鸡兔同笼问题(教师版)

合集下载

小学数学鸡兔同笼教案(优秀7篇)

小学数学鸡兔同笼教案(优秀7篇)

小学数学鸡兔同笼教案(优秀7篇)小学数学《鸡兔同笼》教案篇一教学目标知识与技能:通过复习“鸡兔同笼”问题,感受中国古代数学问题的趣味性。

过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。

情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的过程中,提高迁移思维的能力,进而体会数学的价值。

教学重点:熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。

教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略熟练解决生活中的实际问题。

教具学具:多媒体教学过程一、情境导入师:“鸡兔同笼”是一道有名的中国古算题。

最早出现在《孙子算经》中。

许多小数数学问题都可以转化成这类问题。

师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?生1:列表法,适合数据较小的问题。

生2:假设法,一般情况都适合,数量关系比较容易理解。

师:今天我们复习“鸡兔同笼”问题。

二、自主探究师:摆三角形和正方形一共用了19根小棒。

(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)师:星期日,小英一家八口人到博物馆参观,博物馆的票价是成人每人30元,儿童每人壹五元,买门票共花去210元钱,其中儿童有几人?(学生回答)师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)三、探究结果汇报师:通过复习“鸡兔同笼”问题,你有哪些收获?生1:借助列表的。

方法,解决简单的实际问题。

生2:我学会了化繁为简的学习方法。

生3:用“假设”法解决问题的一般性。

四、师生总结收获师:通过本课的学习,你有哪些收获?师生总结得出:解决数学问题时,可以先提出假设,如果假设后的情况与实际不符,这时就需要进行调整。

【思维导引】数学三年级 第11讲 鸡兔同笼问题一(教师版+学生版,含详细解析)

【思维导引】数学三年级 第11讲 鸡兔同笼问题一(教师版+学生版,含详细解析)

第11讲鸡兔同笼问题一典型问题◇◇兴趣篇◇◇1. 一只鸡有1个头2条腿,一只兔子有1个头4条腿。

如果笼子里的鸡和兔子共有10个头和26条腿,你知道鸡和兔子各有几只吗?答案:鸡7只,兔子3只【分析】假设全为鸡,一共有10×2条腿,少26-10×2条腿。

兔:(26-10×2)÷(4-2)=3(只)鸡:10-3=7(只)2. 停车场上的自行车和三轮车一共有24辆,其中每辆自行车有2个轮子,每辆三轮车有3个轮子,所有自行车和三轮车一共有56个轮子。

请问:有多少辆自行车?有多少辆三轮车?答案:自行车16辆,三轮车8辆【分析】假设全是三轮车,有24×3个轮子,多出了24×3-56个轮子。

一共有自行车:(24×3-56)÷(3-1)=16(辆)三轮车有:24-16=8(辆)3. 晨星小学有30间宿舍,其中大宿舍每间住6人,小宿舍每间住4人。

如果这些宿舍一共可以住168人,那么有几间大宿舍?答案:24间【分析】假设全为小宿舍,一共能住4×30个人,少了168-4×30人大宿舍一共有(168-4×30)÷(6-4)=24(间)4. 理想小学150名教师参加新年联欢会,其中有一个趣味游戏,要求男教师2人一组,女教师3人一组。

结果共分了62组,恰好分完。

请问:女教师有多少人,男教师有多少人?答案:女教师78人,男教师72人【分析】假设每组全为男老师,一共有62×2人,少了150-6×2人女老师共有(150-62×2)÷(3-2)=26(组),26×3=78(人)男老师有:(62-26)×2=72(人)5. 阿奇的存钱罐里有5角和1元的硬币共25枚,总钱数为19元。

这两种硬币各有多少枚?答案:1元硬币13枚,5角硬币12枚【分析】假设阿奇的硬币全为1元,一共有25×10角,实际为19角,少了25×10-190角∴5角硬币一共(250×10-190)÷(10-5)=12(枚),1元硬币有25-12=13枚。

鸡兔同笼(三年级培优)教师版

鸡兔同笼(三年级培优)教师版

鸡兔同笼问题的本质:(1) 两种不同的事物如鸡和兔(2) 它们有相同点如鸡兔都有一个头,那么在做鸡兔同笼变形题时把数量相同的特征看做头(3) 它们有不同点如鸡兔腿的数量不同,把数量不同的特征看做腿基本型鸡兔同笼的解决方法:(1) 假设 ;(2) 找总差 ;(3) 找单位差 ;(4) 求出另一种事物的数量。

鸡兔同笼问题的基本公式:(1) 假设全兔:鸡数=(每只兔脚数×鸡兔总数-实际脚数)÷(每只兔脚数-每只鸡脚数)兔数=鸡兔总数-鸡数注意假设全兔时先求出的是鸡的数量。

(2) 假设全鸡:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔脚数-每只鸡脚数)鸡数=鸡兔总数-兔数注意假设全鸡时先求出的是兔子的数量。

