2019-2020年高考数学一轮复习第11章算法复数推理与证明11.2数系的扩充与复数的引入学案文
高考数学一轮复习 第11章 复数、算法、推理与证明 第2讲 算法与程序框图课件 文
D.12+22+32+…+1012
解析:选 B.根据语句程序可知它的功能是求大于等于 1 且
小于等于 100 的连续自然数的平方和.故选 B.
12/11/2021
2.如果如图所示的程序执行后输出的结果是 11 880,那么在 程序 UNTIL 后面的条件应为( )
i=12 s=1 DO
s=s*i i=i-1 LOOP UNTIL 条件 PRINT s END
12/11/2021
3.三种基本逻辑结构
名称 内容
顺序结构
条件结构
循环结构
从某处开始,按
由若干个按先后
算法的流程根据 照一定的条件
顺序执行的步骤
条件是否成立而 __反__复__执__行_某些
定义 组成,这是任何
选择执行不同的 步骤的情况,反
一个算法都离不
流向的结构形式 复执行的步骤
开的基本结构
称为__循__环__体__
12/11/2021
【对点通关】 1.执行如图所示的程序框图,若输出 k 的值 为 8,则判断框内可填入的条件是( ) A.s≤34? B.s≤56? C.s≤1112? D.s≤2254?
12/11/2021
解析:选 C.执行第 1 次循环,则 k=2,s=12,满足条件.执 行第 2 次循环,则 k=4,s=12+14=34,满足条件.执行第 3 次循环,则 k=6,s=34+16=1112,满足条件.执行第 4 次循环, k=8,s=1112+18=2254,不满足条件,输出 k=8.因此条件判 断框应填“s≤1112?”.故选 C.
将表达式的 值赋给变量
12/11/2021
(2)条件语句的格式及框图 ①IFTHEN 格式
2019版高考数学一轮复习第11章算法复数推理与证明11.2数系的扩充与复数的引入课件文
复平面内的点_Z_(_a_,__b_)_ (a,
b∈R).
(4)复数加、减法的几何意义 ①复数加法的几何意义:若复数z1,z2对应的向量 O→Z1 ,O→Z2 不共线,则复数z1+z2是以O→Z1 ,O→Z2 为两邻边的 平行四边形的对角线O→Z所对应的复数. ②复数减法的几何意义:复数z1-z2是O→Z1-O→Z2=Z→2Z1 所对应的复数. 4.模的运算性质:①|z|2=| z |2=z· z ;②|z1·z2|= |z1||z2|;③zz12=||zz12||.
对于p4,若z∈R,即a+bi∈R,则b=0⇒ z =a-bi= a∈R,所以p4为真命题.故选B.
2.(2018·安徽安庆模拟)设i是虚数单位,如果复数
a+i 2-i
的实部与虚部相等,那么实数a的值为( )
1 A.3
B.-13
C.3
D.-3
解析
a+i 2-i
=
2a-1+a+2i 5
,由题意知2a-1=a+
解析 由题意得z2=-2+i,∴z1z2=(2+i)(-2+i)= -5,故选A.
2.若复数z满足①|z|≥1;②|z+i|≤|-1-2i|,则z在复 平面内所对应的图形的面积为___4_π____.
解析 设z=x+yi(x,y∈R),由|z|≥1及|z+i|≤|-1- 2i|易得x2+y2≥1及x2+(y+1)2≤5知z在复平面内对应图形的 面积为5π-π=4π.
冲关针对训练 -1+2 23+3ii+1-2i2018=___2_i____. 解析 原式=i11++22 33ii+1-2i21009 =i+-22i1009=i+i1009=i+i4×252+1=i+i=2i.
真题模拟闯关
1.(2017·全国卷Ⅰ)设有下面四个命题 p1:若复数z满足1z∈R,则z∈R; p2:若复数z满足z2∈R,则z∈R; p3:若复数z1,z2满足z1z2∈R,则z1= z 2; p4:若复数z∈R,则 z ∈R. 其中的真命题为( ) A.p1,p3 B.p1,p4 C.p2,p3 D.p2,p4
2020版高考数学一轮复习 第11章 算法复数推理与证明 第2讲 课后作业 理(含解析)
第11章 算法复数推理与证明 第2讲A 组 基础关1.(2018·榆林模拟)已知复数z 1=6-8i ,z 2=-i ,则z 1z 2=( ) A .8-6i B .8+6i C .-8+6i D .-8-6i 答案 B解析 z 1z 2=6-8i -i=(6-8i)·i=8+6i.2.(2019·青岛模拟)在复平面内,复数z =4-7i2+3i (i 是虚数单位),则z 的共轭复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B 解析 z =4-7i2+3i=4-7i2-3i13=-13-26i 13=-1-2i ,其共轭复数z =-1+2i对应的点(-1,2)在第二象限.3.(2018·河南省天一大联考)已知复数z =2-3i ,若z 是复数z 的共轭复数,则z ·(z +1)=( )A .15-3iB .15+3iC .-15+3iD .-15-3i答案 A解析 依题意,z ·(z +1)=(2-3i)(3+3i)=6+6i -9i +9=15-3i.4.(2019·广东测试)若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( )A .iB .1C .-iD .-1 答案 C解析 ∵z 为纯虚数,∴⎩⎨⎧a -2=0,a ≠0,∴a =2,∴a +i 71+a i =2-i 1+2i =2-i 1-2i 1+2i1-2i=-3i3=-i.故选C.5.已知m 为实数,i 为虚数单位,若m +(m 2-4)i>0,则m +2i2-2i=( )A .iB .1C .-iD .-1 答案 A解析 因为m +(m 2-4)i>0,所以m +(m 2-4)i 是实数,所以⎩⎨⎧m >0,m 2-4=0,故m =2.所以m +2i 2-2i=2+2i 2-2i =1+i1-i=i. 6.(2018·成都市第二次诊断性检测)若虚数(x -2)+y i(x ,y ∈R )的模为3,则yx的最大值是( )A.32B.33C.12 D.3 答案 D解析 因为(x -2)+y i 是虚数, 所以y ≠0,又因为|(x -2)+y i|=3, 所以(x -2)2+y 2=3.因为y x是复数x +y i 对应点的斜率,所以⎝ ⎛⎭⎪⎫y x max =tan ∠AOB =3,所以y x 的最大值为 3.7.(2017·全国卷Ⅰ)设有下面四个命题:p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4 答案 B解析 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0且a ≠0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0.当a =0,b ≠0时,z =a +b i =b i ∈/ R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.故选B.8.(2017·天津高考)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.答案 -2解析 ∵a ∈R ,a -i2+i=a -i2-i 2+i 2-i =2a -1-a +2i 5=2a -15-a +25i 为实数,∴-a +25=0,∴a =-2.9.(2018·合肥模拟)设z 2=z 1-i z 1(其中z 1表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为________.答案 1解析 设z 1=a +b i ,z 2=-1+c i , 因为z 2=z 1-i z 1,所以-1+c i =(a +b i)-i(a -b i)=(a -b )+(b -a )i ,所以⎩⎨⎧a -b =-1,b -a =c ,所以c =1,所以z 2的虚部为1.10.已知复数z =i +i 2+i 3+…+i 20221+i ,则复数z 在复平面内对应点的坐标为________.答案 (0,1)解析 因为i 4n +1+i 4n +2+i 4n +3+i 4n +4=i +i 2+i 3+i 4=0, 而2022=4×505+2,所以z =i +i 2+i 3+…+i 20221+i =i +i 21+i =-1+i1+i=-1+i1-i 1+i1-i =2i2=i ,对应的点为(0,1).B 组 能力关1.(2018·华南师大附中模拟)欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知e a i 为纯虚数,则复数sin2a +i1+i在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 A解析 由题意得e a i=cos a +isin a 是纯虚数,所以⎩⎨⎧cos a =0,sin a ≠0,所以sin2a =2sin a cos a =0,sin2a +i 1+i =i 1+i =i 1-i 2=1+i 2,其在复平面内对应的点⎝ ⎛⎭⎪⎫12,12在第一象限. 2.对于复数z 1,z 2,若(z 1-i)z 2=1,则称z 1是z 2的“错位共轭”复数,则复数32-12i的“错位共轭”复数为( )A .-36-12iB .-32+32iC.36+12i D.32+32i 答案 D解析 由(z -i)⎝ ⎛⎭⎪⎫32-12i =1,可得z -i =132-12i =32+12i ,所以z =32+32i.故选D.3.(2019·西安模拟)已知方程x 2+(4+i)x +4+a i =0(a ∈R )有实根b ,且z =a +b i ,则复数z 等于( )A .2-2iB .2+2iC .-2+2iD .-2-2i答案 A解析 由题意得b 2+(4+i)b +4+a i =0, 整理得(b 2+4b +4)+(a +b )i =0,所以⎩⎨⎧ b +22=0,a +b =0,所以⎩⎨⎧a =2,b =-2,所以z =2-2i.4.已知复数z 在复平面内对应的点在第三象限,则z 1=z +|z |在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 令z =a +b i(a <0,b <0),则|z |=a 2+b 2>|a |,z 1=z +|z |=(a 2+b 2+a )-b i ,又a 2+b 2+a >0,-b >0,所以z 1在复平面内对应的点在第一象限.5.已知复数z =(a -2)+(a +1)i(a ∈R )的对应点在复平面的第二象限,则|1+a i|的取值范围是________.答案 [1,5)解析 复数z =(a -2)+(a +1)i 对应的点的坐标为(a -2,a +1),因为该点位于第二象限,所以⎩⎨⎧a -2<0,a +1>0,解得-1<a <2.所以|1+a i|=1+a 2∈[1,5).6.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-916,7解析 由复数相等的充要条件,可得⎩⎨⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7.。
近年高考数学一轮复习第11章算法、复数、推理与证明11.3合情推理与演绎推理课后作业理(2021年
2019版高考数学一轮复习第11章算法、复数、推理与证明11.3 合情推理与演绎推理课后作业理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第11章算法、复数、推理与证明11.3 合情推理与演绎推理课后作业理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第11章算法、复数、推理与证明11.3 合情推理与演绎推理课后作业理的全部内容。
11。
3 合情推理与演绎推理[基础送分提速狂刷练]一、选择题1.(2018·湖北华师一附中等八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A.甲 B.乙 C.丙 D.丁答案D解析若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故丙猜测错误,即1,2,6号均不是第1名,故3号是第1名,则乙猜测错误,丁猜测正确.故选D。
2.已知a1=3,a2=6,且a n+2=a n+1-a n,则a2016=( )A.3 B.-3 C.6 D.-6答案B解析∵a1=3,a2=6,∴a3=3,a4=-3,a5=-6,a6=-3,a7=3,…,∴{a n}是以6为周期的周期数列.又2016=6×335+6,∴a2016=a6=-3.故选B。
全国近年高考数学一轮复习第11章算法初步、复数、推理与证明第3讲合情推理与演绎推理增分练(2021
