人教版初中数学圆的经典测试题附答案解析

合集下载

圆测试题及答案解析

圆测试题及答案解析

圆测试题及答案解析一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是什么?A. 直线与圆相离B. 直线与圆相切C. 直线与圆相交D. 直线在圆内答案:C解析:根据圆心到直线的距离小于圆的半径,可以判断直线与圆相交。

2. 圆的周长公式是什么?A. C = 2πrB. C = πr²C. C = 2rD. C = rπ答案:A解析:圆的周长公式是C = 2πr,其中C表示周长,r表示半径。

二、填空题1. 半径为7的圆的面积是 __________。

答案:153.94解析:圆的面积公式是A = πr²,将半径7代入公式得A = π ×7² ≈ 153.94。

2. 如果一个扇形的半径为10,圆心角为30°,那么它的弧长是__________。

答案:5π解析:弧长公式是L = θ × r,其中θ为圆心角(以弧度为单位),r为半径。

将圆心角30°转换为弧度是π/6,代入公式得L = π/6× 10 = 5π/3 ≈ 5。

三、简答题1. 描述圆的切线的性质。

答案:圆的切线在圆上某一点处与圆相切,且与过该点的半径垂直。

解析:圆的切线是一条直线,它恰好在一个点上与圆接触,并且这个接触点处的切线与从圆心到接触点的半径形成90°的角。

四、计算题1. 已知圆的半径为8,求圆的面积。

答案:圆的面积为200π。

解析:根据圆的面积公式A = πr²,将半径8代入公式得A = π × 8² = 64π ≈ 200π。

2. 已知圆的直径为20,求圆的周长。

答案:圆的周长为20π。

解析:圆的周长公式是C = πd,其中d为直径。

将直径20代入公式得C = π × 20 = 20π。

初中数学圆的经典测试题及解析

初中数学圆的经典测试题及解析
【详解】
解:如图所示,正六边形的边长为2cm,OG⊥BC,
∵六边形ABCDEF是正六边形,
∴∠BOC=360°÷6=60°,
∵OB=OC,OG⊥BC,
∴∠BOG=∠COG= ∠BOC =30°,
∵OG⊥BC,OB=OC,BC=2cm,
∴BG= BC= ×2=1cm,
∴OB= =2cm,
∴OG= ,
∴圆形纸片的半径为 cm,
【详解】
解:如图所示,
∵等腰三角形的底边和高线长均为10cm,
∴等腰三角形的斜边长= =5 ,即圆锥的母线长为5 cm,圆锥底面圆半径为5,
A. B. C. D.
【答案】C
【解析】
【分析】
连接 ,如图,利用切线的性质得 ,在 中利用勾股定理得 ,利用面积法求得 ,然后利用圆锥的侧面展开图为扇形和扇形的面积公式计算圆锥形纸帽的表面.
【详解】
解:连接 ,作 于 ,如图,
圆锥的母线 与 相切于点 ,

在 中, , ,



圆锥形纸帽的底面圆的半径为 ,母线长为12,
【详解】
设P(x,y),
∵PA2=(x+1)2+y2,PB2=(x﹣1)2+y2,
∴PA2+PB2=2x2+2y2+2=2(x2+y2)+2,
∵OP2=x2+y2,
∴PA2+PB2=2OP2+2,
当点P处于OC与圆的交点上时,OP取得最值,
∴OP的最小值为CO﹣CP=3﹣1=2,
∴PA2+PB2最小值为2×22+2=10.
A. B. C. D.
【答案】A

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试题(答案解析)

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试题(答案解析)

一、选择题1.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 2.如图,点A 、B 、C 在⊙O 上,∠ACB =54°,则∠ABO 的度数是( )A .54°B .30°C .36°D .60°3.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120° 4.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25 B .43 C .25或45 D .23或43 5.如图,在ABC 中,90C ∠=︒,7AB =,4AC =,以点C 为圆心、CA 为半径的圆交AB 于点D ,求弦AD 的长为( )A 433B .327C 233D .1676.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( )A .13cmB .12cmC .11cmD .10cm 7.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花,图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为3cm ,圆心角为60︒,则图中摆盘的面积是( )A .212cm πB .224cm πC .236cm πD .248cm π 8.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .102 9.已知O 的半径为4,点P 在O 外,OP 的长可能是( )A .2B .3C .4D .5 10.如图,PA 、PB 、CD 是O 的切线,切点分别是A 、B 、E ,CD 分别交PA 、PB 于C 、D 两点,若60APB ∠=︒,则COD ∠的度数( )A .50°B .60°C .70°D .75° 11.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70° 12.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518π 二、填空题13.已知ABC 的周长为30,面积为20,其内角平分线交于点O ,则点O 到边BC 的距离为________.14.如图,AB 、AC 、BD 是O 的切线,P 、C 、D 为切点,如果8AB =,5AC =,则BD 的长为_______.15.如图,点A ,B ,C 在O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行四边形,则AOC ∠=________︒.16.如图,⊙O 是ABC 的外接圆,64A ∠=︒,则OBC ∠=______°.17.如图,点C ,D 是半圈O 的三等分点,直径43AB =.连结AC 交半径OD 于E ,则阴影部分的面积是_______.18.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.19.如图,已知AD 为半圆形O 的直径,点B ,C 在半圆形上,AB BC =,30BAC ∠=︒,8AD =,则AC 的长为________.20.如图,AB 是O 的直径,CD AB ⊥于E ,24CD =,8BE =,则AB =__________.三、解答题21.如图,在矩形ABCD 中,4AB =,6BC =.E 为CD 边上的一个动点(不与C 、D 重合),⊙O 是BCE 的外接圆.(1)若2CE =,⊙O 交AD 于点F 、G .求FG 的长度;(2)若CE 的长度为m ,⊙O 与AD 的位置关系随着m 的值变化而变化,试探索⊙O 与AD 的位置关系及对应的m 的取值范围.22.如图,已知圆内接四边形ABDC 中,∠BAC =60°,AB =AC ,AD 为它的对角线. 求证:AD =BD+CD .23.如图,已知在△ABC 中,∠A =90°.(1)作∠ABC 的角平分线交AC 于点P ,以点P 为圆心,PA 长为半径作⊙P ,则⊙P 与BC 的位置关系是 .(2)在(1)的条件下,若AB=3,BC=5,求⊙P 的面积.24.如图,四边形ABCD 为菱形,且120BAD ∠=,以AD 为直径作O ,与CD 交于点P .请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在图1中,过点O 作AB 边的平行线OE ;(2)在图2中,过点C 作AB 边上的高CF .25.如图,在ABC 中,45C ∠=︒,以AB 为直径的O 经过BC 的中点D . (1)求证:AC 是O 的切线;(2)取AD 的中点E ,连接OE ,延长OE 交AC 于点F ,若2EF =,求O 的半径.26.图①、图②均为 4×4 的正方形网格,线段 AB 、BC 的端点均在格点上,按要求在图①、图②中作图并计算其面积.(1)在图①中画一个四边形 ABCD ,点D 在格点上,使四边形 ABCD 有一组对角相等,并求=四边形ABCD S .(2)在图②中画一个四边形 ABCE ,点E 在格点上,使四边形 ABCE 有一组对角互补,并求ABCE S =四边形 .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据切线的性质得到OB ⊥AB ,OC ⊥AC ,求出∠BOC ,分点P 在优弧BC 上、点P 在劣弧BC 上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB 、AC 是⊙O 的切线,∴OB ⊥AB ,OC ⊥AC ,∴∠OBA =90°,∠OCA =90°∵∠A =50°,∴∠BOC =360°﹣90°﹣90°﹣50°=130°,如图,当点P 在优弧BPC 上时,∠BPC =12∠BOC =65°, 当点P ′在劣弧BC 上时,∠BP ′C =180°﹣65°=115°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.2.C解析:C【分析】根据圆周角定理求出∠AOB ,根据等腰三角形的性质求出∠ABO=∠BAO ,根据三角形内角和定理求出即可.【详解】解:∵∠ACB =54°,∴圆心角∠AOB =2∠ACB =108°,∵OB =OA ,∴∠ABO =∠BAO =12(180°﹣∠AOB )=36°, 故选:C .【点睛】本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB 的度数是解此题的关键. 3.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,180110D B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.4.C解析:C【分析】连结OA ,由AB CD ⊥,根据垂径定理可以得到4AM =,结合勾股定理可以得到3OM =.在分类讨论,如图,当8CM =和2CM =时,再结合勾股定理即可求出AC .【详解】连结OA ,∵AB CD ⊥, ∴118422AM BM AB ===⨯=, 在Rt OAM 中,5OA =,∴223OA OM AM -==,当如图时,538CM OC OM =+=+=,在Rt ACM △中,2245AC AM CM =+=,当如图时,532CM OC OM =-=-=,在Rt ACM △中,2225AC AM CM +=故选C .【点睛】 本题考查垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”.分类讨论思想也是解决本题的关键.5.B解析:B【分析】过C 作CF ⊥AB 于F ,根据垂径定理得出AD=2AF ,根据勾股定理求BC ,根据三角形面积公式求出CF ,根据勾股定理求出AF 即可.【详解】过C 作CF ⊥AB 于F ,∵CF⊥AB,CF过圆心C,∴AD=2AF.∵△ABC中,∠ACB是直角,AC=4,AB=7,∴由勾股定理得:22227433AB AC-=-=由三角形的面积公式得:AC×BC=AB×CF,即33=7CF,∴433在△AFC中,由勾股定理得:222243316477 AC CF⎛⎫-=-=⎪⎪⎝⎭,∴AD=2AF=327.故选:B.【点睛】本题考查了勾股定理,垂径定理,三角形的面积等知识点的应用,关键是求出AF的长.6.B解析:B【分析】先根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•5•OA=65π,可求出OA=13,然后利用勾股定理计算圆锥的高.【详解】解:根据题意得12•2π•5•OA=65π,解得:OA=13,所以圆锥的高2213512.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.C解析:C【分析】首先证明△OCD 是等边三角形,求出OC=OD=CO=3cm ,再根据S 阴影=S 扇形OAB -S 扇形OCD ,求解即可.【详解】解:如图,连结CD .∵OC=OD ,∠O=60°,∴△OCD 是等边三角形,∴OC=OD=CO=3cm ,∴OA=OC+AC=15cm ,∴OB=OA=15cm ,∴S 阴影=S 扇形OAB -S 扇形OCD =226015603360360ππ⋅⋅⋅⋅-=236cm π. 故选C .【点睛】本题考查了扇形的面积,等边三角形的性质与判定等知识.扇形的面积=2360n r π︒. 8.C解析:C【分析】根据圆周角定理得出∠D=∠B ,得出△ABC 是等腰直角三角形,进而解答即可.【详解】∵AC=AC ,∴∠D=∠B ,∵∠BAC=∠D ,∴∠B=∠BAC ,∴△ABC 是等腰三角形,∵AB 是直径,∴△ABC 是等腰直角三角形,∵AC=5,∴AB=52故选:C .【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B .9.D解析:D【分析】根据题意可以求得OP 的取值范围,从而可以解答本题.【详解】解:∵O 的半径为4,点P 在⊙O 外,∴OP >4,故选:D .【点睛】本题考查点和圆的位置关系,解答本题的关键是明确题意,求出OP 的取值范围. 10.B解析:B【分析】连接AO ,BO ,OE 由切线的性质可得90PAO PBO ︒∠=∠=,结合已知条件和四边形的内角和为360°可求出AOB 的度数,再由切线长定理即可求出COD 的度数.【详解】如图,连接AO ,BO ,OE ,∵PA 、PB 是O 的切线,∴∠PAO =∠PBO =90∘,∵60APB ∠=︒,∴36029060120AOB ∠=︒-⨯︒-︒=︒,∵PA 、PB 、CD 是⊙O 的切线,∴∠ACO =∠ECO ,∠DBO =∠DEO ,∴∠AOC =∠EOC ,∠EOD =∠BOD , ∴1602COD COE EOD AOB ∠=∠+∠=∠=︒, 故选B.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.11.D解析:D【分析】连结BC ,则由已知可以求得∠BCD 与∠CBD 的度数,最后由三角形的内角和定理可以得到∠D 的度数.【详解】解:如图,连结BC ,则由弦切角定理可知:∠ABC=∠ACE=35°,∵DB 与⊙O 相切,∴∠CBD=90°-∠ABC=90°-35°=55°,∵AB 是⊙的直径,∴∠ACB=90°,∴∠BCD=180°-∠ACE-∠90°=55°,∴∠D=180°-∠BCD-∠CBD=70°,故选D .【点睛】本题考查圆的应用,灵活运用直线与圆相切的性质求解是解题关键.12.C解析:C【分析】先根据等腰三角形的性质求出∠A ,再利用圆周角定理求得∠BOC ,最后根据弧长公式求求解即可.【详解】解:∵∠OCA =50°,OA =OC ,∴∠A =50°,∴∠BOC =100°∵BO =2, ∴1002101809BC l ππ⨯==. 故答案为C .【点睛】 本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键.二、填空题13.【分析】过O 作OD ⊥BC 于DOE ⊥AB 于EOF ⊥AC 于F 连接OAOBOC 根据三角形的内心和角平分线的性质得出OE=OD=OF 再根据三角形的面积公式求出即可【详解】如图过O 作OD ⊥BC 于DOE ⊥AB 于解析:4 3【分析】过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F,连接OA、OB、OC,根据三角形的内心和角平分线的性质得出OE=OD=OF,再根据三角形的面积公式求出即可.【详解】如图,过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F,连接OA、OB、OC,∵O是△ABC内角平分线的交点,∴OE=OF=OD,∵△ABC的面积是20,∴S△AOB+S△BOC+S△AOC=20,∴111AB OE BC OD222⨯⨯+⨯⨯+×AC×OF=20,∴(AB+BC+AC)×OD=40,∵△ABC的周长为30,∴AB+BC+AC=30,∴OD=404303=,∴即O到BC的距离是43,故答案为:43.【点睛】本题考查了三角形的内心,角平分线的性质和三角形的面积等知识点,能求出OD=OE=OF 是解此题的关键.14.【分析】由于ABACBD是⊙O的切线则AC=APBP=BD求出BP的长即可求出BD的长【详解】解:∵ACAP为⊙O的切线∴AC=AP∵BPBD为⊙O的切线∴BP=BD∴BD=PB=AB-AP=8-5解析:3【分析】由于AB、AC、BD是⊙O的切线,则AC=AP,BP=BD,求出BP的长即可求出BD的长.【详解】解:∵AC、AP为⊙O的切线,∴AC=AP,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB-AP=8-5=3.故答案为:3.【点睛】本题考查了切线长定理,两次运用切线长定理并利用等式的性质是解题的关键.15.120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC 为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB、△OBC为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB、△OBC为等边三角形是解答本题的关键.16.26【分析】先利用圆周角定理得到∠BOC=2∠A=128°然后根据等腰三角形的性质和三角形内角和定理计算∠OBC的度数【详解】解:∵∠A=64°∴∠BOC=2∠A=128°∵OB=OC∴∠OBC=∠解析:26【分析】先利用圆周角定理得到∠BOC=2∠A=128°,然后根据等腰三角形的性质和三角形内角和定理计算∠OBC的度数.【详解】解:∵∠A=64°,∴∠BOC=2∠A=128°,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC=12(180°-128°)=26°.故答案为26.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.17.【分析】连接OC由点CD是半圆O的三等分点得到根据垂径定理得到OD⊥AC∠DOC=60°求得OE=CE=3根据扇形和三角形的面积公式即可得到结论【详解】解:连接OC∵点CD是半圆O的三等分点∴∴OD解析:33 2π-【分析】连接OC,由点C,D是半圆O的三等分点,得到AD CD CB==,根据垂径定理得到OD⊥AC,∠DOC=60°,求得OE=3,CE=3,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接OC,∵点C,D是半圆O的三等分点,∴AD CD CB ==,∴OD ⊥AC ,∠DOC=60°,∴∠OCE=30°, ∵AB =∴∴CE=3,∴S阴影=S 扇形COD -S △OCE =2601236022ππ⋅⋅-⨯=-.故答案为:22π-. 【点睛】本题考查了扇形的面积的计算,垂径定理,含30°角的直角三角形的性质,正确的识别图形是解题的关键. 18.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】 根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心, 1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 19.【分析】连接CD 由已知可以得到∠B=120°所以∠D=60°然后在Rt △ACD 中计算AC 即可【详解】解:如图所示连接CD ∵∴∠B=120°∴∠D=60°∵AD 为直径∴∠ACD=90°∴CD=4∴AC解析:【分析】连接CD ,由已知可以得到∠B=120°,所以∠D=60°,然后在Rt △ACD 中计算AC 即可.【详解】解:如图所示,连接CD∵AB BC =,30BAC ∠=︒∴∠B=120°∴∠D=60°∵AD 为直径∴∠ACD=90°∴CD=4 ∴AC=43【点睛】本题主要考查圆的内接四边形对角性质,掌握直径所对的圆周角是90°和圆的内接四边形对角互补是解题的关键.20.【分析】连接OD 设的半径为r 则OE=r-8再根据勾股定理求出r 最后根据直径和半径的关系即可解答【详解】解:如图:设的半径为r 则OE=r-8∵AB ⊥CD 于E 且CD=24∴DE=CD=12在Rt △ODE解析:26【分析】连接OD ,设O 的半径为r ,则OE=r-8,再根据勾股定理求出r ,最后根据直径和半径的关系即可解答. 【详解】解:如图:设O 的半径为r ,则OE=r-8,∵AB ⊥CD 于E ,且CD=24,∴DE=12CD=12, 在Rt △ODE 中,OD=r ,OE=r-8,DE=12,∴OE 2+DE 2=OD 2,∴(r-8)2+122=r 2,解得r=13∴AB=2r=26.故答案为26.【点睛】本题主要考查了垂径定理,正确作出辅助线、构造出直角三角形是解答本题的关键.三、解答题21.(1)2FG =;(2)当704m <<时,⊙O 与AD 相离;当74m =时,⊙O 与AD 相切;当744m <<时,⊙O 与AD 相交 【分析】(1)过点O 作OM FG ⊥于点M ,延长MO 交BC 于点N ,连接OG .在Rt BCE ∆中,利用勾股定理求出BE ,再在Rt OMG ∆中求出MG 即可解决问题.(2)如图1中,当O 与AD 相切于点M 时,连接OM 并反向延长交BC 于点N .求出相切时,m 的值即可判断.【详解】解:(1)解:过点O 作OM FG ⊥于点M ,延长MO 交BC 于点N ,连接OG ,四边形ABCD 是矩形,90C D ∴∠=∠=︒,BE ∴是O 的直径.90C D DMN ∠=∠=∠=︒,∴四边形MNCD 是矩形,MN BC ∴⊥,4MN CD AB ===,BN CN ∴=.OB OE =,ON ∴是BCE ∆的中位线,112ON CE ∴==, 413OM ∴=-=,在Rt BCE ∆中,22210+=BE BC CE1102OG BE ∴==, 在Rt OMG ∆中,221-=MG OG OM ,22FG MG ∴==.(2)解:如图1中,当O 与AD 相切于点M 时,连接OM 并反向延长交BC 于点N .由(1)易得1122==ON CE m ,142==-OB OM m ,3BN =, 在Rt BON ∆中,222+=ON BN OB ,即22211()3(4)22m m +=-, 解得74m =, ∴当704m <<时,O 与AD 相离, 当74m =时,O 与AD 相切, 当744m <<时,O 与AD 相交. 【点睛】本题考查直线与圆的位置关系,矩形的性质,垂径定理,三角形的外心等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.见解析.【分析】连接BC ,证明∠ADB =∠ADC =60°,在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,证明△BDE 、△CDF 为正三角形,再证明∠AEB =∠CFA =120°,∠EAB =∠FCA ,证明△ABE ≌△CAF ,可得AE =CF ,从而可得结论.【详解】解:连接BC , ∠BAC =60°,AB =AC ,∴ △ABC 为等边三角形,∴ ∠ABC =∠ACB =60°,,,AC AC AB AB ==∴ ∠ADC =∠ABC 60,=︒ ∠ADB =∠ACB 60,=︒在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,∴△BDE 、△CDF 为等边三角形,∴∠DEB =∠DFC =60°,,,DE BD CF DC ==∴∠AEB =∠CFA =120°,又∠FAC+∠FCA =∠DFC =60°、∠FAC+∠EAB =∠BAC =60°,∴∠EAB =∠FCA ,在△ABE 和△CAF 中,∵EAB FCA AEB CFA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CAF (AAS ),∴AE =CF ,∴AD =DE+AE =BD+FC =BD+CD .【点睛】本题考查的是等边三角形的性质与判定,全等三角形的判定与性质,圆周角定理,掌握以上知识是解题的关键.23.(1)相切;(2)94π 【分析】(1)先利用角平分线的性质得到点P 到BC 的距离等于PA ,然后根据直线与圆的位置关系进行判断.(2)由全等三角形的性质,先求出CD=2,由勾股定理求出AC=4,再利用勾股定理求出PD 的长度即可.【详解】解:(1)作PD ⊥BC ,交BC 于点D ,如图:∵PB 平分∠ABC ,∴点P 到BC 的距离等于PA ,∴PA=PD ,∴BC 为⊙P 的切线.故答案为:相切.(2)由(1)可知,易得△ABP ≌△DBP ,∴BD=AB=3,∴CD=5-3=2,∵在直角△ABC 中,由勾股定理,得 22534AC =-=,设PA PD r ==,∴4PC r =-,在直角△PDC 中,由勾股定理,则()22242r r -=+, 解得:32r =, ∴圆的面积为:223924S r πππ==•=(). 【点睛】 本题考查了圆的定义,勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确的进行解题.24.(1)见解析;(2)见解析【分析】(1)连接BD 、AC 交于点E ,连接OE ;(2)连接BD ,则点P 和BD 与O 的交点的延长线与AB 的交点即为F 点.【详解】(1)如图所示,∵四边形ABCD 是菱形,∴E 是BD 中点,∵O 是DA 中点,∴//OE AB ;(2)如图所示,∵120BAD ∠=,∴60ADC ∠=︒,∵AD CD =,∴ACD △是等边三角形,∵AD 是直径,∴90APD ∠=︒,即AP DC ⊥,∴P 是CD 中点,通过如图所示找到的点F 是AB 的中点,∵ABC 也是等边三角形,∴CF AB ⊥.【点睛】本题考查作图,解题的关键是要熟悉各种几何的性质,比如:等边三角形的性质,中位线的性质,菱形的性质,圆的性质.25.(1)见解析;(2)22+ 【分析】(1)连接AD ,先由圆周角定理得∠ADB =90°,则AD ⊥BC ,再由线段垂直平分线的性质得AB =AC ,则∠B =∠C =45°,求得∠BAC =90°,即可得出结论;(2)作EH ⊥OF 交AF 于H ,则EH 是⊙O 的切线,先由垂径定理得OE ⊥AD ,AG =DG ,再证出△EFH 是等腰直角三角形,得EH =EF =2,则FH =2EF =2,然后由切线长定理得AH =EH =2,则AF =AH +FH =2+2,最后由等腰直角三角形的性质得OA =AF =2+2即可.【详解】(1)证明:连接AD ,如图所示:∵AB 是⊙O 的直径,∴∠ADB =90°,OA 是⊙O 的半径,∴AD ⊥BC ,∵D 是BC 的中点,∴AB =AC ,∴∠B =∠C =45°,∴∠BAC =180°−45°−45°=90°,∴AC ⊥OA ,∴AC 是⊙O 的切线;(2)解:作EH ⊥OF 交AF 于H ,如图所示:则EH 是⊙O 的切线,∵E是AD的中点,∴OE⊥AD,AG=DG,∵AD⊥BC,∴OF∥BC,∴∠EFH=∠C=45°,∵EH⊥OF,∴△EFH是等腰直角三角形,∴EH=EF2FH2EF=2,∵AC是⊙O的切线,∴AH=EH2∴AF=AH+FH2+2,由(1)得:∠BAC=90°,∴△AOF是等腰直角三角形,∴OA=AF2+2,即⊙O2+2.【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、线段垂直平分线的性质、等腰三角形的判定与性质等知识;熟练掌握切线的判定与性质、垂径定理和圆周角定理是解题的关键.26.(1)图见详解,6 ;(2)图见详解,4.5【分析】(1)过C画AB的平行线,过A画BC的平行线,两线交于一点D,根据平行四边形的判定定理可得四边形ABCD是平行四边形,由平行四边形的性质可知∠CBA=∠CDA,然后用用割补法求出面积即可;(2)根据图中正方形网格和∠B的特点,作出∠E与∠B互补,然后用割补法求面积即可.【详解】解:(1)如图,S四边形ABCD=3×4-122⨯×2-222⨯-112⨯=6;(2)如图,S四边形ABCE=3×3-122⨯×2-222⨯-112⨯=92.【点睛】此题主要考查了应用设计作图,首先要理解题意,弄清问题中对所作图形的要求,然后利用割补法求面积.。

