立体几何割补法

立体几何割补法
立体几何割补法

立体几何割补法

立体几何中的割补法解题技巧

邹启文

※ 高考提示

立体几何中常用割补法解题.特别是高考中的立体几何题很多可用割补法解,有时解起来

还比较容易.

※ 解题钥匙

例1 (2005湖南高考,理5)如图,正方体ABCD—ABCD的棱长为1,O是底面ABCD11111111

的中心,则O到平面ACD的距离为( ) 11

2231A、 B、 C、 D、 4222

分析:求点到面的距离通常是过点做面的垂线,而由于该图的局限性显然不太好做垂线,考虑O为AC的中点,故将要求的距离 11

与A到面ACD的距离挂钩,从而与棱锥知识挂钩,所以可在该 111

图中割出一个三棱锥A—ACD而进行解题。 111

解:连AC,可得到三棱锥A—ACD,我们把这个正方体的其 1111

它部分都割去就只剩下这个三棱锥,可以知道所求的距离正好为这个三棱锥的高的一半。这个三棱锥底面为直角边为1与的直 2角三角形。这个三棱维又可视为三棱锥C—AAC,后者高为1,底为腰是1的等腰直角三角111 2形,利用体积相等,立即可求得原三棱锥的高为,故应选B。 2

例2 (2007湖南高考,理8)棱长为1的正方体ABCD—ABCD1111 的8个顶点都在球O的表面上,E,F分别是棱AA、DD的中点, 11则直线EF被球O截得的线段长为( )

22A、 B、1 C、1+ D、 222

分析:在该题中我们若再在正方体上加上一个球,则该图形变得复杂而烦琐,而又考虑到面AADD截得的球的截面为圆,且EF 11

在截面内,故可连接球心抽出一个圆锥来。

解:如图,正方体ABCD—ABCD,依题O亦为此正方体的中心,补侧面 1111 可得圆锥0—AD(如下图), AD为平面AD,球0截平面A D1111

其底面圆心正为线段AD之中点,亦为线段EF之中点,割去正方体和球 1 的其它部分,只看这个圆锥,容易看出球O截直线EF所得线段长就等于这个圆锥底面圆的直径AD之长,故选D。 1

例3 (2005全国高考I,理5)如图,在多面体ABCDEF中,已知 ABCD是边长为

1的正方形,且?ADE、?BCF均为正三角形。EF‖AB,EF=2,则多面体的体积为( )

2343A、 B、 C、 D、 3332

分析:显然在该图不是我们所熟悉的棱柱或棱锥,所以我们

在此可以考虑将该图分解成我们所熟悉的棱柱或棱锥,故

在此可采用分割的方法。将已知图形割为一个直棱柱与两个

全等的三棱维,先分别求体积,然后求要求的几何体体积。

解:如下图,过AD和BC做分别EF的直截面ADM及截面BCG,面ADM‖面BCG,31O为BC的中点,在?BCF中求得FO=,又可推得FG= ,又OG?EF, 22

22?GO= S= ?BCG24

22?V = 2V= BCG-ADMF-BCG412

222?V=+=,故选A。 ABCDEF4123

例4 (湖南高考,2007,理18),如图2,E、F分别是矩形ABCD的边AB、CD

的中点,G是EF上的一点,将?GAB、?GCD分别沿AB、CD翻折成?GAB,?GCD,并连结GG, 1212使得平面GAB?平面ABCD,GG?AD,且GG

(?)证明:平面GAB?平面GADG112

(?)当AB=12,BC=25,EG=8时,

求直线BG和平面GADG所成的角。 212

解: 仔细观察图形和对照已知条件,依题:面ABCD,

面ABG,面EFGG,面面互相垂直,通过补 121

形可知所得图形是长方体ABCD—ABCD中 1111

的一部分,如图4。

图4 (?)?GG?AD,AD?面GBA,GG面GADG 1211212,

? 结论成立。

(?)长方体的三共点棱AB=12,BC=25,BB=8,又可推得FG=17,GG=10,BG=10,12121BG=10,EG=8,又面BAG?面AGG,割去长方体的其它部分只看三棱维G—GAB,22111221如图5,作BH?AG于H,连GH, 12

可知?BGH为所求。 2

图5

11考虑?AB G的面积有: BH, ?12?8,?10?122

4848122, BH=,于是sinBGH= ?,22555?102

122故所求的角为arcsin 25

[规律小结]

割补法是割分形法即割法与补加形法即补法的总称。

补法是把不熟悉的或复杂的几何体延伸或补加成熟悉的或简单的几何体,把不完整的图形补成完整的图形。割法是把复杂的或不熟悉的几何体,割分为简单的或熟悉的几何体。这样对此解起题来就有好处。割补法中的割与补是一个问题中的相反两个方面,是对立统一的一对矛盾。

解决一个问题,是割是补,这要看问题的性质,宜补就补,宜割就割,不可割补就不割补,就是宜割补,也要讲究如何割补,不要盲目行动,否则就会导致麻烦,使问题复杂化,使得其反,甚至问题还不能解决。

立体几何中需得三棱柱补成平行六面体,将三棱维补成三棱柱,将三棱柱割分为三棱维等等这些我们很熟悉,其实,割补法不仅仅使用于立体几何,将上述概念中的几何体或图形改为代数式,那么在数学的其它方面使割补法也就很多了,比如运算中的添项减项,重新组合另行考虑,考虑问题的对立面等等均可视为割补法,因此,割补法不只是一种方法,可把它上升为一种思想——一种数学思想。

※ 同步训练

1、斜三棱柱的一个侧面面积是S,这个侧面与它的对棱的距离为h,求证其体积为

2、三棱维A—BCD的底面?BCD中,BD=CD=a,?CDB=90?。又AB=a,AB?面BCD,则异面直线AD与BC间的距离为。

3、已线段AD、BD、CD两两互相垂直,且AD=,BD=5,CD=8,球面过A、B、

C、11

D四点,试求此球面面积

4、平行六面体ABCD—ABCD中,E是棱AB的中点,过B、D、E三点作平面截平111111

行六面体为两部分,求此两部分的体积的比。

f(2),f(4)??f(2008),5、若f(a+b)=f(a).f(b),f(1)=2,化简 f(1),f(3)??f(2007)

