人教版数学七年级上册 平面图形的认识(一)专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)

1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.

(1)如图①,当点E在线段AC上时,求证:.

(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.

(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.

(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.

【答案】(1)解:∵

(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H

(3)解:过点G作交BE于点H

故的关系仍成立

(4)不成立| ∠EGF-∠DEC+∠BFG=180°

【解析】【解答】解:(4)过点G作交BE于点H

∴∠DEC=∠EGH

∴∠HGF+∠BFG=180°

∵∠HGF=∠EGF-∠EGH

∴∠HGF=∠EGF-∠DEC

∴∠EGF-∠DEC+∠BFG=180°

∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°

【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,

,即可得到答案.(3)过点G作交BE于点H,得到

,因为,所以,得到,

即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.

2.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧

(1)若AB=18,DE=8,线段DE在线段AB上移动

①如图1,当E为BC中点时,求AD的长;

②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;

(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则

________.

【答案】(1)解:①

又 E为BC中点

②设,因点F(异于A、B、C点)在线段AB上,可知:

,和

当时,

此时可画图如图2所示,代入得:

解得:,即AD的长为3

当时,

此时可画图如图3所示,代入得:解得:,即AD的长为5

综上,所求的AD的长为3或5;

(2) .

【解析】【解答】(2)①若DE在如图4的位置设,则

(不符题设,舍去)

②如DE在如图5的位置

设,则

代入得:

解得:

则 .

【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;

(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.

3.如图,EF⊥AB于F,CD⊥AB于D,点在AC边上,且∠1=∠2= .

(1)求证:EF∥CD;

(2)若∠AGD=65°,试求∠DCG的度数.

【答案】(1)证明:∵EF⊥AB于F,CD⊥AB于D,

∴∠BFE=∠BDC=90°,

∴EF∥CD.

(2)解:∵EF∥CD,

∴∠2=∠DCE=50°,

∵∠1=∠2,

∴∠1=∠DCE,

∴DG∥BC,

∴∠AGD=∠ACB=65°,

∴∠DCG=

【解析】【分析】(1)由垂直的定义,可求得∠BFE=∠CDF=90°,可证明EF∥CD;

(2)利用(1)的结论,结合条件可证明DG∥BC,利用平行线的性质可得∠AGD=∠ACB= ,则∠DCG=∠ACB-∠2即可求得.

4.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.

(1)求∠MON的度数;

(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;

(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;

(4)从(1)、(2)、(3)的结果中,你能看出什么规律?

【答案】(1)解:∠AOB=90°,∠BOC=30°,

∴∠AOC=90°+30=120°.

由角平分线的性质可知:∠MOC= ∠AOC=60°,∠CON= ∠BOC=15°.

∵∠MON=∠MOC﹣∠CON,

∴∠MON=60°﹣15°=45°

(2)解:∠AOB=α,∠BOC=30°,

∴∠AOC=α+30°.

由角平分线的性质可知:∠MOC= ∠AOC= α+15°,∠CON= ∠BOC=15°.

∵∠MON=∠MOC﹣∠CON,

∴∠MON= α+15°﹣15°= α

(3)解:∠AOB=90°,∠BOC=β,

∴∠AOC=β+90°.

由角平分线的性质可知:∠MOC= ∠AOC= β+45°,∠CON= ∠BOC= β.

∵∠MON=∠MOC﹣∠CON,

∴∠MON= β+45°﹣β=45°

(4)解:根据(1)、(2)、(3)可知∠MON= ∠BOC,与∠BOC的大小无关

【解析】【分析】(1)先求得∠AOC的度数,然后由角平分线的定义可知∠MOC=60°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(2)先求得∠AOC=α+30°,由

角平分线的定义可知∠MOC= α+15°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解

即可;(3)先求得∠AOC=β+90°,由角平分线的定义可知∠MOC= β+15°,∠CON= β,最后根据∠MON=∠MOC﹣∠CON求解即可;(4)根据计算结果找出其中的规律即可.

5.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.

(1)若点C恰为AB的中点,求DE的长;

相关文档
最新文档