初三数学圆测试题及答案

初三数学圆测试题及答案

初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 已知圆的半径为2,圆心在原点,下列哪个点在圆上?A. (3, 0)B. (2, 2)C. (2, 0)D. (0, 2)2. 圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中a和b是圆心的坐标,r是半径。

如果圆心在(1, 1),半径为3,那么圆的方程是什么?A. (x-1)^2 + (y-1)^2 = 9B. (x+1)^2 + (y+1)^2 = 9C. (x-1)^2 + (y+1)^2 = 9D. (x+1)^2 + (y-1)^2 = 93. 已知圆的直径为6,那么圆的半径是多少?A. 3B. 6C. 9D. 124. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 圆的切线垂直于经过切点的半径,那么切线与半径的夹角是多少?A. 0°B. 90°C. 180°D. 360°6. 如果两个圆的半径分别为3和5,且它们外切,那么两圆心之间的距离是多少?A. 2B. 8C. 10D. 127. 圆的周长公式是C = 2πr,如果一个圆的周长为12π,那么它的半径是多少?A. 3B. 4C. 6D. 128. 已知圆的半径为4,圆心在点(2, 3),那么圆上一点(5, 7)到圆心的距离是多少?A. 3B. 4C. 5D. 69. 圆的面积公式是A = πr^2,如果一个圆的面积为16π,那么它的半径是多少?A. 2B. 3C. 4D. 510. 如果一个圆的半径为2,那么它的直径是多少?A. 4B. 6C. 8D. 10二、填空题(每题4分,共20分)1. 已知圆的半径为r,那么它的直径是________。

2. 圆的周长公式为C = 2πr,如果一个圆的半径为4,那么它的周长是________。

3. 圆的面积公式为A = πr^2,如果一个圆的半径为5,那么它的面积是________。

初三数学圆试题答案及解析

初三数学圆试题答案及解析

初三数学圆试题答案及解析1.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.【考点】1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.2.如图,AB是⊙O的直径,点C是圆上一点,,则 °.【答案】20.【解析】∵AB是⊙O的直径,∴.∵OA=OC,,∴.∴.【考点】1.圆周角定理;2.等腰三角形的性质.3.已知一个圆锥的底面半径为3 cm,母线长为10 cm,则这个圆锥的侧面积为 ()A.15π cm2B.30π cm2C.60π cm2D.3cm2【答案】B【解析】圆锥的侧面积=π×3×10=30π cm2.故选B.4.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长是A.4cm B.6cm C.8cm D.10cm【答案】C.【解析】连接OB;∵CD=10cm,∴OC=5cm;∵OM:OC=3:5,∴OM=3cm;Rt△OCP中,OC=OA=5cm,OM=3cm;由勾股定理,得:所以AB=2AM=8cm,故选C.考点: 1.垂径定理;2.勾股定理.5.如图,点A是半圆上一个三等分点,点B是的中点,点P是直径MN上一动点,若⊙O的半径为1,则AP+BP的最小值是.【答案】.【解析】本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.试题解析:作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN^的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴PA+PB=PA′+PB=A′B=.考点: 1.垂径定理;2.勾股定理;3.圆心角、弧、弦的关系;4.轴对称-最短路线问题.6.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(秒)(0≤t<3),连结EF,当t值为________秒时,△BEF是直角三角形.【答案】t=1或或.【解析】∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=,此时点E走过的路程是或,则运动时间是s或s.故答案是t=1或或.【考点】圆周角定理.7.如图,边长为1的小正方形构成的网格中,⊙O的半径为1,则图中阴影部分两个小扇形的面积之和为(结果保留π)【答案】.【解析】如图,根据正方形和圆的对称性,上方的小扇形与下方的红色小扇形面积相等,所以图中阴影部分两个小扇形的面积之和为四分之一半径为1的圆的面积,即.【考点】1.网格问题;2. 正方形和圆的对称性;3. 扇形的面积;4.转换思想的应用.8.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是A.猫先到达B地;B.老鼠先到达B地;C.猫和老鼠同时到达B地;D.无法确定.【答案】C.【解析】以AB为直径的半圆的长是:•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+b+c+d=(a+b+c+d)=•AB.故猫和老鼠行走的路径长相同.故选C.【考点】弧长公式.9.如图,已知在⊙O中,弦AB的长为8cm,半径为5 ㎝,过O作OC AB求点O与AB的距离.【答案】3cm.【解析】连接OA.根据垂径定理求得AC的长,再进一步根据勾股定理即可求得OC的长.试题解析:连接OA.如图:∵OC⊥AB,弦AB长为8cm,∴AC=4(cm).根据勾股定理,得OC=考点: 1.垂径定理;2.勾股定理.10.如图所示,内接于,,,则______.【答案】.【解析】由圆周角定理知:,由于,得到,所以:.故答案是.【考点】圆周角定理.11.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【答案】(1)详见解析;(2)6【解析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(6-x)2=25,从而求得x的值,由勾股定理得出AB的长.试题解析:(1)连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6-x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5-x)2+(6-x)2=25,化简得x2-11x+18=0,解得x1=2,x2=9.∵CD=6-x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5-2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.【考点】1.切线的判定和性质;2.勾股定理;3.矩形的判定和性质4.垂径定理12.如图MN=10是⊙O的直径,AE⊥MN于E,CF⊥MN于F,AE=4,CF=3,(1)在MN上找一点P,使PA+PC最短;(2)求出PA+PC最短的距离。

初中数学圆形专题训练50题含(参考答案)

初中数学圆形专题训练50题含(参考答案)

初中数学圆形专题训练50题含参考答案一、单选题1.如图,A ,B ,C 是⊙O 上的三点,且⊙ACB =35°,则⊙AOB 的度数是( )A .35°B .65°C .70°D .90°【答案】C 【分析】根据圆周角定理即可得.【详解】解:由圆周角定理得:223570AOB ACB ∠=∠=⨯︒=︒,故选:C .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.2.如图,在半径为R 的圆内作一个内接正方形,⊙然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n 个内切圆,它的半径是( )A .RB .(12)RC .(12)n -1RD .n R3.如图,在ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是()A.AD BD AB+<B.AD一定经过ABC的重心C.BAD CAD∠=∠D.AD一定经过ABC的外心【答案】C【分析】根据题意易得AD平分⊙BAC,然后根据三角形的重心、外心及三边关系可排除选项.【详解】解:⊙AD平分⊙BAC,⊙BAD CAD∠=∠,故C正确;在⊙ABD中,由三角形三边关系可得AD BD AB+>,故A错误;由三角形的重心可知是由三角形三条中线的交点,所以AD不一定经过ABC的重心,故B选项错误;由三角形的外心可知是由三角形三条边的中垂线的交点,所以AD不一定经过ABC的外心,故D选项错误;故选C.【点睛】本题主要考查三角形的重心、外心及角平分线的尺规作图,熟练掌握三角形的重心、外心及角平分线的尺规作图是解题的关键.4.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若⊙D=40°,则⊙A的度数为()A.20°B.25°C.30°D.40°【点睛】此题主要考查了切线的性质,正确得出⊙DOC =50°是解题关键.5.如图,点A ,B ,C 在圆O 上,65∠=︒ABO ,则ACB ∠的度数是( )A .50︒B .25︒C .35︒D .20︒6.如图4,在Rt ABC △中,90C =∠,3AC =.将其绕B 点顺时针旋转一周,则分别以BA ,BC 为半径的圆形成一圆环.该圆环的面积为( )AB .3πC .3πD .3π 【答案】C 【分析】根据勾股定理,得两圆的半径的平方差即是AC 的平方.再根据圆环的面积计算方法:大圆的面积减去小圆的面积,即9π.【详解】解:圆环的面积为πAB 2-πBC 2,=π(AB 2-BC 2),=πAC 2,=32π,=9π.故选C.7.已知水平放置半径为6cm的球形容器中装有溶液,容器内液面的面积为27πcm2,如图,是该球体的一个最大纵截面,则该截面O中阴影部分的弧长为()A.2πcm B.4πcm C.6πcm D.8πcm意,灵活运用所学知识解决问题,属于中考常考题型.8.如图,点A,B,C都在圆O上,若⊙C=34°,则⊙AOB为()A.34⊙B.56⊙C.60⊙D.68⊙【答案】D【分析】由题意直接根据圆周角定理中同圆同弧所对的圆周角等于这条弧所对的圆心角的一半进行分析即可求解.【详解】解:⊙⊙C=34°,⊙⊙AOB=2⊙C=68°.故选:D.【点睛】本题考查圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.9.下列命题中,真命题的个数是()⊙同位角相等⊙经过一点有且只有一条直线与这条直线平行⊙长度相等的弧是等弧⊙顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【答案】A【详解】解:两直线平行,同位角相等,⊙错误;经过直线外一点有且只有一条直线与这条直线平行,⊙错误;在同圆或等圆中,长度相等的弧是等弧,⊙错误;顺次连接菱形各边中点得到的四边形是矩形,⊙正确.故选A.【点睛】本题考查命题与定理.10.AB是⊙O的直径,PB、PC分别切⊙O于点B、C,弦CD AB∥,若PB=AB=10,则CD的长为()A .6B C .D .3 OCF CPE ,四边形12BE OF OF ==,【详解】解:过点⊙OCF CPE , OF OC CE PC =, PB 、PC 分别切⊙O PB PC =,10PB AB ==,11.如图,AB 是O 的直径,ACD 是O 的内接三角形,若6AB =,105ADC ∠=︒,则BC 的长为( )A .8πB .4πC .2πD .π【答案】C【分析】连接OC 、BC ,根据四边形ABCD 是圆的内接四边形和⊙D 的度数,即可求出303602π=,【点睛】本题考查了圆内接四边形的性质、圆周角定理以及弧长公式等知识,根据圆12.将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD 与直尺的一边重合,光盘与直尺相切于点B ,与直角三角板相切于点C ,且3AB =,则光盘的直径是( )A .6B .C .3D .【答案】D13.如图,正五边形ABCDE,则⊙DAC的度数为()A.30°B.36°C.60°D.72°【答案】B【分析】根据正五边形和等腰三角形的性质即可得到结论.【详解】⊙在正五边形ABCDE中,AE=DE=AB=BC,⊙E=⊙B=⊙EAB=108°,⊙⊙EAD=⊙BAC=36°,⊙⊙DAC=108°﹣36°﹣36°=36°,故选:B.【点睛】此题考查正多边形和圆,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.14.菱形对角线的交点为O,以O为圆心,以O到菱形一边的距离为半径的圆与其他几边的关系为()A.相交B.相切C.相离D.不能确定【答案】B【分析】首先根据菱形的性质可知:菱形的对角线将菱形分成四个全等的直角三角形,故四个三角形面积相等且斜边相等,然后根据等面积法得出斜边的高相等,这样问题就容易解决了.【详解】如图:⊙菱形对角线互相垂直平分,⊙AO=CO,BO=DO,AB=BC=CD=DA.⊙⊙ABO⊙⊙BCO⊙⊙CDO⊙⊙DAO.⊙⊙ABO、△BCO、△CDO、△DAO的面积相等.又⊙AB=BC=CD=DA,⊙⊙ABO、△BCO、△CDO、△DAO斜边上的高相等.即O到AB、BC、CD、DA的距离相等.⊙O到菱形一边的距离为半径的圆与另三边的位置关系是相切.故选B..【点睛】本题考查了直线与圆的位置关系,解题的关键是画出图形进行分析.15.如图,已知AB是⊙O的直径,弦CD⊙AB于点E,G是弧AB的中点,连接AD,AG ,CD ,则下列结论不一定成立的是( )A .CE =DEB .⊙ADG =⊙GABC .⊙AGD =⊙ADC D .⊙GDC =⊙BAD 【答案】D 【详解】⊙AB 是⊙O 的直径,弦CD ⊙AB ,⊙CE =DE ,A 成立;⊙G 是AB 的中点,⊙AG BG =,⊙⊙ADG =⊙GAB ,B 成立;⊙AB 是⊙O 的直径,弦CD ⊙AB ,⊙AC AD =,⊙⊙AGD =⊙ADC ,C 成立;⊙GDC =⊙BAD 不成立,D 不成立,故选D .16.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =, 1.5m OB =,则阴影部分的面积为( )A .24.25m πB .23.25m πC .23m πD .22.25m π【答案】D 【分析】根据S 阴影=S 扇形AOD -S 扇形BOC 求解即可.17.下列命题为真命题的是( )A .同旁内角互补B .三角形的外心是三条内角平分线的交点C .平行于同一条直线的两条直线平行D .若甲、乙两组数据中,20.8S =甲,2 1.4S =乙,则乙组数据较稳定【答案】C【分析】根据平行线的性质和判定,三角形的外心性质,方差一一判断即可.【详解】解:A 、两平行线被第三直线所截,同旁内角互补,原命题是假命题,不符合题意;B 、三角形的外心是三条边垂直平分线的交点,原命题是假命题,不符合题意;C 、平行于同一条直线的两条直线平行,是真命题,符合题意;D 、若甲、乙两组数据的平均数都是3,S 甲2=0.8,S 乙2=1.4,则甲组数据较稳定,原命题是假命题,不符合题意;故选:C .【点睛】考查了命题与定理的知识,解题的关键是根据平行线的性质和判定,三角形的外心性质,方差解答.18.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D ,E 两点,且⊙ACD=45°,DF⊙AB 于点F ,EG⊙AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )A.B.C.D.19.如图,AB为⊙O的直径,AB=AC,AC交⊙O于点E,BC交⊙O于点D,F为CE 的中点,连接DF.给出以下四个结论:⊙BD=DC;⊙AD=2DF;⊙BD DE;⊙DF是⊙O的切线.其中正确结论的个数是:()A.4B.3C.2D.1【答案】B【详解】连接AD,OD,⊙AB是直径,⊙⊙ADB=⊙AEB=90°,又⊙AB=AC,⊙BD=DC,故⊙正确;⊙F是CE中点,BD=CD,⊙BE//DF,BE=2DF,但没有办法证明AD与BE相等,故⊙错误;⊙AB=AC,BD=CD,⊙⊙BAD=⊙CAD,⊙BD=DE,⊙BD=DE,故⊙正确;⊙⊙AEB=90°,⊙⊙BEC=180°-⊙AEB=90°,⊙BE//DF,⊙⊙DFC=⊙BEC=90°,⊙O为AB的中点,D为BC的中点,⊙OD//AC,⊙⊙ODF=⊙DFC=90°,⊙OD是半径,⊙DF是⊙O的切线,故⊙正确,所以正确的结论有3个,故选B.【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质、三角形的中位线等,能根据具体的图形选择和灵活运用相关性质解题是关键.二、填空题20.如图,若正五边形和正六边形有一边重合,则⊙BAC=_____.【答案】132°##132度【详解】解:⊙正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,⊙⊙BAC=360°-108°-120°=132°.故答案为132°.21.已知直角⊙ABC中,⊙C=90°,BC=3,AC=4,那么它的内切圆半径为_______.【答案】1【分析】O分别与BC、AC、AB切于点D、E、F,连接OD、OE、OF,由切线的性质可得:⊙ODC=⊙OEC=90°,设OD=OE=r根据正方形的判定即可证出四边形OECD是正方形,从而得出:EC=CD=OD=OE=r,再根据切线长定理可得:BF=BD =3-r,AF=AE =4-r,再根据勾股定理求出AB,利用AB的长列方程即可.【详解】解:如图所示,O分别与BC、AC、AB切于点D、E、F,连接OD、OE、OF⊙⊙ODC=⊙OEC=90°22.如图,AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,BE =4,CG =6,则BC =_______.【答案】10【分析】从圆外一点可以引圆的两条切线,它们的切线长相等,据此分析解答.【详解】⊙AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,BE =4,CG =6,⊙BF =BE =4,CF =CG =6,⊙BC =BF +FC =10,故填:10.【点睛】此题主要是综合运用了切线长定理和切线的性质定理.23.若一个扇形的圆心角为60︒,面积为26cm π,则这个扇形的弧长为__________ cm(结果保留π)24.如图,在O 中,弦AC =B 是圆上一点,且=45ABC ∠︒,则O 的半径R =_____.25.如图,⊙O 的内接四边形ABCD 中,⊙A =45°,则⊙C 的度数 _____________ .【答案】135°【分析】根据圆内接四边形的对角互补可得结论.【详解】∵⊙O的内接四边形ABCD中,⊙A=45°,⊙⊙C=135°.故答案为135°.【点睛】本题考查了圆内接四边形,关键是掌握圆内接四边形的性质:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).26.如图,四边形ABCD内接于⊙O,E是BC延长线上一点,若⊙BAD=105°,则⊙DCE的度数是________°.【答案】105【详解】⊙四边形ABCD是圆内接四边形,⊙⊙DAB+⊙DCB=180°,⊙⊙BAD=105°,⊙⊙DCB=180°﹣⊙DAB=180°﹣105°=75°,⊙⊙DCB+⊙DCE=180°,⊙⊙DCE=⊙DAB=105°.故答案为10527.如图,圆O的半径OA=5cm,弦AB=8cm,点P为弦AB上一动点,则点P到圆心O的最短距离是____cm.【答案】3【分析】由当OP⊙AB时,OP最短,根据垂径定理,可求得AP的长,然后由勾股定28.如图,在矩形ABCD 中,AB a ,BC b =,点P 是BC 上的一个动点,连接AP ,把PAB 沿着AP 翻折到⊙PB C '(点B '在矩形的内部),连接B C ',B D '.点P 在整个运动过程中,若存在唯一的位置使得⊙B CD 为直角三角形,则a ,b 之间的数量关系是 __.为直径作O ,当点为直角三角形且唯一,在Rt ADO 中,根据22OD OA ,可得,计算可得答案. 为直径作O ,当点到O 的最小距离等于得B CD '为直角三角形且唯一,Rt ADO 中,2AD OD +22211())22b a a +=+,整理得22b =,a>,∴=2b29.尺规作图特有的魅力曾使无数人沉湎其中,传说拿破仑通过下列尺规作图考他的大臣:⊙将半径2的⊙O六等分,依次得到A,B,C,D,E,F六个分点;⊙分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;⊙连结OG.问:OG的长是多少?大臣给出的正确答案是_________2222OA,(23)222.【点睛】本题考查了圆周角定理,等腰三角形三线合一的性质以及勾股定理解直角三30.半径为O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若⊙OBD是直角三角形,则弦BC的长为_______________.31.如图,P A,PB是⊙O的切线,A,B是切点,点C是⊙O上异于A、B的一点,若⊙P=40°,则⊙ACB的度数为_________________.【答案】110°【分析】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APBO中,根据四边形的内角和求出⊙AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出⊙ADB的度数,再根据圆内接四边形的对角互补即可求出⊙ACB的度数.【详解】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示:⊙PA、PB是⊙O的切线,⊙OA⊙AP,OB⊙BP,⊙⊙OAP=⊙OBP=90°,又⊙⊙P=40°,⊙⊙AOB=360°-(⊙OAP+⊙OBP+⊙P)=140°,32.如图,矩形ABCD 中,6AB =,9BC =.将矩形沿EF 折叠,使点A 落在CD 边中点M 处,点B 落在N 处.连接EM ,以矩形对称中心O 为圆心的圆与EM 相切于点P ,则圆的半径为________.33.如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则AMN周长的最小值为________.34.如图所示,在⊙O 中,AB 是⊙O 的直径,⊙ACB 的角平分线CD 交⊙O 于D ,则⊙ABD=_________ 度.【答案】45.【详解】试题解析:⊙CD 平分⊙ACB⊙⊙ACD=⊙BCD=45°⊙⊙ABD=⊙ACD=45°.考点:圆周角定理.35.如图,在平面直接坐标系xOy 中,()40A ,,()03B ,,()43C ,,I 是ABC ∆的内心,将ABC ∆绕原点逆时针旋转90°后,I 的对应点'I 的坐标为________.【答案】(-2,3)【分析】直接利用直角三角形的性质得出其内切圆半径,进而得出I点坐标,再利用旋转的性质得出对应点坐标.【详解】解:过点作IF⊙AC于点F,IE⊙OA于点E,⊙A(4,0),B(0,3),C(4,3),⊙BC=4,AC=3,则AB=5,⊙I是⊙ABC的内心,⊙I到⊙ABC各边距离相等,等于其内切圆的半径,⊙IF=1,故I到BC的距离也为1,则AE=1,故IE=3-1=2,OE=4-1=3,则I(3,2),⊙⊙ABC绕原点逆时针旋转90°,⊙I的对应点I'的坐标为:(-2,3).故答案为:(-2,3).【点睛】此题主要考查了旋转的性质以及直角三角形的性质,得出其内切圆半径是解题关键.36.一个半径为4cm的圆内接正六边形的面积等于_______cm2.S=ABC⊙内接正六边形的面积是故答案是:37.圆心角为40°,半径为2的扇形面积为________.38.如图,在半圆O中,直径AE=10,四边形ABCD是平行四边形,且顶点A、B、C在半圆上,点D在直径AE上,连接CE,若AD=8,则CE长为_____【答案】【详解】连接OC,过O点作BC垂线,设垂足为F,根据垂径定理、勾股定理可以得到OC=5,CF=4,OF=3,在等腰三角形CDE中,高=OF=3,底边长DE=10-8=2,根据勾股定理即可求出CE.解:连接OC,过O点作OF⊙BC,垂足为F,交半圆与点H,⊙OC=5,BC=8,⊙根据垂径定理CF=4,点H为弧BC的中点,且为半圆AE的中点,⊙由勾股定理得OF=3,且弧AB=弧CE⊙AB=CE,又⊙ABCD为平行四边形,⊙AB=CD,⊙CE=CD,⊙⊙CDE为等腰三角形,在等腰三角形CDE中,DE边上的高CM=OF=3,⊙DE=10-8=2,⊙由勾股定理得,CE2=OF2+(DE)2,⊙CE=,故答案为.本题考查了勾股定理和垂径定理以及平行四边形的性质,是基础知识要熟练掌握.39.如图,⊙O是⊙ABC的外接圆,连接OB、OC,若OB=BC,则⊙BAC的度数是_____.三、解答题40.如图,AB是⊙O的直径,C是半圆上的一点,CD是⊙O的切线,AD⊙CD于点D,交⊙O于点E.(1)求证:AC平分⊙DAB;(2)若点E为弧AC的中点,⊙O的半径为1,求图中阴影部分的面积.41.如图,AB是⊙O的直径,点C、E位于⊙O上AB两侧.在BA的延长线上取点D,使⊙ACD=⊙B.(1)求证:DC是⊙O的切线;(2)当BC=EC时,求证:AC2=AE•AD;(3)在(2)的条件下,若BC=AD:AE=5:9,求⊙O的半径.【点睛】本题考查了切线的判定,圆周角定理,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.42.如图,已知、是⊙的切线,、为切点.直径的延长线与的延长线交于点.(1)求证:;(2)若,.求图中阴影部分的面积(结果保留根号与).【答案】(1)证明见解析;(2).【详解】试题分析:(1)连接,根据是⊙的切线,由切线长定理得到AP=BP,OP平分⊙APB,根据等腰三角形的性质三线合一得到OP⊙AB,再根据AC是⊙O的直径,得到⊙ABC=90°,即AB⊙BC,BC⊙OB,得到内错角相等,由等量代换得到结果.(2)根据切线长定理和三角形全等,S△OPA=S△OPB,通过解直角三角形得到OB,PB,再根据三角形的面积和扇形的面积推出结论.试题解析:(1)证明:连接. 1分⊙是⊙的切线,⊙平分. 2分.⊙是⊙的直径,⊙, 即:. 3分⊙.⊙. 4分,⊙. 5分(2) 连接.⊙,⊙⊙、是⊙的切线,⊙,,又⊙⊙⊙⊙.⊙. 6分在中,,. 7分在中,,⊙. 8分⊙.⊙,.⊙. 9分⊙所求的阴影面积:. 10分考点:1.切线的性质;2.扇形面积的计算.43.数学课上,王老师画好图后并出示如下内容:“已知AB为O的直径,O过AC 的中点D.DE为O的切线.(1)求证:DE BC ⊥(2)王老师说:如果添加条件“1DE =,1tan 2C =”,则能求出O 的直径.请你写出求解过程.DE 为O 的切线,OD DE ∴⊥,即∠AB 为O 的直径,OA OB ∴=,即点点D 为AC 的中点,OD BC ∴∥,CED ODE ∴∠=∠=BC .DE BC ⊥1tan DE CE ∴=O∴的直径为【点睛】本题考查了圆的切线的性质、圆周角定理、三角形中位线定理、解直角三角形等知识点,熟练掌握圆的切线的性质和圆周角定理是解题关键.44.如图,点A、B、C分别是⊙O上的点,⊙B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.45.如图,在O 中,弦AB 与CD 相交于点E ,AB CD =,连接AD BC ,,25ADC ∠=︒.(1)求证:AD BC =;(2)求证:AE CE =;(3)若弦BD 经过点O ,求BEC ∠的度数. 【答案】(1)见解析(2)见解析(3)65︒【分析】(1)由AB CD =,推出AB CD =,推出BC AD =;(2)证明AED CEB ≌可得结论;(3)先求出90BCD ︒∠=,再求出25CBE,即可得答案. 【详解】(1)解:AB CD =,C ABD ∴=, AB AC CD AC ∴-=-,BC AD ∴=;(2)BC AD ,BC AD ∴=,ADE ∠和CBE ∠都是AC 的圆周角,ADE CBE ∴∠=∠,AED CEB ,AED CEB ∴≌,AE CE ∴=;(3)25ADC ,25CBE ,弦BD 经过点O ,BD ∴是O 的直径,90BCD ︒∴∠=,⊙在CEB 中,18065BEC BCD CBE .【点睛】本题考查了圆心角、弧、弦之间的关系,全等三角形的判定和性质,直径所对的圆周角是90︒,三角形的内角和,解题的关键是正确寻找全等三角形解决问题. 46.如图,在ABC 中,90ABC ∠=,O 是AB 上一点,以O 为圆心OB 为半径的圆与AB 交于点E ,与AC 交于点D ,连接DE 、DE 、OC ,且//DE OC .()1求证:AC 是O 的切线;()2若8DE OC ⋅=,求O 的半径.【答案】(1)证明见解析;(2)2. 【分析】(1)先由OD=OE ,利用等边对等角可得⊙2=⊙3,再利用DE⊙OC ;进而利用平行线的性质,可得⊙3=⊙4,⊙1=⊙2,等量代换可得⊙1=⊙4;再结合OB=OD ,OC=OC ,利用SAS 可证△DOC⊙⊙BOC ,那么⊙CDO=⊙CBO ,而⊙ABC=90°,于是⊙CDO=90°,即CD 是 O 的切线;(2)由(1)可知⊙2=⊙4,而⊙CDO=⊙BDE=90°,易证△CDO⊙⊙BDE ,可得比例线段,OD :DE=OC :BE ,又BE=2OD ,可求OD .【详解】()1证明:连接OD ,⊙OE OD =,⊙23∠=∠,又⊙//DE OC ,⊙12∠=∠,34∠=∠,⊙14∠=∠;在DOC 和BOC 中,OD OB =,14∠=∠,OC OC =,⊙DOC BOC ≅,⊙CDO CBO ∠=∠;⊙90ABC ∠=,⊙90CDO ∠=,⊙CD 是O 的切线;()2⊙BE 是直径,⊙90BDE ∠=,在COD 和BED 中,24∠=∠,90EDB ODC ∠=∠=,⊙COD BED ∽,⊙::OD DE OC BE =;又⊙2BE OD =,⊙22OD DE OC =⋅,⊙2OD =.【点睛】考查了等边对等角,平行线的性质,全等三角形的判定与性质,切线的判定,直径所对的圆周角是直角,相似三角形的判定与性质.综合性比较强,难度较大. 47.已知:对于平面直角坐标系xOy 中的点P 和O ,O 的半径为4,交x 轴于点A ,B ,对于点P 给出如下定义:过点C 的直线与O 交于点M ,N ,点P 为线段MN 的中点,我们把这样的点P 叫做关于MN 的“折弦点”.(1)若()2,0C -⊙点()10,0P ,()21,1P -,()32,2P中是关于MN 的“折弦点”的是______;⊙若直线y kx =0k ≠)上只存在一个关于MN 的“折弦点”,求k 的值;(2)点C 在线段AB 上,直线y x b =+上存在关于MN 的“折弦点”,直接写出b 的取值范围.与D相交或相切,分两种情况利用勾股定理求出【详解】(1))与D相切,与D相交或相切,=+垂直直线y xy轴交于点重合时,b有最大值,此时48.如图1,AB 为O 的直径,C 为O 上一点,连接CB ,过C 作CD AB ⊥于点D ,过点C 作BCE ∠,使BCE BCD ∠=∠,其中CE 交AB 的延长线于点E .(1)求证:CE 是O 的切线.(2)如图2,点F 在O 上,且满足2FCE ABC ∠=∠,连接AF 并延长交EC 的延长线于点G .若4CD =,3BD =,求线段FG 的长.CD OB ⊥DCB ∴∠+∠BCE ∠=∠OC OB=OCB∴∠=OCB∴∠+即:OC⊥CE∴是O的切线.(2)过点O作OHFCE∠=FCE∴∠=FCE∠=FCO∴∠OC CE⊥DCO∴∠+DCO∴∠=DCO∴∠=CDO∠=OCH∴∆≅CH CD∴=8CF∴=设OB OC=2OC OD=2(x x∴=解得:256 x.256OB OC∴==.CDB中,OC CG ⊥GCF ∴∠GCF ∴∠AFCB 是圆的内接四边形,GFC ∴∠GFC∴∆∽∴GF CF BC OC=GF =49.问题探究:(1)如图⊙,已知在⊙ABC 中,BC =4,⊙BAC =45°,则AB 的最大值是 . (2)如图⊙,已知在Rt ⊙ABC 中,⊙ABC =90°,AB =BC ,D 为⊙ABC 内一点,且AD=BD =2.,CD =6,请求出⊙ADB 的度数.问题解决:(3)如图⊙,某户外拓展基地计划在一处空地上修建一个新的拓展游戏区⊙ABC ,且AB =A C .⊙BAC =120°,点A 、B 、C 分别是三个任务点,点P 是⊙ABC 内一个打卡点.按照设计要求,CP =30米,打卡点P 对任务点A 、B 的张角为120°,即⊙APB =120°.为保证游戏效果,需要A 、P 的距离与B 、P 的距离和尽可能大,试求出AP +BP 的最大值.的外接圆O,连接)如图⊙,作⊙的外接圆O,连接BAC=90°,OB是等腰直角三角形的外接圆O,连接AKC=⊙APB 是等边三角形。