,,,356、求cos +cos + cos的值 777

7、已知定直线l及其外一点F,动点P到F的距离与到l的距离的比为e,当e割去1(即e-1)时点P的轨道必定存在,那么:

?原来点P的轨道是( )

A、椭圆

B、抛物线

C、双曲线

D、以上均不对

?现在点P的轨道是( )

A、椭圆

B、抛物线

C、双曲线

D、以上均不对

8、(2004全国高考?),如图,直三棱柱

ABCD—ABCD中,?ACB=90?,AC=1, 1111

CB=,AA=1,侧面AABB的两对角线交点 2111

为D,BC的中点为M 11

DM; (1)求证:CD?平面B

(2)求面BBD与面CBD所成二面角的大小。 1

※ 参考答案:

11、 sh2

3a2、提示:以DC,BD,AB为棱长构造一正方体,连其相应对角线分别构造含3

两直线的平面,将线线距离转换成面面距离,再利用正方体对角线长得出答案。

3、400,

4、7:17 提示:设所作平面与直线AA交于A, 12

先考虑三棱维A—ABD与其中的一个小三棱维的体积。 211110045、2 提示:由已知有f(2)=4,分子里的数字都转换用f(2)表示,将分母中前后两端等距离的数字配对找与分母间的联系。

,176、提示:补cos,割-1或补1 27

7、D D 提示:(1)e-1后可能为0,而表示点。(2)e-1后与1的大小不确定。

3,,arccos8、 (1)连BM,C B,易知C B?BC及C B?BD,又CD在底面1 1 1 1 3

的摄影在C B上,? 易知CD?平面BDM 1

(2)将棱锥D-B BC旋转成棱锥B-BDC,补平面BDC,过B做面111

BDC的垂线,垂足为O,利用投影面积公式求出面BDO与面BBD1

所成的二面角,进而得到要求角。

“割补法”求解不规则几何体体积

“割补法”求解不规则几何体体积 我们通常把不是棱柱、棱锥、棱台和圆柱、圆锥、圆台等的几何体,称为不规则几何体.而解决不规则几何体的方法,常用割补法,即通过分割或补形,将它变成规则的几何体.我们可以从不规则几何体的来源上,即它是由何种常见的几何体所截得的来分类. 一、来自三棱柱的截体 例1 如图1,正四面体A BC D -中,E F G H ,,,分别是棱 A B A C B D C D ,,,的中点,求证:平面EFH G 把正四面体分割成 的两部分几何体的体积相等. 分析:显然正四面体被分割成的两部分都是不规则的几何体, 因此我们可使用割补法来推导.那么我们应选择割,还是补呢? 如果选择补,那么补成什么样子呢?显然只能是正四面体,这就 说明我们应该选择割. 证明:连结C E C G A G A H ,,,,左右两个不规则几何体都被分割成了一个四棱锥和一个三棱锥,如图1.易证左右的两个四棱锥的体积相等,两个三棱锥的体积也相等,于是两部分体积相等. 当然此题还有其他的分割方法,比如分成一个三棱柱和一个三棱锥等,也同样好证. 二、来自正方体的截体 例2 如图2,已知多面体ABC D EFG -中,A B A C A D ,,两两互相垂 直,平面ABC ∥平面D E F G ,平面BEF ∥平面A D G C , 2AB AD D C ===,1AC EF ==,则该多面体的体积为( ) A.2 B.4 C.6 D.8 解法一(割):如图3,过点C 作C H D G ⊥于H ,连结EH ,这样就 把多面体分割成一个直三棱柱D EH ABC -和一个斜三棱柱BEF C H G -. 于是所求几何体的体积为: DEH BEF V S AD S DE =?+?△△11212212422????=???+???= ? ?????. 解法二(补):如图4,将多面体补成棱长为2的正方体,那么显然 所求的多面体的体积即为该正方体体积的一半. 于是所求几何体的体积为31242V = ?=. 三、来自圆柱的截体 例3 如图5,如图5,一圆柱被一平面所截,已知被截后几何体的 最长侧面母线长为4,最短侧面母线长为1,且圆柱底面半径长为2,则 该几何体的体积等于_______. 解法一(割):如图6,该几何体的体积等于下面的圆柱的体积与上

高考数学用补形法解立体几何题

高考数学用补形法解立体几何题 1. 正四面体补为正方体 例1. 求棱长为1的正四面体的体积。 图1 分析:常规的思路是直接用三棱锥的体积公式去求,但要首先求出此三棱锥的高,求高比较繁琐。如果将正四面体ABCD补形为正方 体(如图1),那么此正方体的棱长为,因此,求正四面体的体 积便有了新的求解思路: 例2. 如图2,正三棱锥S-ABC的侧棱与底面边长都相等,如果E、F、G分别是SC、AB、AC的中点,那么异面直线EF与BG所成角 的余弦值等于__________。图2

分析:常规的思路是“平移法”,取GA的中点H,连结EH、FH,则∠EFH即为所求,但解△EFH的运算量较大。联想到正四面体可补形为正方体(如图3),相当于求与BG所成角的余弦值。在此正方体的左边补上一个大小相同的正方体,构成一个长方体(如图4),则相当于求长方体对角线BD与侧棱所成角的余弦值。 设正方体边长为1,则长方体对角线BD的长为。在中, 2. 三条侧棱两两垂直的三棱锥或对棱相等的三棱锥或一条侧棱垂直于底面的三棱锥都可以考虑补形为长方体 例3. 如图5,是直二面角, ,,那么AB与面β所成的角等于() 图5 A. 90° B. 60° C. 45° D. 30°

