEGRO品牌霍尔专区Allegro MicroSystems 公司在高性能电源和霍尔效应传感器集成电路的开发、制造及营销领域始终引领全球潮流。
Allegro 独具创新的解决方案服务于汽车市场中的高增长应用,此外也开发办公自动化、工业和消费通讯解决方案。
Allegro 主要为电动机控制、调节及磁场感测应用开发集成电路解决方案。
提供高度集成的混合信号IC,不仅元件数量日益增多,功能也更加强大。
A1201参数下载A1202参数下载A1203参数下载A1204参数下载A1205参数下载A1101参数下载A1102参数下载A1103参数下载A1104参数下载A1106参数下载A1321参数下载A1322资料下载A1323参数下载A1642参数下载A3121参数下载A3187参数下载A3212参数下载A3240参数下载A3280参数下载A3282参数下载A3955参数下载A3977参数下载A8904参数下载ACS712参数下载ACS712参数下载ACS712参数下载ATS616参数下载ATS674参数下载注:点击霍尔型号查看详细参数MELEXIS品牌霍尔专区来源: 发布时间: 2012-04-11 00:13 1579 次浏览大小: 16px 14px 12px MELEXIS公司是一家专业的集成电路公司,10多年来,Melexis公司已开发出世界一流的,创新的混合信号半导体,依靠优秀的技术,在霍尔IC的研发能力和速度在业内是屈指可数的,在降低系统成本和产品设计的灵活性和优越的霍尔质量可靠性方面具有很大的MELEXIS公司是一家专业的集成电路公司,10多年来,Melexis公司已开发出世界一流的,创新的混合信号半导体,依靠优秀的技术,在霍尔IC的研发能力和速度在业内是屈指可数的,在降低系统成本和产品设计的灵活性和优越的霍尔质量可靠性方面具有很大的竞争优势。
在全球的各种汽车品牌中基本上都有Melexis设计研发的霍尔集成电路。
Allegro电流传感器芯片
Allegro电流传感器Allegro电流传感器的共同点:一、芯片级霍尔电流传感器,串联在电流回路中,外围电路简单。
二、开环模式的霍尔电流传感器(因体积问题,芯片级霍尔电流传感器无法做到闭环模式。
)三、可测交直流电流。
四、无需检测电阻,内置毫欧级路径内阻。
五、单电源供电,原边无需供电。
六、80~120KHz的带宽,外围滤波电容可调整带宽与噪声的关系。
七、输出加载于0.5Vcc上,非常稳定的斩波输出。
八、us级响应速度,精度在-40~85℃时小于2%九、带抑制干扰的特殊封装工艺。
十、非常好的一致性与可靠性。
年出厂不良率小于1PPM。
常推的几颗Allegro霍尔电流传感器为:ACS712从ACS712的内部框图与封装解剖图可以看出,原边电流只是从芯片内部流过,与副边电路并没有接触,原边与副边是隔离的,因为封装小,所以ACS712的隔离电压为2100V。
因为电流的流过会产生一个磁场,霍尔元件根据磁场感应出一个线性的电压信号,经过内部的放大、滤波、与斩波电路,输出一个电压信号。
ACS712根据尾缀的不一样,量程分为三个规格:5A、20A、30A,温度等级均为E级(-40~85℃)。
输入与输出在量程范围内为良好的线性关系,其系数Sensitivity分别为,185、100、66mV/A。
因为斩波电路的原因,其输出将加载于0.5Vcc上。
ACS712的Vcc电源一般建议采用5V。
输出与输入的关系为Vout=0.5Vcc+Ip*Sensitivity。
一般输出的电压信号介于0.5V~4.5V之间。
Ip+与Ip-之间流经芯片内部的那一部份,我们称之为内置路径内阻,其阻值为1.2mΩ.当大电流流经它时,所产生的功耗很小,如30A满量程的电流流经它时,产生的功耗为P=30*30*1.2/1000=1.08W. 此功耗所引起的温度变化约为23度左右。
ACS 712的全温度范围的精度为±1.5%。
在25~85℃时,精度特性更好。
ACS712中文资料_描述
A C S712中文资料_描述(总2页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除ACS712中文描述带 2.1 kVRMS 电压绝缘及低电阻电流导体的全集成、基于霍尔效应的线性电流传感器 IC特点低噪音模拟信号路径可通过新的滤波引脚设置器件带宽5 µs 输出上升时间,对应步进输入电流80 千赫带宽总输出误差为 1.5%(当 T A= 25°C时)小型低厚度 SOIC8 封装1.2 mΩ 内部传导电阻引脚 1-4 至 5-8 之间 2.1k V RMS最小绝缘电压5.0 伏特,单电源操作66 至 185 mV/A 输出灵敏度输出电压与交流或直流电流成比例出厂时精确度校准极稳定的输出偏置电压近零的磁滞电源电压的成比例输出描述Allegro® ACS712 可为工业、商业和通信系统中的交流或直流电流感测提供经济实惠且精确的解决方案。
该器件封装便于客户轻松实施。
典型应用包括电动机控制、载荷检测和管理、开关式电源和过电流故障保护。
该器件不可用于汽车应用。
该器件具有精确的低偏置线性霍尔传感器电路,且其铜制的电流路径靠近晶片的表面。
通过该铜制电流路径施加的电流能够生成可被集成霍尔 IC 感应并转化为成比例电压的磁场。
通过将磁性信号靠近霍尔传感器,实现器件精确度优化。
精确的成比例电压由稳定斩波型低偏置 BiCMOS 霍尔 IC 提供,该 IC 出厂时已进行精确度编程。
当通过用作电流感测通路的主要铜制电流路径(从引脚 1 和 2,到 3 和 4)的电流不断上升时,器件的输出具有正斜率 (>V IOUT(Q))。
该传导通路的内电阻通常是mΩ,具有较低的功率损耗。
铜线的粗细允许器件在可达5× 的过电流条件下运行。
传导通路的接线端与传感器引脚(引脚 5 到8)之间电气绝缘。
这让 ACS712 电流传感器 IC 可用于那些要求电气绝缘却未使用光电绝缘器或其它昂贵绝缘技术的应用。
浅谈电流检测方式(Allegro电流传感器简介)
一、检测电阻+运放优势:成本低、精度较高、体积小劣势:温漂较大,精密电阻的选择较难,无隔离效果。
分析:这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。
检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。
运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。
二、电流互感器CT/电压互感器 PT在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。
而CT 和PT就是特殊的变压器。
基本构造上,CT的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。
PT相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。
CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A或1A的变换设备。
它的工作原理和变压器相似。
也称作TA或LH(旧符号)工作特点和要求:1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。
2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。
3、CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。
4、变换的准确性。
PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V的变换设备。
电磁式电压互感器的工作原理和变压器相同。
也称作TV或YH(旧符号)。
工作特点和要求:1、一次绕组与高压电路并联。
2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。
3、二次绕组有一点直接接地。
4、变换的准确性三、模块型霍尔电流传感器模块型霍尔电流传感器分开环模式与闭环模式。
各种电流检测方式的比较
ACS758的原理是一样的。与ACS712、ACS710相比,其特点是:量程大,分为50A、100A、150A、200A四个等级。内置路径内阻小,为100uΩ.温度等级,50A、100A量程的等级为L级,即-40~150℃;150A量程的为K级,即-40~125℃;200A量程的为E级,即-40~85℃.带宽为120KHz,响应时间为4us。25℃时,原边1200A大电流时,可承受时间为1秒。85℃时,原边900A大电流时,可承受时间为1秒。150℃时,原边600A大电流时,可承受时间为1秒。以上介绍的为Allegro的三颗代表型芯片级霍尔电流传感器,我介绍的均为双向的霍尔电流传感器(可测交直流),输出加载于0.5Vcc上。Allegro也有单向的霍尔传感器,其单向的霍尔电流传感器(可测正电流),输出加载于0.1Vcc上。芯片级的霍尔电流传感器,目前其最大量程为200A,对于大于200A的电流,可用Allegro线性霍尔做成塻块型霍尔电流传感器。事实上,国内有部份品牌的模块型霍尔电流传感器,就是应用Allegro的线性霍尔做为核心做成的。六.小结各种电流检测的方式原理各不同。检测电阻+运放与电流互感器属于低成本的方案,其可靠性与安全性较差,主要用于低端方案。模块式霍尔电流传感器,其体积较大,双电源供电,成本较高。隔离放大器,其原边,副边均需电源供电,在消除干扰方面的设计难度更大,成本比模块式霍尔电流传感器要低,比Allegro的成本高。外围电路较复杂,需加检测电阻。Allegro的霍尔电流传感器,量程相对于每一个型号来说,是固定的,最高量程为200A。小量程(50A以下)的霍尔电流传感器成本低,ACS758的成本比模块型霍尔电流传感器低。输出加载于0.5Vcc,输出信号为正电压。
闭环模式又称为零磁通模式或磁平衡模式,其输入与输出端均为电流信号。原理见下图
ACS712中文资料_描述(电流传感器)
ACS712华文形貌之阳早格格创做戴 2.1 kVRMS 电压绝缘及矮电阻电流导体的齐集成、鉴于霍我效力的线性电流传感器 IC特性•矮噪音模拟旗号路径•可通过新的滤波引足树立器件戴宽• 5 µs 输出降下时间,对于应步进输进电流•80 千赫戴宽•总输出缺面为 1.5%(当 T A = 25°C时)•小型矮薄度 SOIC8 启拆• 1.2 mΩ 里面传导电阻•k V RMS最小绝缘电压• 5.0 伏特,单电源支配•66 至 185 mV/A 输出敏捷度•输出电压与接流或者曲流电流成比率•出厂时透彻度校准•极宁静的输出偏偏置电压•近整的磁滞•电源电压的成比率输出形貌Allegro® ACS712 可为工业、商业战通疑系统中的接流或者曲流电流感测提供经济真惠且透彻的办理规划.该器件启拆便于客户沉快真施.典型应用包罗电效果统造、载荷检测战管造、启闭式电源战过电流障碍呵护.该器件没有成用于汽车应用.该器件具备透彻的矮偏偏置线性霍我传感器电路,且其铜造的电流路径靠拢晶片的表面.通过该铜造电流路径施加的电流不妨死成可被集成霍我 IC 感触并转移为成比率电压的磁场.通过将磁性旗号靠拢霍我传感器,真止器件透彻度劣化.透彻的成比率电压由宁静斩波型矮偏偏置 BiCMOS 霍我IC 提供,该 IC 出厂时已举止透彻度编程.当通过用做电流感测通路的主要铜造电流路径(从引足 1 战 2,到 3 战 4)的电流没有竭降下时,器件的输出具备正斜率 (>V IOUT(Q)).该传导通路的内电阻常常是mΩ,具备较矮的功率耗费.铜线的细细允许器件正在可达 5×的过电流条件下运止.传导通路的接线端与传感器引足(引足 5 到 8)之间电气绝缘.那让 ACS712 电流传感器 IC 可用于那些央供电气绝缘却已使用光电绝缘器或者其余下贵绝缘技能的应用.ACS712 采与小型的表面拆置 SOIC8 启拆.引足架镀采与100% 雾锡电镀,可与尺度无铅 (Pb) 印刷电路板拆置过程兼容.正在里面,该器件为无铅产品,倒拆法使用目前豁免于RoHS 的下温含铅焊球除中.器件正在出厂拆运前已真足校准. 功能圆框图英文pdf下载天面:。
ACS758
ACS758带 100 µΩ电流导体的增强散热功能、全集成、基于霍尔效应的线性电流传感器 IC功能及优点∙通过专利放大器和滤波器设计工艺实现行业领先的噪音性能∙集成屏蔽可大幅减少因 dV/dt 信号导致电流导体至晶片的电容耦合,并可防止高端、高电压应用中的偏置漂移。
∙通过过温增益和偏置修正实现总输出误差减少∙小型封装尺寸,安装简便∙高可靠性的单片霍尔 IC∙超低功率损耗:100 µΩ内部传导电阻∙绝缘设计可实现高电压系统中经济实惠的高端电流感测∙ 3.0 至 5.5 V, 单电源操作∙120 kHz 典型带宽∙ 3 µs 输出上升时间,对应步进输入电流∙输出电压与交流或直流电流成比例∙出厂时精确度校准∙极稳定的输出偏置电压∙近零的磁滞描述Allegro® ACS758 电流传感器 IC 系列可为交流或直流电流感测提供经济实惠且精确的解决方案。
典型应用包括电动机控制、载荷检测和管理、电源和直流至直流转换器控制、逆变器控制和过电流故障检测。
该器件由一个精确、低偏移的线性霍尔传感器电路组成,且其铜制的电流路径靠近晶片。
通过该铜制电流路径施加的电流能够生成可被集成霍尔 IC 感应并转化为成比例电压的磁场。
通过将磁性信号靠近霍尔传感器,实现器件精确度优化。
精确的、成比例输出电压由稳定斩波型低偏置 BiCMOS 霍尔 IC 提供,该 IC 出厂时已进行精确度编程。
Allegro 独有的集成屏幕技术提供的对电流导体 dV/dt 信号和杂散电场的高耐受力,确保高端、高电压应用中的低输出电压纹波和低偏置漂移。
当通过用作电流感测通路之主要铜传导通路(从端子 4 到端子 5)的电流不断上升时,器件/2) 。
该传导通路的内电阻通常是 100 µΩ,具有较低的输出具有正斜率 (>VCC的功率损耗。
铜线的厚度允许器件在高过电流条件下运行。
传导通路的接线端与传感器引脚(引脚 1 到 3)电气绝缘。
电流检测方法
浅谈电流检测方式一、检测电阻+运放优势:成本低、精度较高、体积小劣势:温漂较大,精密电阻的选择较难,无隔离效果。
分析:这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。
检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。
运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。
二、电流互感器CT/电压互感器PT在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。
而CT和PT就是特殊的变压器。
基本构造上,CT 的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。
PT相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。
CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A或1A的变换设备。
它的工作原理和变压器相似。
也称作TA或LH(旧符号)工作特点和要求:1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。
2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。
3、CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。
4、变换的准确性。
PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V的变换设备。
电磁式电压互感器的工作原理和变压器相同。
也称作TV或YH(旧符号)。
工作特点和要求:1、一次绕组与高压电路并联。
2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。
3、二次绕组有一点直接接地。
4、变换的准确性模块型霍尔电流传感器模块型霍尔电流传感器分开环模式与闭环模式。
ACS711使用笔记
ACS711应用笔记:ACS711是Allegro MicroSystems公司为其Allegro电流传感器IC器件系列推出了一款全新的创新型封装设计。
ACS711是Allegro最小的电流传感器线性IC,采用尺寸仅为3mm x3 mm、厚度为0.75mm的超薄QFN封装。
这款新的微型器件可能是世界上最小的全集成线性电流传感器IC!该封装的内部电阻仅为0.6mΩ,能完全承受所产生的热量。
通过正确的PCB设计,该器件可用于连续电流超过30A的应用中,同时仍可通过现有的检测电阻运算放大器解决方案实现功耗的数量级减少。
上图为DATASHEET中给出的典型接法和管脚图(LC封装)。