九年级数学上册《圆》练习题及答案解析

九年级数学上册《圆》练习题及答案解析

九年级数学上册《圆》练习题及答案解析学校:___________姓名:___________班级:___________一、单选题1.下列说法正确的是()A.直径是弦,弦是直径B.过圆心的线段是直径C.圆中最长的弦是直径D.直径只有二条2.下列语句不正确的有()个.①直径是弦;①优弧一定大于劣弧;①长度相等的弧是等弧;①半圆是弧.A.1B.2C.3D.43.如图,在①O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦.A.2B.3C.4D.54.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等5.下列由实线组成的图形中,为半圆的是()A.B.C.D.6.下列说法正确的是()A.平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若一条直线与一个圆有公共点,则二者相交二、填空题7.如图,已知在Rt△ABC 中,①ACB =90°,分别以AC ,BC ,AB 为直径作半圆,面积分别记为S 1,S 2,S 3,若S 3=9π,则S 1+S 2等于_____.8.如图,Rt ABC 中,90ACB ∠=︒,以点C 为圆心,BC 为半径的圆交AB 于D ,交AC 于点E ,40BCD ∠=︒,则A ∠=______.9.如图,圆中扇子对应的圆心角α(180α)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则βα-的度数是__________.10.数学家赵爽在注解《周髀算经》时给出了“赵爽弦图”,如图所示,它是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,若直角三角形较短直角边长为6,大正方形的边长为10,则小正方形的边长为________.11.如图,在O 中,AB 为直径,8AB =,BD 为弦,过点A 的切线与BD 的延长线交于点C ,E 为线段BD 上一点(不与点B 重合),且OE DE =.(1)若35B ∠=︒,则AD 的长为______(结果保留π);(2)若6AC =,则DE BE=______.三、解答题12.如图,在Rt ABC 中,90ACB ∠=︒,以AC 为直径作O ,交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点E .(1)求证:DF 是O 的切线;(2)若2CF =,4DF =,求O 的半径.13.如图,点A ,B 分别在①DPE 两边上,且PA PB =,点C 在①DPE 平分线上.(1)连接AC ,BC ,求证:AC BC =;(2)连接AB 交PC 于点O ,若60APB ∠=︒,6PA =,求PO 的长;(3)若PO OC ,且点O 是PAB △的外心,请直接写出四边形P ACB 的形状.参考答案与解析:1.C【详解】解:A 、直径是弦,但弦不一定是直径,不符合题意;B 、过圆心的弦是直径,但线段不一定是直径,不符合题意;C 、圆中最长的弦是直径,符合题意;D 、直径有无数条,不符合题意,故选C .2.B【分析】根据圆的概念、等弧的概念、垂径定理、弧、弦直径的关系定理判断即可.【详解】解:①直径是弦,①正确;①在同圆或等圆中,优弧大于劣弧,①错误;①在同圆或等圆中,长度相等的弧是等弧,①错误;①半圆是弧,①正确;故不正确的有2个.故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.B【详解】根据弦的概念,AB 、BC 、EC 为圆的弦,共有3条弦.故选B.4.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.5.B【分析】根据半圆的定义即可判断.【详解】半圆是直径所对的弧,但是不含直径,故选B .【点睛】此题主要考查圆的基本性质,解题的根据熟知半圆的定义.6.B【分析】利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可【详解】A 、平分弦(不是直径)的直径垂直于弦,故本选项错误;B 、半圆或直径所对的圆周角是直角,故本选项正确;C 、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D 、若一条直线与一个圆有公共点,则二者相交或相切,故本选项错误,故选B .【点睛】本题考查直线与圆的位置关系,垂径定理,圆心角、弧、弦的关系,圆周角定理.能清楚的知道每个定理的条件和它对应的结论是解题的关键.7.9π.【分析】根据勾股定理和圆的面积公式,可以得到S 1+S 2的值,从而可以解答本题.【详解】解:①①ACB =90°,①AC 2+BC 2=AB 2,①S 1=π(2AC )2×12,S 2=π(2BC )2×12,S 3=π(2AB )2×12, ①S 1+S 2=π(2AC )2×12+π(2BC )2×12=π(2AB )2×12=S 3, ①S 3=9π,①S 1+S 2=9π,故答案为:9π.【点睛】本题考查勾股定理,解答本题的关键是利用数形结合的思想解答.8.20°.【分析】由半径相等得CB=CD,则①B=①CDB,在根据三角形内角和计算出①B=12(180°-①BCD)=70°,然后利用互余计算①A的度数.【详解】解:①CB=CD,①①B=①CDB,①①B+①CDB+①BCD=180°,①①B=12(180°-①BCD)=12(180°-40°)=70°,①①ACB=90°,①①A=90°-①B=20°.故答案为20°.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了三角形内角和定理.9.90°##90度【分析】根据题意得出α=0.6β,结合图形得出β=225°,然后求解即可.【详解】解:由题意可得:α:β=0.6,即α=0.6β,①α+β=360°,①0.6β+β=360°,解得:β=225°,①α=360°-225°=135°,①β-α=90°,故答案为:90°.【点睛】题目主要考查圆心角的计算及一元一次方程的应用,理解题意,得出两个角度的关系是解题关键.10.2【分析】在Rt①ABC中,根据勾股定理求出AC,即可求出CD.【详解】解:如图,①若直角三角形较短直角边长为6,大正方形的边长为10,①AB =10,BC =AD =6,在Rt ①ABC 中,AC 8,①CD =AC ﹣AD =8﹣6=2.故答案为:2.【点睛】本题主要考查了勾股定理,熟练掌握勾股定理是解决问题的关键.11. 149π 2539 【分析】(1)根据圆周角定理求出①AOD =70°,再利用弧长公式求解;(2)解直角三角形求出BC ,AD ,BD ,再利用相似三角形的性质求出DE ,BE ,可得结论.【详解】解:(1)①270AOD ABD ∠=∠=︒,①AD 的长704141809ππ⋅⋅==; 故答案为:149π; (2)连接AD ,①AC 是切线,AB 是直径,①AB AC ⊥,①10BC ,①AB 是直径,①90ADB ∠=︒,①AD CB ⊥,①1122AB AC BC AD ⋅⋅=⋅⋅,①245 AD=,①325 BD==,①OB OD=,EO ED=,①EDO EOD OBD ∠=∠=∠,①DOE DBO△∽△,①DO DE DB DO=,①43245DE=,①52 DE=,①325395210 BE BD DE=-=-=,①5252393910DEBE==.故答案为:25 39.【点睛】本题主要考查圆的相关知识,相似三角形的判定和性质,解直角三角形等知识,熟练掌握各性质及判定定理,正确寻找相似三角形解决问题是解题的关键.12.(1)见解析(2)3【分析】(1)连接OD、CD,由AC为①O的直径知①BCD是直角三角形,结合E为BC的中点知①CDE=①DCE,由①ODC=①OCD且①OCD+①DCE=90°可得答案;(2)设①O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.(1)解:如图,连接OD、CD.①AC为①O的直径,①①ADC=90°,①①CDB=90°,即①BCD是直角三角形,①E为BC的中点,①BE=CE=DE,①①CDE=①DCE,①OD=OC,①①ODC=①OCD,①①ACB=90°,①①OCD+①DCE=90°,①①ODC+①CDE=90°,即OD①DE,①DE是①O的切线;(2)解:设①O的半径为r,①①ODF=90°,①OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,①①O的半径为3.【点睛】本题主要考查了圆切线的判定与性质,等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理等等,熟知圆切线的性质与判定是解题的关键.13.(1)证明见解析(2)(3)正方形,理由见解析【分析】(1)证明①P AC①①PBC即可得到结论;(2)根据已知条件得到①APC=①BPC=30°,OP①AB于O,求得AO=3,再利用勾股定理即可得到结论;P A B C在以O为圆心,OP为半径的圆上,再证明①APB=①PBC=①BCA=①CAP=90°,可得(3)先证明,,,OBP BPC POB根据正方形的判定定理即可得到结论.四边形APBC为矩形,再证明45,90,(1)证明:①点C在①DPE平分线上,① APC BPC ∠=∠ ,又①P A =PB ,PC =PC ,①①P AC ①①PBC (SAS );.AC BC(2)解:①,,60,PA PB APOBPO APB ①①APC =①BPC =30°,OP ①AB 于O ;①P A =6,①AO =3, 22633 3.OP(3) 解:如图,①点O 是①P AB 的外心,①OA =OB =OP ,而OP =OC , ,,,P A B C 在以O 为圆心,OP 为半径的圆上,,AB PC 为圆的直径,①①APB =①PBC =①BCA =①CAP =90°,①四边形APBC 为矩形,PC 平分,APB ∠45,APC BPC,OP OB 45,90,OBP BPC POB①四边形APBC 为正方形.【点睛】本题考查了圆的综合题,全等三角形的判定和性质,正方形的判定,圆的确定,圆周角定理,正确的识别图形是解题的关键.。

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案一、选择题1.如图是一个半径为5cm的圆柱形输油管的横截面,若油面宽AB=8cm,则油面的深度为()A.2cmB.2.5cmC.3cmD.3.5cm第1题第2题第3题第4题2.如图,AB是⊙O的直径,点C,D是⊙O上的两点,连接AC,OD,CD,且AC//OD,若AB=6,∠ACD=15°,则AC的长为()A.2√2B.4C.3√2D.3√33.如图,点A,B,C,D都在⊙O上,BD为⊙O的直径,若∠A=65°,则∠DBC的值是()A.15°B.25°C.35°D.65°4.如图,AB为⊙O的直径,点C,D都在⊙O上,若BD=BC,∠ABC=65°,则∠BOD 的度数()A.65°B.60°C.50°D.25°5.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD,∠BAC=28°,则∠D的度数是()A.56°B.58°C.60°D.62°第5题第6题第7题第8题6.如图,四边形ABCD内接于⊙O,∠BOD=84°,则∠C的度数为()A.88°B.92°C.106°D.138°7.如图,在⊙O中,弦AB,CD相交于点P,∠A=45°,∠APD=80°,则∠B的大小是().A.35°B.45°C.60°D.70°8.如图,点A,B,C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交⊙O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°̂的中点,连接9.如图,在⊙O中,弦AB⊥CD,垂足为E,F为CBDAF,BF,AC,AF交CD于点M,过点F作FH⊥AC,垂足为G,交⊙O于点H.̂=DF̂②HC = BF③MF = FC④DF̂+AĤ= BF̂+AF̂.其中现有以下结论:①CF成立的有()A.1个B.2个C.3个D.4个10.如图,点P在⊙O的直径AB上,作正方形PCDE和正方形PFGH,其中点D,G在直径所在的直线上,点C,E,F,H 都在⊙O 上.若两个正方形的面积之和为16,OP=√2,则DG 的长是( ) A.6√2 B.2√14 C.7 D.4√3第10题 第11题 第12题 第13题11.如图,⊙O 经过菱形ABCD 的顶点A,B,C,顶点D 在⊙O 内,延长AD,CD 与⊙O 分别交于点E,F,连接 BE,BF.下列结论:①BE=BF ②AB ̂=AF ̂=EF ̂③∠ABC=90°+ 12∠EBF,其中正确的结论是( ) A.①② B. ①③ C. ②③ D.①②③12.如图,△ABC 内接于⊙O,∠BAC=45°,AD ⊥BC,垂足为D,BD=6,DC=4,则AB 的长( )A.6√2B.10C.12D.6√513.如图,在半径为√13的⊙O 中,弦AB 与CD 交于点E,∠DEB=75°,AB=6,AE=1,则CD 的长( )A.2√6B.2√10C.2√11D.4√314.过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A.(4,176) B .(4,3) C.(5,176) D .(5,3) 15.如图,△ABC 为等边三角形,AB=3.若P 为△ABC 内一动点,且满足∠PAB=∠ACP,则线段PB 长度的最小值为( )A.1.5B.√3C.√3D.216.如图,AB 为⊙O 的直径,C 为⊙O 上的一点,AB=4,∠AOC=120°,P 为⊙O 上的一动点,Q 为AP 的中点,连接CQ,则线段CQ 的最大值为( )A.3B.1+√6C.1+3√2D.1+√7二、填空题17.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B+∠E 的度数_______.18.如图,AB,CD 是⊙O 的直径,弦BE 与CD 交于点F,F 为BE 中点,AF//ED,若AF 的长为 2√3,则BC 的长为___.第17题 第18题 第19题19.如图,CD 为⊙O 的直径,弦AB ⊥CD,垂足为E,AB̂=BF ̂,CE =1,AB=6,则弦AF 的长度为___. 20.如图,⊙E 与y 轴相交于A,B 两点(点A 在点B 的上方),与x 轴的正半轴相交于点C,且圆心E 的坐标为(m,0),半径为5;直线l 的函数表达式为y=34x+n,且经过点A 并与x 轴相交于点D(-/2,0).若以C为顶点的抛物线过点B,则该抛物线的函数表达式为___.第20题第21题第22题21.如图,AB是⊙O的弦,AB= 6√3,∠AOB=120°,C为⊙O上的一动点,D,E分别是AC,OB的中点,连接DE,则线段DE的取值范围是____.22.如图,等边△ABC的边长为3,F为BC上的动点,DF⊥AB于点D,EF⊥AC于点E,则DE长的最小值为____.三、解答题̂的中点,连结CD,CA,AD.23.如图 1,AB是⊙O的直径,点D为AB下方⊙O上一点,点C为ABD(1)求证:OC平分∠ACD.(2)如图 2,延长AC,DB相交于点E.①求证:OC//BE.②若CE = 4√5,BD =6,求⊙O的半径.24.如图,⊙O为Rt△ABC的外接圆,∠ACB=90°,BC=4√3,AC=4,点D是⊙O上的动点,且点C,D 分别位于AB的两侧.(1)求⊙O的半径;(2)当CD=4√2时,求∠ACD的度数;(3)设AD的中点为M,在点D的运动过程中,线段CM是否存在最大值?若存在,求出CM的最大值;若不存在,请说明理由.25.如图,在△ACE 中,AC=CE,⊙O 经过点A,C 且与边AE,CE 分别交于点D,F,点B 是AĈ上一点,且DF̂=BC ̂,连接AB,BC,CD. (1)求证:△CDE ≌△ABC;(2)若AC 为⊙O 的直径,填空:①当∠E =______时,四边形ABCD 为正方形;②当∠E =____时,四边形OCFD 为菱形.26.已知⊙O 中,弦AB=AC,点P 是∠BAC 所对弧上一动点,连接PA,PB.(1)如图①,把△ABP 绕点A 逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;(2)如图②,若∠BAC=60°,试探究PA,PB,PC 之间的关系.参考答案一、选择题1-5 ADBCD 6-10 DABCB 11-15 BDCAB 16 D二、填空题17. 215° 18.2√619.485 20.y=−116(x −8)221.3√3-3≤DE ≤3√3+322.94 三、解答题23.(1)提示:圆心角定理,垂径定理.(2)①略②半径长5.24(1)半径长4.(2)15°(3)2√ 3+225.(1)略(2)①45°②60°26.(1)略(2)①PA=PB+PC。