(全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第3讲合情推理与演绎推理增分练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第3讲合情推理与演绎推理增分练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第3讲合情推理与演绎推理增分练的全部内容。
第3讲合情推理与演绎推理板块四模拟演练·提能增分[A级基础达标]1.(1)已知a是三角形一边的长,h是该边上的高,则三角形的面积是错误!ah,如果把扇形的弧长l,半径r分别看成三角形的底边长和高,可得到扇形的面积为错误!lr;(2)由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+(2n-1)=n2,则(1)(2)两个推理过程分别属于( )A.类比推理、归纳推理 B.类比推理、演绎推理C.归纳推理、类比推理 D.归纳推理、演绎推理答案A解析(1)由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;(2)由特殊到一般,此种推理为归纳推理.故选A.2.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如下图),试求第七个三角形数是( )A.27 B.28 C.29 D.30答案B解析观察归纳可知第n个三角形数为1+2+3+4+…+n=错误!,∴第七个三角形数为错误!=28.3.[2018·太原模拟]观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )A.121 B.123 C.231 D.211答案B解析令a n=a n+b n,则a1=1,a2=3,a3=4,a4=7,…,得a n+2=a n+a n+1,从而a6=18,a7=29,a8=47,a9=76,a10=123。
2019高考数学一轮复习第11章复数、算法、推理与证明章末总结分层演练文
第11章复数、算法、推理与证明章末总结2A . i(1 + i)2C . (1 + i)(2015 •高考全国卷n, T 8, 5分)下边程序框图的算法思路源于我国 古代数学名著《九章算术》中的“更相减损术”.执行该程序框图, 若输入的a , b 分别为14, 18,则输出的a =()CW1(1)证明:AC 丄BD⑵ 已知△ ACD 是直角三角形,AB= BD 若E 为棱BD 上与D 不重合的点,且 AE! EC 求四面体 ABCE 与四面体 ACD 啲体积比.B. i (1 — i) D. i(1 + i)A . 0 必修3 P 36C. 4D. 14程序框(2017 •高考全国卷n, T 8, 5分)执行如图的程序框图,如果输入的a =— 1,则输出的S =(C. 4推理与证明(2017 •高考全国卷川,T 19, 12分)如图,四面体 ABCD 中, △ ABC 是正三角形,AD= CD必修3 P 41 例 4、P 42 程序框图必修2 P 79B组T i/输人妤//B. 2 D. 5A . 2、根置教材,考在变中421034、选择题51. (选修1-2 P 61A 组T 5(4)改编)i 为虚数单位,则j ( 2+ j )等于( )A. — 2-i B .— 2 + i C.— 1 + 2i D.— 1 — 2i"「丄555 (— 1 — 2i )解析:选D.= =i (2+ i ) — 1 + 2i5=—1— 2i . 2.(选修1-2 P 33内文改编)有一个游戏:将标有数字1、2、3、4的四张卡片分别随机发给甲、乙、丙、丁 4个人,每人一张,并请这4个人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有 3的卡片; 乙说:甲或丙拿到标有 2的卡片; 丙说:标有1的卡片在甲手中; 丁说:甲拿到标有 3的卡片.结果显示甲、乙、丙、丁 4个人的预测都不正确,那么甲、乙、丙、丁 4个人拿到卡片上的数字依次为()A. 3、4、2、 1C. 2、3、1、4乙拿到标有2的卡片,由丙的预测不正确可知甲拿到标有 即甲、乙、丙、丁 4个人拿到卡片上的数字依次为 4、2、1、3.3.(选修1-2 P 30练习T 2改编)如图所示的数阵中,用A (m n )表示第m 行的第n 个数,则依此规律A (15 , 2)为()1 3 1 1 6 6丄]丄10 3 10 1 13 兰丄 15 30 30 15 1 1 13 ]丄 21 2 15 2 21B . 4、 2、 1、 3 D. 1、 3、 2、 4解析:选B .由甲、丁的预测不正确可得丁拿到标有 3的卡片,由乙的预测不正确可得4的卡片,故丙拿到标有1的卡片,42 105A.29B .76111 2解析:选c •由数阵知A , 2)= 6+6=6+丙,1111 2 A 4,2) = 6+6+帀=6 +莎解析:选C.该程序框图是求 495与135的最大公约数,由495 = 135X 3+ 90,135 = 90X1 + 45 , 90 = 45X 2,所以495与135的最大公约数是 45,所以输出的m ^ 45,故选C.、填空题 5.(选修1-2 PdA 组T 3改编)c .17 24 D.7310221 1 1 1 1 22A (52) = + -+ + —=一+ +4X5 f丿6 6 10 16 3X 4X525X6 ,1则 A (15 ,2) = 6 +22+4X52 +5X6 +2,. 11 =— + 63X4 11111 1 1 123- 4+4飞+…+ 亦—届=6+ 21 13 17 =6+2X 48= 24,选项 c 正确. 4. (必修3 P 34-案例1改编)如图所示的程序框图的算法思想源于数学名著 《几何原本》 m,590中的“辗转相除法”,执行该程序框图 (图中“ m MOD n ”表示m 除以n 的余数),若输入的ABC[是复平面内的平行四边形,A、B、C三点对应的复数分别为1 + 2i , - i , 2+ i , O为复平面原点,则|0[= _____________ .解析:设D点对应的复数为x+ y i(x, y€ R),因为ABC[是平行四边形,所以RB= DC即一i —(1 + 2i) = (2 + i) —(x + y i),421078即—1- 3i = (2 - x ) + (1 — y )i ,2 — x = — 1 所以* ,解得x = 3, y = 4. 1 -y =-3所以D 点对应的复数为3+ 4i . 所以 |0D = |3 + 4i| = 5, 答案:5sin a — COS a6. ----------------------------------------------------------- (选修 1-2 P 44B 组 T 1 改编)已知 z =— 1,则 tan 2 a =sin a + 2cos a -----------Sin a — COS a解析:由 =—1,可得 2sin a =— COS a ,sin a + 2cos a所以tan 2 a4答案:-3 三、解答题2 17.(选修1-2 P 35B 组T 1改编)已知数列{a n }的前n 项和为S, a 1 = -石,且 S+ + 2 =3 S na n (n 》2).计算 S 、$、$,并猜想 S.2解:n = 1 时,S = a 1 = — 3.31 2n = 2 时,S 2+ + 2= a 2= S 2— S = S +S 3 所以 Sl 2=—;. 4丄 1 3 n = 3 时,S 3+ + 2= a 3= S 3— S 2= S +S 4 4所以S 3=— 5,n +1所以猜想S n =— n +2 . 8.(必修2 P 45探究、P 52B 组T 1(1)改编)一个正方体的平面展开图及该正方体的直观图的示意图如图所示:所以tan a2,2ta n a 1 — tan 2 a43(1)请将字母F, G, H标记在正方体相应的顶点处(不需说明理由);⑵判断平面BEG与平面ACH的位置关系,并证明你的结论;⑶证明:直线DFL平面BEG解:⑴点F, G H的位置如图所示.⑵平面BEG/平面ACH证明如下:因为ABCDEFG助正方体,所以BC FG BC= FG 又FG/ EH FG= EH 所以BC// EH BC= EH 所以BCHE^平行四边形.所以BE// CH又CH?平面ACH BE?平面ACH所以BE//平面ACH X \同理BG/平面ACH又BEH BG= B,■TL firJ r \1所以平面BEG/平面ACH⑶证明:连接FH因为ABCDEFGH^正方体,所以DHL平面EFGH 因为EG 平面EFGH所以DHL EG又EGL FH, DH^ FH= H,所以EGL平面BFHD又DF?平面BFHD所以DF! EG同理DF L BG又E(T BG= G所以DFL平面BEG9。
全国近年高考数学一轮复习第11章算法初步、复数、推理与证明第1讲算法初步学案(2021年整理)
(全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第1讲算法初步学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第1讲算法初步学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第1讲算法初步学案的全部内容。
第1讲算法初步板块一知识梳理·自主学习[必备知识]考点1 算法的框图及结构1.算法算法通常是指按照一定规则解决某一类问题的明确程序或有限的步骤.这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.通常,程序框图由程序框和流程线组成,一个或几个程序框的组合表示算法中的一个步骤;流程线带有方向箭头,按照算法进行的顺序将程序框连接起来.3.三种基本逻辑结构考点2 算法语句的格式及框图1.输入语句、输出语句、赋值语句的格式与功能2.条件语句的格式及框图(1)IF-THEN格式(2)IF-THEN-ELSE格式3.循环语句的格式及框图(1)UNTIL语句(2)WHILE语句[必会结论]1.注意区分处理框与输入框,处理框主要是赋值、计算,而输入框只是表示一个算法输入的信息.2.循环结构中必有条件结构,其作用是控制循环进程,避免进入“死循环",是循环结构必不可少的一部分.3.注意区分当型循环与直到型循环.直到型循环是“先循环,后判断,条件满足时终止循环”,而当型循环则是“先判断,后循环,条件满足时执行循环”.两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)算法只能解决一个问题,不能重复使用.( )(2)一个程序框图一定包含顺序结构,但不一定包含条件结构和循环结构.()(3)算法可以无限操作下去. ()(4)条件结构的出口有两个,但在执行时,只有一个出口是有效的. ( )(5)▱是赋值框,有计算功能.()(6)当型循环是给定条件不成立时执行循环体,反复进行,直到条件成立为止。
2019届高考数学文科人教新课标版一轮复习课件:第11章 复数、算法、推理与证明 第3讲
1 1 1 3 * (2)已知 f(n)=1+ + +…+n(n∈N ), 经计算得 f(2)= , f(4) 2 3 2 5 7 >2,f(8)> ,f(16)>3,f(32)> .据此猜想一个一般性的结 2 2 论为________(n∈N*).
【解析】 (1)观察三角形数:1,3,6,10,…,记该数列为 {an}, 则 a1=1, a2=a1+2, a3=a2+3, … an=an-1+n.
a3 a4= = 1+a3 …
1 猜想{an}的通项公式为 an=n.故选 A.
(选修 12 P35A 组 T3 改编)凸多面体的面数 F、顶点数 V 和 棱数 E 之间的关系如下表. 凸多面体 三棱柱 五棱柱 三棱锥 四棱锥 面数(F) 5 7 4 5 顶点数(V) 6 10 4 5 棱数(E) 9 15 6 8
4 5 6 7 3 4 5 (2)因为 f(2 )> ,f(2 )> ,f(2 )> ,f(2 )> ,所以当 n≥2 2 2 2 2
2
n+2 n+2 n 时,有 f(2 )> .故填 f(2 )≥ . 2 2
n
【答案】
(1)C
n+2 (2)f(2 )≥ 2
n
(1)归纳是依据特殊现象推断出一般现象,因而由归纳所得的 结论超越了前提所包含的范围; (2)归纳的前提是特殊的情况,所以归纳是立足于观察、经验 或试验的基础之上的; (3)归纳推理所得结论未必正确,有待进一步证明,但对数学 结论和科学的发现很有用.
所以 a1+a2+…+an=(a1+a2+…+an-1)+(1+2+3+…+ n(n+1) n)⇒an=1+2+3+…+n= , 2 观察正方形数:1,4,9,16,…,记该数列为{bn},则 bn= n2.把四个选项的数字,分别代入上述两个通项公式,可知 使得 n 都为正整数的只有 1 225.