不建议孩子们死记硬背公式,希望透彻理解,才能灵活应用。

有若干只鸡和兔同在一个笼子里,从上面数共有35个头;从下面数,有94只脚,问鸡与兔各多少只?【知识点】:鸡兔同笼;【难度】:★★;【出处】:数学奥林匹克【分析】:方法一:共有35个头表示鸡与兔共有35只,如果35只都是兔,一共应有140354=⨯只脚,这比已知的94只脚多了4694140=-只脚.由于我们把鸡看作兔,每只鸡多算了2只脚,才有了这多出来的46只脚,因此这46里面有多少个2,笼子里面就有几只鸡,求出鸡的只数后再拿总只数减去鸡的只数即可.解答:假设全部都是兔,则鸡有:()()232462494354=÷=-÷-⨯(只)兔有:122335=-(只)答:鸡有23只,兔有12只.方法二:砍足法(金鸡独立法) (本方法了解一下即可,不通用,重点还是假设法)假设所有的动物用一半的腿站立,即鸡用1腿,兔用2腿。

这时只剩下100÷2=50条腿 这样的好处是:鸡的头腿数量相同,而兔腿数比头数多一。

所以腿比头多的数量就是兔子的数量,兔数:50-35=15(只)鸡数:35-15=20(只)注:(1)建议孩子们在熟悉之后可以列综合算式解鸡兔同笼问题。

北师大版 五年级下册 第19讲 鸡兔同笼 教师版

北师大版 五年级下册 第19讲 鸡兔同笼 教师版

教学辅导教案1、小光要统计今年1—6月份气温变化情况,用()比较合适。

A.扇形统计图 B.折线统计图 C.条形统计图答案:B2、平均数、中位数和________是三种反映一组数据集中趋势的统计量。

答案:众数3、强的书法作品参加比赛,7个评委的打分分别为89分、91分、62分、90分、92分、88分、97分。

①这7个评委打的平均分是多少?②如果先去掉一个最高分和一个最低分后再计算平均分,这时的平均分是多少?③你认为哪一个平均分更公平合理?答案:①(89+91+62+90+90+92+88+97)÷7=87(分)②去掉一个最高分97,一个最低分62,(89+91+90+92+88)÷5=90(分)(3)我认为去掉一个最高分和一个最低分,再计算平均分比较合理,因为评委的评分常带有主观性,因此去掉一个最高和最低分,能够使评分更具公平性。

4、下面是某电脑城2007年下半年来甲、乙两个品牌电脑销售情况统计表。

电脑品牌7月8月9月10月11月12月甲品牌858078727066乙品牌507052485570(1)根据上表完成折线统计图。

第1页共12页第九届至十四届亚运会中国和韩国获得金牌情况统计图(2)哪种电脑平均月销量高?(3)乙品牌电脑哪个月到哪个月增长幅度最大?(4)说一说甲电脑销售变化的情况。

答案:(1)略(2)(85+80+78+72+70+66)÷6≈75.17(台)(50+70+52+48+55+70)÷6="57.5" (台)75.17﹥57.5 答:甲电脑平均月销量高。

(3)乙品牌电脑7月到8月增长幅度最大。

(4)甲电脑从7月开始销售量一直在下降。

1.某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?【答案】假设全做对:20×5=100(分);100-64=36(分)36÷(5+1)=6(道)···错题;20-6=14(道)···对题2.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?【答案】100-86=14(条)14÷2=7(只)···兔100-7×4=72(条)72÷(2+4)=12(组)···(1组里有1鸡1兔)兔:7+12=19(只)鸡:12只生栽3棵;又知女生比男生多4人,该班男生和女生各多少人?【答案】180-3×4=168(棵)168÷(5+3)=21(组)21+4=25(人)···女生男生:21人【学科分析】1.让学生在探究中体会解题思想,在策略多样性中体验最优思想,培养学生多手段、多层面、多角度地探索问题,解决问题的基本方法和一般方法,体验了解决问题策略的多样性,使学生感受“鸡兔同笼”问题的变式及其在生活中的广泛的应用。

五年级上册数学试题-上海小升初奥数专题系列:鸡兔同笼 平均数 周期问题-教师版 (含答案)

五年级上册数学试题-上海小升初奥数专题系列:鸡兔同笼 平均数 周期问题-教师版 (含答案)

方法二:假设全是乙种农药,需要水540200⨯=(千克),比实际需要的多:()-= 200140565--=(千克),每千克甲种农药比每千克乙种农药多用水:402020(千克),所以甲种农药有:6520 3.25÷=(千克)2.一名搬运工从批发部搬运500只瓷碗到商店,货主规定:运到一只完好的瓷碗得运费3角,打破一只瓷碗陪9角,结果他领到的运费136.80元,则在运输中搬运工打破了只瓷碗。

【解析】如果没有打破碗,那么应该得到500×0.3=150元,每打破一个碗,就少得到1元2角,而他一共少得到150-136.8=13.2(元),所以他打破了13.2÷1.2=11(个).3.今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?【解析】4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25(岁),父母年龄之和是78+8=86(岁).我们可以把兄的年龄看作"鸡"头数,弟的年龄看作"兔"头数.25是"总头数".86是"总脚数".根据公式,兄的年龄是 (25×4-86)÷(4-3)=14(岁). 1998年,兄年龄是14-4=10(岁). 父年龄是 (25-14)×4-4=40(岁). 因此,当父的年龄是兄的年龄的3倍时,兄的年龄是 (40-10)÷(3-1)=15(岁),这是2003年.4.(2009“数学解题能力展示"读者评选活动三年级初赛11题)一些奇异的动物在草坪上聚会. 有独脚兽(1个头、1只脚)、双头龙(2个头、4只脚)、三脚猫(1个头、3只脚)和四脚蛇(1个头、4只脚). 如果草坪上的动物共有58个头、160只脚,且四脚蛇的数量恰好是双头龙数量的2倍. 那么,有_____________只独脚兽参加聚会.【解析】方法一:列表分析奇异动物的头和脚如下:因为四脚蛇恰好是双头龙数量的2倍,所以可以将两只双头龙和一个四脚蛇打捆,这样每捆三个动物,4个头12只脚,恰好是四个三脚猫,这样本题就可以看成是两类动物:1625,所以,黑跳蚤跳了=.777年元旦也是365天,也要经过。