人教中考数学圆的综合-经典压轴题附详细答案

人教中考数学圆的综合-经典压轴题附详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题)1.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD = 12,求AB 和FC 的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF =【解析】 分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB 是⊙O 的直径∴∠ACB=90°∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C 在⊙O 上∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8∵直径AB ⊥弦CD 于点E∴AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB ∴∠CEO=∠FCE=90°∴△OCE ∽△CFE ∴OC OE CF CE= 即106=8CF ∴40CF 3= 点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.2.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。

(1)如图1,在平面直角坐标系中,已知点A 、B 的坐标分别为A (6,0)、B (0,2),点C (x ,y )在线段AB 上,计算(x+y )的最大值。

人教版初中数学圆的基础测试题附答案解析

人教版初中数学圆的基础测试题附答案解析

人教版初中数学圆的基础测试题附答案解析一、选择题1.如图,有一个边长为2cm的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸根据题意画出图形,再根据正多边形圆心角的求法求出/ AOB的度数,最后根据等腰三角形及直角三角形的性质解答即可.【详解】解:如图所示,正六边形的边长为2cm, OGi± BC,•••六边形ABCDE跳正六边形,BOC=360 + 6=60;•. OB=OC, OGi± BC,/ BOG=/ COG=- / BOC =30 , 2•. OGXBC, OB=OC, BC=2cm,BG=— BC=~ X 2=1cm2 2OB=-BG o =2cm,sin30•・OG=J O B2 BG2&2 12石,•♦・圆形纸片的半径为J3cm, 故选:A.2.3cm D. 4cm 片,则这个圆形纸片的半径是(【答案】A【点睛】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性 质解答是解答此题的关键.2.如图,在 ABC 中, ABC 90 , AB 6,点P 是AB 边上的一个动点,以 直径的圆交CP 于点Q,若线段AQ 长度的最小值是3,则 ABC 的面积为()A. 18B. 27C. 36D. 54【答案】B【解析】【分析】 如图,取BC 的中点T,连接AT, QT.首先证明A, Q, T 共线时,区BC 的面积最大, QT=TB=X 利用勾股定理构建方程即可解决问题.【详解】解:如图,取BC 的中点T,连接AT, QT.•••PB 是。

的直径,/ PQB=Z CQB=90 ,,QT=1B C 关值,AT 是定值, 2•.AQSAT -TQ・•・当A, Q, T 共线时,AQ 的值最小,设 BT=TQ=x 在 RtAABT 中,则有(3+x ) 2=x2+62,解得x=—,2BC=2x=9,G 1 1S ZABC =- ?AB?BC=- X 6x 9=27 22 故选:B.BP 为【点睛】本题考查了圆周角定理,勾股定理,两点之间线段最短等知识,解题的关键是学会添加常 用辅助线,则有中考选择题中的压轴题.P 是以C (- J 2 , 此为圆心,i 为半径的o C 上的 一个动点,已知 A ( - 1, 0) , B (1, 0),连接PA 设点P (x, y),表示出PA 2+P3的值,从而转化为求OP 的最值,代入求解即可.【详解】 设 P (x, y),••• PA 2= (x+1) 2+y 2, PB2= (x — 1),y 2,1- PA 2+PB^= 2x 2+2y 2+2=2 (x 2+y 2) +2,•.OP 2=x 2+y 2,.-.PA 2+pB^=2OP 2+2,当点P 处于OC 与圆的交点上时,OP 取得最值,・•.OP 的最小值为 CO- CP= 3-1 = 2, ,PA 2+P 田最小值为2X2+2=10.故选:G【点睛】本题考查了圆的综合,解答本题的关键是设出点 P 坐标,将所求代数式的值转化为求解OP的最小值,难度较大.4.如图,AB 是。

人教九上:专题十--圆相关概念及必考题型过关(含解析)

人教九上:专题十--圆相关概念及必考题型过关(含解析)

专题十 圆相关概念及必考题型过关一、单选题1.在正方形ABCD 中,以点A 为圆心,AB 长为半径作⊙A ,下列说法错误的是( ).A .点D 在圆上B .点C 在圆外C .点B 在圆上D .点A 在圆上2.如图,若⊙O 的半径为4,圆心O 到某条直线的距离为3,则这条直线可能是( )A .l 1B .l 2C .l 3D .l 43.已知一个圆心角为240°,半径为3的扇形工件,没搬动前如图所示(A ,B 两点触地放置),向右滚动工件至点B 再次触地时停止,则圆心O 所经过的路线长是( )A .6B .3πC .6πD .12π4.在平面中,已知⊙O 的半径OP 等于5,点P 在直线l 上,则圆心O 到直线l 的距离( )A .等于5B .最小值为5C .最大值为5D .不等于55.如图,⊙O 的直径AB =10,弦CD ⊥AB 于点P ,若OP =3,则CD 的长为( )A .3B .4C .6D .86.Rt △△ABC 中,∠C =90°,AB =5,AC =3,点E 在中线AD 上,以E 为圆心的⊙E 分别与AB 、BC 相切,则⊙E 的半径为( )A .12B .35C .67D .237.已知⊙O 的半径是6.5cm ,点P 是直线l 上一点,且OP =6cm .那么直线l 与⊙O 的公共点的个数是()A.0B.1C.2D.无法确定8.平面内,⊙O的半径为5,若直线l与⊙O相离,则圆心O到直线l的距离可能是()A.6B.5C.4D.39.如图,AB与⊙O相切于点C,OA=OB,且⊙O的直径为8cm,AB=8cm,则阴影部分的面积为()A.4π−8B.8π−20C.16−4πD.8−π10.如图,△ABC内接于⊙O,过A点作直线DE,当∠BAE=()时,直线DE与⊙O相切.A.∠B B.∠BAC C.∠C D.∠DAC11.如图,在△ABC中,∠BAC=30°,圆心O在AB上,⊙O与BC相切,C为切点.则∠B的().A.20°B.25°C.30°D.35°12.⊙O的直径是4,圆心O到直线l的距离是2,则直线l与⊙O的位置关系是()A.相离B.相切C.相交D.相离或相交13.我国古代数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.如图,⊙O的半径是2,运用“割圆术”,以圆内接正十二边形面积近似估计⊙O的面积,可得π的估计值是()A.3.1B.3C.1+3D.2214.如图,A、D是⊙O上的两个点,BC是直径,若∠D=32°,则∠OAC等于( )A.64°B.58°C.68°D.55°15.已知⊙O的半径为3,点P到圆心O的距离为4,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定16.圆的直径是14,若圆心与直线上某一点的距离是7,则该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切17.如图所示,△ABC的三个顶点的坐标分别为A(−1,3)、B(−2,−2)、C(4,−2),则△ABC外接圆半径的长为().A.32B.23C.10D.1318.如图,已知⊙O的半径为5,直线AB经过⊙O上一点P,下列条件不能判定直线AB与⊙O相切的是()A.OP=5B.∠APO=∠BPO C.点O到直线AB的距离是5D.OP⊥AB19.如图,AD是⊙O的直径,AB=CD,若∠AOB=40°,则圆周角∠BPC的度数是( )A.40°B.50°C.60°D.70°202122232425A.32°B.52°C.64°D.72°26.某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m ,高为23m ,则改建后门洞的圆弧长是( )A .5π3mB .8π3mC .10π3m D +2m27.已知⊙O 的半径等于5,圆心O 到直线l 的距离为4,那么直线l 与⊙O 的公共点的个数是( )A .0B .1C .2D .无法确定28.已知⊙O 的半径等于5,圆心O 到直线l 的距离为6,那么直线l 与⊙O 的公共点的个数是( )A .0B .1C .2D .无法确定29.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为 ( )A .120°B .180°C .240°D .300°30.已知⊙O 的半径为3,点O 到直线m 的距离为d ,若直线m 与⊙O 公共点的个数为2个,则d 可取( )A .0B .3C .3.5D .431.在平面直角坐标系中,以M(2,2)为圆心,半径为2作⊙M ,判断原点O 与⊙M 的位置关系为( )A .点O 在⊙M 外B .点O 在⊙M 上C .点O 在⊙M 内D .以上都有可能二、填空题32.如图,从一块圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,若围成圆锥的底面半径为1,则该圆形铁皮⊙O 的直径是.33.如图,用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是 cm .34.四边形ABCD是⊙O的外切四边形,若∠AOB=78°,则∠COD的度数是.35363738.如图,在⊙O中,直径AB与弦CD相交于点P,连接AC,AD,BD.若∠C=18°,∠BPC=70°,则∠ADC的度数为.39.在半径为2的⊙O中,弦AB=2,弦CD=22,且AB∥CD,则AB与CD之间的距离为.40.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为m.41.如图,PM,PN分别与⊙O相切于A,B两点,C是⊙O上异于A,B的点,连接AC,BC.若∠P=50°,则∠ACB的大小是.42.⊙O的半径为1,弦AB=2,点C是圆上异于A、B的一动点,则∠ACB= .43.如图,⊙O是△ABC的内切圆,∠C=40°,则∠AOB的大小是.44.一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为.45.如图,直线EF与⊙O相切于点C,直线EO与⊙O相交于点D,连接CD.若∠DEF=3∠D,则∠DCF=.46.如图,在扇形OAB中,OA=6,∠AOB=110°,将扇形OAB沿过点B的直线折叠,点O恰好落在AB上的点D处,折痕交OA于点C,则弧AD的长为.47.如图,A,B,C是⊙O上的三个点,∠ABC=25°,则∠OAC的度数是.48496 cm50∠BPC=.51.如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是.52.如图,是一个圆盘及其内接正六边形,随机往圆盘内投飞镖,则飞镖落在正六边形内的概率是.53.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF= .参考答案则AB=a=AD,AC=∵AB<AC,∴点C在⊙A外,点D在圆上,点故选:D.2.B【详解】解:∵⊙O的半径为4,圆心O到某条直线的距离为3,∴3<4,即圆心到直线的距离小于半径,∴该直线与圆相交,由图知,l2与⊙O相交;故选:B.3.C【分析】本题考查了动点经过的路径;确定点O的路径是关键;点O的路径是两个半径为3且圆心角为60°的弧,而平移的距离是一条线段,其长度是扇形工件的弧长,利用弧长公式可求得圆心O所经过的路线长.【详解】解:∵∠AOB=360°−240°=120°,∴∠ABO=12(180°−120°)=30°,当BO旋转到与地面垂直时,旋转角度为90°−30°=60°,此时点O的路径是半径为3且圆心角为60°的弧;扇形工件继续旋转时,点O的路径是一条线段,直至OA垂直地面,其长度是扇形工件的弧长;扇形工件继续绕A旋转,直到点A落地,此时点O的路径是半径为3且圆心角为60°的弧;∴圆心O所经过的路线长为:2×60π×3180+240π×3180=6π;故选:C.4.C【分析】此题考查了直线与圆的位置关系,根据题意可判断直线l与⊙O相切,熟记直线与圆的位置关系是解题的关键.【详解】解:∵⊙O的半径OP等于5,点P在直线l上,∴直线l与⊙O相切或相交,∴圆心O到直线l的距离最大值为5,故选:C.5.D【分析】连接OC,则OC=12AB=5,OP=3,利用勾股定理即可求得PC,最后由CD=2PC完成解答.【详解】解:连接OC,则OC=12AB=5,OP=3,由勾股定理得:PC=OC2−OP2=52−32=4所以CD=2PC=8故答案为D.【点睛】本题考查的是垂径定理,根据题意作出辅助线、构造出直角三角形、运用勾股定理求得PC是解答本题的关键.6.C【分析】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、相似三角形的判定与性质.作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为R,先根据勾股定理计算出BC=4,则DC=2,由以E为圆心的⊙E分别与AB、BC相切,根据切线的性质得EG=EF=R,则HC=R,AH=3−R,再证明△AEH∽△ADC,利用相似比可得到EH和R的关系式,∵∴而∴∵∴∴∵∴∵∴∴R=6.7故选:C.7.C【分析】本题考查直线与圆的位置关系.根据题意先判断直线与圆的位置关系为相交,即可得到本题答案.【详解】解:∵⊙O的半径是6.5cm,点P是直线l上一点,且OP=6cm,∵6<6.5,∴直线l 与⊙O 位置关系为相交,∴直线l 与⊙O 的公共点的个数是2个,故选:C .8.A【分析】本题考查直线与圆相离的判定,根据相离的判定逐项验证即可得到答案,熟记直线l 与⊙O 相离,得到圆心O 到直线l 的距离大于⊙O 半径是解决问题关键.【详解】解:∵ ⊙O 的半径为5,若直线l 与⊙O 相离,∴由相离定义可知圆心O 到直线l 的距离大于半径5,∴根据四个选项中的距离可知,只有6符合要求,故选:A .9.C【分析】本题考查求不规则图形面积,涉及切线性质、等腰直角三角形的判定与性质、直角三角形面积和扇形面积公式等知识,根据题意,阴影部分面积可间接表示为△AOB 面积与扇形面积的差,求出线段长代入面积公式求解即可得到答案,熟练掌握不规则图形面积求法及切线性质是解决问题关键.【详解】解:连接OC ,如图所示:∵ AB 与⊙O 相切于点C ,∴OC ⊥AB ,∵ ⊙O 的直径为8cm ,AB =8cm ,∴OC =CA =CB =4cm ,∴△AOC 、△BOC 均为等腰直角三角形,∴∠AOB =∠AOC +∠BOC =45°+45°=90°,∴S △AOC =12AB ⋅OC =12×8×82=16,S 扇形=90360×π×OC 2=4π,∴阴影部分的面积为(16−4π)cm 2,故选:C .10.C【分析】首先过点O作直径AF,连接BF,根据同弧所对的圆周角相等可得∠C=∠AFB,进而可得到∠BAE=∠F,再根据直径所对的圆周角是90°,可证出∠AFB+∠BAF=90°,再利用等量代换可得∠BAE+∠BAF=90°,进而得到直线DE与⊙O相切.【详解】解:当∠BAE=∠C时,直线DE与⊙O相切.理由如下:作AF交圆O于F点,连接BF.∵∠F,∠C是同弧AB所对的角,∴∠C=∠F,∵∠BAE=∠C,∴∠BAE=∠F,∵AF为直径,∴∠ABF=90°,∴在三角形ABF中,∠F+∠BAF=90°,∵∠F=∠BAE,∴∠BAE+∠BAF=90°,∴FA⊥DE,∴直线DE与⊙O相切.故选:C.【点睛】此题主要考查了切线的判定,关键是正确作出辅助线,证明∠BAE+∠BAF=90°.11.C【分析】本题主要考查了切线的性质、圆周角定理等知识点,掌握圆的切线的性质是解题的关键.如图:连接OC,由圆周角定理可得∠BOC=60°,再根据切线的性质可得∠OCB=90°,最后根据直角三角形两锐角互余即可解答.【详解】解:如图:连接OC,则OA=OC,∴∠BAC=∠ACO=30°,∴∠BOC=2∠BAC=60°,∵⊙O与BC相切,C为切点,∴∠OCB=90°,∴∠B=90°−∠BOC=30°.故选C.12.B【分析】本题主要考查了直线和圆的位置关系,判断直线l与⊙O的位置关系,求出圆心与直线的距离是关键.根据圆心与直线的距离直接判断位置即可.【详解】解:∵⊙O的直径为4,∴半径r=2,∵圆心O到直线l的距离为2,即d=2,∴d=r∴直线l与⊙O的位置关系是相切.故选:B.13.B【分析】过A作AM⊥OB于M,求得∠AOB的度数,根据直角三角形的性质得到AM,求出三角形的面积,于是得到正十二边形的面积,根据圆的面积公式即可得到结论.本题考查了正多边形与圆,三角形的面积的计算,正确地作出辅助线是解题的关键.【详解】如图,AB是正十二边形的一条边,点O是正十二边形的中心,过A作AM⊥OB于M,在正十二边形中,∠AOB=360°÷12=30°,∴AM=12OA=12∴S△AOB=12OB⋅AM=12×1×12=14∴正十二边形的面积为12×14=3,∴3=12×π,∴π=3,∴π的近似值为3,故选:B.14.B【分析】先根据圆周角定理求出∠B及∠BAC的度数,再由等腰三角形的性质求出∠OAB的度数,进而可得出结论.【详解】解:∵∠D=32°,∴∠B=∠D=32°,∵BC是直径,∴∠BAC=90°,∵OA=OB,∴∠BAO=∠B=32°,∴∠OAC=∠BAC−∠BAO=90°−32°=58°.故选:B.【点睛】本题主要考查了圆周角定理、等腰三角形的性质等知识,熟练掌握相关知识是解题关键.15.A【分析】根据点与圆心的距离与半径的大小关系即可确定点P与⊙O的位置关系.【详解】解:∵⊙O的半径分别是3,点P到圆心O的距离为4,∴d>r,∴点P与⊙O的位置关系是:点在圆外.故选:A.【点睛】本题考查了点与圆的位置关系.注意若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.16.D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】解:圆的直径是14,故半径为7.圆心与直线上某一点的距离是7,那么圆心到直线的距离可能等于7也可能小于7,因此直线与圆相切或相交.故选D.【点睛】本题主要考查直线与圆的位置关系,解题的关键是掌握:圆心与直线上某一点的距离是a时,圆心到直线的距离可能等于a也可能小于a.17.D【分析】三角形的外心是三边垂直平分线的交点,设△ABC的外心为M,由B,C的坐标可知M必在直线x=1上,由图可知线段AC的垂直平分线经过点(1,0),由此可得M(1,0),过点M作MD⊥BC于点D,连接MB,由勾股定理求出MB的长即可.【详解】解:设△ABC的外心为M,∵B(−2,−2)、C(4,−2),=1上,∴M必在直线x=−2+42由图可知,线段AC的垂直平分线经过点(1,0),∴M(1,0),如图,过点M作MD⊥BC于点D,连接MB,Rt△MBD中,MD=2,BD=3,由勾股定理得:MB=MD2+BD2=22+32=13,即△ABC外接圆半径的长为13.故选D.【点睛】本题考查求三角形外接圆的半径,能够根据网格和三角形顶点坐标判断出△ABC外心的位置是解题的关键.18.A【分析】依据切线的判定定理“经过半径的外端且垂直于这条半径的直线”或“圆心到直线的距离等于半径”进行判断即可.【详解】解:A、OP=5,不能判定直线AB与⊙O相切,符合题意;B、由∠APO=∠BPO,得到OP⊥AB,且点P在⊙O上,能判定直线AB与⊙O相切,不符合题意;C、点O到直线AB的距离是5,等于半径,能判定直线AB与⊙O相切,不符合题意;D、OP⊥AB且点P在⊙O上,能判定直线AB与⊙O相切,不符合题意;故选:A.【点睛】本题考查了切线的判定;熟练掌握切线的判定是解题的关键.19∴∵∴∴20点21.A【分析】本题考查了点与圆的位置关系的应用,注意:已知⊙O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.根据以上内容判断即可.【详解】解:∵⊙O的半径为4,PO=3,∵3<4,∴点P与⊙O的位置关系是点P在⊙O内部,故选:A.22.C【分析】本题考查了直线与圆的位置关系、坐标与图形性质.直线与圆相离,直线到圆心的距离大于半径;直线与圆相交,直线到圆心的距离小于半径;直线与圆相切,直线到圆心的距离等于半径.将该点的横纵坐标绝对值分别与半径对比,若横坐标绝对值大于半径时,则y轴与该圆相离;若横坐标绝对值小于半径时,则y轴与该圆相交;若横坐标绝对值等于半径时,则y与该圆相切;若纵坐标绝对值大于半径时,则x轴与该圆相离;若纵坐标绝对值小于半径时,则x轴与该圆相交;若纵坐标绝对值等于半径时,则x与该圆相切.【详解】解:∵点(4,3)为圆心,4为半径的圆,则有4=4,3<4,∴这个圆与y轴相切,与x轴相交.故选:C.23.C【分析】根据直角三角形的性质可求出CE=1,再根据垂径定理可求出CD.【详解】解:∵⊙O的直径AB垂直于弦CD,CD∴CE=DE=12∵∠A=30°,AC=2,∴CE=1∴CD=2.故选:C.【点睛】本题考查了直角三角形的性质,垂径定理等知识点,能求出CE=DE是解此题的关键.24.C【分析】设正六边形的中心是O,一边是AB,过O作OG⊥AB于G,在直角△OAG中,根据三角函数即可求得边长AB,从而求出周长.【详解】解:如图,在∴25∴∴∵则26【详解】如图,连接AD,BC,交于O点,∵∠BDC=90°,∴BC是直径,∴BC=CD2+BD2=22+(23)2=4,∵四边形ABDC是矩形,∴OC=OD=12BC=2,∵CD=2,∴OC=OD=CD,∴ΔCOD是等边三角形,∴∠COD=60°,∴门洞的圆弧所对的圆心角为360°−60°=300°,∴改建后门洞的圆弧长是300°π×12 BC180°=300°π×12×4180°=103π(m),故选:C【点睛】本题考查了弧长公式,矩形的性质以及勾股定理的应用,从实际问题转化为数学模型是解题的关键.27.C【分析】利用直线与圆的位置关系的判断方法得到直线l与⊙O相交,然后根据相离的定义对各选项进行判断.【详解】∵⊙O的的半径为5,圆心O到直线l的距离为4,∴圆心O到直线l的距离小于半径,∴直线l与⊙O相交,∴直线l与⊙O有2个公共点.故选:C.【点睛】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则当直线l 与⊙O相交⇔d<r;当直线l与⊙O相切⇔d=r;当直线l与⊙O相离⇔d>r;熟练掌握直线与圆的位置关系是解本题的关键.28.A【分析】圆的半径为r,圆心到直线的距离为d,当d>r时,圆与直线相离,直线与圆没有交点,当d=r 时,圆与直线相切,直线与圆有一个交点,d<r时,圆与直线相交,直线与圆有两个交点,根据原理可得答案.【详解】解:∵⊙O的半径等于r为8,圆心O到直线l的距离为d为6,∴d>r,∴直线l与⊙O相离,∴直线l与⊙O的公共点的个数为0,故选A.【点睛】本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键.29.B【详解】试题分析:设母线长为R,底面半径为r,∴∵∴∴∴30当∴∴031∴MO=22+22=22.∵⊙M的半径为2,且22>2,∴点O在⊙M外.故选:A.32.42【分析】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.连接BC,根据扇形圆心角为90°,得到B,O,C三点共线,BC为⊙O的直径,首先求得扇形的弧长,再求出圆锥的母线长,然后利用勾股定理求出BC即可.【详解】解:如图,连接BC,∵∠BAC=90°,∴B,O,C三点共线,BC为⊙O的直径,∵围成圆锥的底面半径为1,∴BC=1×2π=2π,=2π,∵90×2π⋅AB360∴AB=4,∵AC=AB=4,∴BC=AB2+AC2=42,∴该圆形铁皮⊙O的直径是42,故答案为:42.33.42【分析】先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理即可出圆锥的高.=4πcm【详解】圆心角为120°,半径为6cm的扇形的弧长为120×6π180∴圆锥的底面半径为4π÷2π=2,故圆锥的高为62−22=42cm故答案为:42【点睛】此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.34.102°/102度【分析】本题主要考查了切线长定理,解题的关键是熟练掌握切线长定理及其推论.令四边形ABCD 与⊙O分别相切于点E、F、G、H,连接OE,OF,OG,OH,通过证明∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8即可求解.【详解】解:令四边形ABCD与⊙O分别相切于点E、F、G、H,连接OE,OF,OG,OH,∵ABCD是⊙O的外切四边形,∴AE=AF,∵OE=OF,OA=OA,∴△OAE≌△OAF,∴∵∴∴∴352π∴n=144,∴圆锥的侧面展开图的圆心角的度数为144°,故答案为:144°.36.30°/30度【分析】本题考查了圆周角定理,根据在同圆或等圆中,同弧或等弧所对的圆周角相等可得结论.【详解】解:∵AD所对的圆周角是∠C,∠B,∴∠B =∠C =30°故答案为:30°.37.24【分析】根据圆周角定理得BC 为⊙O 的直径,即BC =2,所以AB =2 ,设该圆锥的底面圆的半径为rm ,根据弧长公式得到2πr =90×π×2180,然后解方程即可.【详解】解:∵∠BAC =90°,∴BC 为⊙O 的直径,即BC =2m ,∵AB =AC ,∴AB =2 ,设该圆锥的底面圆的半径为r ,根据题意得2πr =90×π×2180,解得r =24 ,即该圆锥的底面圆的半径为24m .故答案为24.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.解题的关键是弄清扇形弧长和底面圆的周长的关系.38.38°/38度【分析】此题主要考查了圆周角定理,三角形外角和定理等知识,解题关键是熟知圆周角定理的相关知识.先根据圆周角定理得出∠B =∠C =18°,再由三角形外角和定理可知∠BDP =∠BPC−∠B =70°−18°=52°,再根据直径所对的圆周角是直角,即∠ADB =90°,然后利用∠ADB =∠ADC +∠BDP 进而可求出∠ADC .【详解】解:∵∠C =18°,AD =AD ,∴∠B =∠C =18°,∵∠BPC =70°,∴∠BDP =∠BPC−∠B =70°−18°=52°,又∵AB 为直径,即∠ADB =90°,∴∠ADC =∠ADB−∠BDP =90°−52°=38°,故答案为:38°.39.3±2【分析】本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.由于弦AB 与CD 的具体位置不能确定,故应分两种情况进行讨论:①弦AB 与CD 在圆心同侧;②弦AB 与CD 在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB 与CD 在圆心同侧时,如图,∵∴∵∴∵∴∴②EF 40.28/182【分析】本题主要考查了求圆锥底面圆半径,90度的圆周角所对的弦是直径.连接BC ,如图,根据圆周角定理得BC 为⊙O 的直径,即BC =2,所以AB =2,设该圆锥的底面圆的半径为r ,根据弧长公式得到方程即可求得.【详解】解:连接BC ,如图,∵∠BAC =90°,∴BC 为⊙O 的直径,即BC =1m ,∴AB =AC =22BC =22m ,设该圆锥的底面圆的半径为r m ,∴2πr =90π×22180,解得r =28,即该圆锥的底面圆的半径为28m .故答案为:28.41.65°或115°【分析】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质.如图,连接OA ,OB ,利用切线的性质结合四边形的内角和定理求解∠AOB =130°,再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接OA ,OB ,C 1,C 2(即C )分别在优弧与劣弧上,∵ PM ,PN 分别与⊙O 相切于A ,B 两点,∴∠PAO =∠PBO =90°,∵∠P =50°,∴∠AOB =360°−90°−90°−50°=130°,∴∠AC 1B =12∠AOB =65°,∠AC 2B =180°−65°=115°.故答案为:65°或115°.42.45°或135°【分析】根据题意画出图形,先判断出∠AOB=90o ,再分两种情况用同弧所对的圆心角和圆周角的关系确定和圆的内接四边形的性质即可.【详解】∵OA=OB=1,AB=2,∴OA2+OB2=AB2,△AOB是直角三角形,∴∠AOB=90°,当点C在优弧AB上时,∠AOB=45°,∠ACB=12∠∴∴43∴∴∴故答案为:110°.【点睛】本题考查了三角形的内切圆和内心,正确证明∠BAO+∠ABO=1(∠BAC+∠ABC)是关键.244.6π【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.×2π×2×3=6π.【详解】解:该圆锥的侧面积=12故答案为6π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.45.72°【分析】连接OC,如图,先利用切线的性质得到∠OCE=90°,则根据三角形内角和得到∠E+∠EOC=90°,再根据圆周角定理得到∠EOC=2∠D,加上∠E=3∠D,所以3∠D+2∠D=90°,从而可求出∠D的度数,然后利用三角形外角性质可计算出∠DCF的度数.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.【详解】解:连接OC,如图,∵直线EF与⊙O相切于点C,∴OC⊥EF,∴∠OCE=90°,∴∠E+∠EOC=90°,∵∠EOC=2∠D,∠E=3∠D,∴3∠D+2∠D=90°,解得∠D=18°,∴∠E=54°,∴∠DCF=∠D+∠E=18°+54°=72°.故答案为:72°.π46.53【分析】本题考查了弧长的计算,翻折变换(折叠问题),由折叠的性质推知△ODB是等边三角形是解答此题的关键.如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°−∠DOB=50°,然后由弧长公式弧长的公式l=nπr来求弧AD的长.180【详解】解:如图, 连接OD.根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB, 即△ODB是等边三角形,∴∵∴∴47∴∵∴48∠BOD=69°,∴∠A=12∴∠BCD=180°﹣∠A=111°,∴∠DCE=180°﹣∠BCD=69°.故答案为:69°.【点睛】此题考查了圆周角定理与圆的内接四边形的性质.此题比较简单,解题的关键是注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半与圆内接四边形的对角互补定理的应用.49.253/813【分析】设圆的半径为r cm ,连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,利用勾股定理,在Rt △AOD 中,得到r 2=(r −6)2+82,求出r 即可.【详解】解:连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,如图所示:∵CB 与⊙O 相切于点B ,∴OB ⊥CB ,∴∠CBD =∠BDA =∠ACB =90°,∴四边形ACBD 为矩形,∴AD =CB =8,BD =AC =6,设圆的半径为r cm ,在Rt △AOD 中,根据勾股定理可得:OA 2=OD 2+AD 2,即r 2=(r −6)2+82,解得:r =253,即⊙O 的半径为253cm .故答案为:253.【点睛】本题主要考查了切线的性质,矩形的判定和性质,勾股定理,作出辅助线,构造直角三角形,利用勾股定理列出关于半径r 的方程,是解题的关键.50.80°/80度【分析】首先连接OB ,OC ,由PB ,PC 是⊙O 的切线,利用切线的性质,即可求得∠PBO =∠PCO =90∘,又由圆周角定理可得:∠BOC =2∠BAC ,继而求得∠BPC 的度数.【详解】解:连接OB ,OC ,∵PB ,PC 是⊙O 的切线,∴OB ⊥PB ,OC ⊥PC ,∴∠PBO =∠PCO =90°,∵∠BOC =2∠BAC =2×50°=100°,∴∠BPC=360°−∠PBO−∠BOC−∠PCO=360°−90°−100°−90°=80°故答案为:80°.51∵∴∵∴∴和定理的应用,求解∠AOB=122°是解本题的关键.52.332π【分析】设圆的半径为r,先分别求出圆的面积和正六边形的面积,再利用概率公式即可得.【详解】解:如图,设圆的圆心为点O,半径为r,过点O作OC⊥AB于点C,连接OA,OB,则圆的面积为πr 2,OA =OB =r ,∵图中的六边形是正六边形,∴∠AOB =360°6=60°,∴△AOB 是等边三角形,∴AB =OA =r,AC =12AB =12r,OC =OA 2−AC 2=32r ,∴正六边形的面积为6S △AOB =6×12AB ⋅OC =6×12r ⋅32r =332r 2,则飞镖落在正六边形内的概率是332r 2πr 2=332π,故答案为:332π.【点睛】本题考查了求概率、圆与正六边形等知识点,熟练掌握概率的求法是解题关键.53.15°【分析】根据平行四边形的性质和圆的半径相等得到△AOB 为等边三角形,根据等腰三角形的三线合一得到∠BOF =∠AOF =30°,根据圆周角定理计算即可.【详解】解答:连接OB ,∵四边形ABCO 是平行四边形,∴OC =AB ,又OA =OB =OC ,∴OA =OB =AB ,∴△AOB 为等边三角形.∵OF ⊥OC ,OC ∥AB ,∴OF ⊥AB ,∴∠BOF =∠AOF =30°.由圆周角定理得∠BAF =12∠BOF =15∘ ,故答案为15°.。