ACS711我采用的是型号ACS711KLCTR-12AB-T,电流测量范围-12.5A—+12.5A,温度范围-40℃—125℃,灵敏度为110mv/A。
官方datasheet中有这样一句话:For a unipolar supply voltage,it nominally remains at VCC⁄2.Thus,VCC=3.3V translates into VIOUT(Q)=1.65V.也就是说我用3.3V供电的话,测量交流电时输出是一个直流电压为1.65V上的交流电压。
此次测量的电流最大为7A,最后输出要送给AD芯片进行采样,此时输出传感器输出电压为0.88V—2.42V,要使送给AD芯片进行采样的电压接近0V—3.3V则需要使用运放进行放大。
参考ACS712的datasheet我发现了一个典型应用电路:我们可以看到,这个电路通过运放将ACS712直接输出的185mv/A放大3.3倍,将输出提高到了610mv/A。
我们可以参考这个接法同样的将ACS711的输出放大合适的倍数。
通过计算和标准电阻的选取最后放大两倍,但是可以看到上图的电路是反相的,所以我们需要两级反相使输出和被测电流同相位。
电路如图所示,第一级运放放大倍数为一,但是和输入信号反相,第二级运放放大倍数为2倍。
电流传感器ACS712的原理与应用_董建怀
引言在工业、汽车、商业和通信系统中,为了确保设备安全和人身安全,经常需要对设备的某些关键点进行电流检测,传统的检测方法存在测量精度不高,反应时间长等问题,对于大电流一般采用电流互感器进行检测,电流互感器存在着绝缘困难,成本高,体积大,重量重,易受电磁干扰,电流传感器ACS712的原理与应用董建怀 福建师范大学协和学院信息技术系 350007输出端不能开路,突发性绝缘击穿等缺点。
新型线性电流传感器ACS712能有效克服这些缺点,为工业、汽车、商业和通信系统中的交流或直流电流感测提供经济实惠的精密解决方案。
1、线性电流传感器ACS7121.1 概述ACS712是Allegro公司新推出的一种线性电流传感器,该器件内置有精确的低偏置的线性霍尔传感器电路,能输出与检测的交流或直流电流成比例的电压。
具有低噪声,响应时间快(对应步进输入电流,输出上升时间为5μs),50 千赫带宽,总输出误差最大为4%,高输出灵敏度(66mV/A~185 mV/A),使用方便、性价比高、绝缘电压高等特点,主要应用于电动机控制、载荷检测和管理、开关式电源和过电流故障保护等,特别是那些要求电气绝缘却未使用光电绝缘器或其它昂贵绝缘技术的应用中。
1.2 引脚描述ACS712采用小型的SOIC8 封装,其引脚分布如图1所示,采用单电源5V供电。
各引脚的功能介绍如表1所示,其中引脚1和2、3和4均内置有保险,为待测电流的两个输入端,当检测直流电流时,1和2、3和4分别为待测电流的输入端和输出端。
图1 ACS712引脚图1.3 ACS712内部结构及工作原理ACS712的功能方框图如图2所示,该器件主要由靠近芯片表面的铜制的电流通路和精确的低偏置线性霍尔传感器电路等组成。
被测电流流经的通路(引脚1和2,3和4之间的电路)的内电阻通常是 1.2mΩ,具有较低的功耗。
被测电流通路与传感器引脚(引脚5~8)的绝缘电压>2.1kVRMS,几乎是绝缘的。
ALLEGRO+产品索引
A1101 — 连续开关A1102 — 连续开关A1103 — 连续开关A1104 — 连续开关A1106 — 连续开关A1120 — 稳定斩波型精密霍尔效应开关A1140 — 灵敏双线式稳定斩波型单极霍尔效应开关A1141 — 灵敏双线式稳定斩波型单极霍尔效应开关A1142 — 灵敏双线式稳定斩波型单极霍尔效应开关A1143 — 灵敏双线式稳定斩波型单极霍尔效应开关A1145 — 超灵敏双线式稳定斩波型单极霍尔效应开关A1146 — 超灵敏双线式稳定斩波型单极霍尔效应开关A1147 — 低电流超灵敏双线式稳定斩波型单极霍尔效应开关A1148 — 低电流超灵敏双线式稳定斩波型单极霍尔效应开关A1171 — 微功率、超灵敏霍尔效应开关A1172 — 微功率、超灵敏霍尔效应开关A1174 — 具有内部或外部控制样品及休眠期的超灵敏霍尔效应锁存,用于轨迹球及滚轮应用A1180 — 灵敏双线式现场可编程稳定斩波型单极霍尔效应开关A1181 — 灵敏双线式现场可编程稳定斩波型单极霍尔效应开关A1182 — 灵敏双线式现场可编程稳定斩波型单极霍尔效应开关A1183 — 灵敏双线式现场可编程稳定斩波型单极霍尔效应开关A1184 — 标准双线式现场可编程稳定斩波型单极霍尔效应开关A1185 — 超灵敏双线式现场可编程稳定斩波型单极霍尔效应开关A1186 — 超灵敏双线式现场可编程稳定斩波型单极霍尔效应开关A1202 — 连续双极开关A1203 — 连续双极开关A1210 — 连续型锁存A1211 — 连续型锁存A1212 — 连续型锁存A1213 — 连续型锁存A1214 — 连续型锁存A1220 — 稳定斩波型精密霍尔效应锁存A1221 — 稳定斩波型精密霍尔效应锁存A1242-I1 — 双线式稳定斩波型霍尔效应锁存A1242-I2 — 双线式稳定斩波型霍尔效应锁存A1301 — 连续成比例线性霍尔效应传感器A1302 — 连续成比例线性霍尔效应传感器A1321 — 可在高温条件下工作的微型线性霍尔效应传感器A1322 — 可在高温条件下工作的微型线性霍尔效应传感器A1323 — 可在高温条件下工作的微型线性霍尔效应传感器A1351 — 带推/拉脉冲调宽控制输出的高精度线性霍尔效应传感器A1360 — 带 3 kVRMS 电压绝缘及低电阻电流导体的全集成、基于霍尔效应的线性电流传感器A1373 —高精度、输出管脚可编程线性霍尔效应传感器A1374 —高精度、输出管脚可编程线性霍尔效应传感器A1381 —采用小型超薄表面安装封装、带模拟输出的可编程线性霍尔效应传感器A1382 —采用小型超薄表面安装封装、带模拟输出的可编程线性霍尔效应传感器A1383 —采用小型超薄表面安装封装、带模拟输出的可编程线性霍尔效应传感器A1384 —采用小型超薄表面安装封装、带模拟输出的可编程线性霍尔效应传感器A1386 — 5 V 现场可编程线性霍尔效应传感器,具有 3 V 电压功能模拟输出和微型封装选择A1391 — 带三态输出和用户可选休眠模式的微功率 3 伏特线性霍尔效应传感器A1392 — 带三态输出和用户可选休眠模式的微功率 3 伏特线性霍尔效应传感器A1393 — 带三态输出和用户可选休眠模式的微功率 3 伏特线性霍尔效应传感器A1395 — 带三态输出和用户可选休眠模式的微功率 3 伏特线性霍尔效应传感器A1421 —带集成滤波电容器的高精确度模拟速度传感器A1422 —带集成滤波电容器的高精确度模拟速度传感器A1423 —带集成滤波电容器的高精确度模拟速度传感器A1425 — 高精度霍尔效应交流耦合差分传感器A1441 — 带霍尔元件整流的低电压全桥式无刷直流电动机驱动器A2550 —带有 5 伏特稳压器的继电器驱动器,用于汽车应用A3211 — 微功率、超灵敏霍尔效应开关A3212 — 微功率、超灵敏霍尔效应开关A3213 — 微功率、超灵敏霍尔效应开关A3214 — 微功率、超灵敏霍尔效应开关A3230 —稳定斩波型霍尔效应双极开关A1448 — 低电压、全桥式无刷直流电动机驱动器,带有集成霍尔传感器、PWM 速度控制、软开关、电池反接保护和短路保护等功能A1442 — 低电压全桥式无刷直流电动机驱动器,带有霍尔整流、软开关、电池反接保护、短路保护及过热关机保护等功能A1444 — 低电压全桥式无刷直流电动机驱动器,带有霍尔整流、外部控制的速度调节、软开关、电池反接保护、短路保护及过热关机保护等功能A1445 — 低电压全桥式无刷直流电动机驱动器,带有霍尔整流、外部控制的速度调节、软开关、电池反接保护、短路保护及过热关机保护等功能A3240 — 稳定斩波型精密霍尔效应开关A3241 — 稳定斩波型单极霍尔效应开关A3242 — 稳定斩波型单极霍尔效应开关A3245 — 稳定斩波型全极霍尔效应开关A3250 — 现场可编程、稳定斩波型、单极霍尔效应开关A3251 — 现场可编程、稳定斩波型、单极霍尔效应开关A3260 — 双线式、稳定斩波型、精密霍尔效应双极开关A3280 — 稳定斩波型精密霍尔效应锁存A3281 — 稳定斩波型精密霍尔效应锁存A3282 — 稳定斩波型霍尔效应锁存A3290 — 用于消费和工业应用的稳定斩波型精密霍尔效应锁存A3291 — 用于消费和工业应用的稳定斩波型精密霍尔效应锁存A3283 — 稳定斩波型精密霍尔效应锁存A3240 — 稳定斩波型精密霍尔效应开关A3422 — 测向霍尔效应传感器A3423 — 双通道霍尔效应测向传感器A3425 — 超灵敏双通道正交霍尔效应双极开关A3515 — 可在高温条件下工作的比例计量线性霍尔效应传感器A3515 — 可在高温条件下工作的比例计量线性霍尔效应传感器A3901 —双路全桥式低电压电动机驱动器A3903 — 低电压直流电动机驱动器A3904 — 低压语音线圈电动机驱动器A3907 — 低电压语音线圈电动机驱动器A3906 — 低电压步进和单路/双路直流电动机驱动器A3908 — 低电压直流电动机驱动器A3930 — 汽车 3 相 BLDC 控制器和 MOSFET 驱动器A3931 — 汽车 3 相 BLDC 控制器和 MOSFET 驱动器A3933 — 三相功率 MOSFET 控制器A3935 —三相功率 MOSFET 控制器A3936 — DMOS 三相 PWM 电动机驱动器A3938 — 三相功率 MOSFET 控制器A3941 — 汽车全桥式 MOSFET 驱动器A3942 — 用于汽车应用的四路高端门极驱动器A3946 —半桥式功率 MOSFET 控制器A3950 — DMOS 全桥式电动机驱动器A3953 — 全桥式 PWM 电动机驱动器A3959 —DMOS 全桥式 PWM 电动机驱动器A3964 —双路全桥式 PWM 电动机驱动器A3966 — 双路全桥式 PWM 电动机驱动器A3977 — 带转换器的 DMOS 微步驱动器A3980 — 带转换器的汽车 DMOS 微步驱动器A3982 — 带转换器的 DMOS 步进电动机驱动器A3983 — 带转换器的 DMOS 微步驱动器A3984 — 带转换器的 DMOS 微步驱动器A3985 — 数字可编程双路全桥式 MOSFET 驱动器A3986 —带微步转换器的双路全桥式 MOSFET 驱动器A3987 — 带转换器的 DMOS 微步驱动器A3988 — 四路 DMOS 全桥式 PWM 电动机驱动器A3989 — 双极步进及高电流直流电动机驱动器A3992 — DMOS 双路全桥式微步 PWM 电动机驱动器A3995 — DMOS 双路全桥式 PWM 电动机驱动器A4401 — 汽车低噪音真空荧光显示电源A4403 — 波谷电流回授控制降压转换器A4490 — 三组输出降压开关稳压器A4930 — 单相风机预驱动器A4931 — 三相无刷直流电动机预驱动器A4935 — 汽车级三相 MOSFET 驱动器A4983 — 带转换器的 DMOS 微步驱动器ATS616 —动态、自行校准、峰值侦测、差分霍尔效应齿轮齿传感器ATS625 —真零速、低抖动、高精度齿轮齿传感器A6210 — 3 A、2 MHz 降压稳压 LED 驱动器A6260 — 高亮 LED 电流调节器A6275 — 8 位串行输入锁存恒流 LED 驱动器A6276 — 16 位串行输入锁存恒流 LED 驱动器A6277 — 8 位串行输入锁存恒流 LED 驱动器A6278 — 带开放式 LED 侦测的串行输入、恒流锁存 LED 驱动器A6279 — 带开放式 LED 侦测的串行输入、恒流锁存 LED 驱动器A6280 —带 PWM 控制的 3 位恒流 LED 驱动器A6280 —带 PWM 控制的 3 通道恒流 LED 驱动器A6282 — 16 通道恒流 LED 驱动器A6285 — 带开放式 LED 侦测和点校正的 16 通道恒流锁存 LED 驱动器ATS635 — 带 TPOS 功能的可编程反馈偏压霍尔效应开关ATS636 — 带 TPOS 功能的可编程反馈偏压霍尔效应开关ATS643 — 带持续更新的自行校准、零速差分齿轮齿传感器ATS675 — 专为汽车凸轮传感应用而优化的自行校准 TPOS 速度传感器A6800 — DABiC-5 锁存灌电流驱动器A6801 — DABiC-5 锁存灌电流驱动器A6810 — 带主动下拉的 DABiC-IV 10 位串行输入锁存源极驱动器A6812 — 带主动下拉的 DABiC-IV 20 位串行输入锁存源极驱动器A6818 — 带主动下拉的 DABiC-IV 32 位串行输入锁存源极驱动器A6821 — DABiC-5 8 位串行输入锁存灌电流驱动器A6832 —DABiC-5 32 位串行输入锁存灌电流驱动器A6833 — DABiC-5 32 位串行输入锁存灌电流驱动器A6841 — DABiC-5 8 位串行输入锁存灌电流驱动器A6A259 —8 位可编址 DMOS 功率驱动器A6A595 — 8 位串行输入锁存 DMOS 功率驱动器A6B273 —8 位锁存 DMOS 功率驱动器A6B595 —8 位串行输入锁存 DMOS 功率驱动器A6850 — 双通道开关接口 ICACS704-005 —电流传感器ACS704-015 —电流传感器ACS706-05C — 带电压绝缘及 15 安培动态量程的双向 1.5 毫欧基于霍尔效应的线性电流传感器ACS706-20A — 带电压绝缘及 20 安培动态量程的双向 1.5 毫欧基于霍尔效应的线性电流传感器ACS712 — 带 2.1 kVRMS 电压绝缘及低电阻电流导体的全集成、基于霍尔效应的线性电流传感器ACS713 — 带 2.1 kVRMS 电压绝缘及低电阻电流导体的全集成、基于霍尔效应的线性电流传感器ACS714 — 带 2.1 kVRMS 电压绝缘及低电阻电流导体的汽车级全集成、基于霍尔效应的线性电流传感器ACS715 — 带 2.1 kVRMS 电压绝缘及低电阻电流导体的汽车级全集成、基于霍尔效应的线性电流传感器ACS750 — 电流传感器ACS752 —电流传感器ACS754 —电流传感器ACS755-050 —电流传感器ACS755-100 — 电流传感器ACS755-130 — 电流传感器ACS755-150 — 电流传感器ACS755-200 — 电流传感器ACS756 — 带 3 kVRMS 电压绝缘及低电阻电流导体的全集成、基于霍尔效应的线性电流传感器ACS760 — 240 V*A 保护 IC,带集成热插拨门极驱动器及内部 1.5 毫欧基于霍尔效应的电流监视器ACS761 — 12 V 高端热插拔基于霍尔效应的电流监视器A8281 —LNB 电源和控制稳压器A8282 — LNB 电源和控制稳压器A8285 —LNB 电源和控制稳压器A8287 —LNB 电源和控制稳压器A8290 — 单路 LNB 电源和控制稳压器A8291 — 单路 LNB 电源和控制稳压器A8292 — 双路 LNB 电源和控制稳压器A8430 —白光 LED 驱动器 - 恒流增压转换器A8431 —白光 LED 驱动器 - 恒流增压转换器A8435 —高效充电泵白光 LED 驱动器A8436 — 带 IGBT 驱动器的照相闪光灯电容充电器A8438 —带 IGBT 驱动器的照相闪光灯电容充电器A8439 — 带 IGBT 驱动器及刷新的照相闪光灯电容充电器A8450 —汽车多输出稳压器A8480 — 用于显示偏压或 LED 驱动器的升压稳压器A8481 — 采用单电感器的双输出增压稳压器A8483 — 用于显示偏压电源的 1.2 兆赫增压转换器A8498 — 宽输入电压 3.0 安培降压稳压器A8499 —高压降压稳压器A8500 — 用于中型 LCD 的灵活 WLED/RGB 背光驱动器A8501 — 用于带输出断开的中型显示的大功率 WLED/RGB 驱动器A8503 — 用于中型显示的超小型 WLED/RGB 驱动器A8504 — 用于中型 LCD 的灵活 WLED/RGB 背光驱动器A8697 — 宽输入电压 4.0 安培降压稳压器A8698 — 宽输入电压 3.0 安培降压稳压器A8731 —带 IGBT 门极驱动器的移动电话氙照相闪光灯驱动器A8835 —带可编程电流限制及 IGBT 驱动器的照相闪光灯电容充电器A8837 —带 IGBT 驱动器的照相闪光灯电容充电器A8904 — 带反电动势感测的三相无刷直流电动机控制器/驱动器。
ACS724KMA高隔离高精度霍尔效应电流传感器