分析:由α⊥β,BD⊥CD,得BD⊥α同理得:AC⊥β因此,AC ⊥CD,BD⊥CD,AC⊥BD不妨把三棱锥A-BCD补形为长方体(如图5),易得∠ABC为所求的角。在Rt△ABC中,,选D。例4. 如图6,四面体P-ABC中,侧棱PA、PB、PC两两垂直,O为面ABC 上一点,且O到平面PAB、平面PAC、平面PBC的距离分别为2,3,4,求OP的长度。 分析:可补一个“小”长方体(如图6),由此可得“小”长方体的长、宽、高分别为2,3,4,求OP长可转化为求该“小”长方体的对角线长,得: 3. 一般三棱锥(三棱柱)可补形为三棱柱(平行六面体) 例5. 已知三棱锥P-ABC中,PA⊥BC,PA=BC=a,PA、BC的公垂线段DE=h,求证三棱锥的体积是。分析:以ABC为底面,PA为侧棱补形为一个三棱柱ABC-,进一步补形为平行六面体ABCD-(如图7),那么

高中数学必修2立体几何专题资料

专题一浅析中心投影与平行投影 中心投影与平行投影是画空间几何体的三视图和直观图的基础,弄清楚中心投影与平行投影能使我们更好地掌握三视图和直观图,平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.下表简单归纳了中心投影与平行投影,结合实例让我们进一步了解平行投影和中心投影. 例1如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等? 解析:方法一:可在同一方向上画出与原长相等的影长,分别连结它们影子顶点与树的顶点,此时为平行投影. 方法二:可在两树外侧不同方向上画出与原长相等的影子,连结影子顶点与树的顶点相交于P,此时为中心投影,P为光源位置. 点评:这是一道平行投影和中心投影相结合的题目,答案不唯一.连结物体顶点与其影子顶点,如果得到的是平行线,即为平行投影;如果得到的是相交线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本作法,还应注意,若中心投影光源在两树同侧时,图中的两棵树的影子不可能与原长相等. 例2 如图所示,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(填出所有可能的序号).

解析:在下底面ABCD上的投影为③,在右侧面B′BCC′上的投影为②,在后侧面D′DCC′上的投影为①. 答案:①②③ 点评:画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影. 专题二不规则几何体体积的求法 当所给几何体形状不规则时,无法直接利用体积公式求解,可尝试用以下几种常用的方法求出原几何体的体积,下面逐一介绍,供同学们参考. 一、等积转换法 当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时, 可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积. 例1在边长为a的正方体ABCD—A1B1C1D1中,M,N,P 分别是棱A1B1,A1D1,A1A上的点,且满足A1M = 1 2A1B1, A1N=2ND1,A1P= 3 4A1A(如图1),试求三棱锥A1—MNP的体 积. 分析:若用公式V= 1 3Sh直接计算三棱锥A1—MNP的体积, 则需要求出△MNP的面积和该三棱锥的高,这两者显然都不易求出, 但若将三棱锥A1—MNP的顶点和底面转换一下,变为求三棱锥P—A1MN的体积,便能很容易的求出其高和底面△A1MN的面积,从而代入公式求解. 解:V A 1-MNP =V A1—MNP = 1 3·S△A1MN ·h = 1 3× 1 2·A1M1·A1N·A1P= 1 3× 1 2× 1 2a· 2 3a· 3 4a= 1 24a 3.

割补法求面积

割补法求面积 阴影面积的计算是本章的一个中考热点,计算不规则图形的面积,首先应观察图形的特点,通过分割、接补将其化为可计算的规则图形进行计算. 一、补:把所求不规则图形,通过已知的分割线把原图形分割成的图形进行适当的组合,转化为可求面积的图形. 例题1 如图1,将半径为2cm 的⊙O 分割成十个区域,其中弦AB 、CD 关于点O 对称,EF 、GH 关于点O 对称,连接PM ,则图中阴影部分的面积是_____cm 2(结果用π表示). 解析:如图1,根据对称性可知:S 1=S 2,S 3=S 4,S 5=S 6,S 7=S 8,因此阴影部分的面积占整个圆面积的 21,应为:ππ222 12=?(cm 2). 练习:如图2,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为_______. 答案:2π. 二、割:把不规则的图形的面积分割成几块可求的图形的面积和或差. 例题2 如图3,在Rt △ABC 中,已知∠BCA=90°,∠BAC=30°,AB=6cm ,把△ABC 以点B 为中心旋转,使点C 旋转到AB 边的延长线上的点C′处,那么AC 边扫过的图形(图中阴影部分)的面积是_______cm 2(不取近似值). 解析:把所求阴影部分的面积分割转化,则 S 阴影=(S 扇形BAA′+S △A′C′B )-(S △ACB +S 扇形BCC′)

=S 扇形BAA′-S 扇形BCC′ 360 312036061202 2?-?=ππ=π9. 练习:如图4,正方形ABCD 的边长为1,点E 为AB 的中点,以E 为圆心,1为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于P 点,∠MEN =60°.则图中阴影部分的面积是_________. 答案:4361-- π. 三、先割后补:先把所求图形分割,然后重新组合成一个规则图形. 例题3 如图5,ABCD 是边长为8的一个正方形,EF 、HG 、EH 、FG 分别与AB 、AD 、BC 、DC 相切,则阴影部分的面积=______. 解析:连接EG 、FH ,由已知可得S 1=S 2,S 3=S 4,所以可把S 1补至S 2,S 3补至S 4. 这样阴影部分的面积就转化为正方形面积的21,因此阴影部分的面积为3282 12=?. 练习:如图6,AB 是⊙O 的直径,C 、D 是AB 上的三等分点,如果⊙O 的半径为1,P 是线段AB 上的任意一点,则图中阴影部分的面积为( ) A .3π B .6π C .2π D .3 2π 答案:A .