人教版初中数学圆的经典测试题

人教版初中数学圆的经典测试题

人教版初中数学圆的经典测试题一、选择题1.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.2.如图,在矩形ABCD 中,6,4AB BC ==,以A 为圆心,AD 长为半径画弧交AB 于点E ,以C 为圆心,CD 长为半径画弧交CB 的延长线于点F ,则图中阴影部分的面积是( )A .13πB .1324π+C .1324π-D .524π+【答案】C【解析】【分析】 先分别求出扇形FCD 和扇形EAD 的面积以及矩形ABCD 的面积,再根据阴影面积=扇形FCD 的面积﹣(矩形ABCD 的面积﹣扇形EAD 的面积)即可得解.【详解】解:∵S 扇形FCD 29036096ππ==⨯⨯,S 扇形EAD 24036094ππ==⨯⨯,S 矩形ABCD 6424=⨯=, ∴S 阴影=S 扇形FCD ﹣(S 矩形ABCD ﹣S 扇形EAD )=9π﹣(24﹣4π)=9π﹣24+4π=13π﹣24故选:C .【点睛】本题考查扇形面积的计算,根据阴影面积=扇形FCD 的面积﹣(矩形ABCD 的面积﹣扇形EAD 的面积)是解答本题的关键.3.下列命题中,是假命题的是( )A .任意多边形的外角和为360oB .在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C VC .在一个三角形中,任意两边之差小于第三边D .同弧所对的圆周角和圆心角相等【答案】D【解析】【分析】根据相关的知识点逐个分析.【详解】解:A. 任意多边形的外角和为360o ,是真命题;B. 在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V≌'''A B C V ,根据HL ,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D .【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.4.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是( )A .20°B .35°C .40°D .55°【答案】B【解析】【分析】 连接FB ,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB 、∠EFB 的度数,继而根据∠EFO =∠EBF-∠OFB 即可求得答案.【详解】连接FB ,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB =12∠FOB=70°, ∵FO =BO , ∴∠OFB =∠OBF=(180°-∠FOB)÷2=20°,∵EF =EB ,∴∠EFB =∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO =∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.5.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.2【答案】B【解析】【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB 的长.【详解】连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选B.【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.6.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A .54°B .27°C .36°D .46°【答案】C【解析】【分析】 先利用等腰三角形的性质和三角形内角和计算出∠AOB 的度数,然后利用圆周角解答即可.【详解】解:∵OA =OB ,∴∠OBA =∠OAB =54°,∴∠AOB =180°﹣54°﹣54°=72°,∴∠ACB =12∠AOB =36°. 故答案为C .【点睛】 本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.7.如图,O e 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( )A 32πB 332πC .23π-D 33π【答案】A【解析】【分析】【详解】 解:∵六边形ABCDEF 是正六边形,∴∠AOB =60°,∴△OAB 是等边三角形,OA =OB =AB =2,设点G 为AB 与⊙O 的切点,连接OG ,则OG ⊥AB ,∴OG =OA •sin 60°=2×32=3, ∴S 阴影=S △OAB ﹣S 扇形OMN =12×2×3﹣260(3)360π⨯=32π-.故选A .8.如图,弧 AB 等于弧CD ,OE AB ⊥于点E ,OF CD ⊥于点F ,下列结论中错误..的是( )A .OE=OFB .AB=CDC .∠AOB =∠COD D .OE >OF【答案】D【解析】【分析】 根据圆心角、弧、弦的关系可得B 、C 正确,根据垂径定理和勾股定理可得A 正确,D 错误.【详解】解:∵»»AB CD =,∴AB =CD ,∠AOB =∠COD ,∵OE AB ⊥,OF CD ⊥,∴BE =12AB ,DF =12CD , ∴BE =DF ,又∵OB =OD , ∴由勾股定理可知OE =OF ,即A 、B 、C 正确,D 错误,故选:D .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理,勾股定理,熟练掌握基本性质定理是解题的关键.9.用一个直径为10cm 的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB 与O e 相切于点B ,不倒翁的顶点A 到桌面L 的最大距离是18cm .若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为( )A .260cm πB .260013cm πC .272013cm πD .272cm π【答案】C【解析】【分析】 连接OB ,如图,利用切线的性质得OB AB ⊥,在Rt AOB ∆中利用勾股定理得12AB =,利用面积法求得6013BH =,然后利用圆锥的侧面展开图为扇形和扇形的面积公式计算圆锥形纸帽的表面.【详解】 解:连接OB ,作BH OA ⊥于H ,如图,Q 圆锥的母线AB 与O e 相切于点B ,OB AB ∴⊥,在Rt AOB ∆中,18513OA =-=,5OB =,2213512AB ∴=-=,Q 1122OA BH OB AB =g g , 512601313BH ⨯∴==, Q 圆锥形纸帽的底面圆的半径为6013BH =,母线长为12, ∴形纸帽的表面2160720212()21313cm ππ=⨯⨯⨯=. 故选:C .【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆锥的计算.10.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.11.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A .13B .12C .34D .1【答案】B【解析】【分析】根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长.【详解】圆锥的底面周长是:π;设圆锥的底面半径是r ,则2πr=π.解得:r=12. 故选B .【点睛】本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.已知线段AB 如图,(1)以线段AB 为直径作半圆弧»AB ,点O 为圆心;(2)过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,交»AB 于点E F 、;(3)连接,OE OF .根据以上作图过程及所作图形,下列结论中错误的是( )A .CE DF =B .»»AE BF =C .60EOF ∠=︒D . =2CE CO【答案】D【解析】【分析】 根据作图可知AC CO OD DB ===,据此对每个选项逐一判断即可.【详解】根据HL 可判定ECO FDO ≅V V ,得CE DF =,A 正确;∵过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,连接AE ,CE 为OA 的中垂线,AE OE =在半圆中,OA OE =∴OA OE AE ==,AEO △为等边三角形,60EOF =o ∠AOE=∠FOD=∠, C 正确;∴圆心角相等,所对应的弧长度也相等,»»AE BF=,B 正确 ∵60,90EOC =o o ∠AOE=∠, ∴=3CE CO ,D 错误【点睛】 本题考查了全等三角形的判定和性质,勾股定理等知识点,解题的关键在于证明60o ∠AOE=.13.一个圆锥的底面半径是5,高为12,则这个圆锥的全面积是( )A .60πB .65πC .85πD .90π【答案】D【解析】【分析】根据勾股定理求出圆锥侧面母线长,再根据圆锥的全面积=底面积+侧面积求出答案.【详解】∵圆锥的底面半径是5,高为12,∴侧面母线长为2251213+=,∵圆锥的侧面积=51365ππ⨯⨯=,圆锥的底面积=2525ππ⨯=,∴圆锥的全面积=652590πππ+=,故选:D.【点睛】此题考查圆锥的全面积,圆锥侧面母线长与底面圆的半径、圆锥的高的关系,熟记计算公式是解题的关键.14.如图,已知圆O 的半径为10,AB ⊥CD ,垂足为P ,且AB =CD =16,则OP 的长为( )A .6B .6C .8D .8 【答案】B【解析】【分析】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OP的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=16,∴BM=DN=8,∴OM=ON==6,∵AB⊥CD,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=.故选B.【点睛】本题考查的是垂径定理,正方形的判定与性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.23D.43【答案】A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4.故选A.考点:正多边形和圆.16.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO,则图中阴影部分的面积之和为()A.10﹣32πB.14﹣52πC.12 D.14【答案】B【解析】【分析】根据勾股定理求出AB,求出△ABC的内切圆的半径,根据扇形面积公式、三角形的面积公式计算,得到答案.【详解】解:设⊙O与△ABC的三边AC、BC、AB的切点分别为D、E、F,连接OD、OE、OF,在Rt△ABC中,AB=22AC BC+=10,∴△ABC的内切圆的半径=68102+-=2,∵⊙O是△ABC的内切圆,∴∠OAB=12∠CAB,∠OBA=12∠CBA,∴∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣12(∠CAB+∠CBA)=135°,则图中阴影部分的面积之和=222902113525 21021436023602πππ⨯⨯-+⨯⨯-=-,故选B.【点睛】本题考查的是三角形的内切圆与内心、扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.17.如图,在⊙O中,OC⊥AB,∠ADC=26°,则∠COB的度数是()A.52°B.64°C.48°D.42°【答案】A【解析】【分析】由OC⊥AB,利用垂径定理可得出,再结合圆周角定理及同弧对应的圆心角等于圆周角的2倍,即可求出∠COB的度数.【详解】解:∵OC⊥AB,∴,∴∠COB=2∠ADC=52°.故选:A.【点睛】考查了圆周角定理、垂径定理以及圆心角、弧、弦的关系,利用垂径定理找出是解题的关键.18.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.23B.13C.4 D.32【答案】B【解析】【分析】如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.【详解】如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt△OBD中,根据勾股定理,得:22+BD OD13故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC判定点O在AD上.19.如图,⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OC =3:5,则AB 的长为( )A .91cmB .8cmC .6cmD .4cm【答案】B【解析】【分析】 由于⊙O 的直径CD =10cm ,则⊙O 的半径为5cm ,又已知OM :OC =3:5,则可以求出OM =3,OC =5,连接OA ,根据勾股定理和垂径定理可求得AB .【详解】解:如图所示,连接OA .⊙O 的直径CD =10cm ,则⊙O 的半径为5cm ,即OA =OC =5,又∵OM :OC =3:5,所以OM =3,∵AB ⊥CD ,垂足为M ,OC 过圆心∴AM =BM ,在Rt △AOM 中,22AM=5-3=4,∴AB =2AM =2×4=8.故选:B .【点睛】本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.20.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线323y x =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )A .3B .2C 3D 2【答案】D【解析】【分析】先根据题意,画出图形,令直线y= 3x+ 23与x轴交于点C,与y轴交于点D,作OH ⊥CD于H,作OH⊥CD于H;然后根据坐标轴上点的坐标特点,由一次函数解析式,求得C、D两点的坐标值;再在Rt△POC中,利用勾股定理可计算出CD的长,并利用面积法可计算出OH的值;最后连接OA,利用切线的性质得OA⊥PA,在Rt△POH中,利用勾股定理,得到21PA OP=-,并利用垂线段最短求得PA的最小值即可.【详解】如图,令直线3x+23x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=3D(0,3当y=033,解得x=-2,则C(-2,0),∴222(23)4CD=+=,∵12OH•CD=12OC•OD,∴2233⨯=连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴2221 PA OP OA OP=-=-当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA22(3)12-=故选D.【点睛】本题考查了切线的性质,解题关键是熟记切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.。