2019-2020年高考数学一轮复习第11章算法复数推理与证明11.3合情推理与演绎推理学案理
2019-2020年高考数学一轮复习第11章算法复数推理与证明11.3合情推理与演绎推理学案理[知识梳理]1.推理(1)定义:根据一个或几个已知的判断来确定一个新的判断的思维过程就是推理.(2)分类:推理一般分为合情推理与演绎推理.2.合情推理(1)定义:根据已有的事实,经过观察、分析、比较、联想,再进行归纳类比,然后提出猜想的推理叫做合情推理.(2)分类:数学中常用的合情推理有归纳推理和类比推理.(3)归纳和类比推理的定义、特征3.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理,简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.[诊断自测]1.概念思辨(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) (4)演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.( ) 答案 (1)× (2)√ (3)× (4)√2.教材衍化(1)(选修A2-2P 75例题)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10为( )A .28B .76C .123D .199 答案 C解析 记a n+b n=f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.故选C.(2)(选修A2-2P 84A 组T 5)设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列. 答案T 8T 4 T 12T 8解析 设等比数列{b n }的公比为q ,首项为b 1, 则T 4=b 41q 6,T 8=b 81q1+2+…+7=b 81q 28,T 12=b 121q1+2+…+11=b 121q 66, ∴T 8T 4=b 41q 22,T 12T 8=b 41q 38, 即⎝ ⎛⎭⎪⎫T 8T 42=T 12T 8·T 4,故T 4,T 8T 4,T 12T 8成等比数列.故答案为T 8T 4,T 12T 8. 3.小题热身(1)(xx·厦门模拟)已知圆:x 2+y 2=r 2上任意一点(x 0,y 0)处的切线方程为x 0x +y 0y =r 2.类比以上结论,有双曲线x 2a 2-y 2b2=1上任意一点(x 0,y 0)处的切线方程为________.答案x 0x a 2-y 0y b 2=1 解析 设圆上任一点为(x 0,y 0),把圆的方程中的x 2,y 2替换为x 0x ,y 0y ,则得到圆的切线方程;类比这种方式,设双曲线x 2a 2-y 2b 2=1上任一点为(x 0,y 0),则切线方程为x 0x a 2-y 0yb2=1(这个结论是正确的,证明略).(2)(xx·陕西高考)观察下列等式 1-12=121-12+13-14=13+141-12+13-14+15-16=14+15+16 ……据此规律,第n 个等式可为________.答案 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n解析 观察已知等式可知,第n 个等式左边共有2n 项,其中奇数项为12n -1,偶数项为-12n ,等式右边共有n 项,为等式左边后n 项的绝对值之和,所以第n 个等式为1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12).题型1 类比推理典例 已知P (x 0,y 0)是抛物线y 2=2px (p >0)上的一点,过点P 的切线方程的斜率可通过如下方式求得:在y 2=2px 两边同时对x 求导,得2yy ′=2p ,则y ′=py,所以过点P的切线的斜率k =p y 0.类比上述方法求出双曲线x 2-y 22=1在P (2,2)处的切线方程为________.注意题意要求,类比上述方法求切线. 答案 2x -y -2=0解析 将双曲线方程化为y 2=2(x 2-1),类比上述方法两边同时对x 求导得2yy ′=4x ,则y ′=2x y ,即过点P 的切线的斜率k =2x 0y 0,由于P (2,2),故切线斜率k =222=2,因此切线方程为y -2=2(x -2),整理得2x -y -2=0.方法技巧1.类比推理的四个角度和四个原则 (1)四个角度类比推理是由特殊到特殊的推理,可以从以下几个方面考虑类比: ①类比定义:如等差、等比数列的定义;②类比性质:如椭圆、双曲线的性质;③类比方法:如基本不等式与柯西不等式;④类比结构:如三角形内切圆与三棱锥内切球.(2)四个原则①长度类比面积;②面积类比体积;③平面类比空间;④和类比积,差类比商.见典例.2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).3.常见类比推理题型的求解策略在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:(1)找两类对象的对应元素,如三角形对应三棱锥,圆对应球,面积对应体积等等;(2)找对应元素的对应关系,如两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.冲关针对训练(xx·山东日照一模)36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得200的所有正约数之和为________.答案465解析类比求36的所有正约数之和的方法,200的所有正约数之和可按如下方法求得,因为200=23×52,所以200的所有正约数之和为(1+2+22+23)(1+5+52)=465.题型2 归纳推理角度1 与数字有关的归纳推理典例(xx·石家庄模拟)如图所示的数阵中,用A(m,n)表示第m行的第n个数,则依此规律A(15,2)为( )131 61 61 10131101 15133013301151 2112131512121……A.2942 B.710 C.1724 D.73102答案 C解析 观察题中所给的数阵,可以看出从第三行开始,每行第二个数等于它肩上的两个数的和,所以A (15,2)=16+16+110+115+121+…+1120=16+2×( 112+120+130+142+…+1240) =16+2×⎣⎢⎡⎦⎥⎤13×4+14×5+15×6+16×7+…+115×16 =16+2×⎝ ⎛⎭⎪⎫13-14+14-15+15-16+…+115-116=16+2×⎝ ⎛⎭⎪⎫13-116=1724.故选C. 角度2 与式子有关的归纳推理典例 (xx·山东高考)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2 =43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝⎛⎭⎪⎫sin 8π9-2 =43×4×5; …… 照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=________. 分析等式右边的结构规律. 答案4n (n +1)3解析 观察前4个等式,由归纳推理可知⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2 =43×n ×(n +1)=4n (n +1)3.角度3 与图形有关的归纳推理典例 如图所示,是某小朋友在用火柴拼图时呈现的图形,其中第1个图形用了3根火柴,第2个图形用了9根火柴,第3个图形用了18个火柴,……,则第xx 个图形用的火柴根数为( )A .xx×2019B .xx×xxC .xx×2019D .3027×2019答案 D解析 由题意,第1个图形需要火柴的根数为3×1; 第2个图形需要火柴的根数为3×(1+2); 第3个图形需要火柴的根数为3×(1+2+3); ……由此,可以推出,第n 个图形需要火柴的根数为3×(1+2+3+…+n ).所以第xx 个图形所需火柴的根数为3×(1+2+3+…+xx)=3×2018×(1+2018)2=3027×2019,故选D.方法技巧归纳推理问题的常见类型及解题策略1.与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解.见角度1典例.2.与式子有关的归纳推理(1)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (2)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.见角度2典例.3.与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.见角度3典例.冲关针对训练某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图,n 级分形图中共有________条线段.答案 3×2n-3解析 分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图有3=(3×2-3)条线段,二级分形图有9=(3×22-3)条线段,三级分形图中有21=(3×23-3)条线段,按此规律n 级分形图中的线段条数a n =3×2n-3.题型3 演绎推理典例 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明⎩⎨⎧⎭⎬⎫S n n 是等比数列,将已知a n +1=n +2nS n 中的a n +1用S n +1-S n 表示. 证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件) 方法技巧三段论的应用1.三段论推理的依据是:如果集合M 的所有元素都具有性质P ,S 是M 的子集,那么S 中所有元素都具有性质P .2.应用三段论的注意点:解决问题时,首先应该明确什么是大前提,小前提,然后再找结论.提醒:合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.冲关针对训练(xx·厦门模拟)设f (x )=3ax 2+2bx +c ,若a +b +c =0,f (0)>0,f (1)>0,证明: (1)a >0且-2<b a<-1;(2)方程f (x )=0在(0,1)内有两个实根. 证明 (1)因为f (0)>0,f (1)>0, 所以c >0,3a +2b +c >0.由a +b +c =0,消去b 得a >c >0;再由条件a +b +c =0,消去c 得a +b <0且2a +b >0,所以-2<b a<-1.(2)因为抛物线f (x )=3ax 2+2bx +c 的顶点坐标为⎝ ⎛⎭⎪⎫-b 3a ,3ac -b 23a ,又因为-2<b a <-1,所以13<-b 3a <23.因为f (0)>0,f (1)>0,而f ⎝ ⎛⎭⎪⎫-b 3a =3ac -b 23a =-a 2+c 2-ac 3a=-⎝ ⎛⎭⎪⎫a -c 22+3c243a<0,所以方程f (x )=0在区间⎝⎛⎭⎪⎫0,-b 3a 与⎝ ⎛⎭⎪⎫-b3a ,1内分别有一个实根,故方程f (x )=0在(0,1)内有两个实根.1.(xx·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩答案 D解析由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀,1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.2.(xx·北京高考)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多答案 B解析解法一:假设袋中只有一红一黑两个球,第一次取出后,若将红球放入了甲盒,则乙盒中有一个黑球,丙盒中无球,A错误;若将黑球放入了甲盒,则乙盒中无球,丙盒中有一个红球,D错误;同样,假设袋中有两个红球和两个黑球,第一次取出两个红球,则乙盒中有一个红球,第二次必然拿出两个黑球,则丙盒中有一个黑球,此时乙盒中红球多于丙盒中的红球,C错误.故选B.解法二:设袋中共有2n个球,最终放入甲盒中k个红球,放入乙盒中s个红球.依题意知,甲盒中有(n-k)个黑球,乙盒中共有k个球,其中红球有s个,黑球有(k-s)个,丙盒中共有(n-k)个球,其中红球有(n-k-s)个,黑球有(n-k)-(n-k-s)=s个.所以乙盒中红球与丙盒中黑球一样多.故选B.3.(xx·石家庄模拟)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈ 3163V,人们还用过一些类似的近似公式,根据π=3.14159…判断,下列近似公式中最精确的一个是( )A.d≈36031V B.d≈32VC.d≈3158V D.d≈32111V答案 D解析 由V =4π3⎝ ⎛⎭⎪⎫d 23,解得d =36V π,选项A 代入得π=31×660=3.1;选项B 代入得π=62=3;选项C 代入得π=6×815=3.2;选项D 代入得π=11×621=3.142857.由于D 的值最接近π的真实值.故选D. 4.(xx·湖北七市联考)观察下列等式 1+2+3+…+n =12n (n +1);1+3+6+…+12n (n +1)=16n (n +1)(n +2);1+4+10+…+16n (n +1)(n +2)=124n (n +1)(n +2)(n +3).可以推测,1+5+15+…+124n (n +1)(n +2)(n +3)=________________________. 答案1120n (n +1)(n +2)(n +3)(n +4) 解析 观察所给等式的左侧和右侧并归纳推理,等式右边的因式应为n (n +1)(n +2)(n +3)(n +4),系数为15×24=1120.可以得到答案.[基础送分 提速狂刷练]一、选择题1.