中考复习数学思想方法之二:割补法“补形”在初中几何问题中的应用

中考复习数学思想方法之一:割补法“补形”在初中几何问题中的应用 平面几何中的“补形”就是根据题设条件,通过添加辅助线,将原题中的图形补成某种熟悉的,较规则的,或者较为简单的几何基本图形,使原题转化为新的易解的问题.从“补形”的角度思考问题,常能得到巧妙的辅助线,而使解题方向明朗化,所以,补形是添加辅助线的重要方法.下面举例加以说明,供参考. 例1 如图1,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于. 解析题中六边形是不规则的图形,现将它补形为较规则的正三角形,分别向两方延长AB、CD、EF相交于G、H、I (如图2). ∵六边形ABCDEF的六个内角都相等, ∴六边形的各角为120°, ∴△AFI、△BCG、△DEH均是正三角形,从而△GHI为正三角形,则有 GC=BC=3,DH=EH=DE=2, IF=AF, IH=GH=GC+CD+DH =3+3+2=8, ∴IE=IH-EH=8-2=6. ∴六边形的周长等于: AB+BC+CD+DE+EF+F A =AB+BC+CD+DE+IE =1+3+3+2+6=15. 注:本题亦可补成平行四边形求解,如图3. 例2 如图4,在Rt△ABC中,AC=BC,AD是∠A的平分线,过点B作AD的垂线交AD的延长线于点E,求证:AD=2BE. 解析从等腰三角形的性质得到启示:顶角平分线垂直底边且平分底边.结合AE平分∠CAB,B E⊥AE,启发我们补全一个等腰三角形.所以延长BE交AC的延长线于点F(如

图5),易证△ABF 为等腰三角形,∴ BF =2BE ,再证△ACD ≌△BCF ,全等的条件显然满足,故结论成立. 例3 某片绿地的形状如图6所示,其中∠A =60°,A B ⊥BC ,C D ⊥AD ,AB =200m ,CD =100m ,求AD ,BC 的长. 解析 由题设∠A=60°,A B ⊥BC ,可将四边形补成图7所示的直角三角形. 易得∠E =30°,AE =400,CE =200,然后再由勾股定理或三角函数求出BE , DE 由此得到AD =400-200。 例4 如图8,在平面直角坐标系中直线y =x -2与y 轴相交于点A ,与反比例函数在第一象限内的图像相交于点B (m ,2). (1) 求反比例函数的关系式; (2) 将直线y =x -2向上平移后与反比例函数图像在第一象限内交于点C ,且△ABC 的面积为18,求平移后的直线的函数关系式. 解析 (1) 所求解析式为y =8 x ; (2) 本题方法不一,下面着重对此题进行分析解答.

立体几何割补法

立体几何割补法 立体几何中的割补法解题技巧 邹启文 ※ 高考提示 立体几何中常用割补法解题.特别是高考中的立体几何题很多可用割补法解,有时解起来 还比较容易. ※ 解题钥匙 例1 (2005湖南高考,理5)如图,正方体ABCD—ABCD的棱长为1,O是底面ABCD11111111 的中心,则O到平面ACD的距离为( ) 11 2231A、 B、 C、 D、 4222 分析:求点到面的距离通常是过点做面的垂线,而由于该图的局限性显然不太好做垂线,考虑O为AC的中点,故将要求的距离 11 与A到面ACD的距离挂钩,从而与棱锥知识挂钩,所以可在该 111 图中割出一个三棱锥A—ACD而进行解题。 111 解:连AC,可得到三棱锥A—ACD,我们把这个正方体的其 1111

它部分都割去就只剩下这个三棱锥,可以知道所求的距离正好为这个三棱锥的高的一半。这个三棱锥底面为直角边为1与的直 2角三角形。这个三棱维又可视为三棱锥C—AAC,后者高为1,底为腰是1的等腰直角三角111 2形,利用体积相等,立即可求得原三棱锥的高为,故应选B。 2 例2 (2007湖南高考,理8)棱长为1的正方体ABCD—ABCD1111 的8个顶点都在球O的表面上,E,F分别是棱AA、DD的中点, 11则直线EF被球O截得的线段长为( ) 22A、 B、1 C、1+ D、 222 分析:在该题中我们若再在正方体上加上一个球,则该图形变得复杂而烦琐,而又考虑到面AADD截得的球的截面为圆,且EF 11 在截面内,故可连接球心抽出一个圆锥来。 解:如图,正方体ABCD—ABCD,依题O亦为此正方体的中心,补侧面 1111 可得圆锥0—AD(如下图), AD为平面AD,球0截平面A D1111 其底面圆心正为线段AD之中点,亦为线段EF之中点,割去正方体和球 1 的其它部分,只看这个圆锥,容易看出球O截直线EF所得线段长就等于这个圆锥底面圆的直径AD之长,故选D。 1

立体几何巧思妙解之割补法

立体几何巧思妙解之割补法 在立体几何解题中,对于一些不规则几何体,若能采用割补法,往往能起到化繁为简、一目了然的作用。 一 、求异面直线所成的角 例1、如图1,正三棱锥S-ABC 的侧棱与底面边长相等,如果E 、F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角等于( ) 000090604530A B C D 分析:平移直线法是求解异面直线所成角最基本的方法。如图1,只要AC 的中点G ,连EG ,FG ,解△EFG 即可.应该是情理之中的事。若把三棱锥巧妙补形特殊的正方体,定会叫人惊喜不已。 巧思妙解:如图2,把正三棱锥S-ABC 补成一个正方体11AGBH ACB S -, 1//,EF AA ∴异面直线EF 与SA 所成的角为0145A AS ∠=。故选C 。 二、体积问题 例2、如图3,已知三棱锥子P —ABC ,10,PA BC PB AC PC AB ======锥子P —ABC 的体积为( )。 4080160240A B C D 分析:若按常规方法利用体积公式求解,底面积可用海伦公式求出,但顶 点到底面的高无法作出,自然无法求出。若能换个角度来思考,注意到三 棱锥的有三对边两两相等,若能把它放在一个特定的长方体中,则问题不 难解决。 巧思妙解:如图4所示,把三棱锥P —ABC 补成一个长方体AEBG —FPDC ,易 知三棱锥P —ABC 的各边分别是长方体的面对角线。 PE=x,EB=y,EA=z 不妨令,则由已知有: 2222221001366,8,10164x y x z x y z y z ?+=?+=?===??+=? ,从而知 416810468101606 P ABC AEBG FPDC P AEB C ABG B PDC A FPC AEBG FPDC P AEB V V V V V V V V --------=----=-=??-????= 例3、如图5,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形, 且BCF ADE ??、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 ( ) (A ) 32 (B )33 (C )34 (D )23