人教版初中数学圆的专项训练及解析答案

人教版初中数学圆的专项训练及解析答案

人教版初中数学圆的专项训练及解析答案一、选择题1.如图,已知ABC ∆和ABD ∆都O 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆【答案】A【解析】【分析】 根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】 考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.2.如图,在矩形ABCD 中,6,4AB BC ==,以A 为圆心,AD 长为半径画弧交AB 于点E ,以C 为圆心,CD 长为半径画弧交CB 的延长线于点F ,则图中阴影部分的面积是( )A .13πB .1324π+C .1324π-D .524π+【答案】C【解析】【分析】先分别求出扇形FCD 和扇形EAD 的面积以及矩形ABCD 的面积,再根据阴影面积=扇形FCD 的面积﹣(矩形ABCD 的面积﹣扇形EAD 的面积)即可得解.【详解】解:∵S 扇形FCD 29036096ππ==⨯⨯,S 扇形EAD 24036094ππ==⨯⨯,S 矩形ABCD 6424=⨯=, ∴S 阴影=S 扇形FCD ﹣(S 矩形ABCD ﹣S 扇形EAD )=9π﹣(24﹣4π)=9π﹣24+4π=13π﹣24故选:C .【点睛】本题考查扇形面积的计算,根据阴影面积=扇形FCD 的面积﹣(矩形ABCD 的面积﹣扇形EAD 的面积)是解答本题的关键.3.下列命题中,是假命题的是( )A .任意多边形的外角和为360B .在ABC 和'''A B C 中,若''AB A B =,''BC B C =,'90C C ∠=∠=,则ABC ≌'''A B CC .在一个三角形中,任意两边之差小于第三边D .同弧所对的圆周角和圆心角相等【答案】D【解析】【分析】根据相关的知识点逐个分析.【详解】解:A. 任意多边形的外角和为360,是真命题;B. 在ABC 和'''A B C 中,若''AB A B =,''BC B C =,'90C C ∠=∠=,则ABC ≌'''A B C ,根据HL ,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D .【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.4.如图,四边形ABCD 为⊙O 的内接四边形.延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为E ,连接BD ,∠GBC=50°,则∠DBC 的度数为( )A .50°B .60°C .80°D .90°【答案】C【解析】【分析】 根据圆内接四边形的性质得:∠GBC =∠ADC =50°,由垂径定理得:CM DM =,则∠DBC =2∠EAD =80°.【详解】如图,∵四边形ABCD 为⊙O 的内接四边形,∴∠GBC =∠ADC =50°.∵AE ⊥CD ,∴∠AED =90°,∴∠EAD =90°﹣50°=40°,延长AE 交⊙O 于点M .∵AO ⊥CD ,∴CM DM =,∴∠DBC =2∠EAD =80°.故选C .【点睛】本题考查了圆内接四边形的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题.5.如图,ABC 中,90ACB ∠=︒,O 为AB 中点,且4AB =,CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,则OD 的最小值为( ).A .1B .22C .21-D .222-【答案】D【解析】【分析】 根据三角形角平分线的交点是三角形的内心,得到DO 最小时,DO 为三角形ABC 内切圆的半径,结合切线长定理得到三角形为等腰直角三角形,从而得到答案.【详解】解: CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,D ∴为ABC ∆的内心,OD ∴最小时,OD 为ABC ∆的内切圆的半径,,DO AB ∴⊥过D 作,,DE AC DF BC ⊥⊥ 垂足分别为,,E F,DE DF DO ∴==∴ 四边形DFCE 为正方形,O 为AB 的中点,4,AB =2,AO BO ∴==由切线长定理得:2,2,,AO AE BO BF CE CF r ======sin 4522,AC BC AB ∴==•︒=222,CE AC AE ∴=-=-四边形DFCE 为正方形,,CE DE ∴=222,OD CE ∴==-故选D .【点睛】本题考查的动态问题中的线段的最小值,三角形的内心的性质,等腰直角三角形的性质,锐角三角函数的计算,掌握相关知识点是解题关键.6.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,点D 在BA 的延长线上,CD 与⊙O 交于另一点E ,DE=OB=2,∠D=20°,则弧BC 的长度为( )A.23πB.13πC.43πD.49π【答案】A【解析】【分析】连接OE、OC,如图,根据等腰三角形的性质得到∠D=∠EOD=20°,根据外角的性质得到∠CEO=∠D+∠EOD=40°,根据等腰三角形的性质得到∠C=∠CEO=40°,根据外角的性质得到∠BOC=∠C+∠D=60°,根据求弧长的公式得到结论.【详解】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴BC的长度=260?2360π⨯=23π,故选A.【点睛】本题考查了弧长公式:l=••180n Rπ(弧长为l,圆心角度数为n,圆的半径为R),还考查了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.7.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.25cm B.45 cm C.25cm或45cm D.23cm或43cm【答案】C【解析】连接AC,AO,∵O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=12AB=12×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM=222254OA AM-=-=3cm,∴CM=OC+OM=5+3=8cm,∴AC=22224845AM CM+=+=cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5−3=2cm,在Rt△AMC中,AC=22224225AM CM+=+=cm.故选C.8.如图,7×5的网格中的小正方形的边长都为1,小正方形的顶点叫格点,△ABC的三个顶点都在格点上,过点C作△ABC外接圆的切线,则该切线经过的格点个数是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】作△ABC的外接圆,作出过点C的切线,两条图象法即可解决问题.【详解】如图⊙O即为所求,观察图象可知,过点C作△ABC外接圆的切线,则该切线经过的格点个数是3个,选:C.【点睛】考查三角形的外接圆与外心,切线的判定和性质等知识,解题的关键是理解题意.9.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm 处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2【答案】C【解析】【分析】【详解】解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,∴OA⊥CA,OB⊥BC,又∵∠C=90°,OA=OB,∴四边形AOBC是正方形,∴OA=AC=4,故A,B正确;∴AB的长度为:904180π⨯=2π,故C错误;S扇形OAB=2904360π⨯=4π,故D正确.故选C.【点睛】本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.10.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.12【答案】C【解析】【分析】根据三角形内角和定理求得∠C=∠ABC=30°,再根据圆周角定理及直角三角形的性质即可求得BD的长.【详解】∵∠BAC=120°,AB=AC=4,∴∠C=∠ABC=30°∴∠D=30°∵BD是直径∴∠BAD=90°∴BD=2AB=8.故选C.11.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO,则图中阴影部分的面积之和为()A.10﹣32B.14﹣52πC.12 D.14【答案】B【解析】【分析】根据勾股定理求出AB,求出△ABC的内切圆的半径,根据扇形面积公式、三角形的面积公式计算,得到答案.【详解】解:设⊙O 与△ABC 的三边AC 、BC 、AB 的切点分别为D 、E 、F ,连接OD 、OE 、OF , 在Rt △ABC 中,AB =22AC BC +=10, ∴△ABC 的内切圆的半径=68102+-=2, ∵⊙O 是△ABC 的内切圆,∴∠OAB =12∠CAB ,∠OBA =12∠CBA , ∴∠AOB =180°﹣(∠OAB+∠OBA )=180°﹣12(∠CAB+∠CBA )=135°, 则图中阴影部分的面积之和=22290211352521021436023602πππ⨯⨯-+⨯⨯-=-, 故选B .【点睛】本题考查的是三角形的内切圆与内心、扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.12.如图,点,,A B S 在圆上,若弦AB 的长度等于圆半径的2倍,则ASB ∠的度数是( ).A .22.5°B .30°C .45°D .60°【答案】C【解析】【分析】 设圆心为O ,连接OA OB 、,如图,先证明OAB 为等腰直角三角形得到90AOB ∠=︒,然后根据圆周角定理确定ASB ∠的度数.【详解】解:设圆心为O ,连接OA OB 、,如图,∵弦AB 2倍,即2AB OA =,∴222OA OB AB +=,∴OAB 为等腰直角三角形,90AOB ∠=︒ ,∴1452ASB AOB ∠=∠=°. 故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.13.如图,在矩形ABCD 中,6AB =,对角线10AC =,O 内切于ABC ∆,则图中阴影部分的面积是( )A .24π-B .242π-C .243π-D .244π-【答案】D【解析】【分析】 先根据勾股定理求出BC ,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O 的半径为r ,利用面积法求出r=2,再利用三角形ABC 的面积减去圆O 的面积得到阴影的面积.【详解】∵四边形ABCD 是矩形,∴∠B=90°,∵6AB =,10AC =,∴BC=8,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O 的半径为r , ∵O 内切于ABC ∆,∴OH=OE=OF=r , ∵11()22ABC SAB BC AB AC BC r =⋅=++⋅, ∴1168(6108)22r ⨯⨯=++⋅, 解得r=2,∴O 的半径为2,∴2168-2224-4ABC O S SS ππ=-=⨯⨯⨯=阴影, 故选:D .【点睛】此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关键.14.如图,将边长为2cm 的正方形ABCD 沿直线l 向右翻动(不滑动),当正方形连续翻动8次后,正方形的中心O 经过的路线长是( )cm .A .2B .8C .3πD .4π【答案】D【解析】【分析】 由题意可得翻转一次中心O 经过的路线长就是1个半径为1,圆心角是90°的弧长,然后进行计算即可解答.【详解】解:∵正方形ABCD 2cm ,∴对角线的一半=1cm ,则连续翻动8次后,正方形的中心O 经过的路线长=8×901180π⨯=4π. 故选:D .【点睛】本题考查了弧长的计算,审清题意、确定点O 的路线和长度是解答本题的关键.15.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.16.如图,点A 、B 、C 、D 、E 、F 等分⊙O ,分别以点B 、D 、F 为圆心,AF 的长为半径画弧,形成美丽的“三叶轮”图案.已知⊙O 的半径为1,那么“三叶轮”图案的面积为( )A .π+332B .π-332C .332π+ D .332π-【答案】B【解析】【分析】连接OA 、OB 、AB ,作OH ⊥AB 于H ,根据正多边形的中心角的求法求出∠AOB ,根据扇形面积公式计算.【详解】连接OA 、OB 、AB ,作OH ⊥AB 于H ,∵点A 、B 、C 、D 、E 、F 是⊙O 的等分点,∴∠AOB=60°,又OA=OB ,∴△AOB 是等边三角形,∴AB=OB=1,∠ABO=60°,∴OH=2211()2-=32, ∴“三叶轮”图案的面积=(2601360π⨯⨯-12×1×32)×6=π-332, 故选B .【点睛】本题考查的是正多边形和圆、扇形面积的计算,掌握正多边形的中心角的求法、扇形面积公式是解题的关键.17.如图,已知⊙O 的半径是4,点A,B,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .8833π-B .16833π-C .16433π-D .8433π- 【答案】B【解析】【分析】 连接OB 和AC 交于点D ,根据菱形及直角三角形的性质先求出AC 的长及∠AOC 的度数,然后求出菱形ABCO 及扇形AOC 的面积,则由S 扇形AOC -S 菱形ABCO 可得答案.【详解】连接OB 和AC 交于点D ,如图所示:∵圆的半径为4,OB=OA=OC=4,又四边形OABC 是菱形,∴OB ⊥AC ,OD=12OB=2, 在Rt △COD 中利用勾股定理可知:CD=224223,243AC CD -===,∵sin ∠COD=3,2CD OC = ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =114438322OB AC ⨯=⨯⨯=, ∴S 扇形=21204163603ππ⨯⨯=, 则图中阴影部分面积为S 扇形AOC -S 菱形ABCO =16833π-. 故选B.【点睛】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π.18.如图,有一圆锥形粮堆,其侧面展开图是半径为6m 的半圆,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程长为( )A .3mB .33C .35D .4m【答案】C【解析】【分析】【详解】 如图,由题意得:AP =3,AB =6,90.BAP ∠=∴在圆锥侧面展开图中223635.BP m =+=故小猫经过的最短距离是35.m故选C.19.如图,在圆O中,直径AB平分弦CD于点E,且CD=43,连接AC,OD,若∠A与∠DOB互余,则EB的长是()A.3B.4 C3D.2【答案】D【解析】【分析】连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.【详解】连接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,3∵∠A与∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,设OE=x,则CO=2x,∴CO2=OE2+CE2即(2x)2=x23)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.20.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6, 故选B .【点睛】 本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.。

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试(含答案解析)(1)

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试(含答案解析)(1)

一、选择题1.在ABC 中,90,4,3C AC BC ∠=︒==,把它绕AC 旋转一周得一几何体,该几何体的表面积为( )A .24πB .21πC .16.8πD .36π2.如图,AC 为半圆的直径,弦3AB =,30BAC ∠=︒,点E 、F 分别为AB 和AC 上的动点,则BF EF +的最小值为( )A .3B .332C .3D .332+ 3.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .63 4.如图,ABC 为O 的一个内接三角形,过点B 作O 的切线PB 与OA 的延长线交于点P .已知34ACB ∠=︒,则P ∠等于( )A .17°B .27°C .32°D .22°5.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠ACB=30°,AB= 3 )A.32B.33C.3π26-D.3π36-6.已知△ABC的外心为O,连结BO,若∠OBA=18°,则∠C的度数为()A.60°B.68°C.70°D.72°7.如图,ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将ABC绕点B顺时针旋转到A B C'''的位置,且点A'、C'仍落在格点上,则线段AB扫过的图形的面积是()平方单位(结果保留)A.254πB.134πC.132πD.136π8.已知⊙O的直径为6,圆心O到直线l的距离为3,则能表示直线l与⊙O的位置关系的图是()A.B.C.D.9.在下列命题中,正确的是( )A.弦是直径B.半圆是弧C.经过三点确定一个圆D.三角形的外心一定在三角形的外部10.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD的中点.若50A ∠=︒,则B 的度数是( )A .50︒B .55︒C .60︒D .65︒11.如图,⊙O 是四边形 ABCD 的内切圆,连接 OA 、OB 、OC 、OD .若∠AOB =110°,则∠COD 的度数是( )A .60°B .70°C .80°D .45°12.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .121313C .4D .5二、填空题13.如图,等腰直角△ABC 中,∠BAC=90°,AB=AC=4.平面内的直线l 经过点A ,作CE ⊥l 于点E ,连接BE.则当直线l 绕着点A 转动时,线段BE 长度的最大值是________.14.如图所示,在平面直角坐标系中,正六边形OABCDE 边长是6,则它的外接圆圆心P 的坐标是______.15.如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE .则图中阴影部分的面积是______.16.如图,点C ,D 是半圈O 的三等分点,直径43AB =.连结AC 交半径OD 于E ,则阴影部分的面积是_______.17.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.18.在矩形ABCD 中,43AB =6BC =,若点P 是矩形ABCD 上一动点,要使得60APB ∠=︒,则AP 的长为__________.19.如图,四边形ABCD 内接于O ,若76A ∠=︒,则C ∠=_______ °.20.如图所示,在⊙O中,AB为弦,交AB于AB点D,且OD=DC,P为⊙O上任意一点,连接PA,PB,若⊙O的半径为1,则S△PAB的最大值为_____.三、解答题21.如图,AB为量角器(半圆O)的直径,等腰直角△BCD的斜边BD交量角器边缘于点G,直角边CD切量角器于读数为60°的点E处(即弧AE的度数为60°),第三边交量角器边缘于点F处.(1)求量角器在点G处的读数α(0°<α<90°);(2)若AB=12cm,求阴影部分面积.22.如图,AB是圆的直径,且AD//OC,求证:CD BC.23.已知:△ABC.(1)求作:△ABC的外接圆⊙O(要求:尺规作图,保留作图痕迹,不写作法);(2)若已知△ABC的外接圆的圆心O到BC边的距离OD=8,BC=12,求⊙O的半径.24.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点.求证:AP=BP.25.如图,长方形ABCD的长是a,宽是b,分别以A、C为圆心作扇形,用代数式表示阴影部分的周长L和面积S(结果中保留π).⨯的网格中有一个圆,请仅用无刻度直尺作图(保留画图痕迹).26.如图,在33(1)在图1中,圆过格点A,B,请作出圆心O;=,请作一个45圆周角.(2)在图2中,⊙O的两条弦AB CD【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】以直线AC为轴旋转一周所得到的几何体的表面积是圆锥的侧面积加底面积,根据圆锥的侧面积公式计算即可.【详解】解:根据题意得:圆锥的底面周长6π=, 所以圆锥的侧面积165152ππ=⨯⨯=, 圆锥的底面积239ππ=⨯=,所以以直线AC 为轴旋转一周所得到的几何体的表面积15924πππ=+=.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.2.B解析:B【分析】作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,利用两点之间线段最短和垂线段最短可判断此时FB +FE 的值最小,再判断△ABB′为等边三角形,然后计算出B′E 的长即可.【详解】解:作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,则FB =FB′,∴FB +FE =FB′+FE =B′E ,此时FB +FE 的值最小,∵∠BAC =30°,∴∠B′AC =30°,∴∠BAB′=60°,∵AB =AB′,∴△ABB′为等边三角形,∵B′E ⊥AB ,∴AE =BE =32, ∴B′E =3AE =332, 即BF +EF 的最小值为332. 故选:B .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质.3.A解析:A【分析】以BC 为边作等边BCM ,连接DM ,则DCM CAB ≅△△,根据全等三角形的性质得到DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232+,根据三角形的面积即可得到结论.【详解】解:以BC 为边作等边BCM ,连接DM ,∵60DCA MCB ==∠∠,∴DCM ACB =∠∠,∵DC=AC ,MC=BC ,∴DCM CAB ≅△△(SAS ),∴DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232,此时面积为:434故选:A【点睛】本题考查了等边三角形的性质,三角形面积的计算,找出点D 的位置是解题的关键.4.D解析:D【分析】连接OB,利用圆周角定理求得∠AOB,再根据切线性质证得∠OBP=90°,利用直角三角形的两锐角互余即可求解.【详解】解:连接OB,∵∠ACB=34°,∴∠AOB=2∠ACB=68°,∵PB为O的切线,∴OB⊥PB,即∠OBP=90°,∴∠P=90°﹣∠AOB=22°,故选:D.【点睛】本题考查了切线的性质、圆周角定理、直角三角形的两锐角互余,熟练掌握切线的性质和圆周角定理是解答的关键.5.C解析:C【分析】首先求出∠AOB,OB,然后利用S阴=S△ABO−S扇形OBD计算即可.【详解】连接OB.∵AB是⊙O切线,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=3,∠A=30°,∴OB=ABtan30°=1,∴S阴=S△ABO−S扇形OBD=12×1×3−2601360π⋅=3π26-.故选:C.【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.6.D解析:D【分析】连接OA,则OA=OB,可得∠OBA=∠OAB,再结合∠OBA=18°即可求得∠AOB=144°,再根据圆周角的性质即可求得∠C=72°.【详解】解:如图,连接OA,∵点O为ABC的外心,∴OA=OB,∴∠OBA=∠OAB,又∵∠OBA=18°,∴∠OAB=∠OBA=18°,∴∠AOB=180°-∠OAB-∠OBA=144°,∴∠C=12∠AOB=72°,故选:D.【点睛】本题考查了三角形的外心,圆周角定理,熟练掌握相关定义及性质是解决本题的关键.7.B解析:B【分析】在Rt△ABC中,由勾股定理求AB,观察图形可知,线段AB扫过的图形为扇形,旋转角为90°,根据扇形面积公式求解.【详解】解:在Rt△ABC中,由勾股定理,得==由图形可知,线段AB扫过的图形为扇形ABA′,旋转角为90°,∴线段AB扫过的图形面积=2290n13= 3603604AB⨯=πππ.故选:B.【点睛】本题考查了旋转的性质,扇形面积公式的运用,关键是理解题意,明确线段AB扫过的图形是90°的扇形,难度一般.8.C解析:C【分析】因为⊙O的直径为6,所以圆的半径是3,圆心O到直线l的距离为3即d=3,所以d=r,所以直线l与⊙O的位置关系是相切.【详解】解:∵⊙O的直径为6,∴r=3,∵圆心O到直线l的距离为3即d=3,∴d=r∴直线l与⊙O的位置关系是相切.故选:C.【点睛】本题考查直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.9.B解析:B【分析】根据命题的“真”“假”进行判断即可.【详解】解:A、弦不一定是直径,原说法错误,不符合题意;B、半圆是弧,说法正确,符合题意;C、不在同一直线上的三点确定一个圆,原说法错误,不符合题意;D、三角形的外心不一定在三角形的外部,原说法错误,不符合题意;故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.10.D解析:D【分析】连接AC ,根据圆心角、弧、弦的关系求出∠BAC ,根据圆周角定理求出∠ACB=90°,根据三角形内角和定理计算即可.【详解】解:连接AC ,∵点C 为BD 的中点,∴∠BAC=12∠BAD=25°, ∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠B=90°-∠BAC=65°,故选:D .【点睛】本题考查的是圆心角、弧、弦的关系、圆周角定理的应用,掌握圆心角、弧、弦的关系定理和圆周角定理是解题的关键.11.B解析:B【分析】设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,利用切线性质和HL 定理可以得到4对全等三角形,进而可得∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,根据8个角之和为360°即可求解.【详解】解:设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,则OE ⊥AB ,OF ⊥BC ,OG ⊥CD ,OH ⊥AD ,OE=OF=OG=OH ,在Rt △BEO 和△BFO 中,OE OF OB OB =⎧⎨=⎩, ∴Rt △BEO ≌△BFO (HL )∴∠1=∠2,同理可得:∠3=∠4,∠5=∠6,∠7=∠8,∴∠1+∠8=∠2+∠7,∠4+∠5=∠3+∠6,∵∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360°,∴∠1+∠8+∠4+∠5=180°,即∠AOB+∠COD=180°,∵∠AOB=110°,∴∠COD=180°﹣∠AOB=180°﹣110°=70°,故选:B.【点睛】本题考查了圆的切线性质、全等三角形的判定与性质,利用圆的的切线性质,添加辅助线构造全等三角形是解答的关键.12.A解析:A【分析】易证∠APB=90°,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP的长的最小值时的位置,OP′=OA=12AB=3,OD=5,DP′=OD−OP′=2,即可得出结果.【详解】解:∵BN⊥AM,∴∠APB=90°,∵AB=6为定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP长的最小值时的位置,如图所示:∵AB=6,AD=4,∴OP′=OA=12AB=3,OD22AD+OA224+3=5,∴DP′=OD−OP′=5−3=2,∴DP的长的最小值为2,故选:A .【点睛】本题考查了矩形的性质、勾股定理、轨迹等知识;判断出P 点的运动轨迹,找出DP 长的最小值时的位置是解题的关键.二、填空题13.【分析】以AC 为直径作圆O 连接BO 并延长交圆O 于点可得BO+O >B 从而可得BO+OE >B 即BE 为最大值再由勾股定理求出BO 的长即可解决问题【详解】解:由题意知CE ⊥l 于点E ∴以AC 为直径作圆O ∵CE 解析:225+【分析】以AC 为直径作圆O ,连接BO ,并延长交圆O 于点E ',可得BO+O E '>B E ',从而可得BO+OE >B E ',即BE 为最大值,再由勾股定理求出BO 的长即可解决问题.【详解】 解:由题意知,CE ⊥l 于点E ,∴以AC 为直径作圆O ,∵CE ⊥AE,∴点E 在圆O 上运动,连接BO ,并延长交圆O 于点E ',如图,∴BO+O E '>B E ',∵OE=O E ',∴BO+OE >B E ',∴BE 的长为最大值, ∵AO=OC=OE ,且AB=AC=4,∴122OE AC == 又∵∠BAC=90° ∴222224220BO AO AB =+=+=∴25BO =∴BE=252BO OE +=故答案为:225+【点睛】此题主要考查了求线段的最大值,构造出△ACE 的外接贺是解答本题的关键.14.【分析】如图所示连接POPA 过点P 作PG ⊥OA 于点G 由正六边形推出为等边三角形进而求出OGPG 的长度即可求得P 点坐标【详解】解:如图所示连接POPA 过点P 作PG ⊥OA 于点G 则∵多边形为正六边形∴∵∴ 解析:()3,33 【分析】 如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,由正六边形OABCDE 推出OPA 为等边三角形,进而求出OG 、PG 的长度即可求得P 点坐标.【详解】解:如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,则90OGP ∠=︒,∵多边形OABCDE 为正六边形,∴60OPA ∠=︒,∵PO PA =, ∴OPA 为等边三角形,又∵PG ⊥OA ,∴PG 平分OPA ∠,∴30OPG ∠=︒,又∵OA=6,∴11163222OG OP OA ===⨯=, ∴由勾股定理得:22226333PG OP OG =-=-=,∴P 的坐标是()3,33,故答案为:()3,33【点睛】本题考查正多边形外接圆的问题,熟练掌握正多边形的性质,灵活运用三角形相关知识解决边角关系是本题的关键.15.﹣【分析】根据题意和图形可知阴影部分的面积是正六边形的面积减去两个扇形的面积从而可以解答本题【详解】解:∵正六边形ABCDEF 的边长为2∴正六边形ABCDEF 的面积是:6××22=∠FAB =∠EDC解析:63﹣83π 【分析】 根据题意和图形可知阴影部分的面积是正六边形的面积减去两个扇形的面积,从而可以解答本题. 【详解】解:∵正六边形ABCDEF 的边长为2,∴正六边形ABCDEF 的面积是:6×34×22=63,∠FAB =∠EDC =120°, ∴图中阴影部分的面积是:63﹣2×21202360π⋅⋅=63﹣83π, 故答案为:63﹣83π. 【点睛】本题考查正多边形和圆、扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答. 16.【分析】连接OC 由点CD 是半圆O 的三等分点得到根据垂径定理得到OD ⊥AC ∠DOC=60°求得OE=CE=3根据扇形和三角形的面积公式即可得到结论【详解】解:连接OC ∵点CD 是半圆O 的三等分点∴∴OD解析:332π-【分析】连接OC ,由点C ,D 是半圆O 的三等分点,得到AD CD CB ==,根据垂径定理得到OD ⊥AC ,∠DOC=60°,求得OE=3,CE=3,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接OC ,∵点C ,D 是半圆O 的三等分点,∴AD CD CB ==,∴OD ⊥AC ,∠DOC=60°,∴∠OCE=30°,∵3AB =∴3∴CE=3,∴S阴影=S 扇形COD -S △OCE =2601236022ππ⋅⋅-⨯=-.故答案为:22π-. 【点睛】本题考查了扇形的面积的计算,垂径定理,含30°角的直角三角形的性质,正确的识别图形是解题的关键. 17.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】 根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心, 1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 18.或4或8【分析】取CD 中点P1连接AP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B 是等边三角形可得∠AP1B =60°过点A 点P1点B 作圆与ADBC 各有一个交点即这样的P 点一共3个再运用勾解析:4或8.【分析】取CD 中点P 1,连接AP 1,BP 1,由勾股定理可求AP 1=BP 1=△AP 1B 是等边三角形,可得∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD 中点P 1,连接AP 1,BP 1,如图1,∵四边形ABCD 是矩形∴AB =CD =43,AD =BC =6,∠D =∠C =90°∵点P 1是CD 中点∴CP =DP 1=23∴AP 1=221AD DP +=43, BP 1=221BC CP +=43 ∴AP 1=P 1B =AB∴△APB 是等边三角形∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交,∴这样的P 点一共有3个当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形,∴3,43,90AB A CD AD =∠===︒∵260,AP B ∠=︒∴221,2P A P B = 即222,P B P A =在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -=∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形,∴∠B=90°∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒ ∴331,2BP AP = 在3Rt ABP ∆中,22233,AP BP AB -=222331()(43),2AP AP -= 23348,4AP = ∴8,AP =综上所述,AP 的长为:34或8. 故答案为:34或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.19.104【分析】根据圆内接四边形的对角互补列式计算即可【详解】解:∵四边形ABCD 内接于⊙O ∴∠A+∠C =180°∴∠C =180°﹣∠A =180°﹣76°=104°故答案为:104【点睛】本题考查的是解析:104【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠A +∠C =180°,∴∠C =180°﹣∠A=180°﹣76°=104°,故答案为:104.【点睛】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键. 20.【分析】作直径CE 连OAAEBE 利用垂经定理的AD=BD 在利用勾股定理计算出AD 则AB=2AD 当点P 与点E 重合时P 点到AB 的距离最大然后根据三角形面积公式求解即可【详解】延长CD 交⊙O 于点E 连接OA【分析】作直径CE ,连OA 、AE 、BE ,利用垂经定理的AD=BD ,在利用勾股定理计算出AD ,则AB=2AD ,当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解即可.【详解】延长CD 交⊙O 于点E ,连接OA ,AE ,BE 如图,∵OA=OC=1,OD=CD ,∴OD=CD=12OC=12, ∵OC ⊥AB ,∴2=, AD=BD=12AB ,,∴sin ∠OAD=12OD OA =, ∴∠OAD=30º, ∴∠AOD =90º-∠OAD =60º,∵OA =OE ,∴∠OAE=∠OEA ,∵∠AOD=∠OAE+∠OEA ,∴∠OAE=∠OEA=30º,∵CE ⊥AB ,∴AE=BE ,∴∠OEB=∠OEA=30º,∴∠AEB=∠OEB+∠OEA=60º,∴△ABE 是等边三角形,∴DE=223 2AE AD-=,S△ABE=133 24AB DE=,∵在△ABP中,当点P与点E重合时,AB边上的高取最大值,此时△ABP的面积最大,∴S△ABP的最大值=334.故答案为:334.【点睛】本题考查三角形面积,掌握垂经定理,勾股定理,和引辅助线构造图形,找到当点P与点E重合时,P点到AB的距离最大,然后根据三角形面积公式求解是解题关键.三、解答题21.(1)30°;(2)6π﹣93【分析】(1)如图,连接OE,OF,利用切线的性质、等腰直角三角形的性质以及平行线的判定证得OE∥BC,则同位角∠ABC=∠AOE=60°,所以由图形中相关角与角间的和差关系即可得到∠ABG=15°;然后由圆周角定理可以求得量角器在点G处的读数α(0°<α<90°);(2)根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)如图,连接OE,OF.∵CD切半圆O于点E,∴OE⊥CD,∵BD为等腰直角△BCD的斜边,∴BC⊥CD,∠D=∠CBD=45°,∴OE ∥BC ,∴∠ABC =∠AOE =60°,∴∠ABG =∠ABC ﹣∠CBD =60°﹣45°=15°∴弧AG 的度数=2∠ABG =30°,∴量角器在点G 处的读数α=弧AG 的度数=30°;(2)∵AB =12cm ,∴OF =OB =6cm ,∠ABC =60°,∴△OBF 为正三角形,∠BOF =60°,∴S 扇形=2606360π⋅⨯=6π(cm 2),S △OBF =93, ∴S 阴影=S 扇形﹣S △OBF =6π﹣93.【点睛】本题考查了切线的性质,扇形面积的计算,圆周角定理.求(2)题时,利用了“分割法”求得图中阴影部分的面积.22.证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC 或者OD 都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC =.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化. 23.(1)作图见解析;(2)10.【分析】(1)分别做AB 、BC 的垂直平分线且交于O ,然后以O 为圆心、OA 为半径画圆即可; (2)如图:连接OB ,然后根据垂径定理求得BD ,最后根据勾股定理解答即可.【详解】解:(1)如图所示∴⊙O 即为所求作的外接圆;(2)如图:连接OB∵已知△ABC 的外接圆的圆心O 到BC 边的距离OD =8∵线段BC 的垂直平分线交BC 于点D ,∴BD =CD =12BC=6, 在Rt △BOD 中,OB =2286+=10,∴⊙O 的半径长10.【点睛】本题考查了三角形的外接圆的作法和垂径定理的应用,灵活应用相关知识成为解答本题的关键.24.见解析【分析】根据切线的性质得出OP ⊥AB ,根据垂径定理得出即可.【详解】证明:如图,连接OP ,∵大圆的弦AB 是小圆的切线,点P 为切点,∴OP ⊥AB ,∵OP 过O ,∴AP=BP .【点睛】本题考查了切线的性质和垂径定理的应用,主要考查学生的推理能力,题目比较好,难度适中.25.22L b a b π=+-;212S ab b π=-.【分析】由已知图知,阴影部分的周长是()12πb 22a b ⨯+-; 阴影部分的面积为,长方形的面积减去两个14圆的面积(半圆的面积). 【详解】 阴影部分的周长()122222L b a b b a b ππ=⨯+-=+-; 阴影部分的面积221=1242S ab b ab b ππ=-⨯-. 【点睛】此题考查的是列代数式,用到的知识点是半圆的周长和面积的计算方法.26.(1)见解析;(2)见解析.【分析】(1)如图3,连接AN 、BM ,通过圆内接三角形是直角三角形时,斜边就是直径来确定圆心位置;(2)连接BC 、AD 、BD ,通过同(等)弧所对圆周角相等推出ABD CDB ∠=∠,进而推出45BDC ∠=︒.【详解】(1)如图3,连接AN 、BM 交点O 即为圆心∵9090ABN BAM ∠=︒∠=︒,,∴AN 、BM 是直径,∴直径交点O 就是圆心.(2)如图4,连接BC 、AD 、BD∵AB=CD ,∴AB CD =,∴ADB CBD ∠=∠,又∵AC CA =,∴ABC CDA ∠=∠,∴ABD CDB ∠=∠,又∵90BED ∠=︒,∴45ABD CDB ∠=∠=︒,故连接BD ,则45BDC ∠=︒.【点睛】本题考查确定圆心和确定圆弧圆周角等问题,解题的关键是圆内接三角形是直角三角形时,斜边就是直径以及同(等)弧所对圆周角相等.。