(xx·湖北华师一附中等八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁 答案 D解析 若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故丙猜测错误,即1,2,6号均不是第1名,故3号是第1名,则乙猜测错误,丁猜测正确.故选D.2.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a xx =( )A .3B .-3C .6D .-6 答案 B解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又xx =6×335+6,∴a xx =a 6=-3.故选B.3.已知x ∈(0,+∞),观察下列各式: x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3, x +27x 3=x 3+x 3+x 3+27x3≥4,…,类比有x +a xn ≥n +1(n ∈N *),则a =( ) A .n B .2n C .n 2D .n n答案 D解析 第一个式子是n =1的情况,此时a =1,第二个式子是n =2的情况,此时a =4,第三个式子是n =3的情况,此时a =33,归纳可以知道a =n n.故选D.4.已知a n =⎝ ⎛⎭⎪⎫13n,把数列{a n }的各项排成如下的三角形:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( )A.⎝ ⎛⎭⎪⎫1367B.⎝ ⎛⎭⎪⎫1368C.⎝ ⎛⎭⎪⎫13111D.⎝ ⎛⎭⎪⎫13112 答案 D解析 该三角形所对应元素的个数为1,3,5,…, 那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=⎝ ⎛⎭⎪⎫13112.故选D.5.(xx·阳山一模)下面使用类比推理恰当的是( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类推出“a +bc =a c +bc(c ≠0)” D .“(ab )n=a n b n”类推出“(a +b )n=a n+b n” 答案 C解析 对于A ,“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”是错误的,因为0乘任何数都等于0;对于B ,“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”,类推的结果不符合乘法的运算性质,故错误;对于C ,将乘法类推除法,即由“(a +b )c =ac +bc ”类推出“a +b c =a c +b c ”是正确的;对于D ,“(ab )n =a n b n ”类推出“(a +b )n =a n+b n ”是错误的,如(1+1)2=12+12.故选C.6.(xx·河北冀州中学期末)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项,如下表所示:按如此规律下去,则a xx =( ) A .502 B .503 C .504 D .505 答案 D解析 由a 1,a 3,a 5,a 7,…组成的数列恰好对应数列{x n },即x n =a 2n -1,当n 为奇数时,x n =n +12.所以a xx =x 1009=505.故选D.7.(xx·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在 2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,则1+11+11+…=( )A.-5-12 B.5-12 C.1+52 D.1-52答案 C解析 1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52⎝ ⎛⎭⎪⎫x =1-52舍,故1+11+11+…=1+52,故选C. 8.(xx·陕西一模)设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知,四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S -ABC 的体积为V ,则R 等于( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4答案 C解析 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,由平面图形中r 的求解过程类比空间图形中R 的求解过程可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和,则四面体的体积为V =V 四面体S -ABC =13(S 1+S 2+S 3+S 4)R ,所以R =3VS 1+S 2+S 3+S 4.故选C.9.(x x·鹰潭模拟)[x ]表示不超过x 的最大整数,例如:[π]=3.S 1=[1]+[2]+[3]=3S 2=[4]+[5]+[6]+[7]+[8]=10S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=21,…,依此规律,那么S 10等于( ) A .210 B .230 C .220 D .240 答案 A解析 ∵[x ]表示不超过x 的最大整数, ∴S 1=[1]+[2]+[3]=1×3=3,S 2=[4]+[5]+[6]+[7]+[8]=2×5=10,S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=3×7=21,……,S n =[n 2]+[n 2+1]+[n 2+2]+…+[n 2+2n -1]+[n 2+2n ]=n ×(2n +1),∴S 10=10×21=210.故选A.10.(xx·龙泉驿区模拟)对于问题:“已知两个正数x ,y 满足x +y =2,求1x +4y的最小值”,给出如下一种解法:∵x +y =2,∴1x +4y =12(x +y )⎝ ⎛⎭⎪⎫1x +4y =12⎝ ⎛⎭⎪⎫5+y x +4x y , ∵x >0,y >0,∴y x+4x y≥2y x ·4xy=4, ∴1x +4y ≥12(5+4)=92, 当且仅当⎩⎪⎨⎪⎧y x =4x y,x +y =2,即⎩⎪⎨⎪⎧x =23,y =43时,1x +4y 取最小值92.参考上述解法,已知A ,B ,C 是△ABC 的三个内角,则1A +9B +C 的最小值为( )A.16π B.8π C.4π D.2π答案 A解析 A +B +C =π,设A =α,B +C =β,则α+β=π,α+βπ=1,参考题干中解法,则1A +9B +C =1α+9β=⎝ ⎛⎭⎪⎫1α+9β·(α+β)1π=1π⎝ ⎛⎭⎪⎫10+βα+9αβ≥1π(10+6)=16π,当且仅当βα=9αβ,即3α=β时等号成立.故选A.二、填空题11.(xx·北京高考)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.(1)记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是________; (2)记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是________.答案 (1)Q 1 (2)p 2解析 设A 1(xA 1,yA 1),B 1(xB 1,yB 1),线段A 1B 1的中点为E 1(x 1,y 1),则Q 1=yA 1+yB 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.又p 1=yA 1+yB 1xA 1+xB 1=2y 12x 1=y 1x 1=y 1-0x 1-0,其几何意义为线段A 1B 1的中点E 1与坐标原点连线的斜率,因此,要比较p 1,p 2,p 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点与坐标原点连线的斜率,作图比较知p 2最大.12.(xx·湖北八校联考)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =________.答案 2πr 4解析 在二维空间中,圆的二维测度(面积)S =πr 2,则其导数S ′=2πr ,即为圆的一维测度(周长)l =2πr ;在三维空间中,球的三维测度(体积)V =43πr 3,则其导数V ′=4πr 2,即为球的二维测度(表面积)S =4πr 2;应用合情推理,在四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =2πr 4.13.(xx·江西赣州十四县联考)我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金12,第2关收税金为剩余的13,第3关收税金为剩余的14,第4关收税金为剩余的15,第5关收税金为剩余的16,5关所收税金之和,恰好重1斤,问原本持金多少?”若将“5关所收税金之和,恰好重1斤,问原本持金多少?”改成“假设这个人原本持金为x ,按此规律通过第8关”,则第8关所收税金为________x .答案172解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =x 6=x2×3;第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =x 12=x3×4;……第8关收税金:x 8×9=x72. 14.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b xx 是数列{a n }中的第________项; (2)b 2k -1=________(用k 表示). 答案 (1)5040 (2)5k (5k -1)2解析 观察知这些三角形数满足a n =n (n +1)2,n ∈N *,当n =5k -1或n =5k ,k ∈N *时,对应的三角形数是5的倍数,为数列{b n }中的项,将5k -1和5k 列为一组,所以b xx 是第1008组的后面一项,即b xx 是数列{a n }中的第5×1008=5040项;b 2k -1是第k 组的前面一项,是数列{a n }中的第5k -1项,即b 2k -1=a 5k -1=5k (5k -1)2.三、解答题15.(xx·未央区期中)阅读以下求1+2+3+…+n 的值的过程: 因为(n +1)2-n 2=2n +1,n 2-(n -1)2=2(n -1)+1…22-12=2×1+1以上各式相加得(n +1)2-1=2×(1+2+3+…+n )+n 所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2.类比上述过程,求12+22+32+…+n 2的值. 解 ∵23-13=3·22-3·2+1, 33-23=3·32-3·3+1,…,n 3-(n -1)3=3n 2-3n +1,把这n -1个等式相加得n 3-1=3·(22+32+…+n 2)-3·(2+3+…+n )+(n -1), 由此得n 3-1=3·(12+22+32+…+n 2)-3·(1+2+3+…+n )+(n -1), 即12+22+…+n 2=13⎣⎢⎡⎦⎥⎤n 3-1+32n (n +1)-(n -1).16.(xx·南阳模拟)我们知道,等差数列和等比数列有许多性质可以类比,现在给出一个命题:若数列{a n }、{b n }是两个等差数列,它们的前n 项的和分别是S n ,T n ,则a n b n =S 2n -1T 2n -1.(1)请你证明上述命题;(2)请你就数列{a n }、{b n }是两个各项均为正的等比数列,类比上述结论,提出正确的猜想,并加以证明.解 (1)证明:在等差数列{a n }中,a n =a 1+a 2n -12(n ∈N *),那么对于等差数列{a n }、{b n }有:a nb n =12(a 1+a 2n -1)12(b 1+b 2n -1)=12(a 1+a 2n -1)(2n -1)12(b 1+b 2n -1)(2n -1)=S 2n -1T 2n -1. (2)猜想:数列{a n }、{b n }是两个各项均为正的等比数列,它们的前n 项的积分别是X n ,Y n ,则⎝ ⎛⎭⎪⎫a n b n 2n -1=X 2n -1Y 2n -1. 证明:在等比数列{a n }中,a 2n =a 1a 2n -1=a 2a 2n -2=…(n ∈N *), (a n )2n -1=a 1a 2a 3…a 2n -1(n ∈N *),那么对于等比数列{a n }、{b n }有⎝ ⎛⎭⎪⎫a n b n 2n -1=a 1a 2a 3…a 2n -1b 1b 2b 3…b 2n -1=X 2n -1Y 2n -1.2019-2020年高考数学一轮复习第11章算法复数推理与证明11.3合情推理与演绎推理课后作业文一、选择题1.(xx·湖北华师一附中等八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁 答案 D解析 若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故丙猜测错误,即1,2,6号均不是第1名,故3号是第1名,则乙猜测错误,丁猜测正确.故选D.2.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a xx =( ) A .3 B .-3 C .6 D .-6 答案 B解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又xx =6×335+6,∴a xx =a 6=-3.故选B.3.