高中数学立体几何建系方法

立体几何建系方法 熟悉几个补形建系的技巧 基本模型:长方体 ; 下面几个多面体可考虑补成长方体建系: (1)三棱锥P ABC -,其中,2 PA ABC ABC π ⊥∠= . 特点:BC PAB ⊥面;四个面均为直角三角形。 建系方法: (2)四棱锥P-ABCD,其中,PA ABCD ⊥面ABCD 为矩形。 建系方法: (3)正四面体A-BCD 建系方法: (4)两个面互相垂直建系方法 1、(2011年高考重庆卷文科20) 如题(20)图,在四面体 ABCD 中, 平面ABC ⊥平面ACD ,,2,1AB BC AC AD BC CD ⊥==== (Ⅰ)求四面体ABCD 的体积; (Ⅱ)求二面角C-AB-D 的平面角的正切值。 P A B C A C D P

2、(06山东),已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点, 又BO=2,PO=2,PB⊥PD. (Ⅰ)求异面直线PD与BC所成角的余弦值; (Ⅱ)求二面角P-AB-C的大小; 3、在直三棱柱ABC-A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点. (Ⅰ)证明:ED为异面直线BB1与AC1的公垂线; (Ⅱ)设AA1=AC=2AB,求二面角A1-AD-C1的大小. A B C D E A1 B1 C1

4.如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=o ,E F ,分别是BC PC ,的中点. (Ⅰ)证明:AE PD ⊥; (Ⅱ)若H 为 PD 上的动点,EH 与平面PAD 所成最大角的正切值 为2 E A F C --的余弦值. 5、(08安徽)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的 菱形,4 ABC π ∠= , OA ABCD ⊥底面, 2OA =,M 为OA 的中点. (1)求异面直线AB 与MD 所成角的大小; (2)求点B 到平面OCD 的距离. P B E C D F A

三角法与向量法解平面几何题(正)

第27讲 三角法与向量法解平面几何题 相关知识 在ABC ?中,R 为外接圆半径,r 为内切圆半径,2 a b c p ++=,则 1,正弦定理: 2sin sin sin a b c R A B C ===, 2,余弦定理:2 2 2 2cos a b c bc A =+-,2 2 2 2cos b a c ac B =+-,2 2 2 2cos c a b ab C =+-. 3,射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+. 4,面积:211sin 2sin sin sin 224a abc S ah ab C rp R A B C R = ==== = (sin sin sin )rR A B C ++ 2 221(cot cot cot )4 a A b B c C = ++. A 类例题 例1.在ΔABC 中,已知b =asinC ,c =asin (900 -B ),试判断ΔABC 的形状。 分析 条件中有边、角关系, 应利用正、余弦定理, 把条件统一转化为边或者是角的关系, 从而判定三角形的形状。 解 由条件c = asin (900 - B ) = acosB = c b c a ac b c a a 222 22222-+=-+ 2 2222c b c a =-+? 是直角A b c a ?+=?2 22 1sin sin sin =?=A A C c A a 是直角?? ?C a c C c a sin sin =?=?. Q C a b sin =?=? c b ΔABC 是等腰直角三角形。 例2.(1)在△ABC 中,已知cosA =13 5,sinB =53 ,则cosC 的值为( ) A .6516 B .6556 C .65566516或 D . 65 16- 解 ∵C = π - (A + B ),∴cosC = - cos (A + B ),又∵A ∈(0, π),∴sinA = 13 12,而sinB =53 显然sinA > sinB ,∴A > B , ∵A 为锐角, ∴B 必为锐角, ∴ cosB = 5 4 ∴cosC = - cos (A + B ) = sinAsinB - cosAcosB =65 1654135531312=?-?.选A . 说明 △ABC 中,sinA > sinB ?A > B . 根据这一充要条件可判定B 必为锐角。 (2)在Rt △ABC 中,C =90°,A =θ,外接圆半径为R ,内切圆半径为r ,

例谈构造平行六面体解立体几何题

例谈构造平行六面体解立体几何题 立体几何题的题设中若有“垂直”(包括线线垂直、线面垂直及面面垂直)可以试着构造长方体来求解,若没有“垂直”也可尝试构造平行六面体来求解.本文以普通高中课程标准实验教科书《数学·选修2-1·A 版》(人民教育出版社,2007年第2版)(下简称教科书)中的题目及几道高考题来谈谈这种解题方法. 题1 (教科书第106页例2)如图1,甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处.从,A B 到直线l (库底与水坝的交线)的距离AC 和BD 分别为a 和b ,CD 的长为c ,AB 的长为d .求库底与水坝所成二面角的余弦值. 图1 图2 解 可在如图2所示的平行六面体中求解:因为,//CD AC AC A D '⊥,所以CD A D '⊥.又CD BD ⊥,所以CD ⊥面A DB ',得AA A B ''⊥,所以222A B d c '=-. 在A BD '?中,由余弦定理可求得2222 cos 2a b c d A DB ab ++-'∠=,此即所求二面角的余弦值. 题 2 (教科书第107页练习第2题)如图3,60?的二面角棱上有,A B 两点,直线,AC BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4,6,8AB AC BD ===,求CD 的长. 图3 图4 解 可在如图4所示的平行六面体中求解:在ACE ?中,6,6,60AC AE BD CAE ===∠=?,由余弦定理可求得252CE =.