人教版初三圆测试题及答案

人教版初三圆测试题及答案

人教版初三圆测试题及答案一、选择题(每题2分,共10分)1. 半径为2的圆的面积是多少?A. 4πB. 6πC. 8πD. 12π2. 圆的周长公式是:A. C = πrB. C = 2πrC. C = 4πrD. C = 8πr3. 若圆的半径是3,圆心角为60°,那么这个弧长是多少?A. πB. 3πC. 6πD. 9π4. 点P到圆心O的距离是5,圆的半径是3,那么点P与圆的位置关系是:A. 在圆上B. 在圆内C. 在圆外D. 无法确定5. 圆的切线与半径垂直,且切点到圆心的距离等于:A. 半径B. 直径C. 周长的一半D. 面积的平方根二、填空题(每题2分,共10分)6. 半径为4的圆的面积是_________。

7. 若圆的周长为12π,那么圆的半径是_________。

8. 圆心角为120°的弧所对的圆心角是_________。

9. 点P到圆心O的距离是2,圆的半径是4,点P与圆的位置关系是_________。

10. 圆的切线与半径垂直,切点到圆心的距离是_________。

三、计算题(每题5分,共20分)11. 已知圆的半径为5,求圆的周长和面积。

12. 已知圆的周长为16π,求圆的半径。

13. 若圆的半径为7,圆心角为45°,求该弧长。

14. 已知点P到圆心O的距离为10,圆的半径为8,求点P与圆的位置关系。

四、解答题(每题10分,共20分)15. 某圆的半径为6,圆心角为30°,求该弧所对的圆心角和弧长。

16. 已知圆的切线在点M处与圆相切,OM=6,半径为4,求切线PM的长度。

五、综合题(15分)17. 某工厂需要在一块半径为10米的圆形场地上安装一个直径为4米的圆形水池,水池的中心与场地的中心重合。

求水池的半径占场地半径的比例,以及水池的面积占整个场地面积的比例。

六、结束语本测试题覆盖了圆的基本概念、公式和计算方法,旨在帮助学生巩固和检验对圆的相关知识的掌握。

初中数学圆的经典测试题含答案解析

初中数学圆的经典测试题含答案解析

初中数学圆的经典测试题含答案解析一、选择题1.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C 的度数是()A.48°B.42°C.34°D.24°【答案】B【解析】【分析】根据切线的性质求出∠OAC,结合∠C=42°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【详解】解:∵∠ABD=24°,∴∠AOC=48°,∵AC是⊙O的切线,∴∠OAC=90°,∴∠AOC+∠C=90°,∴∠C=90°﹣48°=42°,故选:B.【点睛】考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.2.如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=3,AC=4,则sin∠ABD的值是()A.43B.34C.35D.45【答案】D【解析】【分析】由垂径定理和圆周角定理可证∠ABD=∠ABC,再根据勾股定理求得AB=5,即可求sin∠ABD 的值.【详解】∵AB是⊙O的直径,CD⊥AB,∴弧AC=弧AD,∴∠ABD=∠ABC.根据勾股定理求得AB=5,∴sin∠ABD=sin∠ABC=45.故选D.【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.3.如图,正方形ABCD内接于⊙O,AB=22,则»AB的长是()A.πB.32πC.2πD.12π【答案】A【解析】【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【详解】连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴»»»»AB BC CD DA===,∴∠AOB=14×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,∴»AB的长为902 180´=π,故选A.【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键.4.将直尺、有60°角的直角三角板和光盘如图摆放,A为60°角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是()A.4 B.83C.6 D.43【答案】B【解析】【分析】设三角板与圆的切点为C,连接OA、OB,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案.【详解】设三角板与圆的切点为C,连接OA、OB,由切线长定理知,AB=AC=3,AO平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB3∴光盘的直径为3故选:B.【点睛】本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.5.已知下列命题:①若a>b,则ac>bc;②若a=1a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1,则a=a是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.6.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=25,则线段AC的长为()A.1 B.2 C.4 D.5【答案】C【解析】【分析】首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB=25,即可求得答案.【详解】解:连接CO并延长交⊙O于点D,连接AD,由CD 是⊙O 的直径,可得∠CAD=90°,∵∠B 和∠D 所对的弧都为弧AC ,∴∠B=∠D ,即sinB=sinD=25, ∵半径AO=5,∴CD=10, ∴2sin 105AC AC D CD ===, ∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.7.如图,AC BC ⊥,8AC BC ==,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作»AB ,过点O 作AC 的平行线交两弧于点D 、E ,则图中阴影部分的面积是( )A .20833π- B .20833π+C .20833π D .20433π 【答案】A【解析】【分析】 如图,连接CE .图中S 阴影=S 扇形BCE −S 扇形BOD −S △OCE .根据已知条件易求得OB =OC =OD =4,BC =CE =8,∠ECB =60°,OE =3,所以由扇形面积公式、三角形面积公式进行解答即可.【详解】解:如图,连接CE .∵AC⊥BC,AC=BC=8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,∴∠ACB=90°,OB=OC=OD=4,BC=CE=8.又∵OE∥AC,∴∠ACB=∠COE=90°.∴在Rt△OEC中,OC=4,CE=8,∴∠CEO=30°,∠ECB=60°,OE=43,∴S阴影=S扇形BCE−S扇形BOD−S△OCE=2260811-4-443 36042ππ⨯⨯⨯⨯=20-83 3π故选:A.【点睛】本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.8.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A.54°B.27°C.36°D.46°【答案】C【解析】【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.【详解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=12∠AOB=36°.故答案为C.【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.9.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.10.如图,抛物线y=ax2﹣6ax+5a(a>0)与x轴交于A、B两点,顶点为C点.以C点为圆心,半径为2画圆,点P 在⊙C 上,连接OP ,若OP 的最小值为3,则C 点坐标是( )A .522(,22-B .(4,﹣5)C .(3,﹣5)D .(3,﹣4)【答案】D【解析】【分析】首先根据二次函数的解析式求出点A 、B 、C 三点的坐标,再由当点O 、P 、C 三点共线时,OP 取最小值为3,列出关于a 的方程,即可求解.【详解】∵2650y ax ax a a +-=(>) 与x 轴交于A 、B 两点, ∴A (1,0)、B (5,0),∵226534y ax ax a a x a =+=---() , ∴顶点34C a (,-), 当点O 、P 、C 三点共线时,OP 取最小值为3,∴OC =OP+2=5, 29165(0)a a +=> ,∴1a = ,∴C (3,﹣4),故选:D .【点睛】本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.11.如图,O e 中,若66OA BC AOB ⊥∠=o 、,则ADC ∠的度数为( )A .33°B .56°C .57°D .66°【答案】A【解析】【分析】 根据垂径定理可得»»ACAB =,根据圆周角定理即可得答案. 【详解】∵OA ⊥BC ,∴»»ACAB =, ∵∠AOB=66°,∠AOB 和∠ADC 分别是»AB和»AC 所对的圆心角和圆周角, ∴∠ADC=12∠AOB=33°, 故选:A .【点睛】 本题考查垂径定理及圆周角定理,垂直于弦的直径平分弦,并且平分这条弦所对的两条弧;在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握相关定理是解题关键.12.如图,ABC V 是O e 的内接三角形,且AB AC =,56ABC ∠=︒,O e 的直径CD 交AB 于点E ,则AED ∠的度数为( )A .99︒B .100︒C .101°D .102︒【答案】D【解析】【分析】 连接OB ,根据等腰三角形的性质得到∠A ,从而根据圆周角定理得出∠BOC ,再根据OB=OC 得出∠OBC ,即可得到∠OBE ,再结合外角性质和对顶角即可得到∠AED 的度数.【详解】解:连接OB,∵AB=AC,∴∠ABC=∠ACB=56°,∴∠A=180°-56°-56°=68°=12∠BOC,∴∠BOC=68°×2=136°,∵OB=OC,∴∠OBC=∠OCB=(180°-136°)÷2=22°,∴∠OBE=∠EBC-∠OBC=56°-22°=34°,∴∠AED=∠BEC=∠BOC-∠OBE=136°-34°=102°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质,外角的性质,解题的关键是作出辅助线OB,得到∠BOC的度数.13.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是( )A.22°B.26°C.32°D.68°【答案】A【解析】试题分析:根据同弧所对的圆心角等于圆周角度数的两倍,则∠BOC=2∠A=136°,则根据三角形内角和定理可得:∠OBC+∠OCB=44°,根据OB=OC可得:∠OBC=∠OCB=22°.考点:圆周角的计算14.如图,在边长为8的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )A .183π-B .183πC .32316πD .1839π-【答案】C【解析】【分析】 由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】解:∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD •sin60°=383= ∴图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积 =2120(43)84332316ππ⨯⨯=. 故选:C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.15.下列命题中正确的个数是( )①过三点可以确定一个圆②直角三角形的两条直角边长分别是5和12,那么它的外接圆半径为6.5③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米④三角形的重心到三角形三边的距离相等.A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①根据圆的作法即可判断;②先利用勾股定理求出斜边的长度,然后根据外接圆半径等于斜边的一半即可判断;③根据圆与圆的位置关系即可得出答案;④根据重心的概念即可得出答案.【详解】①过不在同一条直线上的三点可以确定一个圆,故错误;②∵直角三角形的两条直角边长分别是5和12, ∴斜边为2251213+= ,∴它的外接圆半径为.113652⨯=,故正确; ③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米或1厘米,故错误; ④三角形的内心到三角形三边的距离相等,故错误;所以正确的只有1个,故选:A .【点睛】本题主要考查直角三角形外接圆半径,圆与圆的位置关系,三角形内心,重心的概念,掌握直角三角形外接圆半径的求法,圆与圆的位置关系,三角形内心,重心的概念是解题的关键.16.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .23D .43【答案】A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4.故选A . 考点:正多边形和圆.17.如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=86°,则∠BCD 的度数是( )A .86°B .94°C .107°D .137° 【答案】D【解析】【分析】【详解】解:∵∠BOD=86°,∴∠BAD=86°÷2=43°,∵∠BAD+∠BCD=180°,∴∠BCD=180°-43°=137°,即∠BCD的度数是137°.故选D.【点睛】本题考查圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).18.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A到BC上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A到BC上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180rrππ⨯=g g圆的周长为2rπ∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.19.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A .13B .12C .34D .1【答案】B【解析】 【分析】根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长. 【详解】圆锥的底面周长是:π;设圆锥的底面半径是r ,则2πr=π.解得:r=12. 故选B .【点睛】本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.20.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线323y x =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )A .3B .2C 3D 2 【答案】D【解析】【分析】先根据题意,画出图形,令直线3x+ 23x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H ,作OH ⊥CD 于H ;然后根据坐标轴上点的坐标特点,由一次函数解析式,求得C 、D 两点的坐标值; 再在Rt △POC 中,利用勾股定理可计算出CD 的长,并利用面积法可计算出OH 的值; 最后连接OA ,利用切线的性质得OA ⊥PA ,在Rt △POH 中,利用勾股定理,得到21PA OP =-PA 的最小值即可.【详解】如图,令直线3x+23x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=3D(0,3当y=033,解得x=-2,则C(-2,0),∴222(23)4CD=+=,∵12OH•CD=12OC•OD,∴OH=233 4⨯=连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴2221PA OP OA OP=-=-当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA22(3)12-=故选D.【点睛】本题考查了切线的性质,解题关键是熟记切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.。

人教版初中数学圆的经典测试题含答案

人教版初中数学圆的经典测试题含答案

人教版初中数学圆的经典测试题含答案一、选择题1.如图,有一个边长为2cm 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是( )A .3cmB .2cmC .23cmD .4cm【答案】A【解析】【分析】 根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB 的度数,最后根据等腰三角形及直角三角形的性质解答即可.【详解】解:如图所示,正六边形的边长为2cm ,OG ⊥BC ,∵六边形ABCDEF 是正六边形,∴∠BOC=360°÷6=60°,∵OB=OC ,OG ⊥BC ,∴∠BOG=∠COG=12∠BOC =30°, ∵OG ⊥BC ,OB=OC ,BC=2cm , ∴BG=12BC=12×2=1cm , ∴OB=sin 30BG =2cm , ∴OG=2222213OB BG -=-=,∴圆形纸片的半径为3cm ,故选:A .【点睛】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.2.如图,在平行四边形ABCD 中,BD ⊥AD ,以BD 为直径作圆,交于AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( )A .123B .1536π-πC .30312π-D .48336π-π【答案】C【解析】【分析】易得AD 长,利用相应的三角函数可求得∠ABD 的度数,进而求得∠EOD 的度数,那么一个阴影部分的面积=S △ABD -S 扇形DOE -S △BOE ,算出后乘2即可.【详解】连接OE ,OF .∵BD=12,AD :AB=1:2,∴AD=43 ,AB=83,∠ABD=30°,∴S △ABD =×43×12=243,S 扇形=603616,633933602OEB S ππ⨯==⨯⨯=∵两个阴影的面积相等,∴阴影面积=()224369330312ππ⨯--=- .故选:C【点睛】本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积.3.如图,已知AB 是⊙O 是直径,弦CD ⊥AB ,AC 2,BD =1,则sin ∠ABD 的值是( )A .2B .13C .23D .3【答案】C【解析】【分析】 先根据垂径定理,可得BC 的长,再利用直径对应圆周角为90°得到△ABC 是直角三角形,利用勾股定理求得AB 的长,得到sin ∠ABC 的大小,最终得到sin ∠ABD【详解】解:∵弦CD ⊥AB ,AB 过O ,∴AB 平分CD ,∴BC =BD ,∴∠ABC =∠ABD ,∵BD =1,∴BC =1,∵AB 为⊙O 的直径,∴∠ACB =90°,由勾股定理得:AB ()22222213AC BC +=+=, ∴sin ∠ABD =sin ∠ABC =23AC AB = 故选:C .【点睛】本题考查了垂径定理、直径对应圆周角为90°、勾股定理和三角函数,解题关键是找出图形中的直角三角形,然后按照三角函数的定义求解4.已知下列命题:①若a >b ,则ac >bc ;②若a=1a ;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1,则a=a是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.5.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°【答案】B【解析】【分析】连接FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB、∠EFB的度数,继而根据∠EFO=∠EBF-∠OFB即可求得答案.【详解】连接FB,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.6.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=25,则线段AC的长为()A.1 B.2 C.4 D.5【答案】C【解析】【分析】首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB=25,即可求得答案.【详解】解:连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,∵∠B和∠D所对的弧都为弧AC,∴∠B=∠D,即sinB=sinD=25,∵半径AO=5,∴CD=10,∴2sin 105AC AC D CD ===, ∴AC=4,故选:C.【点睛】 本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.7.如图,ABC ∆是O 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B .2C .3D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.8.已知某圆锥的底面半径为3 cm ,母线长5 cm ,则它的侧面展开图的面积为( ) A .30 cm 2B .15 cm 2C .30π cm 2D .15π cm 2【答案】D【解析】试题解析:根据圆锥的侧面展开图的面积计算公式得:S =RL π=15π故选D.9.如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC=3,AC=4,则sin ∠ABD 的值是( )A .43B .34C .35D .45【答案】D【解析】【分析】由垂径定理和圆周角定理可证∠ABD=∠ABC ,再根据勾股定理求得AB=5,即可求sin ∠ABD 的值.【详解】∵AB 是⊙O 的直径,CD ⊥AB ,∴弧AC=弧AD ,∴∠ABD=∠ABC .根据勾股定理求得AB=5,∴sin∠ABD=sin∠ABC=45.故选D.【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.10.如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC=30°,DC=1,则⊙O的半径为()A.2 B3C.23D.1【答案】B【解析】【分析】先由圆周角定理知∠BDA=∠ADC=90°,结合∠DAC=30°,DC=1得AC=2DC=2,∠C=60°,再由3【详解】∵AB是⊙O的直径,∴∠BDA=∠ADC=90°,∵∠DAC=30°,DC=1,∴AC=2DC=2,∠C=60°,则在Rt△ABC中,AB=ACtanC=3,∴⊙O3,故选:B.【点睛】本题主要考查圆周角定理,解题的关键是掌握半圆(或直径)所对的圆周角是直角和三角函数的应用.11.如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最小值为()A.4 B.3 C.7 D.8【答案】A【解析】【分析】连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,根据勾股定理和题意求得OP=2,则AB的最小长度为4.【详解】解:如图,连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,∵C(3,4),∴OC22,34∵以点C为圆心的圆与y轴相切.∴⊙C的半径为3,∴OP=OC﹣3=2,∴OP=OA=OB=2,∵AB是直径,∴∠APB=90°,∴AB长度的最小值为4,故选:A.【点睛】本题考查了圆切线的性质、坐标和图形的性质、圆周角定理、勾股定理,找到OP的最小值是解题的关键.12.如图,在Rt△ABC中,∠ABC=90°,AB=23BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A .5342π-B .5342π+C .23π-D .432π-【答案】A【解析】【分析】连接OD ,过点O 作OH ⊥AC ,垂足为 H ,则有AD=2AH ,∠AHO=90°,在Rt △ABC 中,利用∠A 的正切值求出∠A=30°,继而可求得OH 、AH 长,根据圆周角定理可求得∠BOC =60°,然后根据S 阴影=S △ABC -S △AOD -S 扇形BOD 进行计算即可.【详解】连接OD ,过点O 作OH ⊥AC ,垂足为 H ,则有AD=2AH ,∠AHO=90°,在Rt △ABC 中,∠ABC=90°,AB=23,BC=2,tan ∠A=23323BC AB ==, ∴∠A=30°,∴OH=12OA=32,AH=AO•cos ∠A=33322⨯=,∠BOC=2∠A=60°, ∴AD=2AH=3,∴S 阴影=S △ABC -S △AOD -S 扇形BOD =()26031132323222360π⨯⨯⨯-⨯⨯-=5342π-, 故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.13.如图,已知ABC ∆和ABD ∆都O 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆【答案】A【解析】【分析】 根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】 考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.14.如图,点I 是Rt △ABC 的内心,∠C =90°,AC =3,BC =4,将∠ACB 平移使其顶点C 与I 重合,两边分别交AB 于D 、E ,则△IDE 的周长为( )A .3B .4C .5D .7【答案】C【解析】【分析】 连接AI 、BI ,根据三角形的内心的性质可得∠CAI =∠BAI ,再根据平移的性质得到∠CAI =∠AID ,AD =DI ,同理得到BE =EI ,即可解答.【详解】连接AI 、BI ,∵∠C=90°,AC=3,BC=4,∴AB=22+=5AC BC∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=5故选C.【点睛】此题考查了平移的性质和三角形内心的性质,解题关键在于作出辅助线15.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是( )A.22°B.26°C.32°D.68°【答案】A【解析】试题分析:根据同弧所对的圆心角等于圆周角度数的两倍,则∠BOC=2∠A=136°,则根据三角形内角和定理可得:∠OBC+∠OCB=44°,根据OB=OC可得:∠OBC=∠OCB=22°.考点:圆周角的计算16.如图,AB是⊙O的直径,弦CD⊥AB于E点,若AD=CD= 23BC的长为()A .3πB .23πC .33πD .233π 【答案】B【解析】【分析】根据垂径定理得到3CE DE ==,BC BD = ,∠A=30°,再利用三角函数求出OD=2,即可利用弧长公式计算解答.【详解】如图:连接OD ,∵AB 是⊙O 的直径,弦CD ⊥AB 于E 点,AD =CD = 23,∴3CE DE ==,BC BD = ,∠A=30°, ∴∠DOE=60°,∴OD=2sin 60DE =, ∴BC 的长=BD 的长=60221803ππ⨯=, 故选:B.【点睛】此题考查垂径定理,三角函数,弧长公式,圆周角定理,是一道圆的综合题.17.如图,有一圆锥形粮堆,其侧面展开图是半径为6m 的半圆,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程长为( )A .3mB .33mC .35mD .4m【答案】C【解析】【分析】【详解】 如图,由题意得:AP =3,AB =6,90.BAP ∠=∴在圆锥侧面展开图中223635.BP m =+= 故小猫经过的最短距离是35.m故选C.18.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧弧AB 上任意一点(与点B 不重合),则∠BPC 的度数为( )A .30°B .45°C .60°D .90°【答案】B【解析】 分析:接OB ,OC ,根据四边形ABCD 是正方形可知∠BOC=90°,再由圆周角定理即可得出结论.详解:连接OB ,OC ,∵四边形ABCD 是正方形,∴∠BOC=90°,∴∠BPC=12∠BOC=45°. 故选B .点睛:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.19.如图,⊙O 过点B 、C ,圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( )A .23B .13C .4D .32【答案】B【解析】【分析】如下图,作AD ⊥BC ,设半径为r ,则在Rt △OBD 中,OD=3-1,OB=r ,BD=3,利用勾股定理可求得r.【详解】如图,过A 作AD ⊥BC ,由题意可知AD 必过点O ,连接OB ;∵△BAC 是等腰直角三角形,AD ⊥BC ,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt △OBD 中,根据勾股定理,得:22BD OD 13+故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC 判定点O 在AD 上.20.如图,弧 AB 等于弧CD ,OE AB ⊥于点E ,OF CD ⊥于点F ,下列结论中错误..的是( )A .OE=OFB .AB=CDC .∠AOB =∠COD D .OE >OF【答案】D【解析】【分析】 根据圆心角、弧、弦的关系可得B 、C 正确,根据垂径定理和勾股定理可得A 正确,D 错误.【详解】解:∵AB CD =,∴AB =CD ,∠AOB =∠COD ,∵OE AB ⊥,OF CD ⊥,∴BE =12AB ,DF =12CD , ∴BE =DF ,又∵OB =OD , ∴由勾股定理可知OE =OF ,即A 、B 、C 正确,D 错误,故选:D .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理,勾股定理,熟练掌握基本性质定理是解题的关键.。