已知x ∈(0,+∞),观察下列各式: x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3, x +27x 3=x 3+x 3+x 3+27x3≥4,…,类比有x +a xn ≥n +1(n ∈N *),则a =( ) A .n B .2n C .n 2D .n n答案 D解析 第一个式子是n =1的情况,此时a =1,第二个式子是n =2的情况,此时a =4,第三个式子是n =3的情况,此时a =33,归纳可以知道a =n n.故选D.4.已知a n =⎝ ⎛⎭⎪⎫13n,把数列{a n }的各项排成如下的三角形:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( )A.⎝ ⎛⎭⎪⎫1367 B .⎝ ⎛⎭⎪⎫1368 C.⎝ ⎛⎭⎪⎫13111D.⎝ ⎛⎭⎪⎫13112 答案 D解析 该三角形所对应元素的个数为1,3,5,…, 那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=⎝ ⎛⎭⎪⎫13112.故选D.5.(xx·阳山县校级一模)下面使用类比推理恰当的是( ) A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ” B .“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ” C .“(a +b )c =ac +bc ”类推出“a +bc =a c +bc(c ≠0)” D .“(ab )n=a n b n”类推出“(a +b )n=a n+b n” 答案 C解析 对于A“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”是错误的,因为0乘任何数都等于0;对于B“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”,类推的结果不符合乘法的运算性质,故错误;对于C 将乘法类推除法,即由“(a +b )c =ac +bc ”类推出“a +bc =a c +b c”是正确的;对于D“(ab )n =a n b n ”类推出“(a +b )n =a n +b n”是错误的;如(1+1)2=12+12.故选C.6.(xx·河北冀州中学期末)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项,如下表所示:按如此规律下去,则a xx =( ) A .502 B .503 C .504 D .505 答案 D解析 由a 1,a 3,a 5,a 7,…组成的数列恰好对应数列{x n },即x n =a 2n -1,当n 为奇数时,x n =n +12.所以a xx =x 1009=505.故选D.7.(xx·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,则1+11+11+…=( )A.-5-12 B.5-12 C.1+52 D.1-52答案 C解析 1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52⎝ ⎛⎭⎪⎫x =1-52舍,故1+11+11+…=1+52,故选C. 8.(xx·陕西一模)设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c ,类比这个结论可知,四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S -ABC 的体积为V ,则R 等于( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S4答案 C解析设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,由平面图形中r 的求解过程类比空间图形中R 的求解过程可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和,则四面体的体积为V =V 四面体S -ABC=13(S 1+S 2+S 3+S 4)R ,所以R =3VS 1+S 2+S 3+S 4.故选C.9.(xx·鹰潭模拟)[x ]表示不超过x 的最大整数,例如:[π]=3.S 1=[1]+[2]+[3]=3S 2=[4]+[5]+[6]+[7]+[8]=10S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=21,…依此规律,那么S 10等于( ) A .210 B .230 C .220 D .240 答案 A解析 ∵[x ]表示不超过x 的最大整数, ∴S 1=[1]+[2]+[3]=1×3=3,S 2=[4]+[5]+[6]+[7]+[8]=2×5=10,S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=3×7=21,…S n =[n 2]+[n 2+1]+[n 2+2]+…+[n 2+2n -1]+[n 2+2n ]=n ×(2n +1),∴S 10=10×21=210.故选A.10.(xx·龙泉驿区模拟)对于问题:“已知两个正数x ,y 满足x +y =2,求1x +4y的最小值”,给出如下一种解法:∵x +y =2,∴1x +4y =12(x +y )⎝ ⎛⎭⎪⎫1x +4y =12⎝ ⎛⎭⎪⎫5+y x +4x y , ∵x >0,y >0,∴y x+4x y≥2y x ·4xy=4, ∴1x +4y ≥12(5+4)=92, 当且仅当⎩⎪⎨⎪⎧y x =4x y,x +y =2,即⎩⎪⎨⎪⎧x =23,y =43时,1x +4y 取最小值92.参考上述解法,已知A ,B ,C 是△ABC 的三个内角,则1A +9B +C 的最小值为( )A.16πB.8πC.4πD.2π 答案 A解析 A +B +C =π,设A =α,B +C =β,则α+β=π,α+βπ=1,参考题干中解法,则1A +9B +C =1α+9β=⎝ ⎛⎭⎪⎫1α+9β·(α+β)1π=1π⎝ ⎛⎭⎪⎫10+βα+9αβ≥1π(10+6)=16π,当且仅当βα=9αβ,即3α=β时等号成立.故选A.二、填空题11.(xx·北京高考)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.(1)记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是________. (2)记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是________.答案 (1)Q 1 (2)p 2解析 设A 1(xA 1,yA 1),B 1(xB 1,yB 1),线段A 1B 1的中点为E 1(x 1,y 1),则Q 1=yA 1+yB 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.又p 1=yA 1+yB 1xA 1+xB 1=2y 12x 1=y 1x 1=y 1-0x 1-0,其几何意义为线段A 1B 1的中点E 1与坐标原点连线的斜率,因此,要比较p 1,p 2,p 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点与坐标原点连线的斜率,作图比较知p 2最大.12.(xx·湖北八校联考)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =________.答案 2πr 4解析 在二维空间中,圆的二维测度(面积)S =πr 2,则其导数S ′=2πr, 即为圆的一维测度(周长)l =2πr ;在三维空间中,球的三维测度(体积)V =43πr 3,则其导数V ′=4πr 2,即为球的二维测度(表面积)S =4πr 2;应用合情推理,在四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =2πr 4.13.(xx·江西赣州十四县联考)我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金12,第2关收税金为剩余的13,第3关收税金为剩余的14,第4关收税金为剩余的15,第5关收税金为剩余的16,5关所收税金之和,恰好重1斤,问原本持金多少?”若将“5关所收税金之和,恰好重1斤,问原本持金多少?”改成“假设这个人原本持金为x ,按此规律通过第8关”,则第8关所收税金为________x .答案172解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =x 6=x2×3;第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =x 12=x3×4;……第8关收税金:x 8×9=x72. 14.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b xx 是数列{a n }中的第________项; (2)b 2k -1=________(用k 表示). 答案 (1)5040 (2)5kk -2解析 观察知这些三角形数满足a n =n n +2,n ∈N *,当n =5k -1或n =5k ,k ∈N*时,对应的三角形数是5的倍数,为数列{b n }中的项,将5k -1和5k 列为一组,所以b xx 是第1008组的后面一项,即b xx 是数列{a n }中的第5×1008=5040项;b 2k -1是第k 组的前面一项,是数列{a n }中的第5k -1项,即b 2k -1=a 5k -1=5kk -2.三、解答题。
高考数学一轮第11章 算法初步、复数、推理与证明 11-2
板块三 启智培优·破译高考
数学思想系列 12——解决复数问题的实数化思想 [2018·金华模拟]已知 z∈C,解方程 z·-z -3i-z =1+3i. 解题视点 设 z=a+bi(a,b∈R),根据已知中恒等的 条件,列出一组含 a,b 的方程,解方程组使问题获得解决.
解 设 z=a+bi(a,b∈R),则(a+bi)(a-bi)-3i(a-bi) =1+3i,即 a2+b2-3b-3ai=1+3i.
∴-2λ-λ+μμ==-3,4, 解得λμ==-2. 1, ∴λ+μ=1.
考向 复数的代数运算 命题角度 1 复数的乘法运算 例 3 [2017·山东高考]已知 a∈R,i 是虚数单位.若 z=a+ 3i,z·z =4,则 a=( ) A.1 或-1 B. 7或- 7 C.- 3 D. 3
A. 5 B.2 5 C.5 2 D. 10
解析 ∵z=-2+i,∴-z =-2-i, ∴|(1+z)·-z |=|(1-2+i)·(-2-i)|=|3-i|= 1+9= 10,故选 D.
5.[2017·江苏高考]已知复数 z=(1+i)(1+2i),其中 i 是虚数单位,则 z 的模是____1_0___.
解析 ∵a∈R,a2-+ii=a2-+ii22--ii=2a-1-5a+2i= 2a5-1-a+5 2i 为实数,∴-a+5 2=0,∴a=-2.
触类旁通 求解与复数概念相关问题的技巧
复数的分类、复数的相等、复数的模、共轭复数的概念 都与复数的实部和虚部有关,所以解答与复数相关概念有关 的问题时,需把所给复数化为代数形式,即 a+bi(a,b∈R) 的形式,再根据题意列方程(组)求解.
∴a=43, b=1,
解析 依题意得(a+ 3i)(a- 3i)=4,即 a2+3=4,∴ a=±1.故选 A.
2020年高考数学理科一轮复习 第11章 算法,复数推理与证明 第1讲
基础知识过关
经典题型冲关
课后作业
2.小题热身 (1)根据给出的程序框图(如图),计算 f(-1)+f(2)=( )
基础知识过关
经典题型冲关
课后作业
A.0 B.1 C.2 D.4
答案 A
解析 f(-1)=4×(-1)=-4,f(2)=22=4,∴f(-1)+f(2)=-4+4=0.
基础知识过关
经典题型冲关
y 的值为-2.
基础知识过关
经典题型冲关
课后作业
解析
条件探究 值.
将举例说明 2 中“输入 x”改为“输出 y”,求输入的 x 的
解
x 2 ,x≥1, 由题意得 y= 当 x≥1 时,2x≥2,所以若输出 y 2+log2x,x<1,
131 1 1 = ,则必有 x<1,2+log2x= ,解得 x= . 2 16 16 16
基础知识过关
经典题型冲关
课后作业
解析
1.循环结构程序框图求输出结果的方法 解决此类问题最常用的方法是列举法,即依次执行循环体中的每一步, 直到循环终止,但在执行循环体的过程中: 第一, 要明确是当型循环结构还是直到型循环结构, 根据各自特点执行 循环体; 第二, 要明确框图中的累加变量, 明确每一次执行循环体前和执行循环 体后,变量的值发生的变化; 第三,要明确循环终止的条件是什么,什么时候要终止执行循环体.
内的条件不满足时,输出 n,所以
基础知识过关
经典题型冲关
课后作业
答案
解析
2.(2018· 洛阳三模)定义[x]表示不超过 x 的最大整数,例如[0.6]=0,[2] =2,[3.6]=3,下图的程序框图取材于中国古代数学著作《孙子算经》 .执 行该程序框图,则输出 a=( )
「精品」高考数学一轮复习第11章复数算法推理与证明章末总结分层演练文