(小升初)专题35 鸡兔同笼问题-六年级一轮复习(知识点精讲+达标检测)(教师版)

(小升初)专题35  鸡兔同笼问题-六年级一轮复习(知识点精讲+达标检测)(教师版)

专题35 鸡兔同笼问题知识梳理1.意义。

已知“鸡兔”的总头数和总腿数,求“鸡”和“兔”各有多少只的问题,通常称为鸡兔问题,又称鸡兔同笼问题。

2.解题关键。

解答鸡兔同笼问题一般采用假设法。

假设全是一种动物(如全是“鸡”或全是“兔”),然后根据出现的腿数差,推算出另一种动物的只数。

也可以采用列表法、画图法、方程法等。

3.解题方法。

假设全是鸡,兔的只数 = (总腿数 - 2 × 总头数) ÷ (4 - 2);假设全是兔,鸡的只数 = (4 × 总头数 - 总腿数) ÷ (4 - 2)。

例题精讲【例1】一次数学测验只有两道题,结果全班有12人全做对,其中第一道题有24人做对,第二道题有20人做错。

两道题都做错的有多少人?【点拨分析】本班学生的答题情况分为四种:① 全部做对;② 第一道题做错,第二道题做对;③ 第一道题做对,第二道题做错;④ 两道题都做错。

全班有12人全做对,第一道题有24人做对,说明有12人只有第一道题做对。

又知道第二道题做错的人数是20人,说明有8人第二道题做错第一道题也做错。

借助图形分析,用一个长方形表示全班人数,在里面画两个相交的圆,一个圆表示做对第一道题的人,用A表示;另一个圆表示做对第二道题的人,用B表示;两个圆相交的部分表示两道题都做对的人,用C表示;两个圆外部分表示两道题都做错的人,用 D 表示。

【答案】24-12=12(人) 20-12=8(人)答:两道题都做错的有8人。

举一反三1.某班有学生48人,其中21人参加数学竞赛,13人参加作文竞赛,有7人既参加数学竞赛又参加作文竞赛。

那么:(1)只参加数学竞赛的有多少人?(2)参加竞赛的一共有多少人?(3)没有参加竞赛的一共有多少人?2.在1~100的整数中,不是5的倍数的数与不是6的倍数的数共有多少个?3.某校一个歌舞表演队里,能表演独唱的有10人,能表演跳舞的有18人,这两种都能表演的有7人。

鸡兔同笼问题(教师版)

鸡兔同笼问题(教师版)

鸡兔同笼问题(假设法)(第一讲)我国古代数学名着《孙子算经》中有这样的一道应用题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?意思是说:鸡和兔同关在一个笼子里,已知鸡与兔共有35只,鸡脚与兔脚共有94只,问鸡、兔各有多少只?这就是着名的鸡兔同笼问题。

怎样解决这个问题呢?我们通常把题中相当于“鸡”和“兔”的两种量,全部假设看作“鸡”或“兔”,然后找出与实际数量的差,由此求出“鸡”或“兔”,这种解决问题的方法就是假设法。

鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置出来。

解鸡兔同笼问题的基本关系式是:解法1:鸡的只数=(每只兔脚数×兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔的只数=总只数-鸡的只数解法2:兔的只数=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)鸡的只数=总只数-兔的只数例1 、鸡兔同笼,头共46,足共128,鸡兔各几只?分析:假设46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚。