人教版初中数学九年级上册-:《圆》专题测试卷(有解析))

人教版初中数学九年级上册-:《圆》专题测试卷(有解析))

《圆》专题检测卷时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是()A.45°B.60°C.90°D.135°2.已知△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=62°,∠C=50°,则∠ADB的度数是()]A.68°B.72°C.78°D.82°3.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°4.如图,以△ABC的一边AB为直径作⊙O,交于BC的中点D,过点D作直线EF与⊙O相切,交AC于点E,交AB的延长线于点F.若△ABC的面积为△CDE的面积的8倍,则下列结论中,错误的是()A.AC=2AO B.EF=2AE C.AB=2BF D.DF=2DE;5.已知⊙O是正六边形ABCDEF的外接圆,P为⊙O上除C、D外任意一点,则∠CPD的度数为()A.30°B.30°或150°C.60°D.60°或120°6.以O为中心点的量角器与直角三角板ABC如图所示摆放,直角顶点B在零刻度线所在直线DE上,且量角器与三角板只有一个公共点P,若点P的读数为35°,则∠CBD的度数是()A.55°B.45°C.35°D.257.如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点A为60°角与直尺交点,点B为光盘与直尺唯一交点,若AB=3,则光盘的直径是(){A.6B.3C.6 D.38.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,OC=3,则EC的长为()A.B.8 C.D.9.如图,等腰△ABC中,AB=AC=5cm,BC=8cm.动点D从点C出发,沿线段CB以2cm/s 的速度向点B运动,同时动点O从点B出发,沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随时停止.设运动时间为t(s),以点O为圆心,OB长为半径的⊙O与BA交于另一点E,连接ED.当直线DE与⊙O相切时,t的取值是()A.B.C.D.:10.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D,则图中阴影部分的面积为()A.π﹣B.π﹣C.π﹣D.π﹣二.填空题(每题4分,共20分)11.如图,在三角形广场ABC的三个角处各建一个半径相等的扇形草坪,草坪的半径长为20m,则草坪的总面积为.(保留π)12.如图所示,△ABC是⊙O的内接三角形,若∠BAC与∠BOC互补,则∠BOC的度数为.·13.如图,已知C为上一点,若∠AOB=100°,则∠ACB的度数为度.14.如图,四边形ABCD内接于⊙O,且四边形OABC是平行四边形,则∠D=.15.如图,等边△ABC中,AB=2,点D是以A为圆心,半径为1的圆上一动点,连接CD,取CD的中点E,连接BE,则线段BE的最大值与最小值之和为.三.解答题(每题10分,共50分);16.如图,AB为⊙O的直径,C,D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若∠BAC=∠DAC=30°,BC=2,求劣弧的长l.17.如图,一个装满玉米的粮囤,上面是圆锥形,下面是圆柱形,圆柱底面的半径是10米,高是4米,圆锥的高是3米.(π≈)(1)求这个粮囤能装多少立方米的玉米(2)若每立方米玉米重吨,这囤玉米有多少吨(3)在(2)的条件下,粮库欲将这些玉米运往食品加工厂,甲、乙两个运输队承担此次运输任务,已知甲运输队每天比乙运输队多运送,在运送过程中,甲、乙两运输队合运7天后,甲运输队有其他任务,剩下由乙运输队单独运送6天,恰好运完.求甲、乙两运输队每天各运送多少吨玉米\18.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,交BC于F.(1)若∠ABC=40°,∠C=80°,求∠CBD的度数;(2)求证:DB=DE;、(3)若AB=6,AC=4,BC=5,求DE的长.19.如图,在△ABC中,BC=4,且△ABC的面积为4,以点A为圆心,2为半径的⊙A交AB于E,交AC于F,点P是⊙A上一点,且∠EPF=45°.(1)求证:BC为⊙A的切线;…(2)求图中阴影部分的面积.20.如图①,AB为⊙O的直径,点C在⊙O上,AD平分∠CAB,AD与BC交于点F,过点D作DE⊥AB于点E.|(1)求证:BC=2DE;(2)如图②,连接OF,若∠AFO=45°,半径为2时,求AC的长.参考答案一.选择题1.解:∵四边形ABCD为圆的内接四边形,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,|∴∠D=×180°=90°.故选:C.2.解:延长AD交⊙O于E,连接CE,则∠E=∠B=62°,∠ACE=90°,∴∠CAE=90°﹣62°=28°,∵∠ADB=∠CAE+∠ACB=78°,故选:C.;3.解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°.故选:C.4.解:连接OD、AD,∵OB=OA,BD=DC,∴AC=2OD,∵OA=OD,、∴AC=2OD,A正确,不符合题意;∵EF是⊙O的切线,∴OD⊥EF,∵OB=OA,BD=DC,∴OD∥AC,∴AE⊥EF,∵△ABC的面积为△CDE的面积的8倍,D是BC的中点,∴△ADC的面积为△CDE的面积的4倍,,∴△ADE的面积为△CDE的面积的3倍,∴AE=3EC,∴=,∵OD∥AC,∴==,∴FA=2AE,B错误,符合题意;AB=2BF,C正确,不符合题意;==,!∴DF=2DE,D正确,不符合题意;故选:B.5.解:连接OC、OD,如图,∵⊙O是正六边形ABCDEF的外接圆,∴∠COD=60°,当P点在弧CAD上时,∠CPD=∠COD=30°,当P点在弧CD上时,∠CPD=180°﹣30°=150°,;综上所述,∠CPD的度数为30°或150°.故选:B.6.解:∵AB是⊙O的切线,∴∠OPB=90°,∵∠ABC=90°,∴OP∥BC,∴∠CBD=∠POB=35°,》故选:C.7.解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB=3,∴光盘的直径为6,故选:A.—8.解:连接BE,∵AE为⊙O直径,∴∠ABE=90°,∵OD⊥AB,OD过O,∴AC=BC=AB==4,∵AO=OE,∴BE=2OC,;∵OC=3,∴BE=6,在Rt△CBE中,EC===2,故选:D.9.解:作AH⊥BC于H,如图,BE=2t,BD=8﹣2t,∵AB=AC=5,∴BH=CH=BC=4,当BE⊥DE,直线DE与⊙O相切,则∠BED=90°,)∵∠EBD=∠ABH,∴△BED∽△BHA,∴=,即=,解得t=.故选:A.10.解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B =60°,∴∠COD =120°,}∵BC =4,BC 为半圆O 的直径,∴∠CDB =90°,∴OC =OD =2,∴CD =BC =2,图中阴影部分的面积=S 扇形COD ﹣S △COD =﹣2×1=﹣, 故选:A .二.填空题(共5小题)11.解:S 草坪==200π(m 2), !故答案为200πm 2.12.解:∵∠BAC 和∠BOC 所对的弧都是, ∴∠BAC =∠BOC∵∠BAC +∠BOC =180°, ∴∠BOC +∠BOC =180°,∴∠BOC =120°.故答案为120°.13.解:在优弧AB 上取一点D ,连接AD 、BD ,~∵∠AOB =100°,∴∠D =AOB =50°,∵A 、D 、B 、C 四点共圆,∴∠D +∠ACB =180°,∴∠ACB =180°﹣∠D =130°,故答案为:130.14.解:∵四边形OABC是平行四边形,?∴∠AOC=∠ABC,∵∠D+∠ABC=180°,∠D=∠AOC=∠ABC,∴设∠D=x,则∠ABC=2x,∴x+2x=180°,解得:x=60°,故∠D=60°.故答案为:60°.15.解:延长CB到T,使得BT=BC,连接AT,DT,AD.%∵△ABC是等边三角形,∴BA=BC=AC=BT=2,∠ACB=60°,∴∠CAT=90°,∴AT=CT•sin60°=2,∵AD=1,∴2﹣1≤DT≤2+1,∵CB=BT,CE=DE,@∴BE=DT,∴≤BE≤,∴线段BE的最大值与最小值之和为2,故答案为2.三.解答题(共5小题)16.(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,>∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=∠DAC=30°,BC=2,&∴∠BOC=60°,AB=2BC=4,∴OB=AB=2,∴的长==π.17.解:(1)=×=1570(立方米)答:这个粮囤能装1570立方米的玉米;(2)×1570=1256(吨).*答:这囤玉米有1256吨;(3)设乙运输队每天运送x吨玉米,则甲运输队每天运送吨玉米.根据题意得,,解得x=60,(吨).答:乙运输队每天运送60吨玉米,甲运输队每天运送68吨玉米.18.解:(1)∵∠ABC=40°,∠C=80°,∴∠BAC=180°﹣40°﹣80°=60°,$∵点E是△ABC的内心,∴∠CAD=∠BAD=BAC=30°,∴∠CBD=∠CAD=30°.答:∠CBD的度数为30°;(2)证明:如图,连接BE,∴∠1=∠2,∠3=∠4,∵∠2=∠6,,∴∠1=∠6,∵∠5=∠1+∠3,∠DBE=∠6+∠4=∠1+∠3,∴∠5=∠DBE,∴DB=DE;(3)∵∠1=∠2,AB=6,AC=4,BC=5,∴==,∴BF=3,CF=2,>∵∠6=∠2,∠D=∠C,∴△BDF∽△ACF,∴===2,=,∴DF=BD,DF•AF=BF•CF=6,∵∠1=∠2=∠6,∠BDF=∠ADB,∴△DBF∽△DAB,∴=,|∴BD2=DF•DA=DF(AF+DF)=DF•AF+DF2=6+(BD)2,解得BD=2,∴DE=BD=2.答:DE的长为2.19.解:(1)过点A作AD⊥BC于点D,∵△ABC的面积为4,∴BC•AD=4,∴AD=2,…∵⊙A的半径为2,∴BC是⊙A的切线.(2)∵∠EPF=45°,∴由圆周角定理可知:∠BAC=90°,==π,∴S扇形AEF∴阴影部分的面积为4﹣π.20.(1)证明:如图①中,延长DE交⊙O于G,连接AG.。

(人教版)九年级上册数学《圆》单元测验题(附解析答案)

(人教版)九年级上册数学《圆》单元测验题(附解析答案)

九年级数学(人教版)上学期《圆》单元试卷内容:24.1 满分:100分一、选择题(本大题共10小题,每小题4分,共40分) 1.⊙O 中,直径AB =a , 弦CD =b,,则a 与b 大小为( B )A .a >bB .a ≥bC .a <bD . a ≤b 2.下列语句中不正确的有( A )①相等的圆心角所对的弧相等; ②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴; ④半圆是弧。

A .1个 B.2个C .3个 D.4个3.已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的 点有( C ) A .1个B .2个C .3个D .4个4.如图,已知⊙O 的半径为5,弦AB=6,M 是AB 上任意一点,则线段OM 的长可能是( C )A .2.5B .3.5C .4.5D .5.55.如图,,已知AB 是⊙O 的直径,∠BOC=400,那么∠AOE=( B )A.400B. 600C.800D.12006.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则等于( C ) A .60° B .90° C .120° D .150°(第4题) (第5题) (第6题)7.已知⊙O 的半径是5cm ,弦AB ∥CD ,AB =6cm ,CD =8cm ,则AB 与CD 的距离是( C ) A .1 cm B .7 cm C.1 cm 或7 cm D.无法确定_ O_ E_ D_ C_ B_ A8.如图,BD 是⊙O 的直径,圆周角∠A = 30︒,则∠CBD 的度数是( C ) A .30︒B .45︒C .60︒D .80︒9.如图,AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠BAC =30º,AD =CD ,则∠DAC 的度数是( A ) A .30ºB .60ºC .45ºD .75º10.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该 半圆的半径为( C )A.(4+ cm B .9 cm C..(第8题) (第9题) (第10题)二、填空题(本大题共4小题,每小题3分,共12分)11.如图,⊙O 的半径OA=10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为 6 cm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故选:A. 【点睛】 本题考查垂径定理及圆周角定理,垂直于弦的直径平分弦,并且平分这条弦所对的两条
弧;在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一
半;熟练掌握相关定理是解题关键.
12.“直角”在几何学中无处不在,下列作图作出的 AOB 不.一.定.是直角的是( )
A.
B.
利用勾股定理求得 AB 的长,得到 sin∠ABC 的大小,最终得到 sin∠ABD
【详解】 解:∵弦 CD⊥AB,AB 过 O, ∴AB 平分 CD, ∴BC=BD, ∴∠ABC=∠ABD, ∵BD=1, ∴BC=1, ∵AB 为⊙O 的直径, ∴∠ACB=90°,
由勾股定理得:AB= AC2 BC2
A.33° 【答案】A 【解析】
B.56°
C.57°
D.66°
【分析】
根据垂径定理可得 AC AB ,根据圆周角定理即可得答案.
【详解】
∵OA⊥BC,
∴ AC AB ,
∵∠AOB=66°,∠AOB 和∠ADC 分别是 AB 和 AC 所对的圆心角和圆周角,
∴∠ADC= 1 ∠AOB=33°, 2
故选 D.
【点睛】
此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.
3.如图,已知 AB 是⊙O 是直径,弦 CD⊥AB,AC=2 2 ,BD=1,则 sin∠ABD 的值是( )
A.2 2
B. 1 3
C. 2 2 3
D.3
【答案】C
【解析】
【分析】
先根据垂径定理,可得 BC 的长,再利用直径对应圆周角为 90°得到△ABC 是直角三角形,
∴∠FEB= 1 ∠FOB=70°, 2
∵FO=BO, ∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°, ∵EF=EB, ∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°, ∴∠EFO=∠EBF-∠OFB=55°-20°=35°,
故选 B. 【点睛】 本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运 用相关知识是解题的关键.
C.
D.
【答案】C 【解析】 【分析】 根据作图痕迹,分别探究各选项所做的几何图形问题可解. 【详解】
解:选项 A 中,做出了点 A 关于直线 BC 的对称点,则 AOB 是直角. 选项 B 中,AO 为 BC 边上的高,则 AOB 是直角. 选项 D 中, AOB 是直径 AB 作对的圆周角,故 AOB 是直角.
A.2
B. 3
C.2﹣ 3
D.1
【答案】B
【解析】
【分析】
先由圆周角定理知∠BDA=∠ADC=90°,结合∠DAC=30°,DC=1 得 AC=2DC=2,∠C=60°,再
由 AB=ACtanC=2 3 可得答案.
【详解】
∵AB 是⊙O 的直径,
∴∠BDA=∠ADC=90°, ∵∠DAC=30°,DC=1,
D.8π
15.如图,以正方形 ABCD 的 AB 边为直径作半圆 O,过点 C 作直线切半圆于点 E,交 AD FCD﹣(S 矩形 ABCD﹣S 扇形 EAD)
=9π﹣(24﹣4π) =9π﹣24+4π =13π﹣24 故选:C. 【点睛】 本题考查扇形面积的计算,根据阴影面积=扇形 FCD 的面积﹣(矩形 ABCD 的面积﹣扇形 EAD 的面积)是解答本题的关键.
6.如图,AB 是⊙O 的直径,EF,EB 是⊙O 的弦,且 EF=EB,EF 与 AB 交于点 C,连接 OF,若∠AOF=40°,则∠F 的度数是( )
14.如图,圆锥的底面半径为 1,母线长为 3,则侧面积为( )
A.2π 【答案】B 【解析】
B.3π
C.6π
【分析】
圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解. 【详解】
解:圆锥的侧面积为: 1 ×2π×1×3=3π, 2
故选:B. 【点睛】
此题考查圆锥的计算,解题关键在于掌握运算公式.
∵ ABC 绕圆心 O 按逆时针方向旋转 90 得到 DEB , ∴AB=DE, AOD 90 , CAB BDE 45
∴ ABD 1 AOD 45 (同弧所对应的圆周角等于圆心角的一半), 2
即 ABD EDB 45 , 又∵DB=BD,∴ DAB BED (同弧所对应的圆周角相等),
∴AC=2DC=2,∠C=60°,
则在 Rt△ABC 中,AB=ACtanC=2 3 , ∴⊙O 的半径为 3 ,
故选:B. 【点睛】 本题主要考查圆周角定理,解题的关键是掌握半圆(或直径)所对的圆周角是直角和三角 函数的应用.
11.如图, O 中,若 OA BC、AOB 66 ,则 ADC 的度数为( )
A.20°
B.35°
C.40°
D.55°
【答案】B
【解析】
【分析】
连接 FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形
的性质分别求出∠OFB、∠EFB 的度数,继而根据∠EFO=∠EBF-∠OFB 即可求得答案.
【详解】
连接 FB,
则∠FOB=180°-∠AOF=180°-40°=140°,
【分析】
根据同弧和等弧所对的圆周角相等, 则 AB 弧所对的圆周角 BCE BDA, CEB 和 DEA是对顶角,所以 ADE∽BCE .
【详解】
解: BCE BDA, CEB DEA
ADE∽BCE ,
故选: A .
【点睛】
考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的 圆周角相等.
故应选 C 【点睛】 本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关 键.
13.如图,已知 ABC 和 ABD 都 O 是的内接三角形, AC 和 BD 相交于点 E ,则与 ADE 的相似的三角形是( )
A. BCE
B. ABC
C. ABD
D. ABE
【答案】A
【解析】
【详解】
解:连接 OB ,作 BH OA于 H ,如图,
圆锥的母线 AB 与 O 相切于点 B ,
OB AB ,
在 RtAOB 中, OA 18 5 13, OB 5,
AB 132 52 12 ,
1 OA BH 1 OB AB ,
2
2
BH 512 60 , 13 13
圆锥形纸帽的底面圆的半径为 BH 60 ,母线长为 12, 13
A. 4 3
B. 3 4
C. 3 5
D. 4 5
【答案】D
【解析】
【分析】
由垂径定理和圆周角定理可证∠ABD=∠ABC,再根据勾股定理求得 AB=5,即可求 sin∠ABD
的值.
【详解】
∵AB 是⊙O 的直径,CD⊥AB,
∴弧 AC=弧 AD,
∴∠ABD=∠ABC.
根据勾股定理求得 AB=5,
∴sin∠ABD=sin∠ABC= 4 . 5
在△ADB 和△DBE 中
ABD EDB
AB
ED
DAB BED
∴△ADB≌△EBD(ASA), ∴AD=EB=BC=1. 故答案为 A. 【点睛】
本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相
交的角角圆周角;掌握三角形全等的判定是解题的关键.
9.如图,已知 AB 是⊙O 的直径,点 C 在⊙O 上,过点 C 的切线与 AB 的延长线交于点 P, 连接 AC,若∠A=30°,PC=3,则⊙O 的半径为( )
圆的直径正好是大正方形边长,
根据勾股定理,其小正方形对角线为 2 ,即圆的直径为 2 ,
大正方形的边长为 2 ,
则大正方形的面积为
2
2
2
,则小球停在小正方形内部(阴影)区域的概率为
1 2

故选: C .
【点睛】
概率 相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长
比.设较小吧边长为单位 1 是在选择填空题中求比的常见方法.
2
2
2
12
3,
∴sin∠ABD=sin∠ABC= AC 2 2 AB 3
故选:C. 【点睛】 本题考查了垂径定理、直径对应圆周角为 90°、勾股定理和三角函数,解题关键是找出图 形中的直角三角形,然后按照三角函数的定义求解
4.用一个直径为10cm 的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁 轴截面如图所示,圆锥的母线 AB 与 O 相切于点 B ,不倒翁的顶点 A 到桌面 L 的最大距 离是18cm .若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为( )
∵O 的直径 CD=10cm,AB⊥CD,AB=8cm,
∴AM= 1 AB= 1 ×8=4cm,OD=OC=5cm, 22
当 C 点位置如图 1 所示时, ∵OA=5cm,AM=4cm,CD⊥AB,
∴OM= OA2 AM 2 52 42 =3cm,
∴CM=OC+OM=5+3=8cm,
∴AC= AM 2 CM 2 42 82 4 5 cm;
A. 60 cm2
B. 600 cm2 13
C. 720 cm2 13
D. 72 cm2
【答案】C
【解析】
【分析】
连接 OB ,如图,利用切线的性质得 OB AB ,在 RtAOB 中利用勾股定理得
AB 12 ,利用面积法求得 BH 60 ,然后利用圆锥的侧面展开图为扇形和扇形的面积公
13
式计算圆锥形纸帽的表面.
()
A.13
B.13 24
C.13 24
D. 5 24
【答案】C
相关文档
最新文档