第11章复数、算法、推理与证明章末总结B.2D.14(2017·高考全国卷Ⅱ,T8,5分)执行如图的程序框图,如果输入的=-1,则输出的S=(B.3D.519,12分)如图,四面体一、选择题1.(选修12 P 61A 组T 5(4)改编)i 为虚数单位,则5i (2+i )等于( )A .-2-iB .-2+iC .-1+2iD .-1-2i解析:选D .5i (2+i )=5-1+2i =5(-1-2i )5=-1-2i .2.(选修12 P 33内文改编)有一个游戏:将标有数字1、2、3、4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4个人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片; 乙说:甲或丙拿到标有2的卡片; 丙说:标有1的卡片在甲手中; 丁说:甲拿到标有3的卡片.结果显示甲、乙、丙、丁4个人的预测都不正确,那么甲、乙、丙、丁4个人拿到卡片上的数字依次为( )A .3、4、2、1B .4、2、1、3C .2、3、1、4D .1、3、2、4 解析:选B .由甲、丁的预测不正确可得丁拿到标有3的卡片,由乙的预测不正确可得乙拿到标有2的卡片,由丙的预测不正确可知甲拿到标有4的卡片,故丙拿到标有1的卡片,即甲、乙、丙、丁4个人拿到卡片上的数字依次为4、2、1、3.3.(选修12 P 30练习T 2改编)如图所示的数阵中,用A (m ,n )表示第m 行的第n 个数,则依此规律A (15,2)为( )13 16 16 110 13 110 115 1330 1330 115121 12 1315 12 121…A .2942B .710C .1724D .73102解析:选C .由数阵知A (3,2)=16+16=16+23×4,A (4,2)=16+16+110=16+23×4+24×5,A (5,2)=16+16+110+115=16+23×4+24×5+25×6,…,则A (15,2)=16+23×4+24×5+25×6+…+215×16=16+2⎝ ⎛⎭⎪⎫13-14+14-15+…+115-116=16+2⎝ ⎛⎭⎪⎫13-116 =16+2×1348=1724,选项C 正确. 4.(必修3 P 34-35案例1改编)如图所示的程序框图的算法思想源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n ”表示m 除以n 的余数),若输入的m ,n 分别为495,135,则输出的m =( )A .0B .5C .45D .90解析:选C .该程序框图是求495与135的最大公约数,由495=135×3+90,135=90×1+45,90=45×2,所以495与135的最大公约数是45,所以输出的m =45,故选C .二、填空题5.(选修12 P 61A 组T 3改编)ABCD 是复平面内的平行四边形,A 、B 、C 三点对应的复数分别为1+2i ,-i ,2+i ,O 为复平面原点,则|OD |=________.解析:设D 点对应的复数为x +y i(x ,y ∈R ), 因为ABCD 是平行四边形, 所以AB →=DC →,即-i -(1+2i)=(2+i)-(x +y i), 即-1-3i =(2-x )+(1-y )i ,所以⎩⎪⎨⎪⎧2-x =-11-y =-3,解得x =3,y =4.所以D 点对应的复数为3+4i . 所以|OD |=|3+4i|=5, 答案:56.(选修12 P 44B 组T 1改编)已知sin α-cos αsin α+2cos α=-1,则tan 2α=________.解析:由sin α-cos αsin α+2cos α=-1,可得2sin α=-cos α,所以tan α=-12,所以tan 2α=2tan α1-tan 2α=2×⎝ ⎛⎭⎪⎫-121-⎝ ⎛⎭⎪⎫-122=-43. 答案:-43三、解答题7.(选修12 P 35B 组T 1改编)已知数列{a n }的前n 项和为S n ,a 1=-23,且S n +1S n+2=a n (n ≥2).计算S 1、S 2、S 3,并猜想S n .解:n =1时,S 1=a 1=-23.n =2时,S 2+1S 2+2=a 2=S 2-S 1=S 2+23,所以S 2=-34.n =3时,S 3+1S 3+2=a 3=S 3-S 2=S 3+34,所以S 3=-45,所以猜想S n =-n +1n +2. 8.(必修2 P 45探究、P 52B 组T 1(1)改编)一个正方体的平面展开图及该正方体的直观图的示意图如图所示:(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论; (3)证明:直线DF ⊥平面BEG . 解:(1)点F ,G ,H 的位置如图所示.(2)平面BEG ∥平面ACH .证明如下:因为ABCD EFGH 为正方体,所以BC ∥FG ,BC =FG , 又FG ∥EH ,FG =EH ,所以BC ∥EH ,BC =EH , 所以BCHE 为平行四边形. 所以BE ∥CH .又CH ⊂平面ACH ,BE ⊄平面ACH , 所以BE ∥平面ACH . 同理BG ∥平面ACH . 又BE ∩BG =B ,所以平面BEG ∥平面ACH . (3)证明:连接FH .因为ABCD EFGH 为正方体,所以DH ⊥平面EFGH , 因为EG ⊂平面EFGH ,所以DH ⊥EG .又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学一轮复习第11章算法复数推理与证明11.2数系的扩充与复数的引入学案文[知识梳理]1.复数的有关概念2.复数的几何意义复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即(1)复数z =a +b i 复平面内的点Z (a ,b )(a ,b ∈R ). (2)复数z =a +b i(a ,b ∈R ) 平面向量OZ →. 3.复数代数形式的四则运算 (1)运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).(3)复数乘法的运算定律复数的乘法满足交换律、结合律、分配律,即对于任意z 1,z 2,z 3∈C ,有z 1·z 2=z 2·z 1,(z 1·z 2)·z 3=z 1·(z 2·z 3),z 1(z 2+z 3)=z 1z 2+z 1z 3.(4)复数加、减法的几何意义①复数加法的几何意义:若复数z 1,z 2对应的向量OZ 1→,OZ 2→不共线,则复数z 1+z 2是以OZ 1→,OZ 2→为两邻边的平行四边形的对角线OZ →所对应的复数.②复数减法的几何意义:复数z 1-z 2是OZ 1→-OZ 2→=Z 2Z 1→所对应的复数. 4.模的运算性质:①|z |2=|z |2=z ·z ;②|z 1·z 2|=|z 1||z 2|;③⎪⎪⎪⎪⎪⎪z 1z 2=|z 1||z 2|. [诊断自测] 1.概念思辨(1)关于x 的方程ax 2+bx +c =0(a ,b ,c ∈R 且a ≠0)一定有两个根.( ) (2)若复数a +b i 中a =0,则此复数必是纯虚数.( ) (3)复数中有相等复数的概念,因此复数可以比较大小.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )答案 (1)√ (2)× (3)× (4)√ 2.教材衍化(1)(选修A1-2P 63A 组T 1(3))在复平面内,复数z =12+i(i 为虚数单位)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 D解析 z =12+i =2-i (2+i )(2-i )=25-15i ,其对应的点为⎝ ⎛⎭⎪⎫25,-15,在第四象限.故选D.(2)(选修A1-2P 61A 组T 3)在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i 答案 C解析 ∵A (6,5),B (-2,3),∴线段AB 的中点C (2,4),则点C 对应的复数为z =2+4i.故选C.3.小题热身(1)(xx·全国卷Ⅱ)3+i1+i =( )A .1+2iB .1-2iC .2+iD .2-i 答案 D 解析3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i.故选D. (2)(xx·全国卷Ⅰ)设复数z 满足1+z1-z =i ,则|z |=( )A .1 B. 2 C. 3 D .2 答案 A解析 由已知1+z 1-z =i ,可得z =i -1i +1=(i -1)2(i +1)(i -1)=-2i-2=i ,∴|z |=|i|=1,故选A.题型1 复数的有关概念典例已知x ,y 为共轭复数,且(x +y )2-3xy i =4-6i ,求x ,y .复数问题实数化.解 设x =a +b i(a ,b ∈R ), 则y =a -b i ,x +y =2a ,xy =a 2+b 2, 代入原式,得(2a )2-3(a 2+b 2)i =4-6i ,根据复数相等得⎩⎪⎨⎪⎧4a 2=4,-3(a 2+b 2)=-6,解得⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =1,b =-1或⎩⎪⎨⎪⎧a =-1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.故所求复数为⎩⎪⎨⎪⎧x =1+i ,y =1-i ,或⎩⎪⎨⎪⎧x =1-i ,y =1+i 或⎩⎪⎨⎪⎧x =-1+i ,y =-1-i 或⎩⎪⎨⎪⎧x =-1-i ,y =-1+i.方法技巧有关复数的基本概念问题的关键因为复数的分类、相等、模、共轭复数等问题都与实部与虚部有关,所以处理复数有关基本概念问题的关键是找准复数的实部和虚部,即转化为a +b i(a ,b ∈R )的形式,再从定义出发,把复数问题转化成实数问题来处理.见典例.冲关针对训练(xx·山西四校联考)i 是虚数单位,若2+i1+i =a +b i(a ,b ∈R ),则lg (a +b )的值是( )A .-2B .-1C .0 D.12答案 C解析 因为2+i 1+i =(2+i )(1-i )2=32-i 2,所以a =32,b =-12,a +b =1,所以lg (a +b )=0,故选C.题型2 复数的几何意义典例1 (xx·全国卷Ⅱ)已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)根据复数z =a +b i(a ,b ∈R )的几何意义,写出不等式求解.答案 A解析 由已知可得⎩⎪⎨⎪⎧m +3>0,m -1<0⇒⎩⎪⎨⎪⎧m >-3,m <1⇒-3<m <1.故选A.[条件探究1] 若将典例1中条件“z =(m +3)+(m -1)i 在复平面内对应的点在第四象限”变为“复数z 的共轭复数z -=1+2i(i 为虚数单位)”,则复数z 在复平面内对应的点在第几象限?解 由条件知z =1-2i ,其在复平面内对应的点为(1,-2),在第四象限. [条件探究2] 若将典例1中条件变为“复数(1-i)(a +i)在复平面内对应的点在第二象限”,求实数a 的取值范围.解 ∵复数(1-i)(a +i)=a +1+(1-a )i 在复平面内对应的点在第二象限,∴⎩⎪⎨⎪⎧a +1<0,1-a >1,∴a <-1.即实数a 的取值范围是(-∞,-1).典例2 (xx·全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22C. 2 D .2先求z 的代数形式,再求|z |.答案 C解析 由(1+i)z =2i 得z =2i1+i=1+i , ∴|z |= 2.故选C. 方法技巧复数几何意义及应用1.复数z 、复平面上的点Z 及向量OZ →相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔OZ →.见典例1.2.由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.3.|z |的几何意义:令z =x +y i(x ,y ∈R ),则|z |=x 2+y 2,由此可知表示复数z 的点到原点的距离就是|z |的几何意义;|z 1-z 2|的几何意义是复平面内表示复数z 1,z 2的两点之间的距离.见典例2.冲关针对训练1.(xx·全国卷Ⅱ)设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( )A .-5B .5C .-4+iD .-4-i 答案 A解析 由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i)=-5,故选A.2.若复数z 满足①|z |≥1;②|z +i|≤|-1-2i|,则z 在复平面内所对应的图形的面积为________.答案 4π解析 设z =x +y i(x ,y ∈R ),由|z |≥1及|z +i|≤|-1-2i|易得x 2+y 2≥1及x 2+(y +1)2≤5知z 在复平面内对应图形的面积为5π-π=4π.题型3 复数的代数运算典例 (xx·全国卷Ⅲ)若z =1+2i ,则4i z z -1=( ) A .1 B .-1 C .i D .-i先作乘法z ·z 运算,然后作除法运算.答案 C解析 ∵z z =(1+2i)(1-2i)=5,∴4iz z -1=4i4=i ,故选C.方法技巧1.加减乘除运算法则(1)复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i 的幂写成最简形式.(2)记住以下结论,可提高运算速度:①(1±i)2=±2i;②1+i 1-i =i ;③1-i 1+i =-i ;④a +b i i =b -a i ;⑤i 4n =1,i 4n +1=i ,i4n +2=-1,i4n +3=-i(n ∈N ).2.复数方程要求解,运用概念相等来解决解决复数与三角函数、方程等综合问题,关键是抓住复数的实部、虚部,运用好复数的概念来解决问题.冲关针对训练-23+i 1+23i +⎝ ⎛⎭⎪⎫21-i xx=________.答案 2i解析 原式=i (1+23i )1+23i +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21-i 21009=i +⎝⎛⎭⎪⎫2-2i 1009=i +i 1009=i +i 4×252+1=i +i =2i.1.(xx·全国卷Ⅰ)设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4 答案 B解析 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0且a ≠0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0.