The A llegro ™ A CS724KMA current sensor IC is an economical and precise solution for A C or DC current sensing in industrial, commercial, and communication systems. The small package is ideal for space-constrained applications while also saving costs due to reduced board area. Typical applications include motor control, load detection and management, switched-mode power supplies, and overcurrent fault protection.The device consists of a precise, low-offset, linear Hall sensor circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field which is sensed by the integrated Hall IC and converted into a proportional voltage. The current is sensed differentially in order to reject common-mode fields, improving accuracy in magnetically noisy environments. The inherent device accuracy is optimized through the close proximity of the magnetic field to the Hall transducer. A precise, proportional voltage is provided by the low-offset, chopper-stabilized BiCMOS Hall IC, which includes Allegro’s patented digital temperature compensation, resulting in extremely accurate performance over temperature. T he output of the device has a positive slope when an increasing current flows through the primary copper conduction path (from pins 1 through 4, to pins 5 through 8), which is the path used for current sensing. The internal resistance of this conductive path is 0.85 mΩ typical, providing low power loss.The terminals of the conductive path are electrically isolated from the sensor leads (pins 9 through 16). This allows the ACS724KMA current sensor IC to be used in high-side current• Differential Hall sensing rejects common-mode fields • Patented integrated digital temperature compensation circuitry allows for near closed loop accuracy over temperature in an open loop sensor • UL60950-1 (ed. 2) certified□Dielectric Strength V oltage = 4.8 kV RMS□Basic Isolation Working V oltage = 1097 V RMS□Reinforced Isolation Working V oltage = 565 V RMS• Industry-leading noise performance with greatly improved bandwidth through proprietary amplifier and filter design techniques• Filter pin allows user to filter output for improved resolution at lower bandwidth• 0.85 mΩ primary conductor resistance for low power loss and high inrush current withstand capability • Low-profile SOIC16 package suitable for space-constrained applications• 4.5 to 5.5 V single supply operation• Output voltage proportional to AC or DC currentHigh-Accuracy, Hall-Effect-Based Current Sensor IC withCommon-Mode Field Rejection in High-Isolation SOIC16 PackageContinued on the next page…Package: 16-pin SOICW (suffix MA)Typical ApplicationThe ACS724KMA outputs an analog signal, V IOUT , that changes proportionally with the bidirectional AC or DC primary sensed current, I P , within the specified measure-ment range.The FILTER pin can be used to decrease the bandwidth in order to optimize the noise performance.Continued on the next page…FEATURES AND BENEFITSDESCRIPTIONCB Certificate Number:US-22339-A1-ULTÜV AmericaCertificate Number: U8V 14 11 54214 030 CB 14 11 54214 029Not to scaleACS724KMAsense applications without the use of high-side differential amplifiers or other costly isolation techniques.The ACS724KMA is provided in a low-profile surface-mount SOIC16 package. The leadframe is plated with 100% matte tin, which is compatible with standard lead (Pb) free printed circuit board assembly processes. Internally, the device is Pb-free. The device is fully calibrated prior to shipment from the factory.DESCRIPTION (continued)• Factory-trimmed sensitivity and quiescent output voltage for improved accuracy• Chopper stabilization results in extremely stable quiescent output voltage• Nearly zero magnetic hysteresis• Ratiometric output from supply voltageFEATURES AND BENEFITS (continued)SELECTION GUIDEPart Number I PR (A)Sens(Typ) at V CC = 5 V(mV/A)T A (°C)Packing 1ACS724KMATR-20AB-T ±20100–40 to 125Tape and Reel, 3000 pieces per reelACS724KMATR-30AB-T ±3066ACS724KMATR-30AU-T 30132ACS724KMATR-65AB-T±6530.751Contact Allegro for additional packing options.THERMAL CHARACTERISTICSCharacteristicSymbol Test Conditions*Value Units Package Thermal Resistance (Junction to Ambient)R θJAMounted on the Allegro 85-0738 evaluation board with 700 mm 2 of 4 oz. copper on each side, connected to pins 1 and 2, and to pins 3 and 4, with thermal vias connecting the layers. Performance values include the power consumed by the PCB.23ºC/WPackage Thermal Resistance (Junction to Lead)R θJLMounted on the Allegro ASEK724 evaluation board.5ºC/W*Additional thermal information available on the Allegro website.ISOLATION CHARACTERISTICSCharacteristicSymbol NotesRating Unit Dielectric Strength Test VoltageV ISOAgency type-tested for 60 seconds per UL 60950-1(edition 2). Production tested at 3000 V RMS for 1 second, in accordance with UL 60950-1 (edition 2).4800V RMS Working Voltage for Basic IsolationV WVBIMaximum approved working voltage for basic (single) isolation according to UL 60950-1 (edition 2).1550V PK 1097V RMS or VDCWorking Voltage for Reinforced IsolationV WVRIMaximum approved working voltage for reinforced isolation according to UL 60950-1 (edition 2).800V PK 565V RMS or VDCClearance D cl Minimum distance through air from IP leads to signal leads.7.5mm CreepageD crMinimum distance along package body from IP leads to signal leads8.2mmABSOLUTE MAXIMUM RATINGSCharacteristicSymbol NotesRating Units Supply VoltageV CC 6V Reverse Supply Voltage V RCC –0.1V Output VoltageV IOUT V CC + 0.5V Reverse Output Voltage V RIOUT –0.1V Operating Ambient Temperature T A Range K–40 to 125°C Junction Temperature T J (max)165°C Storage TemperatureT stg–65 to 165°CSPECIFICATIONSTerminal List TableNumber Name Description1, 2, 3, 4IP+Terminals for current being sensed; fused internally 5, 6, 7, 8IP-Terminals for current being sensed; fused internally9, 16NC No internal connection; recommended to be left unconnected in order to maintain high creepage 10VCC Device power supply terminal11, 14NC No internal connection; recommened to connect to GND for the best ESD performance 12VIOUT Analog output signal13FILTER Terminal for external capacitor that sets bandwidth 15GNDSignal ground terminalFunctional Block DiagramPinout DiagramIP+IP+IP –IP –IP+IP+IP –IP –1IP+2IP+3IP+4IP+5IP-6IP-7IP-8IP-9NC10VCC 11NC 12VIOUT 13FILTER 14NC 15GND 16NCCharacteristicSymbol Test ConditionsMin.Typ.Max.Units Supply Voltage V CC 4.55 5.5V Supply CurrentI CC V CC within V CC (min) and V CC (max)–1014mA Output Capacitance Load C L VIOUT to GND ––10nF Output Resistive Load R L VIOUT to GND 4.7––kΩPrimary Conductor Resistance R IP T A = 25°C–0.85–mΩInternal Filter Resistance 2R F(INT)– 1.7–kΩPrimary Hall Coupling Factor G1T A = 25°C – 4.5–G/A Secondary Hall Coupling Factor G2T A = 25°C –0.5–G/A Hall Plate Sensitivity Matching Sens MATCHT A = 25°C–±1–%Hysteresis I HYS Difference in offset after a ±40 A pulse –150–mA Rise Time t r I P = I P (max), T A = 25°C, C L = 1 nF –3–μs Propagation Delay t pd I P = I P (max), T A = 25°C, C L = 1 nF –2–μs Response Time t RESPONSEI P = I P (max), T A = 25°C, C L = 1 nF –4–μs Internal Bandwidth BW Small signal –3 dB, C L = 1 nF –120–kHz Noise Density I ND Input-referenced noise density; T A = 25°C, C L = 1 nF–450–µA RMS / √Hz Noise I N Input-referenced noise; C F = 4.7 nF , C L = 1 nF , BW = 18 kHz, T A = 25°C –60–mA RMSNonlinearity E LIN Through full range of I P –±1%Saturation Voltage 3V OH R L = 4.7 kΩ, T A = 25°C V CC – 0.5––V V OL R L = 4.7 kΩ, T A = 25°C––0.5V Power-On Timet PO Output