可证BA ⊥面ACE ,所以有DE CE ⊥,在CDE ?中可求得217CD =. 题3 (教科书第113页第12题)一条线段夹在一个直二面角的两个半平面内,它与两个半平面所成的角都是30?,求这条线段与这个二面角的棱所成角的大小. 解 可在如图5所示的长方体中求解:30ADB DAE ∠=∠=?,可不妨设2AD =,得1,3,2DE CB AB AE BD BE CD =======,所以在Rt ACD ?中可求得45ADC ∠=?,即夹在直二面角A BE D --的线段AD 与棱BE 所成角的大小是45?. 图5 题 4 已知两平行平面,αβ的距离为23,点,A B α∈,点,C D β∈,且3,2AB CD ==,异面直线,AB CD 成60?角,求四面体ABCD 的体积. 解 可在如图6所示的平行六面体中求解: 图6 在图6所示的平行六面体中,60A CD '∠=?或120?, 133,23sin 322 A CD A C A B S A CD '?''===??∠=,所以13323332 A BCD A BCD V V '--===. 题 5 (2012·安徽·文·15) 若四面体ABCD 的三组对棱分别相等,即,,A B CD A C B D AD BC ===,则下列命题正确的是 (写出所有正确命题的编号)。 ①四面体ABCD 每组对棱相互垂直 ②四面体ABCD 每个面的面积相等 ③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90°而小于180° ④连接四面体ABCD 每组对棱中点的线段相互垂直平分 ⑤从四面体ABCD 每个顶点出发的三条棱可作为一个三角形的三边长

立体几何存在性问题

立体几何存在性问题
未命名
一、解答题 1.在多面体
中,底面
是梯形,四边形
形,

,面
面,
.
.
(1)求证:平面
平面 ;
是正方
(2)设 为线段 上一点,
,试问在线段 上是否存在一点 ,使得
平面 ,若存在,试指出点 的位置;若不存在,说明理由?
(3)在(2)的条件下,求点 到平面 的距离.
2.如图,四棱锥
中,底面
是直角梯形,


,侧面 是等腰直角三角形,
,平面
平面
,点 分别是棱
上的点,平面 平面
(Ⅰ)确定点 的位置,并说明理由;
(Ⅱ)求三棱锥
的体积.
3.如图,在长方体
中,
,点 在棱 上,


点 为棱 的中点,过 的平面 与棱 为菱形.
交于 ,与棱 交于 ,且四边形
(1)证明:平面
平面

(2)确定点 的具体位置(不需说明理由),并求四棱锥
的体积.
4.如图 2,已知在四棱锥
中,平面
平面 ,底面 为矩形.
(1)求证:平面
平面 ;
(2)若 5.如图,三棱锥 点.
的三条侧棱两两垂直,
,试求点 到平面 的距离. , , 分别是棱 , 的中
(1)证明:平面
平面 ;
(2)若四面体 的体积为 ,求线段 的长.
6.如图,在四棱锥
中,



.

用补形法解立体几何题的常用策略

用补形法解立体几何题的常用策略 罗建中 一、棱锥补成棱柱 例1 一个四面体的所有棱长都为 2,四个顶点在同一球面上,则球的表面积为 A. π3 B. π 4 C. π3 3 D. π 6 分析:正四面体可看作是正方体经过切割而得到,因而构造一个棱长为1的正方体ABCD1 1 1 1 D C B A -,则四面体D BC A 1 1 -就是棱长为2的正四面体,而正方体的外接球就是四面体的外接球,又正方体的对角线长就是球的直径,易知对角线长度为3,故球表面积 2 2 3 4 S?? ? ? ? ? π = π =3。 评注:对棱长全相等的正四面体通常把它补成正方体。若是相对棱长相等的四面体,则可考虑把它补成长方体。 例2 如图1,在底面是直角梯形的四棱锥ABCD S-中,∠ABC=? 90,SA⊥面ABCD,SA=AB=BC=1,AD=2 1 。 (1)求四棱锥ABCD S-的体积; (2)求面SCD与面SBA所成的二面角的正切值。 解:(1)解答略。 (2)以SA为棱,构造正方体AECB-SFGH,如图2,分别取棱SF、HG中点M、N,连结DM、MN、SN、ND,设ND与SC相交于O,连接MO。 则有面MDN∥面SAB,且SM⊥面MDN, 所以所求的二面角等于二面角S-DN-M。 在正方体AECB-SFGH中,△NSD与△NMD都是等腰三角形,所以SO⊥DN, MO⊥DN,所以∠SOM是二面角S-DN-M的平面角。又MO2 1 = SB=2 2 ,SM=2 1 ,所以2 2 MO SM SOM tan= = ∠ ,故所求二面角的正切值是2 2 。

评注:从一顶点出发的三条棱互相垂直的锥体通常可考虑把它补成长方体或正方体。 二、三棱柱可补成四棱柱 例3 已知斜三棱柱的侧面11ACC A 与平面ABC 垂直,∠ABC=?90,BC=2,AC=32,且C A AA 11⊥,C A AA 11=,求点C 到侧面11ABB A 的距离。 解:把斜三棱柱ABC 111C B A -补成如图3所示的平行六面体,设所求的距离为d ,则d 也是平面11A ABB 与平面 11C CMM 间距离,作AC D A 1⊥于点D ,作AB E A 1⊥于点F ,因为C A AA 11=,32AC =,C A AA 11⊥,所以 3 D A 1=,又∠ABC=?90,BC=2,所以22AB =,因侧面11ACC A 与底面ABC 垂直,AC D A 1⊥于点D ,所以 AB D A 1⊥,又AB E A 1⊥,知AB ⊥面ED A 1,因而AB ⊥ED ,又∠ABC=?90,所以DE ∥BC ,D 为AC 中点,且 1BC 21 DE == , 故 2 DE D A E A 2211=+=,而 d S D A S V 11ABB A 1ABMC ?=?=平行六面体。 所以 3 2 3 2S D A S d 11ABB A 1ABMC ==?= 。 评注:本例通过斜三棱柱补成四棱柱,从而达到把线面距离转化为面面距离,再通过等积变换达到简化解题之目 的。 三、棱台补成棱锥 例4 如图4,三棱柱ABC 111C B A -中,若E 、F 分别为AB 、AC 的中点,平面F C EB 11将三棱柱分成体积为1V 、2 V 的两部分,那么21V :V 等于多少?