当a =0,b ≠0时,z =a +b i =b i ∈/ R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/ a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.故选B.2.(xx·安徽安庆模拟)设i 是虚数单位,如果复数a +i2-i的实部与虚部相等,那么实数a 的值为( )A.13 B .-13 C .3 D .-3 答案 C 解析a +i 2-i=2a -1+(a +2)i5,由题意知2a -1=a +2,解之得a =3.故选C.3.(xx·浙江高考)已知a ,b ∈R ,(a +b i)2=3+4i(i 是虚数单位),则a 2+b 2=________,ab =________.答案 5 2解析 (a +b i)2=a 2-b 2+2ab i.由(a +b i)2=3+4i ,得⎩⎪⎨⎪⎧a 2-b 2=3,ab =2.解得a 2=4,b 2=1.所以a 2+b 2=5,ab =2.4.(xx·天津高考)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.答案 -2解析 ∵a ∈R ,a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -1-(a +2)i 5=2a -15-a +25i 为实数,∴-a +25=0,∴a =-2.[基础送分 提速狂刷练]一、选择题1.(xx·湖南长沙四县联考)i 是虚数单位,若复数z 满足z i =-1+i ,则复数z 的实部与虚部的和是( )A .0B .1C .2D .3 答案 C解析 复数z 满足z i =-1+i ,可得z =-1+i i =(-1+i )ii·i =1+i.故复数z 的实部与虚部的和是1+1=2,故选C.2.(xx·湖北优质高中联考)已知复数z =1+i(i 是虚数单位),则2z-z 2的共轭复数是( )A .-1+3iB .1+3iC .1-3iD .-1-3i 答案 B 解析2z-z 2=21+i -(1+i)2=2(1-i )(1+i )(1-i )-2i =1-i -2i =1-3i ,其共轭复数是1+3i ,故选B.3.(xx·河南洛阳模拟)设复数z 满足z -=|1-i|+i(i 为虚数单位),则复数z =( ) A.2-i B.2+i C .1 D .-1-2i 答案 A解析 复数z 满足z -=|1-i|+i =2+i ,则复数z =2-i.故选A.4.(xx·广东测试)若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( )A .iB .1C .-iD .-1 答案 C解析 ∵z 为纯虚数,∴⎩⎨⎧a -2=0,a ≠0,∴a =2,∴a +i 71+a i =2-i 1+2i =(2-i )(1-2i )(1+2i )(1-2i )=-3i 3=-i.故选C. 5.(xx·安徽江南十校联考)若复数z 满足z (1-i)=|1-i|+i ,则z 的实部为( )A.2-12 B.2-1 C .1 D.2+12答案 A解析 由z (1-i)=|1-i|+i ,得z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=2-12+2+12i ,z 的实部为2-12,故选A. 6.(xx·安徽十校联考)若z =2-i2+i ,则|z |=( )A.15 B .1 C .5 D .25 答案 B解析 解法一:z =2-i 2+i =(2-i )(2-i )(2+i )(2-i )=35-45i ,故|z |=1.故选B.解法二:|z |=⎪⎪⎪⎪⎪⎪2-i 2+i =|2-i||2+i|=55=1.故选B.7.(xx·河南百校联盟模拟)已知复数z 的共轭复数为z -,若⎝ ⎛⎭⎪⎪⎫3z 2+z -2(1-22i)=5-2i(i 为虚数单位),则在复平面内,复数z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案 A解析 依题意,设z =a +b i(a ,b ∈R ),则3z 2+z -2=2a +b i ,故2a +b i =5-2i1-22i =1+2i ,故a =12,b =2,则在复平面内,复数z 对应的点为⎝ ⎛⎭⎪⎫12,2,位于第一象限.故选A.8.(xx·新乡、许昌、平顶山调研)复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是( )A.[]-1,1B.⎣⎢⎡⎦⎥⎤-916,1C.⎣⎢⎡⎦⎥⎤-916,7 D.⎣⎢⎡⎦⎥⎤916,7答案 C解析 由复数相等的充要条件,可得⎩⎪⎨⎪⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7.故选C.9.对于复数z 1,z 2,若(z 1-i)z 2=1,则称z 1是z 2的“错位共轭”复数,则复数32-12i 的“错位共轭”复数为( )A .-36-12iB .-32+32i C.36+12i D.32+32i 答案 D 解析 由(z -i)⎝⎛⎭⎪⎫32-12i =1,可得z -i =132-12i =32+12i ,所以z =32+32i.故选D.10.已知z =a +b i(a ,b ∈R ,i 是虚数单位),z 1,z 2∈C ,定义:D (z )=||z ||=|a |+|b |,D (z 1,z 2)=||z 1-z 2||,给出下列命题:(1)对任意z ∈C ,都有D (z )>0;(2)若z 是复数z 的共轭复数,则D (z )=D (z )恒成立; (3)若D (z 1)=D (z 2)(z 1,z 2∈C ),则z 1=z 2;(4)对任意z 1,z 2,z 3∈C ,结论D (z 1,z 3)≤D (z 1,z 2)+D (z 2,z 3)恒成立. 其中真命题为( )A .(1)(2)(3)(4)B .(2)(3)(4)C .(2)(4)D .(2)(3) 答案 C解析 对于(1),由定义知当z =0时,D (z )=0,故(1)错误,排除A ;对于(2),由于共轭复数的实部相等而虚部互为相反数,所以D (z )=D (z )恒成立,故(2)正确;对于(3),两个复数的实部与虚部的绝对值之和相等并不能得到实部与虚部分别相等,所以两个复数也不一定相等,故(3)错误,排除B ,D ,故选C.二、填空题11.(xx·江苏高考)已知复数z =(1+i)(1+2i),其中i 是虚数单位,则z 的模是________.答案10解析 解法一:∵z =(1+i)(1+2i)=1+2i +i -2=-1+3i , ∴|z |=(-1)2+32=10. 解法二:|z |=|1+i||1+2i| =2×5=10.12.(xx·天津高考)已知a ,b ∈R ,i 是虚数单位.若(1+i)(1-b i)=a ,则ab的值为________.答案 2解析 由(1+i)(1-b i)=a 得1+b +(1-b )i =a ,则⎩⎪⎨⎪⎧b +1=a ,1-b =0,解得⎩⎪⎨⎪⎧a =2,b =1,所以ab=2.13.(xx·北京高考)设a ∈R .若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a =________.答案 -1解析 (1+i)(a +i)=(a -1)+(a +1)i , ∵a ∈R ,该复数在复平面内对应的点位于实轴上, ∴a +1=0,∴a =-1.14.若虚数z 同时满足下列两个条件:①z +5z是实数;②z +3的实部与虚部互为相反数.则z =________.答案 -1-2i 或-2-i解析 设z =a +b i(a ,b ∈R ,b ≠0), 则z +5z =a +b i +5a +b i=a ⎝⎛⎭⎪⎫1+5a 2+b 2+b ⎝ ⎛⎭⎪⎫1-5a 2+b 2i. 又z +3=a +3+b i 实部与虚部互为相反数,z +5z是实数,根据题意有⎩⎪⎨⎪⎧b ⎝⎛⎭⎪⎫1-5a 2+b 2=0,a +3=-b ,因为b ≠0,所以⎩⎪⎨⎪⎧a 2+b 2=5,a =-b -3,解得⎩⎪⎨⎪⎧a =-1,b =-2或⎩⎪⎨⎪⎧a =-2,b =-1.所以z =-1-2i 或z =-2-i. 三、解答题15.(xx·徐汇区校级模拟)已知z 是复数,z +2i 与z2-i均为实数(i 为虚数单位),且复数(z +a i)2在复平面上对应点在第一象限.(1)求z 的值;(2)求实数a 的取值范围. 解 (1)设z =x +y i(x ,y ∈R ),又z +2i =x +(y +2)i 为实数,∴y +2=0,解得y =-2.∴z 2-i =x -2i 2-i =(x -2i )(2+i )(2-i )(2+i )=(2x +2)+(x -4)i 5, ∵z2-i 为实数,∴x -45=0,解得x =4. ∴z =4-2i.(2)∵复数(z +a i)2=[4+(a -2)i]2=16-(a -2)2+8(a -2)i =(12+4a -a 2)+(8a -16)i ,∴⎩⎪⎨⎪⎧12+4a -a 2>0,8a -16>0,解得2<a <6,即实数a 的取值范围是(2,6).16.(xx·孝感期末)已知复数z =(m -1)+(2m +1)i(m ∈R ). (1)若z 为纯虚数,求实数m 的值;(2)若z 在复平面内的对应点位于第二象限,求实数m 的取值范围及|z |的最小值. 解 (1)∵z =(m -1)+(2m +1)i(m ∈R )为纯虚数, ∴m -1=0且2m +1≠0,∴m =1.(2)z 在复平面内的对应点为(m -1,2m +1).由题意得⎩⎪⎨⎪⎧m -1<0,2m +1>0,∴-12<m <1,即实数m 的取值范围是⎝ ⎛⎭⎪⎫-12,1. 而|z |=(m -1)2+(2m +1)2=5m 2+2m +2=5⎝ ⎛⎭⎪⎫m +152+95, 当m =-15∈⎝ ⎛⎭⎪⎫-12,1时,|z |min =95=355.2019-2020年高考数学一轮复习第11章算法复数推理与证明11.2数系的扩充与复数的引入学案理[知识梳理] 1.复数的有关概念2.复数的几何意义复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即(1)复数z =a +b i 复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R ) 平面向量OZ →.3.复数代数形式的四则运算 (1)运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).(3)复数乘法的运算定律复数的乘法满足交换律、结合律、分配律,即对于任意z 1,z 2,z 3∈C ,有z 1·z 2=z 2·z 1,(z 1·z 2)·z 3=z 1·(z 2·z 3),z 1(z 2+z 3)=z 1z 2+z 1z 3.(4)复数加、减法的几何意义①复数加法的几何意义:若复数z 1,z 2对应的向量OZ 1→,OZ 2→不共线,则复数z 1+z 2是以OZ 1→,OZ 2→为两邻边的平行四边形的对角线OZ →所对应的复数.②复数减法的几何意义:复数z 1-z 2是OZ 1→-OZ 2→=Z 2Z 1→所对应的复数. 4.模的运算性质:①|z |2=|z |2=z ·z ;②|z 1·z 2|=|z 1||z 2|;③⎪⎪⎪⎪⎪⎪z 1z 2=|z 1||z 2|.[诊断自测] 1.概念思辨(1)关于x 的方程ax 2+bx +c =0(a ,b ,c ∈R 且a ≠0)一定有两个根.( ) (2)若复数a +b i 中a =0,则此复数必是纯虚数.( ) (3)复数中有相等复数的概念,因此复数可以比较大小.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )答案 (1)√ (2)× (3)× (4)√2.教材衍化(1)(选修A2-2P 116A 组T 1(3))在复平面内,复数z =12+i (i 为虚数单位)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 D解析 z =12+i =2-i (2+i )(2-i )=25-15i ,其对应的点为⎝ ⎛⎭⎪⎫25,-15,在第四象限.故选D.(2)(选修A2-2P 112A 组T 3)在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i 答案 C解析 ∵A (6,5),B (-2,3),∴线段AB 的中点C (2,4),则点C 对应的复数为z =2+4i.故选C.3.小题热身(1)(xx·全国卷Ⅱ)3+i 1+i =( )A .1+2iB .1-2iC .2+iD .2-i 答案 D 解析3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i.故选D. (2)(xx·全国卷Ⅰ)设复数z 满足1+z 1-z=i ,则|z |=( )A .1 B. 2 C. 3 D .2 答案 A解析 由已知1+z 1-z =i ,可得z =i -1i +1=(i -1)2(i +1)(i -1)=-2i-2=i ,∴|z |=|i|=1,故选A.题型1 复数的有关概念典例 已知x ,y 为共轭复数,且(x +y )2-3xy i =4-6i ,求x ,y . 复数问题实数化.解 设x =a +b i(a ,b ∈R ), 则y =a -b i ,x +y =2a ,xy =a 2+b 2, 代入原式,得(2a )2-3(a 2+b 2)i =4-6i ,根据复数相等得⎩⎪⎨⎪⎧4a 2=4,-3(a 2+b 2)=-6,解得⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =1,b =-1或⎩⎪⎨⎪⎧a =-1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.