如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚。

那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了。

所以,鸡的只数就是28,兔的只数是46-28=18。

例2、小梅数她家的鸡与兔,数头有16个,数脚有44只。

问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。

因此只要算出12里面有几个2,就可以求出兔的只数。

解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。

答:有6只兔,10只鸡。

我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。

06三年级应用题鸡兔同笼教师版

06三年级应用题鸡兔同笼教师版

鸡兔同笼知识要点一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤1.砍足法(金鸡独立):解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,还有“鸡兔同笼”问题的经典思路“假设法”.2.假设法:假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数3.鸡兔关系当头数一样时,脚的关系:兔是鸡的2倍;当脚数一样时,头的关系:鸡是兔的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程、行程、方程等专题中也都会接触到假设法一鸡一兔1. 鸡兔同笼,头共46,足共128,鸡兔各几只?【解析】 (假设法或砍足法均可)假设46只都是兔,一共应有446184⨯=(只)脚,这和已知的128只脚相比多了18412856-=(只)脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多422-=(只)脚,那么56只脚是我们把56228÷=(只)鸡当成了兔子,所以鸡的只数就是28,兔的只数是462818-=(只).当然,这里我们也可以假设46只全是鸡!鼓励学生从两个方面假设解题,更深一步理解假设法.2. 鸡兔共有45只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿.试计算,笼中有鸡多少只?兔子多少只?【解析】 ⑴假设法:若假设所有的45只动物都是兔子,那么一共应该有445180⨯=(条)腿,比实际多算18010080-=(条)腿.而每将一只鸡算做一只兔子会多算两条腿,所以有80240÷=(只)鸡被当作了兔子,所以共有40只鸡,有45405-=(只)兔子.注意:假设为兔子时,按照“多算的腿数”计算出的是鸡的数目;假设为鸡时,按照“少算的腿数”计算出的是兔子的数目.同学们可以自己来做一下当假设为鸡时的算法.⑵“金鸡独立”法(砍足法):假设所有的动物都只用一半的腿站立,这样就出现了鸡都变成了“金鸡独立”,而兔子们都只用两条腿站立的“奇观”.这样就有一个好处:鸡的腿数和头数一样多了;而每只兔子的腿数则会比头数多1.因此,在腿的数目都变成原来的一半的时候,腿数比头数多多少,就有多少只兔子.原来有100只腿,让兔子都抬起两只腿,鸡抬起一只腿,则此时笼中有100250÷=(条)腿,比头数多50455-=,所以有5只兔子,另外40只是鸡.3. 动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少?【解析】 由于每只动物有两只眼睛,由题意知:动物园里鸵鸟和大象的总数为:36218÷=(只),假设鸵鸟和大象一样也有4只脚,则应该有41872⨯=(只)脚,多了725220-=(只)脚,由假设引起的差值:422-=(只),则鸵鸟数为20210÷=(只),大象数为18108-=(头).4. 动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?【解析】 假设梅花鹿和鸵鸟的只数相同,则从总脚数中减去鸵鸟多的20只的脚数得:208202168-⨯=(只).这168只脚是梅花鹿的脚数和鸵鸟的脚数(注意此时梅花鹿和鸵鸟的只数相同)脚数的和,一只梅花鹿和一只鸵鸟的脚数和是:246+=(只),所以梅花鹿的只数是:168628÷=(只),从而鸵鸟的只数是:282048+=(只) (本题也可给学生讲成“捆绑法”,一鸡一兔一组,这个怎么分组是由倍数关系得到的)5. 一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【解析】 已知鸡比兔多36只,如果把多的36只鸡拿走,剩下的鸡兔只数就相等了,拿走的36只鸡有23672⨯=(只)脚,可知现在剩下79272720-=(只)脚,一只鸡与一只兔有6只脚,那么兔有7206120÷=(只),鸡有12036156+=(只).6. 鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只?【解析】 这道例题和前面的例题有所不同,前面的题是已知头数之和和脚数之和求各有几只,而这道题是已知头数之和和脚数之差,这样就比前面的例题增加了一点难度.我们用两种方法来解这道题.(方法一)考虑如果补上鸡脚少的56只的话,那么就要增加56228÷=(只)鸡.这样一来,鸡、兔共有10728135+=(只),这时鸡脚、兔脚一样多.已知一只鸡的脚数是一只兔的一半,而现在鸡脚、兔脚相同,可知鸡的只数是兔的2倍,根据和倍问题有:兔有:135(21)45÷+=(只),鸡有:135452862--=(只)或者1074562-=(只)零.这样兔脚比鸡脚多428只,而实际上只多56只,这说明假设的兔脚比鸡脚多的数比实际上多:42856372-=(只).现在以鸡换兔,每换一只,兔脚减少4只,鸡脚增加2只,即兔脚与鸡脚的总数差就会减少426+=(只).鸡的只数:372662÷=(只)兔的只数:1076245-=(只)7. 鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【解析】 假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零.这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多20020180-=(只).现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少426+=(只),而(只)180630÷=,因此有兔子30只,鸡1003070-=(只).8. 每只完整的螃蟹有2只鳌、8只脚。

五年级北师大版数学鸡兔同笼问题

五年级北师大版数学鸡兔同笼问题

五年级北师大版数学鸡兔同笼问题五年级北师大版数学鸡兔同笼问题如下:1.鸡兔同笼,共有30个头,88只脚。

求笼中鸡兔各有多少只?2.鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?3.一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?4.鸡兔同笼不知数,三十六头笼中露。

数清脚共五十双,各有多少鸡和兔?5.小明用10元钱正好买了20分和50分的'邮票共35张,求这两种邮票名买了多少张?6.小红用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?7.小刚的储蓄罐里共2分和5分硬币70枚,小刚数了一下,一共有194分,求两种硬币各有多少枚?8.三年一班30人共向北京奥运会捐款205元,同学每人了捐了5元或10元,你知道捐5元和10元的同学各有多少人吗?9.三年二班45个同学向爱心基金会共计捐款100元,其中11个同学每人捐1元,其他同学每人捐2元或5元,求捐2元和5元的同学各有多少人?10.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。