reaches 90% of steady-state level, T A = 25°C, I P = I PR (max) applied –80–μs Shorted Output to Ground Current I SC(GND)T A = 25°C – 3.3–mA Shorted Output to V CC CurrentI SC(VCC)T A = 25°C–45–mA1 Device may be operated at higher primary current levels, IP, ambient temperatures, T A , and internal leadframe temperatures, provided the Maximum Junction Tempera -ture, T J (max), is not exceeded.2 RF(INT) forms an RC circuit via the FILTER pin.3 The sensor IC will continue to respond to current beyond the range of I Puntil the high or low saturation voltage; however, the nonlinearity in this region will be worse thanthrough the rest of the measurement range.COMMON ELECTRICAL CHARACTERISTICS 1: Valid through the full range of T A = –40°C to 125°C and V CC = 5 V, unless otherwise specifiedxKMATR-20AB PERFORMANCE CHARACTERISTICS: T A Range K, valid at T A = – 40°C to 125°C, V CC = 5 V, unless oth-erwise specifiedCharacteristic Symbol Test Conditions Min. Typ.1 Max. Units NOMINAL PERFORMANCECurrent Sensing Range I PR–20–20A Sensitivity Sens I PR(min) < I P < I PR(max)–100–mV/AZero Current Output Voltage V IOUT(Q)Bidirectional; I P = 0 A–V CC ×0.5–VACCURACY PERFORMANCETotal Output Error2E TOT I P = I PR(max), T A = 25°C to 125°C–2.5±1 2.5% I P = I PR(max), T A = –40°C to 25°C–±3–%TOTAL OUTPUT ERROR COMPONENTS 3: E TOT = E SENS + 100 × V OE/(Sens × I P)Sensitivity Error E SENS T A = 25°C to 125°C, measured at I P = I PR(max)–2±12% T A = –40°C to 25°C, measured at I P = I PR(max)–±2.8–%Offset Voltage V OE I P = 0 A, T A = 25°C to 125°C–15±515mV I P = 0 A, T A = –40°C to 25°C–±20–mVLIFETIME DRIFT CHARACTERISTICSSensitivity Error Lifetime Drift E sens_drift–±1–% T otal Output Error Lifetime Drift E tot_drift–±1–%1 Typical values with +/- are 3 sigma values.2 Percentage of I P , with I P = I PR(max).3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.xKMATR-30AB PERFORMANCE CHARACTERISTICS: T A Range K, valid at T A = – 40°C to 125°C, V CC = 5 V, unless oth-erwise specifiedCharacteristic Symbol Test Conditions Min. Typ.1 Max. Units NOMINAL PERFORMANCECurrent Sensing Range I PR–30–30A Sensitivity Sens I PR(min) < I P < I PR(max)–66–mV/AZero Current Output Voltage V IOUT(Q)Bidirectional; I P = 0 A–V CC ×0.5–VACCURACY PERFORMANCETotal Output Error2E TOT I P = I PR(max), T A = 25°C to 125°C–2.5±0.8 2.5% I P = I PR(max), T A = –40°C to 25°C–±2.7–%TOTAL OUTPUT ERROR COMPONENTS 3: E TOT = E SENS + 100 × V OE/(Sens × I P)Sensitivity Error E SENS T A = 25°C to 125°C, measured at I P = I PR(max)–2±0.72% T A = –40°C to 25°C, measured at I P = I PR(max)–±2.6–%Offset Voltage V OE I P = 0 A, T A = 25°C to 125°C–15±715mV I P = 0 A, T A = –40°C to 25°C–±15–mVLIFETIME DRIFT CHARACTERISTICSSensitivity Error Lifetime Drift E sens_drift–±1–% T otal Output Error Lifetime Drift E tot_drift–±1–%1 Typical values with +/- are 3 sigma values.2 Percentage of I P , with I P = I PR(max).3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.xKMATR-30AU PERFORMANCE CHARACTERISTICS: T A Range K, valid at T A = – 40°C to 125°C, V CC = 5 V, unless oth-erwise specifiedCharacteristic Symbol Test Conditions Min. Typ.1 Max. Units NOMINAL PERFORMANCECurrent Sensing Range I PR0–30A Sensitivity Sens I PR(min) < I P < I PR(max)–132–mV/AZero Current Output Voltage V IOUT(Q)Unidirectional; I P = 0 A–V CC ×0.1–VACCURACY PERFORMANCETotal Output Error2E TOT I P = I PR(max), T A = 25°C to 125°C–2.5±0.7 2.5% I P = I PR(max), T A = –40°C to 25°C–±2.5–%TOTAL OUTPUT ERROR COMPONENTS 3: E TOT = E SENS + 100 × V OE/(Sens × I P)Sensitivity Error E SENS T A = 25°C to 125°C, measured at I P = I PR(max)–2±0.72% T A = –40°C to 25°C, measured at I P = I PR(max)–±2.5–%Offset Voltage V OE I P = 0 A, T A = 25°C to 125°C–15±715mV I P = 0 A, T A = –40°C to 25°C–±20–mVLifetime Drift CharacteristicsSensitivity Error Lifetime Drift E sens_drift–±1–% T otal Output Error Lifetime Drift E tot_drift–±1–%1 Typical values with +/- are 3 sigma values.2 Percentage of I P , with I P = I PR(max).3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.xKMATR-65AB PERFORMANCE CHARACTERISTICS: T A Range K, valid at T A = – 40°C to 125°C, V CC = 5 V, unless oth-erwise specifiedCharacteristic Symbol Test Conditions Min. Typ.1 Max. Units NOMINAL PERFORMANCECurrent Sensing Range I PR–65–65A Sensitivity Sens I PR(min) < I P < I PR(max)–30.75–mV/AZero Current Output Voltage V IOUT(Q)Bidirectional; I P = 0 A–V CC ×0.5–VACCURACY PERFORMANCETotal Output Error2E TOT I P = I PR(max), T A = 25°C to 125°C–2.5±1 2.5% I P = I PR(max), T A = –40°C to 25°C–±3–%TOTAL OUTPUT ERROR COMPONENTS 3: E TOT = E SENS + 100 × V OE/(Sens × I P)Sensitivity Error E SENS T A = 25°C to 125°C, measured at I P = I PR(max)–2±12% T A = –40°C to 25°C, measured at I P = I PR(max)–±2.8–%Offset Voltage V OE I P = 0 A, T A = 25°C to 125°C–15±515mV I P = 0 A, T A = –40°C to 25°C–±20–mVLIFETIME DRIFT CHARACTERISTICSSensitivity Error Lifetime Drift E sens_drift–±1–% T otal Output Error Lifetime Drift E tot_drift–±1–%1 Typical values with +/- are 3 sigma values.2 Percentage of I P , with I P = I PR(max).3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.CHARACTERISTIC PERFORMANCExKMATR-20ABAverage +3 Sigma -3 SigmaCHARACTERISTIC PERFORMANCExKMATR-30ABCHARACTERISTIC PERFORMANCExKMATR-30AUSensitivity (Sens)The change in sensor IC output in response to a 1 A change through the primary conductor. The sensitivity is the product of the magnetic coupling factor (G/A) (1 G = 0.1 mT) and the linear IC amplifier gain (mV/G). The linear IC amplifier gain is programmed at the factory to optimize the sensitivity (mV/A) for the full-scale current of the device.Nonlinearity (E LIN )The nonlinearity is a measure of how linear the output of the sen-sor IC is over the full current measurement range. The nonlinear-ity is calculated as:1– [{[{V IOUT (I PR (max)) – V IOUT(Q)× 100 (%)E LIN =2 × V IOUT (I PR (max)/2) –V IOUT(Q)where V IOUT (I PR(max)) is the output of the sensor IC with the maximum measurement current flowing through it andV IOUT (I PR(max)/2) is the output of the sensor IC with half of the maximum measurement current flowing through it.Zero Current Output Voltage (V IOUT(Q))The output of the sensor when the primary current is zero. For a unipolar supply voltage, it nominally remains at 0.5 × V CC for a bidirectional device and 0.1 × V CC for a unidirectional device. For example, in the case of a bidirectional output device, V CC = 5.0 V translates into V IOUT(Q) = 2.50 V . Variation in V IOUT(Q) can be attributed to the resolution of the Allegro linear IC quiescent voltage trim and thermal drift.Offset Voltage (V OE )The deviation of the device output from its ideal quiescent value of 0.5 × V CC (bidirectional) or 0.1 × V CC (unidirectional) due to nonmagnetic causes. To convert this voltage to amperes, divide by the device sensitivity, Sens.Total Output Error (E TOT )The difference between the current measurement from the sensor IC and the actual current (I P ), relative to the actual current. This is equivalent to the difference between the ideal output voltage and the actual output voltage, divided by the ideal sensitivity, relative to the current flowing through the primary conduction path:E TOT (I P )V IOUT_ideal (I P ) – V IOUT (I P )Sens ideal (I P ) × I P× 100 (%)=The Total Output Error incorporates