割补法巧算面积

割补法巧算面积知识精讲: 分割法:把不规则的的大图形化为规则的小图形 添补法:把不规则图形周围添上规则的小图形,使总面积便于计算 例题1 图中的数字分别表示对应线段的长度,试求下面多边形的面积. (单位:厘米) 8 2 练习1 如图中的每个数字分别表示所对应的线段的长度(单位:米)?这个图形的面积等于多少平 例题2 如图,在正方形ABCD内部有一个长方形. EFGH .已知正方形ABCD的边长是6厘米, 图中线段AE、AH都等于2厘米.求长方形EFGH的面积. 练习2 正方形ABCD的边长是8厘米,它的内部有一个三角形AEF (如图),线段DF=3.6厘米, BE=2.8厘米,那么三角形AEF的面积等于_______________ 平方厘米. B 例题3 如图中,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等份,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?

练习3. 2 1如图所示,正方形ABCD的边长acm,则图中阴影部分的面积为______________________ cm ? A D 例题4.如图1和图2,把两个相同的正三角形的各边分别五等分和七等分,并连接这些分 点.已知图1中阴影部分的面积是294平方分米. 请问:图 2中的阴影部分的面积是多少平 方分米? 练习4 7.如图所示,将三个相同的长方形从上到下排列,依次进行两等分、三等分、四等分,各取出其中的一份画上阴影,则阴影部分的面积占全部面积的几分之几? 例6. 选做题 例5如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形平 方厘米,那么正方形B的面积是多少平方厘米? A的面积是36

巧用旋转法解几何题

巧用旋转法解几何题 将一个图形绕着某一点旋转一个角度的图形变换叫做旋转,由旋转的性质可知旋转前后的 图形全等,对应点到旋转中心的连线所组成的夹角等于旋转角。旋转法是在图形具有公共端点的相等的线段特征时,可以把图形的某部分绕相等的线段的公共端点,旋转另一位置的引辅助线的方法,主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条件。旋转方法常用于等腰三角形、等边三角形及正方形等图形中。现就旋转法在几何证题中的应用举例加以说明,供同学们参考。 例1.如图,在Rt △ABC 中,∠C=90°,D 是AB 的中点,E ,F 分别AC 和BC 上,且DE ⊥DF , 求证:EF 2 =AE 2 +BF 2 分析:从所证的结论来看,令人联想到勾股定理,但注意到EF ,AE ,BF 三条线段不在同一个三角形中,由于D 是中点,我们可以考虑以D 为旋转中心,将BF 旋转到和AE 相邻的位置,构造一个直角三角形,问题便迎刃而解。 证明:延长FD 到G ,使DG=DF ,连接AG ,EG ∵AD=DB ,∠ADG=∠BDF ∴⊿ADG ≌⊿BDF (SAS ) ∴∠DAG=∠DBF ,BF=AG ∴AG ∥BC ∵∠C=90°∴∠EAG=90° ∴EG 2 =AE 2 +AG 2 =AE 2 +BF 2 ∵DE ⊥DF ∴EG=EF ∴EF 2 =AE 2 +BF 2 例2,如图2,在⊿ABC 中,∠ACB=90°,AC=BC ,P 是⊿ABC 内一点,且PA=3,PB=1,PC=2,求∠BPC 的度数. 分析:题目已知条件中给出了三条线段的长度和一个直角,但已知的三条线段不在同一三角形中,故可考虑通过旋转变换移至一个三角形中,由于⊿ACB 是等腰直角三角形,宜以直角顶点C 为旋转中心。 解:作MC ⊥CP ,使MC=CP ,连接PM ,BM G F E D C B A

用向量方法解立体几何题

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 a l ⊥,在β内 b l ⊥,其方向如图,则二 方法一:在α内 平面角α=arccos |||| a b a b 面角l αβ--的 方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=12 12arccos |||| n n n n

2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 方法二:在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直 线a 、b 的方向向量,求n (n a ⊥, n b ⊥),则异面直线a 、b 的距离 || |||cos ||| AB n d AB n θ== (此方法移植于点面距离的求法). 例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是 棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离 记异面直线1DE FC 与所成的角为α, 解:(Ⅰ) 则α 等于向量 1 DE FC 与的夹角或其补角, 1 1 ||||111111cos || ()() ||||||DE FC DE FC DD D E FB B C DE FC α∴=++=

割补法

知识点练习 一、选择题 1. 三平面,,两两互相垂直且交于点,空间一点到,,的距离分别为,,,则,两点间的距离为 A. B. C. D. 2. 已知三个平面两两互相垂直且交于一点,若空间一点到三个平面的距离分别为、、,则的长为 A. B. C. D. 3. 某几何体正视图与侧视图相同,其正视图与俯视图如图所示,且图中的四边形都是边长为的正方形,正视图中两条虚线互相垂直,则该几何体的体积是 A. B. C. D. 4. 一个几何体的三视图如图所示(单位:),则该几何体的体积是

A. B. C. D. 5. 已知某几何体的三视图如图所示,则该几何体外接球的表面积为 A. B. C. D. 6. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是

A. B. C. D. 7. 已知在半径为的球面上有、、、四点,若,则四面体的体积的最大值为 ( ) A. B. C. D. 二、填空题 8. 自半径为的球面上一点,作球的互相垂直的三条弦,,,则(用表示). 9. 若构成教室墙角的三个墙面记为,,,交线记为,,,教室内一点到三墙面,,的距离分别为、、,则与墙角的距离为. 10. 如图是一个长方体截去一个角后的多面体的三视图,在这个多面体中,,, .则这个多面体的体积为.