它一连8天共采了112个松籽,这八天有几天晴天几天雨天?11.某校有一批同学参加数学竞赛,平均得63分,总分是3150分。

其中男生平均得60分,女生平均得70分。

求参加竞赛的男女各有多少人?12.一次数学竞赛共有20道题。

做对一道题得5分,做错一题倒扣3分,刘冬考了52分,你知道刘冬做对了几道题?13.一次数学竞赛共有20道题。

做对一道题得8分,做错一题倒扣4分,刘冬考了112分,你知道刘冬做对了几道题?14.52名同学去划船,一共乘坐11只船,其中每只大船坐6人,每只小船坐4人。

求大船和小船各几只?15.在一个停车场上,停了小轿车和摩托车一共32辆,这些车一共108个轮子。

求小轿车和摩托车各有多少辆?16.解放军进行野营拉练。

晴天每天走35千米,雨天每天走28千米,11天一共走了350千米。

求这期间晴天共有多少天?17.100个和尚吃了100个面包,大和尚1人吃3个,小和尚3人吃1个。

小学数学《鸡兔同笼》教案优秀7篇

小学数学《鸡兔同笼》教案优秀7篇

小学数学《鸡兔同笼》教案优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!小学数学《鸡兔同笼》教案优秀7篇1、鸡兔同笼,共有头30个,足86只,求鸡兔各有多少只?这次本店铺为您整理了小学数学《鸡兔同笼》教案优秀7篇,在大家参照的同时,也可以分享一下本店铺给您最好的朋友。

数学教资面试试讲鸡兔同笼

数学教资面试试讲鸡兔同笼

数学教资面试试讲鸡兔同笼尊敬的考官,各位同学,今天我们要探讨的数学问题是一个经典的趣味问题——“鸡兔同笼”。

这个问题不仅能够锻炼我们的逻辑思维能力,还能让我们更好地理解线性方程组的应用。

首先,我们来设定问题。

假设有一个笼子,里面有鸡和兔子,它们共有m个头和n只脚。

我们的目标是找出笼子里有多少只鸡和多少只兔子。

我们可以设鸡的数量为x,兔子的数量为y。

根据题目给出的条件,我们可以列出以下两个方程:1. x + y = m (头的数量)2. 2x + 4y = n (脚的数量)这是一个典型的线性方程组问题。

我们可以通过消元法或者代入法来求解这个问题。

接下来,我们用消元法来求解。

首先,我们可以将第一个方程乘以2,得到2x + 2y = 2m。

然后,我们将这个新方程与第二个方程相减,得到:2y - 4y = 2m - n-2y = 2m - ny = (n - 2m) / 2现在我们已经得到了兔子的数量,接下来我们可以将y的值代入第一个方程,求出鸡的数量:x = m - yx = m - (n - 2m) / 2x = (3m - n) / 2这样,我们就得到了鸡和兔子的数量。

但是,我们需要注意的是,这个解必须满足实际意义,也就是说,鸡和兔子的数量都必须是正整数。

最后,我们来总结一下今天的学习内容。

我们通过“鸡兔同笼”问题,学习了线性方程组的解法,并且理解了数学问题在实际生活中的应用。

希望同学们能够将今天学到的知识运用到更多的问题解决中去。

感谢大家的聆听,如果有任何问题,欢迎在课后与我交流。

下课。

3年级_第5讲_鸡兔同笼问题二OK_教师版

3年级_第5讲_鸡兔同笼问题二OK_教师版

年级春季 尖子班习题班讲义 姓名: ◇三 巨人学校数学尖子班2011年4月第4讲 鸡兔同笼问题二 1. 一个大人一餐可以吃2个面包,两个小孩一餐可以吃一个面包.现有大人小孩共99人,一餐刚好吃99个面包,那么,大人、小孩各有多少人?(大人33人,小孩66人)2.1分、2分和5分的硬币共100枚,价值2元,如果其中2分硬币的价值比1分硬币的价值多13分,那么1分的硬币有多少枚?(51) 3.买电影票,10元、16元、24元一张的一共150张,用去2280元,其中10元和16元的张数相等,那么24元的电影票有多少张?(34) 4.学校买回足球、篮球、排球共66个,共用了5910元.每个足球90元,每个篮球110元,每个排球75元,已知买回的足球个数是篮球个数的3倍,求足球、篮球和排球各买几个?(36,12,18) 5. 某校购买大、中、小三种型号的投影仪一共47台,它们的单价分别是700元、300元、200元,共支出21200元.已知中型投影仪的台数是小型投影仪台数的2倍,那么购买了多少台大型投影仪? (20台)年级春季 尖子班习题课讲义 姓名: ◇五 巨人学校数学尖子班2011年4月 6. 一共有大中小三种杯子30个,大杯子8元一个,中杯子6元一个,小杯子4元一个,已知大杯子比中杯子的3倍少1个,并且所有杯子一共价值200元.求三种杯子各有多少个? (大杯子17个,中杯子6个,小杯子7个) 7. 蜘蛛有8条腿,蜻蜓有6条腿和两对翅膀,蝉有6条腿和一对翅膀,现在有这三种动物共18只,总共有118条腿和20对翅膀,则这18只中,蜘蛛、蜻蜓和蝉分别有多少只?(5,7,6)8. 某次考试52人参加,一共考了5道题目,每题做错人数统计如下表所示还知道每人都至少做对了1题,做对1题有7人,5题全对有6人,做对2道题目和做对3道题目的人数相同,那么做对4道题目的有多少人?(31人)9. 3个水果糖和2个奶糖可以组成小礼包一个,3个水果糖和6个巧克力糖可以组成大礼包一个,2个奶糖和5个巧克力糖可以组成中礼包一个.现有60个水果糖,50个奶糖,80个巧克力糖,那么这些糖全部用完可以组成多少个礼包?(小礼包15个、中礼包10个、大礼包5个)10. 红、黄、绿三种颜色的卡片,一共100张,其中红色卡片正反两面上分别写了1和2,黄色卡片正反两面上分别写了1和3,绿色卡片的正反两面上分别写了2和3,现在把这些卡片放在桌子上,让每张卡片写有较大数字的那一面朝上,经过计算,各卡片所显示数字和为234.若把所有卡片都翻过来,再次统计各卡片所显示数字的和,则得到和等于123.那么黄色卡片共有多少张?(11) 题号 一 二 三 四 五做错的人数 4 6 10 20 39。