all sources of error and is afunction of I P . At relatively high currents, E TOT will be mostly due toDEFINITIONS OF ACCURACY CHARACTERISTICSFigure 1: Output Voltage versus Sensed CurrentFigure 2: Total Output Error versus Sensed Currentsensitivity error, and at relatively low currents, E TOT will be mostly due to Offset V oltage (V OE ). In fact, at I P = 0, E TOT approaches infinity due to the offset. This is illustrated in Figure 1 and Figure 2. Figure 1 shows a distribution of output voltages versus I P at 25°C and across temperature. Figure 2 shows the corresponding E TOT versus I P .APPLICATION INFORMATION Estimating Total Error versus Sensed CurrentThe Performance Characteristics tables give distribution(±3 sigma) values for Total Error at I PR(max); however, one oftenwants to know what error to expect at a particular current. Thiscan be estimated by using the distribution data for the compo-nents of Total Error, Sensitivity Error, and Offset V oltage. The±3 sigma value for Total Error (E TOT) as a function of the sensedcurrent (I P) is estimated as:E(I) = TOT P100 × VOESens × IPE+SENS2()2Here, E SENS and V OE are the ±3 sigma values for those errorterms. If there is an average sensitivity error or average offsetvoltage, then the average Total Error is estimated as:Sens × IPE(I) = E+TOT P SENSAVG AVG100 × VOE AVGThe resulting total error will be a sum of E TOT and E TOT_A VG.Using these equations and the 3 sigma distributions for Sensitiv-ity Error and Offset V oltage, the Total Error versus sensed current(I P) is shown here for the ACS724KMATR-20AB. As expected,as one goes towards zero current, the error in percent goestowards infinity due to division by zero (refer to Figure 3).Figure 3: Predicted Total Error as a Function of SensedCurrent for the ACS724KMATR-20ABDEFINITIONS OF DYNAMIC RESPONSE CHARACTERISTICSPower-On Time (t PO)When the supply is ramped to its operating voltage, the device requires a finite time to power its internal components before responding to an input magnetic field.Power-On Time (t PO) is defined as the time it takes for the output voltage to settle within ±10% of its steady-state value under an applied magnetic field, after the power supply has reached its minimum specified operating voltage (V CC(min)) as shown in the chart at right (refer to Figure 4).Rise Time (t r)The time interval between: a) when the sensor IC reaches 10% of its full-scale value; and b) when it reaches 90% of its full-scale value (refer to Figure 5). The rise time to a step response is used to derive the bandwidth of the current sensor IC, in which ƒ(–3 dB) = 0.35 / t r . Both t r and t RESPONSE are detrimentally affected by eddy current losses observed in the conductive IC ground plane.Propagation Delay (t pd )The propagation delay is measured as the time interval between: a) when the primary current signal reaches 20% of its final value, and b) when the device reaches 20% of its output corresponding to the applied current (refer to Figure 5).Response Time (t RESPONSE)The time interval between: a) when the primary current signal reaches 90% of its final value, and b) when the device reaches 90% of its output corresponding to the applied current (refer to Figure 6).V CC90% VV CCFigure 4: Power-On TimeFigure 5: Rise Time and Propagation Delay Figure 6: Response TimeNOT TO SCALEAll dimensions in millimeters.Figure 7: High-Isolation PCB LayoutFigure 8: Package MA, 16-Pin SOICWPACKAGE OUTLINE DRAWINGFor Reference Only –Not for Tooling Use(Reference MS-013AA)NOT TO SCALE Dimensions in millimetersDimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shownA BCBranding scale and appearance at supplier discretion= Supplier emblem= Last two digits of year of manufacture = Week of manufacture = Lot numberN Y W L Terminal #1 mark areaCPCB Layout Reference ViewReference land pattern layout (reference IPC7351 SOIC127P600X175-8M);all pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerancesFor the latest version of this document, visit our website:NumberDateDescription–December 11, 2015Initial release1January 8, 2016Added ACS724KMATR-65AB-T variant2March 18, 2016Added ACS724KMATR-30AB-T variant, UL/TUV certification; removed solder balls reference in DescriptionRevision HistoryCopyright ©2016, Allegro MicroSystems, LLCAllegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required topermit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro’s product can reasonably be expected to cause bodily harm.The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.。
Acs712霍尔效应电流传感器
Acs712霍尔效应电流传感器Acs712Allegro 发布全新低噪音2100Vrms 霍尔效应电流传感器马萨诸塞州伍斯特市,2006年12月18 B-Allegr 。
推出两款全新高性能、低噪音2100 Vrms 绝缘电流传感器。
与上一代电流传感器相比,Allegro 全新电流传感器ACS712 (双向)及ACS713 (单向) 有噪音更低、精确度更高的特点。
这些传感器还包抵集成屏蔽,可有效削弱通过引脚框的较高 dV/dt 瞬态, 从而使得该解决方案非常适合电动机控制及高端电流感测应用。
2006年12月18开始生产之日起至今,ACS712系列三个型号:ACS712ELCTR-05B-TACS712ELCTR-20A-TACS712ELCTR-30A-T此系列产品销量一直在电流传感器行业中遥遥领先.行业领头者。
这些传感器的响应时间比之前的器件缩短了两倍以上,因此非常适合保护及髙速应用。
此外,器件中还添加了滤波引脚,从而可进一步降低输出噪音并改善低电流精确度, 并且不会产生外部RC 滤波器的衰减影响。
电流传感器IC 系列是基于霍尔效应的创新型单片绝缘器件,可提供采用业界领先的小型封装的全面集成解决方案。
带2.1 kVRMS 电压绝缘及低电阻电流导体的全集成、基于霍尔效应的线性电流传感器IC特点*1•:低噪音模拟信号路径*2*:可通过新的滤波引脚设昼器件带宽*3•: 5ps 输出上升时间,对应步进输入电流ACS712此系列共含三个型号,检测电流5A.20A.30A 以下给大家一一列兴出来。
灵敏度电流■电源传感器类型 封装/外壳 霍尔效应 8-SOIC (0.154", 精确度5A型号 电流•传感 ACS712ELCTR-05B-T 3.90mm 宽) ACS712ELCTR-20A-T 3.90mm 宽) ACS712ELCTR-30A-T 3.90mm 宽) 型号 电源电压输出频率 ±1.5% 180-190 mV/A10mA 20A30A ±1.5% 96-104 mV/A10mA ±1.5% 63-69 mV/A10mAACS712ELCTR-05B-T 4.5 V-5.5 V 2.5V ACS712ELCTR-20A-T 4.5 V-5.5 V 2.5VACS712ELCTR-30A-T 4.5 V-5.5 V 2.5V 霍尔效应 8-SOIC (0.154M , 霍尔效应 8-SOIC (0.154", 响应时间电极标记80kHz 5ps 双向80kHz 5ps 双向 80kHz 5ps 双向 工作温度 负 40085 °C 负 40°C-85°C 负 40°C-85°C*4•: 80千赫带宽*5•:总输出误差为1.5% (当TA = 25c C 时)*6*:小型低厚度SOIC8封装*7*: 1.2 mQ 内部传导电阻*8*:引脚1-4至5-8之间2.1 VRMS 最小绝缘电压*9•: 5.0伏特,单电源操作*10*: 66至185 mV/A 输出灵敏度*11*:输出电压与交流或宜流电流成比例*12*:出厂时精确度校准*13*:极稳定的输出偏置电压*14•:近零的磁滞*14*:电源电压的成比例输出Typical Application描述Allegro ACS712可为工业、商业和通信系统中的交流或直流电流感测提供经济实惠且精确的 解决方案。
ACS724KMA高隔离高精度霍尔效应电流传感器
The A llegro ™ A CS724KMA current sensor IC is an economical and precise solution for A C or DC current sensing in industrial, commercial, and communication systems. The small package is ideal for space-constrained applications while also saving costs due to reduced board area. Typical applications include motor control, load detection and management, switched-mode power supplies, and overcurrent fault protection.The device consists of a precise, low-offset, linear Hall sensor circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field which is sensed by the integrated Hall IC and converted into a proportional voltage. The current is sensed differentially in order to reject common-mode fields, improving accuracy in magnetically noisy environments. The inherent device accuracy is optimized through the close proximity of the magnetic field to the Hall transducer. A precise, proportional voltage is provided by the low-offset, chopper-stabilized BiCMOS Hall IC, which includes Allegro’s patented digital temperature compensation, resulting in extremely accurate performance over temperature. T he output of the device has a positive slope when an increasing current flows through the primary copper conduction path (from pins 1 through 4, to pins 5 through 8), which is the path used for current sensing. The