11. 若三角形内切圆半径为,三边长分别为、、,则三角形的面积,根据类比思想,若四面体内切球半径为,其四个面的面积分别为、、、,则四面体的体积. 12. 已知正方形的一个面在半径为的半球底面上,,,,四个顶点都在此半球面上,则正方体的体积为. 13. 在正四面体中,其棱长为,若正四面体有一个内切球,则这个球的表面积为. 14. 如图,已知底面半径为的圆柱被一个平面所截,剩下部分母线长的最大值为,最小值为,那么圆柱被截后剩下部分的体积是.

巧用补形法解平面几何题

巧用补形法解平面几何题 王立文王兴林 补形法就是根据题设的条件和图形,经过观察、分析和联想,运用添加辅助线的方法,将其拓展为范围更广的、其特征更明显、更为熟悉的几何图形,从而沟通条件和结论之间的联系.下面就补形法,谈谈它在解平面几何题中的应用. 一、补成直角三角形 例1如图1,四边形ABCD中,∠A=60°,∠B=∠D=90°,CD=1,AB=2,求BC、AD的长。 解:延长BC交AD的延长线于E。 ∵∠A=60°,∠B=90°, ∴∠E=30° 在△CED中, ∵∠CDE=∠ADC=90°,CD=1, ∴CE=2CD=2,DE=。 在△AEB中,同理有:AE=2AB=4,。 ∴BC=BE-EC=2-2, AD=AE-DE=4-。 二、补成等腰三角形

例2已知:如图2,△ABC中,,∠ABC的平分线交AC于E,CD⊥BE 于D,求证:BE=ED。 证明:延长BA交CD的延长线于F。 易证△BCF是等腰三角形(ASA)。 ∴。 ∵, ∴。 作DG∥CA交BF于点G。 ∴, ∴BE=ED。 三、补成等边三角形 例3如图3,凸五边形ABCDE,有∠A=∠B=120°,EA=AB=BC=2,CD=DE=4,求这个五边形的面积。

简解延长DE、BA相交于K,延长DC、AB相交于M。易知△DKM为等边三角形。 S 五边形ABCDE =S 等边三角形DKM -2S 等边三角形AKE = 四、补成平行四边形 例4如图4,已知六边形ABCDEF中,若∠A=∠B=∠C=∠D=∠E=∠F=120°,且AB+BC=11,AF-CD=3,求BC+DE的长。 解:延长FA、CB交于点P,延长CD、FE交于点Q。 ∵∠A=∠B=120°, ∴∠PAB=∠PBA=60°, ∴∠P=60°, ∴△ABP是等边三角形。 同理可得:△DEQ是等边三角形。

立体几何割补法

立体几何中的割补法解题技巧 ※ 解题钥匙 例1 (2005湖南高考,理5)如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面AC 1D 1的距离为( ) A 、21 B 、42 C 、22 D 、2 3 分析:求点到面的距离通常是过点做面的垂线,而由于该图的局 限性显然不太好做垂线,考虑O 为A 1C 1的中点,故将要求的距离 与A 1到面AC 1D 1的距离挂钩,从而与棱锥知识挂钩,所以可在该 图中割出一个三棱锥A 1—AC 1D 1而进行解题。 解:连AC 1,可得到三棱锥A 1—AC 1D 1,我们把这个正方体的其 它部分都割去就只剩下这个三棱锥,可以知道所求的距离正好为 这个三棱锥的高的一半。这个三棱锥底面为直角边为1与2的直 角三角形。这个三棱维又可视为三棱锥C 1—AA 1C 1,后者高为1,底为腰是1的等腰直角三角形,利用体积相等,立即可求得原三棱锥的高为2 2,故应选B 。 例2 (2007湖南高考,理8)棱长为1的正方体ABCD —A 1B 1C 1D 1 的8个顶点都在球O 的表面上,E ,F 分别是棱AA 1、DD 1的中点, 则直线EF 被球O 截得的线段长为( ) A 、22 B 、1 C 、1+2 2 D 、2 分析:在该题中我们若再在正方体上加上一个球,则该图形变得 复杂而烦琐,而又考虑到面A 1ADD 1截得的球的截面为圆,且EF 在截面内,故可连接球心抽出一个圆锥来。 解:如图,正方体ABCD —A 1B 1C 1D 1,依题O 亦为此正方体的中心,补侧面 AD 1为平面AD 1,球0截平面A D 1可得圆锥0—AD 1(如下图), 其底面圆心正为线段AD 1之中点,亦为线段EF 之中点,割去正方体和球 的其它部分,只看这个圆锥,容易看出球O 截直线EF 所得线段 长就等于这个圆锥底面圆的直径AD 1之长,故选D 。 例3 (2005全国高考I ,理5)如图,在多面体ABCDEF 中,已知 ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形。 EF ‖AB ,EF=2,则多面体的体积为( ) A 、32 B 、3 3 C 、3 4 D 、23 分析:显然在该图不是我们所熟悉的棱柱或棱锥,所以我们 在此可以考虑将该图分解成我们所熟悉的棱柱或棱锥,故 在此可采用分割的方法。将已知图形割为一个直棱柱与两个 全等的三棱维,先分别求体积,然后求要求的几何体体积。 解:如下图,过AD 和BC 做分别EF 的直截面ADM 及截面BCG ,面ADM ‖面BCG ,

相关文档
最新文档