娟娟老师鸡兔同笼问题解题思路解法及公式

娟娟老师鸡兔同笼问题解题思路解法及公式

鸡兔同笼例题1.笼子里有若干只鸡和兔。

从上面数,有8个头,从下面数,有26只脚。

鸡和兔各有多少只?解题方法:①假设法:如果笼子里都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚;一只兔子比一只鸡多2只脚,也就是有10÷2=5只兔。

所以笼子里有3只鸡,5只兔。

(总脚数-总头数×2)÷2=兔子数总头数-兔子数=鸡数②假设法:如果笼子里都是兔,那么就有8×4=32只脚,这样就少了32-26=6只脚;一只鸡比一只兔子少2只脚,也就是有6÷2=3只鸡。

所以笼子里有3只鸡,5只兔。

(总头数×4-总脚数)÷2=鸡数总头数-鸡数=兔子数③抬腿法:假如让鸡抬起一只脚,兔子抬起两只脚,还有26÷2=13只脚;这时每只鸡一只脚,每只兔子两只脚。

笼子里只要有一只兔子,则脚的总数就比头的总数多1;这时脚的总数与头的总数之差13-8=5,就是兔子的只数。

总脚数÷2-总头数=兔子数.总头数-兔子数=鸡数④解方程法:解:设有χ只兔子,那么就有(8-χ)只鸡。

鸡兔总共26只脚,就是:4χ+2(8-χ)=26则χ=58-5=3只例题2.?买一些4分和8分的邮票,共花6元8角。

已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多.(680-8×40)÷(8+4)=30(张),这就知道,余下的中,8分和4分的各有30张。

因此8分邮票有40+30=70(张).答:买了8分的邮票70张,4分的邮票30张。

也可以用任意假设一个数的办法.解二:譬如,假设有20张4分,根据条件"8分比4分多40张",那么应有60张8分。

以"分"作为计算单位,此时邮票总值是4×20+8×60=560.比680少,因此还要增加邮票。

(完整版)小学奥数-鸡兔同笼问题(教师版)

(完整版)小学奥数-鸡兔同笼问题(教师版)

鸡兔同笼问题在我国古代的数学著作《孙子算经》中,记载着流传甚广的数字歌谣:鸡兔同笼不知数,三十五头笼中露。

数清脚共九十四双,各有多少鸡和兔。

翻译成现代数学语言为:今有鸡兔共居一笼,已知鸡头与兔头共有35个,鸡脚与兔脚一共有94只。

问鸡和兔一共有多少只?这就是我们通常说的“鸡兔同笼”问题。

这一古老的数学问题在现实生活中普遍存在,解法多种多样,但一般采用假设法。

【例1】★今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。

问鸡、兔各有多少只?【解析】鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。

假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了94-70=24只。

减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。

所以兔有24÷2=12只,鸡有35-12=23只。

【小试牛刀】小梅数她家的鸡与兔,数头有16个,数脚有44只。

问:小梅家的鸡与兔各有多少只?【解析】假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。

如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。

因此只要算出12里面有几个2,就可以求出兔的只数。

有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。

【例2】★面值是2元、5元的人民币共27张,全计99元。

面值是2元、5元的人民币各有多少张?【解析】这道题类似于“鸡兔同笼”问题。

假设全是面值2元的人民币,那么27张人民币是2×27=54元,与实际相比减少了99-54=45元,减少的原因是每把一张面值2元的人民币当作一张面5元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45÷3=15张,面值2元的人民币有27-15=12张。

鸡兔同笼问题(教师版)

鸡兔同笼问题(教师版)

鸡兔同笼问题(假设法)(第一讲)我国古代数学名著《孙子算经》中有这样的一道应用题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何意思是说:鸡和兔同关在一个笼子里,已知鸡与兔共有35只,鸡脚与兔脚共有94只,问鸡、兔各有多少只这就是著名的鸡兔同笼问题。

怎样解决这个问题呢我们通常把题中相当于“鸡”和“兔”的两种量,全部假设看作“鸡”或“兔”,然后找出与实际数量的差,由此求出“鸡”或“兔”,这种解决问题的方法就是假设法。

鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置出来。

解鸡兔同笼问题的基本关系式是:解法1:鸡的只数=(每只兔脚数×兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔的只数=总只数-鸡的只数解法2:兔的只数=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)鸡的只数=总只数-兔的只数例1 、鸡兔同笼,头共46,足共128,鸡兔各几只分析:假设 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚。

如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚。

那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢显然,56÷2=28,只要用28只鸡去置换28只兔就行了。

所以,鸡的只数就是28,兔的只数是46-28=18。

例2、小梅数她家的鸡与兔,数头有16个,数脚有44只。

问:小梅家的鸡与兔各有多少只分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。

因此只要算出12里面有几个2,就可以求出兔的只数。

解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。

答:有6只兔,10只鸡。

我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。

鸡兔同笼-教师版

鸡兔同笼-教师版

鸡兔同笼第一部分:知识介绍鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题。

书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?解鸡兔同笼的基本步骤1.砍足法(金鸡独立):解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。