internal resistance of this conductive path is 0.85 mΩ typical, providing low power loss.The terminals of the conductive path are electrically isolated from the sensor leads (pins 9 through 16). This allows the ACS724KMA current sensor IC to be used in high-side current• Differential Hall sensing rejects common-mode fields • Patented integrated digital temperature compensation circuitry allows for near closed loop accuracy over temperature in an open loop sensor • UL60950-1 (ed. 2) certified□Dielectric Strength V oltage = 4.8 kV RMS□Basic Isolation Working V oltage = 1097 V RMS□Reinforced Isolation Working V oltage = 565 V RMS• Industry-leading noise performance with greatly improved bandwidth through proprietary amplifier and filter design techniques• Filter pin allows user to filter output for improved resolution at lower bandwidth• 0.85 mΩ primary conductor resistance for low power loss and high inrush current withstand capability • Low-profile SOIC16 package suitable for space-constrained applications• 4.5 to 5.5 V single supply operation• Output voltage proportional to AC or DC currentHigh-Accuracy, Hall-Effect-Based Current Sensor IC withCommon-Mode Field Rejection in High-Isolation SOIC16 PackageContinued on the next page…Package: 16-pin SOICW (suffix MA)Typical ApplicationThe ACS724KMA outputs an analog signal, V IOUT , that changes proportionally with the bidirectional AC or DC primary sensed current, I P , within the specified measure-ment range.The FILTER pin can be used to decrease the bandwidth in order to optimize the noise performance.Continued on the next page…FEATURES AND BENEFITSDESCRIPTIONCB Certificate Number:US-22339-A1-ULTÜV AmericaCertificate Number: U8V 14 11 54214 030 CB 14 11 54214 029Not to scaleACS724KMAsense applications without the use of high-side differential amplifiers or other costly isolation techniques.The ACS724KMA is provided in a low-profile surface-mount SOIC16 package. The leadframe is plated with 100% matte tin, which is compatible with standard lead (Pb) free printed circuit board assembly processes. Internally, the device is Pb-free. The device is fully calibrated prior to shipment from the factory.DESCRIPTION (continued)• Factory-trimmed sensitivity and quiescent output voltage for improved accuracy• Chopper stabilization results in extremely stable quiescent output voltage• Nearly zero magnetic hysteresis• Ratiometric output from supply voltageFEATURES AND BENEFITS (continued)SELECTION GUIDEPart Number I PR (A)Sens(Typ) at V CC = 5 V(mV/A)T A (°C)Packing 1ACS724KMATR-20AB-T ±20100–40 to 125Tape and Reel, 3000 pieces per reelACS724KMATR-30AB-T ±3066ACS724KMATR-30AU-T 30132ACS724KMATR-65AB-T±6530.751Contact Allegro for additional packing options.THERMAL CHARACTERISTICSCharacteristicSymbol Test Conditions*Value Units Package Thermal Resistance (Junction to Ambient)R θJAMounted on the Allegro 85-0738 evaluation board with 700 mm 2 of 4 oz. copper on each side, connected to pins 1 and 2, and to pins 3 and 4, with thermal vias connecting the layers. Performance values include the power consumed by the PCB.23ºC/WPackage Thermal Resistance (Junction to Lead)R θJLMounted on the Allegro ASEK724 evaluation board.5ºC/W*Additional thermal information available on the Allegro website.ISOLATION CHARACTERISTICSCharacteristicSymbol NotesRating Unit Dielectric Strength Test VoltageV ISOAgency type-tested for 60 seconds per UL 60950-1(edition 2). Production tested at 3000 V RMS for 1 second, in accordance with UL 60950-1 (edition 2).4800V RMS Working Voltage for Basic IsolationV WVBIMaximum approved working voltage for basic (single) isolation according to UL 60950-1 (edition 2).1550V PK 1097V RMS or VDCWorking Voltage for Reinforced IsolationV WVRIMaximum approved working voltage for reinforced isolation according to UL 60950-1 (edition 2).800V PK 565V RMS or VDCClearance D cl Minimum distance through air from IP leads to signal leads.7.5mm CreepageD crMinimum distance along package body from IP leads to signal leads8.2mmABSOLUTE MAXIMUM RATINGSCharacteristicSymbol NotesRating Units Supply VoltageV CC 6V Reverse Supply Voltage V RCC –0.1V Output VoltageV IOUT V CC + 0.5V Reverse Output Voltage V RIOUT –0.1V Operating Ambient Temperature T A Range K–40 to 125°C Junction Temperature T J (max)165°C Storage TemperatureT stg–65 to 165°CSPECIFICATIONSTerminal List TableNumber Name Description1, 2, 3, 4IP+Terminals for current being sensed; fused internally 5, 6, 7, 8IP-Terminals for current being sensed; fused internally9, 16NC No internal connection; recommended to be left unconnected in order to maintain high creepage 10VCC Device power supply terminal11, 14NC No internal connection; recommened to connect to GND for the best ESD performance 12VIOUT Analog output signal13FILTER Terminal for external capacitor that sets bandwidth 15GNDSignal ground terminalFunctional Block DiagramPinout DiagramIP+IP+IP –IP –IP+IP+IP –IP –1IP+2IP+3IP+4IP+5IP-6IP-7IP-8IP-9NC10VCC 11NC 12VIOUT 13FILTER 14NC 15GND 16NCCharacteristicSymbol Test ConditionsMin.Typ.Max.Units Supply Voltage V CC 4.55 5.5V Supply CurrentI CC V CC within V CC (min) and V CC (max)–1014mA Output Capacitance Load C L VIOUT to GND ––10nF Output Resistive Load R L VIOUT to GND 4.7––kΩPrimary Conductor Resistance R IP T A = 25°C–0.85–mΩInternal Filter Resistance 2R F(INT)– 1.7–kΩPrimary Hall Coupling Factor G1T A = 25°C – 4.5–G/A Secondary Hall Coupling Factor G2T A = 25°C –0.5–G/A Hall Plate Sensitivity Matching Sens MATCHT A = 25°C–±1–%Hysteresis I HYS Difference in offset after a ±40 A pulse –150–mA Rise Time t r I P = I P (max), T A = 25°C, C L = 1 nF –3–μs Propagation Delay t pd I P = I P (max), T A = 25°C, C L = 1 nF –2–μs Response Time t RESPONSEI P = I P (max), T A = 25°C, C L = 1 nF –4–μs Internal Bandwidth BW Small signal –3 dB, C L = 1 nF –120–kHz Noise Density I ND Input-referenced noise density; T A = 25°C, C L = 1 nF–450–µA RMS / √Hz Noise I N Input-referenced noise; C F = 4.7 nF , C L = 1 nF , BW = 18 kHz, T A = 25°C –60–mA RMSNonlinearity E LIN Through full range of I P –±1%Saturation Voltage 3V OH R L = 4.7 kΩ, T A = 25°C V CC – 0.5––V V OL R L = 4.7 kΩ, T A = 25°C––0.5V Power-On Timet PO Output reaches 90% of steady-state level, T A = 25°C, I P = I PR (max) applied –80–μs Shorted Output to Ground Current I SC(GND)T A = 25°C – 3.3–mA Shorted Output to V CC CurrentI SC(VCC)T A = 25°C–45–mA1 Device may be operated at higher primary current levels, IP, ambient temperatures, T A , and internal leadframe temperatures, provided the Maximum Junction Tempera -ture, T J (max), is not exceeded.2 RF(INT) forms an RC circuit via the FILTER pin.3 The sensor IC will continue to respond to current beyond the range of I Puntil the high or low saturation voltage; however, the nonlinearity in this region will be worse thanthrough the rest of the measurement range.COMMON ELECTRICAL CHARACTERISTICS 1: Valid through the full range of T A = –40°C to 125°C and V CC = 5 V, unless otherwise specifiedxKMATR-20AB PERFORMANCE CHARACTERISTICS: T A Range K, valid at T A = – 40°C to 125°C, V CC = 5 V, unless oth-erwise specifiedCharacteristic Symbol Test Conditions Min. Typ.1 Max. Units NOMINAL PERFORMANCECurrent Sensing Range I PR–20–20A Sensitivity Sens I PR(min) < I P < I PR(max)–100–mV/AZero Current Output