故所求复数为⎩⎪⎨⎪⎧x =1+i ,y =1-i ,或⎩⎪⎨⎪⎧x =1-i ,y =1+i 或⎩⎪⎨⎪⎧x =-1+i ,y =-1-i 或⎩⎪⎨⎪⎧x =-1-i ,y =-1+i.方法技巧有关复数的基本概念问题的关键因为复数的分类、相等、模、共轭复数等问题都与实部与虚部有关,所以处理复数有关基本概念问题的关键是找准复数的实部和虚部,即转化为a +b i(a ,b ∈R )的形式,再从定义出发,把复数问题转化成实数问题来处理.见典例.冲关针对训练(xx·山西四校联考)i 是虚数单位,若2+i1+i =a +b i(a ,b ∈R ),则lg (a +b )的值是( )A .-2B .-1C .0 D.12答案 C解析 因为2+i 1+i =(2+i )(1-i )2=32-i 2,所以a =32,b =-12,a +b =1,所以lg (a +b )=0,故选C.题型2 复数的几何意义典例 (xx·全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22 C. 2 D .2 先求z 的代数形式,再求|z |. 答案 C解析 由(1+i)z =2i 得z =2i1+i=1+i , ∴|z |= 2.故选C. 方法技巧复数几何意义及应用 1.复数z 、复平面上的点Z 及向量OZ →相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔OZ →. 2.由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.提醒:|z |的几何意义:令z =x +y i(x ,y ∈R ),则|z |=x 2+y 2,由此可知表示复数z 的点到原点的距离就是|z |的几何意义;|z 1-z 2|的几何意义是复平面内表示复数z 1,z 2的两点之间的距离.冲关针对训练若复数z 满足①|z |≥1;②|z +i|≤|-1-2i|,则z 在复平面内所对应的图形的面积为________.答案 4π解析 设z =x +y i(x ,y ∈R ),由|z |≥1及|z +i|≤|-1-2i|易得x 2+y 2≥1及x 2+(y +1)2≤5知z 在复平面内对应图形的面积为5π-π=4π.题型3 复数的代数运算典例 (xx·全国卷Ⅲ)若z =1+2i ,则4iz z -1=( )A .1B .-1C .iD .-i先作乘法z ·z 运算,然后作除法运算. 答案 C解析 ∵z z =(1+2i)(1-2i)=5,∴4i z z -1=4i4=i ,故选C.方法技巧1.加减乘除用法则(1)复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i 的幂写成最简形式.(2)记住以下结论,可提高运算速度:①(1±i)2=±2i;②1+i 1-i =i ;③1-i 1+i =-i ;④a +b i i =b -a i ;⑤i 4n =1,i 4n +1=i ,i4n +2=-1,i4n +3=-i(n ∈N ).2.复数方程要求解,运用概念相等来解决解决复数与三角函数、方程等综合问题,关键是抓住复数的实部、虚部,运用好复数的概念来解决问题.冲关针对训练-23+i 1+23i +⎝ ⎛⎭⎪⎫21-i xx=________.答案 2i解析 原式=i (1+23i )1+23i +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21-i 21009=i +⎝⎛⎭⎪⎫2-2i 1009=i +i 1009=i +i 4×252+1=i +i =2i.1.(xx·全国卷Ⅰ)设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4 答案 B解析 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0且a ≠0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0.当a =0,b ≠0时,z =a +b i =b i ∈/ R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/ a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.故选B.2.(xx·安徽安庆模拟)设i 是虚数单位,如果复数a +i2-i的实部与虚部相等,那么实数a 的值为( )A.13 B .-13 C .3 D .-3 答案 C 解析a +i 2-i=2a -1+(a +2)i5,由题意知2a -1=a +2,解之得a =3.故选C.3.(xx·浙江高考)已知a ,b ∈R ,(a +b i)2=3+4i(i 是虚数单位),则a 2+b 2=________,ab =________.答案 5 2解析 (a +b i)2=a 2-b 2+2ab i.由(a +b i)2=3+4i ,得⎩⎪⎨⎪⎧a 2-b 2=3,ab =2.解得a 2=4,b 2=1.所以a 2+b 2=5,ab =2.4.(xx·天津高考)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.答案 -2解析 ∵a ∈R ,a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -1-(a +2)i 5=2a -15-a +25i 为实数,∴-a +25=0,∴a =-2.[基础送分 提速狂刷练]一、选择题1.(xx·湖南长沙四县联考)i 是虚数单位,若复数z 满足z i =-1+i ,则复数z 的实部与虚部的和是( )A .0B .1C .2D .3 答案 C解析 复数z 满足z i =-1+i ,可得z =-1+i i =(-1+i )ii·i =1+i.故复数z 的实部与虚部的和是1+1=2,故选C.2.(xx·湖北优质高中联考)已知复数z =1+i(i 是虚数单位),则2z-z 2的共轭复数是( )A .-1+3iB .1+3iC .1-3iD .-1-3i 答案 B 解析2z-z 2=21+i -(1+i)2=2(1-i )(1+i )(1-i )-2i =1-i -2i =1-3i ,其共轭复数是1+3i ,故选B.3.(xx·河南洛阳模拟)设复数z 满足z -=|1-i|+i(i 为虚数单位),则复数z =( ) A.2-i B.2+i C .1 D .-1-2i 答案 A解析 复数z 满足z -=|1-i|+i =2+i ,则复数z =2-i.故选A.4.(xx·广东测试)若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( )A .iB .1C .-iD .-1 答案 C解析 ∵z 为纯虚数,∴⎩⎨⎧a -2=0,a ≠0,∴a =2,∴a +i 71+a i =2-i 1+2i =(2-i )(1-2i )(1+2i )(1-2i )=-3i 3=-i.故选C. 5.(xx·安徽江南十校联考)若复数z 满足z (1-i)=|1-i|+i ,则z 的实部为( ) A.2-12 B.2-1 C .1 D.2+12答案 A解析 由z (1-i)=|1-i|+i ,得z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=2-12+2+12i ,z 的实部为2-12,故选A. 6.(xx·安徽江南十校联考)若z =2-i2+i ,则|z |=( )A.15 B .1 C .5 D .25 答案 B解析 解法一:z =2-i 2+i =(2-i )(2-i )(2+i )(2-i )=35-45i ,故|z |=1.故选B.解法二:|z |=⎪⎪⎪⎪⎪⎪2-i 2+i =|2-i||2+i|=55=1.故选B.7.(xx·河南百校联盟模拟)已知复数z 的共轭复数为z -,若⎝ ⎛⎭⎪⎪⎫3z 2+z -2(1-22i)=5-2i(i 为虚数单位),则在复平面内,复数z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 A解析 依题意,设z =a +b i(a ,b ∈R ),则3z 2+z -2=2a +b i ,故2a +b i =5-2i1-22i =1+2i ,故a =12,b =2,则在复平面内,复数z 对应的点为⎝ ⎛⎭⎪⎫12,2,位于第一象限.故选A.8.(xx·新乡、许昌、平顶山调研)复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是( )A.[]-1,1B.⎣⎢⎡⎦⎥⎤-916,1C.⎣⎢⎡⎦⎥⎤-916,7 D.⎣⎢⎡⎦⎥⎤916,7答案 C解析 由复数相等的充要条件,可得⎩⎪⎨⎪⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7.故选C.9.对于复数z 1,z 2,若(z 1-i)z 2=1,则称z 1是z 2的“错位共轭”复数,则复数32-12i 的“错位共轭”复数为( )A .-36-12i B .-32+32i C.36+12i D.32+32i 答案 D解析 由(z -i)⎝⎛⎭⎪⎫32-12i =1,可得z -i =132-12i =32+12i ,所以z =32+32i.故选D.10.已知z =a +b i(a ,b ∈R ,i 是虚数单位),z 1,z 2∈C ,定义:D (z )=||z ||=|a |+|b |,D (z 1,z 2)=||z 1-z 2||,给出下列命题:(1)对任意z ∈C ,都有D (z )>0;(2)若z 是复数z 的共轭复数,则D (z )=D (z )恒成立; (3)若D (z 1)=D (z 2)(z 1,z 2∈C ),则z 1=z 2;(4)对任意z 1,z 2,z 3∈C ,结论D (z 1,z 3)≤D (z 1,z 2)+D (z 2,z 3)恒成立. 其中真命题为( )A .(1)(2)(3)(4)B .(2)(3)(4)C .(2)(4)D .(2)(3) 答案 C解析 对于(1),由定义知当z =0时,D (z )=0,故(1)错误,排除A ;对于(2),由于共轭复数的实部相等而虚部互为相反数,所以D (z )=D (z )恒成立,故(2)正确;对于(3),两个复数的实部与虚部的绝对值之和相等并不能得到实部与虚部分别相等,所以两个复数也不一定相等,故(3)错误,排除B ,D ,故选C.二、填空题11.(xx·江苏高考)已知复数z =(1+i)(1+2i),其中i 是虚数单位,则z 的模是________.答案10解析 解法一:∵z =(1+i)(1+2i)=1+2i +i -2=-1+3i , ∴|z |=(-1)2+32=10. 解法二:|z |=|1+i||1+2i| =2×5=10.12.(xx·天津高考)已知a ,b ∈R ,i 是虚数单位.若(1+i)(1-b i)=a ,则ab的值为________.答案 2解析 由(1+i)(1-b i)=a 得1+b +(1-b )i =a ,则⎩⎪⎨⎪⎧b +1=a ,1-b =0,解得⎩⎪⎨⎪⎧a =2,b =1,所以ab=2.13.(xx·北京高考)设a ∈R .若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a =________.答案 -1解析 (1+i)(a +i)=(a -1)+(a +1)i ,∵a ∈R ,该复数在复平面内对应的点位于实轴上, ∴a +1=0,∴a =-1.14.若虚数z 同时满足下列两个条件:①z +5z是实数;②z +3的实部与虚部互为相反数.则z =________.答案 -1-2i 或-2-i解析 设z =a +b i(a ,b ∈R ,b ≠0), 则z +5z =a +b i +5a +b i=a ⎝⎛⎭⎪⎫1+5a 2+b 2+b ⎝ ⎛⎭⎪⎫1-5a 2+b 2i. 又z +3=a +3+b i 实部与虚部互为相反数,z +5z是实数,根据题意有⎩⎪⎨⎪⎧b ⎝⎛⎭⎪⎫1-5a 2+b 2=0,a +3=-b ,因为b ≠0,所以⎩⎪⎨⎪⎧a 2+b 2=5,a =-b -3,解得⎩⎪⎨⎪⎧a =-1,b =-2或⎩⎪⎨⎪⎧a =-2,b =-1.所以z =-1-2i 或z =-2-i. 三、解答题15.(xx·徐汇模拟)已知z 是复数,z +2i 与z2-i 均为实数(i 为虚数单位),且复数(z+a i)2在复平面上对应点在第一象限.(1)求z 的值;(2)求实数a 的取值范围. 解 (1)设z =x +y i(x ,y ∈R ),又z +2i =x +(y +2)i 为实数,∴y +2=0, 解得y =-2. ∴z 2-i =x -2i 2-i =(x -2i )(2+i )(2-i )(2+i )=(2x +2)+(x -4)i 5, ∵z2-i 为实数,∴x -45=0,解得x =4. ∴z =4-2i.(2)∵复数(z +a i)2=[4+(a -2)i]2=16-(a -2)2+8(a -2)i =(12+4a -a 2)+(8a -16)i ,∴⎩⎪⎨⎪⎧12+4a -a 2>0,8a -16>0,解得2<a <6,即实数a 的取值范围是(2,6).16.(xx·孝感期末)已知复数z =(m -1)+(2m +1)i(m ∈R ). (1)若z 为纯虚数,求实数m 的值;(2)若z 在复平面内的对应点位于第二象限,求实数m 的取值范围及|z |的最小值. 解 (1)∵z =(m -1)+(2m +1)i(m ∈R )为纯虚数, ∴m -1=0且2m +1≠0,∴m =1.(2)z 在复平面内的对应点为(m -1,2m +1).由题意得⎩⎪⎨⎪⎧m -1<0,2m +1>0,∴-12<m <1,即实数m 的取值范围是⎝ ⎛⎭⎪⎫-12,1. 而|z |=(m -1)2+(2m +1)2=5m 2+2m +2=5⎝ ⎛⎭⎪⎫m +152+95, 当m =-15∈⎝ ⎛⎭⎪⎫-12,1时,|z |min =95=355.。