这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1。

因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只)了。

-=(只).显然,鸡的只数就是351223这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。

除此之外,还有“鸡兔同笼”问题的经典思路“假设法”。

2.假设法:假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到。

解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数3.鸡兔关系:当头数一样时,脚的关系:兔是鸡的2倍;当脚数一样时,头的关系:鸡是兔的2倍。

在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程、行程、方程等专题中也都会接触到假设法。

第二部分:例题精讲【例 1】鸡兔同笼,头共46,足共128,鸡兔各几只?【考点】鸡兔同笼【解析】假设46只都是兔,一共应有446184⨯=(只)脚,这和已知的128只脚相比多了18412856-=(只)脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多422-=(只)脚,那么56只脚是我们把56228÷=(只)鸡当成了兔子,所以鸡的只数就是28,兔的只数是462818-=(只)。

一年级下下册数学竞赛试题-鸡兔同笼(教师版、奥数板块)全国通用

一年级下下册数学竞赛试题-鸡兔同笼(教师版、奥数板块)全国通用

第15讲:鸡兔同笼一、知识讲述小朋友们在解题时,会遇到一些较难的题目,这时可用画图的方法把题目的条件画出来再思考,往往会容易得多,你不妨试一试。

条件画出来再思考,往往会容易得多,你不妨试一试。

在有些数学题中,数量之间的关系不容易看出来。

而画图却能比较清楚地显示出来,小朋友们一定要学会这种帮助解题的好方法——画图示意法,这样能提高大家的动手能力、分析能力。

二、例题精讲例1. 笼子里关着一只鸡和一只兔,它们一共有几个头和几条腿?笼子里关着一只鸡和一只兔,它们一共有几个头和几条腿? 1+1=2(个)(个)2+4=6(2+4=6(条)条)条)答;它们一共有2个头和6条腿。

条腿。

练习:笼子里有一只鸭和一只猫,它们一共有几个头和几条腿?练习:笼子里有一只鸭和一只猫,它们一共有几个头和几条腿?1+1=2(个)(个)2+4=6(2+4=6(条)条)条)答;它们一共有2个头和6条腿。

条腿。

例2.小明家有2辆自行车和1辆轿车,一共有几个轮子?辆轿车,一共有几个轮子?2+2+4=82+2+4=8(个)(个)(个)答:一共有8个轮子。

个轮子。

练习:小华家有3辆自行车和2辆轿车,一共有几个轮子?辆轿车,一共有几个轮子?2+2+2+4+4=142+2+2+4+4=14(个)(个)(个)答:一共有14个轮子。

个轮子。

例3.一个笼子里关着3只鸡和4只兔,它们一共有几个头和几条腿?只兔,它们一共有几个头和几条腿? 3+4=7(个)(个)2+2+2+4+4+4+4=222+2+2+4+4+4+4=22(条)(条)(条)答:它们一共有7个头和22条腿。

条腿。

练习:树上有4只小鸟和3只松鼠,它们一共有几个头和几条腿?只松鼠,它们一共有几个头和几条腿? 4+3=74+3=7(个)(个)(个)2+2+2+2+4+4+4=202+2+2+2+4+4+4=20(条)(条)(条)答:它们一共有7个头和20条腿。

条腿。

例4.鸡、兔关在一个笼子里,共有10个头,个头,2828条腿,笼子里有几只鸡?几只兔?只兔?答:笼子里有6只鸡,只鸡,44只兔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼问题(假设法)(第一讲)我国古代数学名著《子算经》中有这样的一道应用题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?意思是说:鸡和兔同关在一个笼子里,已知鸡与兔共有35只,鸡脚与兔脚共有94只,问鸡、兔各有多少只?这就是著名的鸡兔同笼问题。

怎样解决这个问题呢?我们通常把题中相当于“鸡”和“兔”的两种量,全部假设看作“鸡”或“兔”,然后找出与实际数量的差,由此求出“鸡”或“兔”,这种解决问题的方法就是假设法。

鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置出来。

解鸡兔同笼问题的基本关系式是:解法1:鸡的只数=(每只兔脚数×兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔的只数=总只数-鸡的只数解法2:兔的只数=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)鸡的只数=总只数-兔的只数例1 、鸡兔同笼,头共46,足共128,鸡兔各几只?分析:假设46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚。

如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚。

那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了。

所以,鸡的只数就是28,兔的只数是46-28=18。

例2、小梅数她家的鸡与兔,数头有16个,数脚有44只。

问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。

因此只要算出12里面有几个2,就可以求出兔的只数。

解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。

答:有6只兔,10只鸡。

我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。

因此只要算出20里面有几个2,就可以求出鸡的只数。

有鸡(4×16-44)÷(4-2)=10(只),有兔16—10=6(只)。

※、鸡、兔共有头100个,脚350只,鸡、兔各有多少只?※、鸡兔同笼,共有头100个,足316只,那么鸡有多少只?兔有多少只?※、鸡兔同笼,共有30个头,88只脚。

笼子中鸡、兔各有多少只?※、鸡与兔共40只,鸡的脚数与兔的脚数共有90只。

问鸡、兔各多少只?※、在同一个笼子中,有若干只鸡和兔,从笼子上看有40头,从笼子下数有130只脚,那么这个笼子中装有兔、鸡各多少只?※、动物园里有一群鸵鸟和长颈鹿,它们共有30只眼睛和44只脚,问鸵鸟和长颈鹿各有多少只?※、现在有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大、小油桶各多少个?※、大油瓶一瓶装4千克,小油瓶2瓶装1千克。