Voltage V IOUT(Q)Bidirectional; I P = 0 A–V CC ×0.5–VACCURACY PERFORMANCETotal Output Error2E TOT I P = I PR(max), T A = 25°C to 125°C–2.5±1 2.5% I P = I PR(max), T A = –40°C to 25°C–±3–%TOTAL OUTPUT ERROR COMPONENTS 3: E TOT = E SENS + 100 × V OE/(Sens × I P)Sensitivity Error E SENS T A = 25°C to 125°C, measured at I P = I PR(max)–2±12% T A = –40°C to 25°C, measured at I P = I PR(max)–±2.8–%Offset Voltage V OE I P = 0 A, T A = 25°C to 125°C–15±515mV I P = 0 A, T A = –40°C to 25°C–±20–mVLIFETIME DRIFT CHARACTERISTICSSensitivity Error Lifetime Drift E sens_drift–±1–% T otal Output Error Lifetime Drift E tot_drift–±1–%1 Typical values with +/- are 3 sigma values.2 Percentage of I P , with I P = I PR(max).3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.xKMATR-30AB PERFORMANCE CHARACTERISTICS: T A Range K, valid at T A = – 40°C to 125°C, V CC = 5 V, unless oth-erwise specifiedCharacteristic Symbol Test Conditions Min. Typ.1 Max. Units NOMINAL PERFORMANCECurrent Sensing Range I PR–30–30A Sensitivity Sens I PR(min) < I P < I PR(max)–66–mV/AZero Current Output Voltage V IOUT(Q)Bidirectional; I P = 0 A–V CC ×0.5–VACCURACY PERFORMANCETotal Output Error2E TOT I P = I PR(max), T A = 25°C to 125°C–2.5±0.8 2.5% I P = I PR(max), T A = –40°C to 25°C–±2.7–%TOTAL OUTPUT ERROR COMPONENTS 3: E TOT = E SENS + 100 × V OE/(Sens × I P)Sensitivity Error E SENS T A = 25°C to 125°C, measured at I P = I PR(max)–2±0.72% T A = –40°C to 25°C, measured at I P = I PR(max)–±2.6–%Offset Voltage V OE I P = 0 A, T A = 25°C to 125°C–15±715mV I P = 0 A, T A = –40°C to 25°C–±15–mVLIFETIME DRIFT CHARACTERISTICSSensitivity Error Lifetime Drift E sens_drift–±1–% T otal Output Error Lifetime Drift E tot_drift–±1–%1 Typical values with +/- are 3 sigma values.2 Percentage of I P , with I P = I PR(max).3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.xKMATR-30AU PERFORMANCE CHARACTERISTICS: T A Range K, valid at T A = – 40°C to 125°C, V CC = 5 V, unless oth-erwise specifiedCharacteristic Symbol Test Conditions Min. Typ.1 Max. Units NOMINAL PERFORMANCECurrent Sensing Range I PR0–30A Sensitivity Sens I PR(min) < I P < I PR(max)–132–mV/AZero Current Output Voltage V IOUT(Q)Unidirectional; I P = 0 A–V CC ×0.1–VACCURACY PERFORMANCETotal Output Error2E TOT I P = I PR(max), T A = 25°C to 125°C–2.5±0.7 2.5% I P = I PR(max), T A = –40°C to 25°C–±2.5–%TOTAL OUTPUT ERROR COMPONENTS 3: E TOT = E SENS + 100 × V OE/(Sens × I P)Sensitivity Error E SENS T A = 25°C to 125°C, measured at I P = I PR(max)–2±0.72% T A = –40°C to 25°C, measured at I P = I PR(max)–±2.5–%Offset Voltage V OE I P = 0 A, T A = 25°C to 125°C–15±715mV I P = 0 A, T A = –40°C to 25°C–±20–mVLifetime Drift CharacteristicsSensitivity Error Lifetime Drift E sens_drift–±1–% T otal Output Error Lifetime Drift E tot_drift–±1–%1 Typical values with +/- are 3 sigma values.2 Percentage of I P , with I P = I PR(max).3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.xKMATR-65AB PERFORMANCE CHARACTERISTICS: T A Range K, valid at T A = – 40°C to 125°C, V CC = 5 V, unless oth-erwise specifiedCharacteristic Symbol Test Conditions Min. Typ.1 Max. Units NOMINAL PERFORMANCECurrent Sensing Range I PR–65–65A Sensitivity Sens I PR(min) < I P < I PR(max)–30.75–mV/AZero Current Output Voltage V IOUT(Q)Bidirectional; I P = 0 A–V CC ×0.5–VACCURACY PERFORMANCETotal Output Error2E TOT I P = I PR(max), T A = 25°C to 125°C–2.5±1 2.5% I P = I PR(max), T A = –40°C to 25°C–±3–%TOTAL OUTPUT ERROR COMPONENTS 3: E TOT = E SENS + 100 × V OE/(Sens × I P)Sensitivity Error E SENS T A = 25°C to 125°C, measured at I P = I PR(max)–2±12% T A = –40°C to 25°C, measured at I P = I PR(max)–±2.8–%Offset Voltage V OE I P = 0 A, T A = 25°C to 125°C–15±515mV I P = 0 A, T A = –40°C to 25°C–±20–mVLIFETIME DRIFT CHARACTERISTICSSensitivity Error Lifetime Drift E sens_drift–±1–% T otal Output Error Lifetime Drift E tot_drift–±1–%1 Typical values with +/- are 3 sigma values.2 Percentage of I P , with I P = I PR(max).3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.CHARACTERISTIC PERFORMANCExKMATR-20ABAverage +3 Sigma -3 SigmaCHARACTERISTIC PERFORMANCExKMATR-30ABCHARACTERISTIC PERFORMANCExKMATR-30AUSensitivity (Sens)The change in sensor IC output in response to a 1 A change through the primary conductor. The sensitivity is the product of the magnetic coupling factor (G/A) (1 G = 0.1 mT) and the linear IC amplifier gain (mV/G). The linear IC amplifier gain is programmed at the factory to optimize the sensitivity (mV/A) for the full-scale current of the device.Nonlinearity (E LIN )The nonlinearity is a measure of how linear the output of the sen-sor IC is over the full current measurement range. The nonlinear-ity is calculated as:1– [{[{V IOUT (I PR (max)) – V IOUT(Q)× 100 (%)E LIN =2 × V IOUT (I PR (max)/2) –V IOUT(Q)where V IOUT (I PR(max)) is the output of the sensor IC with the maximum measurement current flowing through it andV IOUT (I PR(max)/2) is the output of the sensor IC with half of the maximum measurement current flowing through it.Zero Current Output Voltage (V IOUT(Q))The output of the sensor when the primary current is zero. For a unipolar supply voltage, it nominally remains at 0.5 × V CC for a bidirectional device and 0.1 × V CC for a unidirectional device. For example, in the case of a bidirectional output device, V CC = 5.0 V translates into V IOUT(Q) = 2.50 V . Variation in V IOUT(Q) can be attributed to the resolution of the Allegro linear IC quiescent voltage trim and thermal drift.Offset Voltage (V OE )The deviation of the device output from its ideal quiescent value of 0.5 × V CC (bidirectional) or 0.1 × V CC (unidirectional) due to nonmagnetic causes. To convert this voltage to amperes, divide by the device sensitivity, Sens.Total Output Error (E TOT )The difference between the current measurement from the sensor IC and the actual current (I P ), relative to the actual current. This is equivalent to the difference between the ideal output voltage and the actual output voltage, divided by the ideal sensitivity, relative to the current flowing through the primary conduction path:E TOT (I P )V IOUT_ideal (I P ) – V IOUT (I P )Sens ideal (I P ) × I P× 100 (%)=The Total Output Error incorporates all sources of error and is afunction of I P . At relatively high currents, E TOT will be mostly due toDEFINITIONS OF ACCURACY CHARACTERISTICSFigure 1: Output Voltage versus Sensed CurrentFigure 2: Total Output Error versus Sensed Currentsensitivity error, and at relatively low currents, E TOT will be mostly due to Offset V oltage (V OE ). In fact, at I P = 0, E TOT approaches infinity due to the offset. This is illustrated in Figure 1 and Figure 2. Figure 1 shows a distribution of output voltages versus I P at 25°C and across temperature. Figure 2 shows the corresponding E TOT versus I P .APPLICATION INFORMATION Estimating Total Error versus Sensed CurrentThe Performance Characteristics tables give distribution(±3 sigma) values for Total Error at I PR(max); however, one oftenwants to know what error to expect at a particular current. Thiscan be estimated by using the distribution data for the compo-nents of Total Error, Sensitivity Error, and Offset V oltage. The±3 sigma value for Total Error (E TOT) as a function of the sensedcurrent (I P) is estimated as:E(I) = TOT P100 × VOESens × IPE+SENS2()2Here, E SENS and V OE are the ±3 sigma values for those errorterms. If there is an average sensitivity error or average offsetvoltage, then the average Total Error is estimated as:Sens × IPE(I) = E+TOT P SENSAVG AVG100 × VOE AVGThe resulting total error will be a sum of E TOT and E TOT_A VG.Using these equations and the 3 sigma distributions for Sensitiv-ity Error and Offset V oltage, the Total Error versus sensed current(I P) is shown here for the ACS724KMATR-20AB. As expected,as one goes towards zero current, the error in percent goestowards infinity due to division by zero (refer to Figure 3).Figure 3: Predicted Total Error as a Function of SensedCurrent for the ACS724KMATR-20ABDEFINITIONS OF DYNAMIC RESPONSE CHARACTERISTICSPower-On Time (t PO)When the supply is ramped to its operating voltage, the device requires a finite time to power its internal components before responding to an input magnetic field.Power-On Time (t PO) is defined as the time it takes for the output voltage to settle within ±10% of its steady-state value under an applied magnetic field, after the power supply has reached its minimum specified operating voltage (V CC(min)) as shown in the chart at right (refer to Figure 4).Rise Time (t r)The time interval between: a) when the sensor IC reaches 10% of its full-scale value; and b) when it reaches 90% of its full-scale value (refer to Figure 5). The rise time to a step response is used to derive the bandwidth of the current sensor IC, in which ƒ(–3 dB) = 0.35 / t r . Both t r and t RESPONSE are detrimentally affected by eddy current losses observed in the conductive IC ground plane.Propagation Delay (t pd )The propagation delay is measured as the time interval between: a) when the primary current signal reaches 20% of its final value, and b) when the device reaches 20% of its output corresponding to the applied current (refer to Figure 5).Response Time (t RESPONSE)The time interval between: a) when the primary current signal reaches 90% of its final value, and b) when the device reaches 90% of its output corresponding to the applied current (refer to Figure 6).V CC90% VV CCFigure 4: Power-On TimeFigure 5: Rise Time and Propagation Delay Figure 6: Response TimeNOT TO SCALEAll dimensions in millimeters.Figure 7: High-Isolation PCB LayoutFigure 8: Package MA, 16-Pin SOICWPACKAGE OUTLINE DRAWINGFor Reference Only –Not for Tooling Use(Reference MS-013AA)NOT TO SCALE Dimensions in millimetersDimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shownA BCBranding scale and appearance at supplier discretion= Supplier emblem= Last two digits of year of manufacture = Week of manufacture = Lot numberN Y W L Terminal #1 mark areaCPCB Layout Reference ViewReference land pattern layout (reference IPC7351 SOIC127P600X175-8M);all pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerancesFor the latest version of this document, visit our website:NumberDateDescription–December 11, 2015Initial release1January 8, 2016Added ACS724KMATR-65AB-T variant2March 18, 2016Added ACS724KMATR-30AB-T variant, UL/TUV certification; removed solder balls reference in DescriptionRevision HistoryCopyright ©2016, Allegro MicroSystems, LLCAllegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required topermit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro’s product can reasonably be expected to cause bodily harm.The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.。
电流传感器芯片的原理
电流传感器芯片的原理
电流传感器芯片的原理是根据法拉第电磁感应原理来实现的。
其基本原理可以简单描述为:当电流通过导线时,会产生一个围绕导线的磁场。
电流传感器芯片利用感应线圈感应这个磁场,并将感应到的磁场信号转化为电压或电流信号输出。
具体操作过程如下:
1. 在电流传感器芯片中,感应线圈一般被绕成一个或多个线圈,线圈的匝数和形状可以根据需要进行设计。
这些线圈通常被包裹在磁性材料中,以增强对磁场的感应效果。
2. 当通过导线的电流流过感应线圈附近时,电流产生的磁场会穿过感应线圈,使其产生感应电动势。
3. 感应电动势会在感应线圈两端产生电压或电流信号。
这些信号的幅度与通过导线的电流强度成正比,即可以通过测量信号强度来确定电流的大小。
4. 电流传感器芯片通常会有一些前端电路来放大感应信号,以提高测量的灵敏度和精度。
5. 最终,测量到的电压或电流信号可以通过输出端口传输给其他设备或显示器,用于监测和控制电流的变化。
总的来说,电流传感器芯片采用感应线圈感应电流产生的磁场,将其转化为电压或电流信号,从而实现对电流的测量和监测。
霍尔电压传感器型号
霍尔电压传感器模块名称:闭环霍尔电流传感器模块参数:测量频率:0~100KHz测量范围:1A~40,000A精度:0.2%~1%相应时间:<1uS线性度:0.1%无测量插入损耗测量AC,DC及脉冲电流原边电流与副边输出信号高度隔离模块原理图:工作原理:被测电流In流过导体产生的磁场,由通过霍尔元件输出信号控制的补偿电流Im流过次级线圈产生的磁场补偿,当原边与副边的磁场达到平衡时,其补偿电流Im即可精确反映原边电流In值。
CHV-50P10mA 20mA 50mA 5000:1000 0 150 <0.3mA ±12~15 PCB霍尔电流传感器模块名称:闭环霍尔电流传感器模块参数:测量频率:0~100KHz测量范围:1A~40,000A精度:0.2%~1%相应时间:<1uS线性度:0.1%无测量插入损耗测量AC,DC及脉冲电流原边电流与副边输出信号高度隔离模块原理图:工作原理:被测电流In流过导体产生的磁场,由通过霍尔元件输出信号控制的补偿电流Im流过次级线圈产生的磁场补偿,当原边与副边的磁场达到平衡时,其补偿电流Im即可精确反映原边电流In值。
CHB-50P50A 80A 100mA 1.0% 1:500 0 120 ±12~15 Φ10CHB-200S200A 300A 100mA 0.5% 1:2000 0 50 ±12~18 Φ20CHB-500S500A 1000A 100mA 0.5% 1:5000 0 30 ±12~24 Φ25单极性霍尔单极开关介绍:单极霍尔效应开关具有磁性工作阈值(Bop)。
如果霍尔单元承受的磁通密度大于工作阈值,那么输出晶体管将开启;当磁通密度降至低于工作阈值(Brp) 时,晶体管会关闭。
滞后(Bhys) 是两个阈值(Bop-Brp) 之间的差额。
即使存在外部机械振动及电气噪音,此内置滞后页可实现输出的净切换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Allegro电流传感器
Allegro电流传感器的共同点:
一、芯片级霍尔电流传感器,串联在电流回路中,外围电路简单。
二、开环模式的霍尔电流传感器(因体积问题,芯片级霍尔电流传感器无法做到闭环模式。
)
三、可测交直流电流。
四、无需检测电阻,内置毫欧级路径内阻。
五、单电源供电,原边无需供电。
六、80~120KHz的带宽,外围滤波电容可调整带宽与噪声的关系。
七、输出加载于0.5Vcc上,非常稳定的斩波输出。
八、us级响应速度,精度在-40~85℃时小于2%
九、带抑制干扰的特殊封装工艺。
十、非常好的一致性与可靠性。
年出厂不良率小于1PPM。
常推的几颗Allegro霍尔电流传感器为:
ACS712
从ACS712的内部框图与封装解剖图可以看出,原边电流只是从芯片内部流过,与副边
电路并没有接触,原边与副边是隔离的,因为封装小,所以ACS712的隔离电压为2100V。
因为电流的流过会产生一个磁场,霍尔元件根据磁场感应出一个线性的电压信号,经过内部的放大、滤波、与斩波电路,输出一个电压信号。
ACS712根据尾缀的不一样,量程分为三个规格:5A、20A、30A,温度等级均为E级(-40~85℃)。
输入与输出在量程范围内为良好的线性关系,其系数Sensitivity分别为,185、100、66mV/A。
因为斩波电路的原因,其输出将加载于0.5Vcc上。
ACS712的Vcc电源一般建议采用5V。
输出与输入的关系为Vout=0.5Vcc+Ip*Sensitivity。
一般输出的电压信号介于0.5V~4.5V之间。
Ip+与Ip-之间流经芯片内部的那一部份,我们称之为内置路径内阻,其阻值为1.2mΩ.当大电流流经它时,所产生的功耗很小,如30A满量程的电流流经它时,产生的功耗为P=30*30*1.2/1000=1.08W. 此功耗所引起的温度变化约为23度左右。
ACS 712的全温度范围的精度为±1.5%。
在25~85℃时,精度特性更好。
输入与输出之间的响应时间为5us。
带宽为80KHz,通过调整滤波脚与地之间的滤波电容,可根据客户的要求来调整噪声与带宽的关系,电容取值大,带宽小,噪声小。
ACS710
与ACS712相比,ACS710多了一个过流保护功能。
如上图所示,蓝色虚框为ACS710的电流检测回路,红色虚框为ACS710的过流保护回路。
ACS710与ACS712的电流检测原理是一样的,所不同的有以下几点:
1. ACS710因为封装SOIC-16体积比ACS712稍大,所以原边与副边的隔离电压也比ACS712大,为3000V。
2. 内置路径内阻为1.0 mΩ。
3. 量程不一样,根据尾缀不同,分12.5A与25A两种量程。
这里的12.5A量程与25A 量程指的是优化量程,实际上,ACS710有三倍过载能力,即,他们的实际量程分别为37.5A 与75A。
但考虑到电流过大,温升的效应,不建议将ACS710长期工作于过载条件下。
4. ACS710 Vcc可选用5V与3.3V两种。
5V与3.3V时,其输入输出的线性系数
(Sensitivity)也为线性。
如ACS710 25A量程的IC,Vcc为5V时,Sensitivity为28mV/A.
3.3V时,Sensitivity为28*3.3/5=18.5mV。
5. 温度等级不一样,ACS710为K级,-40~125℃.
6. ACS710的带宽为120KHZ,响应时间为4us,过流保护响应时间为2us。
ACS710过流保护功能说明
1. 16管脚为使能脚。
2.调整15脚外围的两个分压电阻值,可设定过流保护的门限值。
Vcc为5V时,ACS710KLATR-12CB-T(12.5A量程的型号)其可设定的过流保护的门限范围为22.3A~35.7A;ACS710KLATR-25CB-T(25A量程的型号)其可设定的过流保护的门限范围为44.6A~71.5A。
3.13管脚为Fault输出脚,过流条件出现时,13管脚将在2us内输出一个低电平信号,其中外接电容Coc为缓冲电容,以防止因干扰而产生的误报情况。
4. 下图为过流保护过程的图解说明。
ACS758
ACS758的原理是一样的。
与ACS712、ACS710相比,其特点是:
1. 量程大,分为50A、100A、150A、200A 四个等级。
2. 内置路径内阻小,为100uΩ.
3. 温度等级,50A、100A量程的等级为L级,即-40~150℃;150A量程的为K级,即-40~125℃;200A量程的为E级,即-40~85℃.
4. 带宽为120KHz,响应时间为4us。
5. 25℃时,原边1200A大电流时,可承受时间为1秒。
85℃时,原边900A大电流时,可承受时间为1秒。
150℃时,原边600A大电流时,可承受时间为1秒。
以上介绍的为Allegro的三颗代表型芯片级霍尔电流传感器,我介绍的均为双向的霍尔电流传感器(可测交直流),输出加载于0.5Vcc上。
Allegro也有单向的霍尔传感器,其单向的霍尔电流传感器(可测正电流),输出加载于0.1Vcc上。
芯片级的霍尔电流传感器,目前其最大量程为200A,对于大于200A的电流,可用Allegro线性霍尔做成塻块型霍尔电流传感器。
事实上,国内有部份品牌的模块型霍尔电流传感器,就是应用Allegro的线性霍尔做为核心做成的。
小结
各种电流检测的方式原理各不同。
检测电阻+运放与电流互感器属于低成本的方案,其可靠性与安全性较差,主要用于低端方案。
模块式霍尔电流传感器,其体积较大,双电源供电,成本较高。
隔离放大器,其原边,副边均需电源供电,在消除干扰方面的设计难度更大,成本比模块式霍尔电流传感器要低,比Allegro的成本高。
外围电路较复杂,需加检测电阻。
Allegro的霍尔电流传感器,量程相对于每一个型号来说,是固定的,最高量程为200A。
小量程(50A以下)的霍尔电流传感器成本低,ACS758的成本比模块型霍尔电流传感器低。
输出加载于0.5Vcc,输出信号为正电压。