现有100千克油装了共60个瓶子.问大、小油瓶各多少个?※、面值为5角和8角的邮票共30,总价值18元,那么面值为5角的邮票有多少。

※、30枚硬币,由2角和5角组成,共值9元9角,2角硬币有多少个?5角有多少个?※、某人领得工资240元,有2元,5元,10元三种人民币共50,其中2元和5元的数一样多,那么10元的有多少?※、买一些4分与8分的邮票共花6元8角,已知8分的邮票比4分的多40,那么8分的邮票有多少?※、小华买了2元和5元的纪念邮票一共34枚,用去98元钱。

小华买了2元和5元的纪念邮票各多少枚?※、四(6)班42个同学向2008年奥运会捐款。

其中12人每人捐2元,其余同学每人捐5元或10元,一共捐了229元。

求捐5元和10元的同学各有多少人?※、小强爱好集邮,他用1元钱买了4分和8分的两种邮票,共20.那么他买了4分邮票多少?鸡兔同笼问题(假设法)(第二讲)例3、100个和尚140个馍,大和尚1人吃3个馍,小和尚1人吃1个馍。

问:大、小和尚各有多少人?分析:本题由中国古算名题“百僧分馍问题”演变而得。

如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。

假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。

现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。

同样,也可以假设100人都是小和尚。

※、100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有多少个?小和尚有多少个?例4、乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。

问:搬运过程中共打破了几只花瓶?分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。

实际上只得到115.5元,少得120-115.5=4.5(元)。

搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。

因此共打破花瓶4.5÷1.5=3(只)。

解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。

答:共打破3只花瓶。

※、有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元。

结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?※、运输队为商店运送花瓶500箱,每箱6个花瓶,已知每10个花瓶的运费5.5元,损坏一个花瓶要赔偿成本11.5元(这个花瓶的运费当然也得不到了)。

结果这个运输队共得到运费1553.6元。

问共损坏了多少个花瓶?※、工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了多少只?※、灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?※、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。

运后运费为8880元,损失了几箱?例题5、某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。

共有12道题,王刚得了84分。

王刚做错了几题?思路导航:假设全做对,应得9×12=108分,现在少了108-84=24分。

而做错一题,不但得不到9分,反而需要倒扣3分,相差了12分,所以错了24÷12=2题。

※、某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分。

小华参加了这次竞赛,得了64分。

问:小华做对几道题?※、某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分。

小华得了76分,问他做对几题?※、《希望月报》编辑部组织了一次“迎奥运,爱我中华”知识抢答竞赛,比赛规定:每位参赛选手起点都为100分,之后每答对一题加10分,每答错一题倒扣8分。

小音抢答了12道题,最后得分148分,请问小音答对了多少题?※、一次数学竞赛共20道题,每答对一道题得6分,每答错一道题倒扣4分。

小明答完了全部的题目却得了零分,那么他一共答错了多少道题?※、振兴小学六年级举行数学竞赛,共有20道试题。

做对一题得5分,没做或做错一题都要扣3分。

小建得了60分,那么他做对了几道题?※、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多。

问小毛做对几道题?※、开心辞典智力竞赛中,开心队抢答了10道题,如果以100分开始算分,答对一题加10分,答错一题减10分,最后开心队得了140分,开心队答错了几题?※、一数学试卷,共有25道选择题,做对一题得4分,做错一题扣1分。

如不做,不得分也不扣分。

若某同学得了78分,那么,他做对了多少题?做错多少题?不做多少题?※、某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人?※、有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?鸡兔同笼问题(假设法)(第三讲)例6、老师带了41名同学去公园划船,共租了10条船,每条大船坐6人,每条小船坐4人,问大船、小船各租几条?分析:假设租的10条船都是大船,那么船上应该坐6×10= 60(人)。

假设后的总人数比实际人数多了60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。

③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。

※、三年级老师和同学223人去春游,共乘8辆车,其中每辆大巴坐35人,中巴坐16人。

问大巴、中巴各多少辆?※、全班46人去划船,共乘12条船。

其船每船坐5人,小船每船坐3人。

问大、小船各有几条?※、某校现有12间宿舍,住着80个学生(正好住满)。

宿舍的大小有三种:大号房间住8个学生,中号房间住7个学生,小号房间住5个学生。

其中中号房间的宿舍最多,问中号房间的宿舍有几间?例7、彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。

问:两种文化用品各买了多少套?分析:假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304-280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19-11=8(元),所以买普通文化用品24÷8=3(套),买彩色文化用品16-3=13(套)。

※、小蕾花40元钱买了14贺年卡与明信片。

贺年卡每3元5角,明信片每2元5角。

问:贺年卡、明信片各买了几?※、红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元。

问红、蓝铅笔各买几支?※、学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。

问:象棋与跳棋各有多少副?※、某玩具店新购进飞机和汽车模型30个,其中飞机模型每个有3个轮子,汽车模型每个有4个轮子,这些玩具模型车共有110个轮子,那么新购进的飞机模型有多少辆?※、在一个停车场上,停放的车辆(汽车和三轮摩托车)总数恰好是24。

相关文档
最新文档