第一章 张量分析基础知识

合集下载

张量入门

张量入门
2 ii j 1 2 ii 2 11 2 22
3
2 33
ii
2
2 ii ( 11 22 33 ) i 1
3
2
ij ij ij ij
i 1 j 1
3
3
11 11 12 12 13 13 21 21 22 22 23 23 31 31 32 32 33 33
2.下标记号法
◆ 在张量的讨论中,都采用下标字母符号,来表
示和区别该张量的所有分量。
◆ 不重复出现的下标符号称为自由标号。自由标
号在其方程内只罗列不求和。以自源自标号的数 量确定张量的阶次。◆ 重复出现,且只能重复出现一次的下标符号称
为哑标号或假标号。哑标号在其方程内先罗列, 再求和。
3.求和约定
◆ 张量导数就是把张量的每个分量都对坐标参数
求导数。
◆ 对张量的坐标参数求导数时,采用在张量下标 符号前上方加“ ′”的方式来表示。例如 Ai j , 就表示对一阶张量 Ai 的每一个分量对坐标参数
xj求导。
◆ 如果在微商中下标符号i是一个自由下标,则
算子 i 作用的结果,将产生一个新的升高一阶 的张量;如果在微商中,下标符号是哑标号, 则作用的结果将产生一个新的降低一阶的张量。 例如:

关于求和标号,即哑标有: ◆ 求和标号可任意变换字母表示。 ◆ 求和约定只适用于字母标号,不适用于数字标号。
◆ 在运算中,括号内的求和标号应在进行其它运算前
优先求和。例:
aii a a a
2 11 2 22
2
2
2 33
2
(aii ) (a11 a22 a33 )

张量分析基础

张量分析基础

3
3
aklik i
k 1
k 1
i1
i1 k 1

x3
A
P
S P
x2
OO
x2
比较式(d)左端:
x1 x1
3
3
aii akk
i1
k 1
(d)
得到:
3
ai aklik k 1
3
ak ailik i1
33
F
aiji j
i1 j 1
保持不变,则称取决于两个下标 i、j 的9个量 aij 的集合为二阶张量。 aij 中的每一个量被称为此张量(对指定坐标系)的分量。如:
ij —— 应力张量, ij —— 应变张量
二阶张量的变换规律:
由题设条件,当坐标系变换时,有:
3 3
33
i1
k 1
3
将式(b): i likk k 1
代入式(d)等号的左边,有
(d) (b)
设 (1,2 ,3 )、 (a1, a2 , a3 ) 和 (1 ,2 ,3 )、(a1 , a2 , a3 )分别为
两种坐标系中的分量, 根据题设,它们之间应有
x1
x2
x3
x1
l11
l12
l13
x2
l21
l22
l23
x3
l31
l32
l33
1,2 ,3 变换关系 1 ,2 ,3
1 l111 l21 2 l313
2 l121 l22 2 l323 3 l131 l23 2 l333
3
3
aii akk
x3
(d)

第一章 张量分析初步

第一章 张量分析初步

eijk eijk 6
证明见例题
eijk与ij间的关系
由排列符号的性质 : ei e j eijk ek
ei e j • ek eijk
由于ei e j • ek表示的是混合积,其物理意义是单位立方体的体积.
另外,由矢量分析知, 平行六面体的体积可以表示成其三个棱的行



i e1, j e2, k e3
X1
X3 P(x1, x2, x3)
O
X2
➢ 再对上述代换结果进行简写P点改写为: P(x1,x2,x3)P(xi, i=1,2,3)P(xi)
➢ 基向量:ei, i=1,2,3 ei ➢ 则称上述字母i为指标,i的取值i=1,2,3为指标i的取值
列式形式.
eeij
(i1, ( j1
i2,i3 , j2,
)
j3
)
ek (k1,k 2 ,k3)
ei,ej,ek为3个单位基向量, i,j,k互不相等。
i1 i2 i3 ei e j • ek j1 j2 j3 eijk
k1 k2 k3

a13 x3 a23 x3

b1 b2

a31x1 a32 x2 a33 x3 b3
如何用一个最简单 的式子来表示?
用矩阵? 还有更简单的表示方法吗? 可总结为:aij x j bi
aij, xj, bi是些什么量?
§1.1 指标记号及两个特殊符号
两种方式:
将左式展开,再给定每一个i值,求左右是否相等;
只有当i=j时ij才不等于“0”,

a j ij ai ii ( ii不求和) ai

张量基础知识

张量基础知识
张量基础知识
张量的提出:
晶体具有各向异性,从而使得晶体的物理性质在不同方 向上也存在着差异。晶体的各向异性是一种很普遍的特性, 特别是很多现象如热电、压电、电光、声光、非线性光学效 应等物理现象都完全是因为晶体的各向异性才能表现出来。 于是,人们实践中探索出了一套描述各向异性性质的数学方 法,这种方法就是张量方法。
小结: 所谓张量是一个物理量或几何量,他由在某参考坐
标系中一定数目的分量的集合所规定,当坐标变换时, 这些分量按一定的变换法则变换。
张量是矢量概念的推广。它是一种不依赖于特定坐 标系的表达物理定律的方法。张量有不同的阶和结构, 这由它们所遵循的不同的变换法则来区分。标量是零 阶张量;矢量是一阶张量;应力张量是二阶张量;还 有三阶、四阶等高阶张量。
Aijxiyj A11x1y1A12x1y2A13x1y3 A21x2y1A22x2y2A23x2y3 A31x3y1A32x3y2A33x3y3
1 求和约定仅对字母指标有效
2 同一项内二对哑标应使用不同指标,如
aix jixj
3 i 1
i3 1aix jixj
3 哑指标可以换用不同的字母指标
J1 11E112E213E3 J2 21E122E223E3 J3 31E132E233E3
或表示成分量形式
3
Ji ijEj (i1,2,3) j1
矩阵形式
J1 111213 E1 J2 212223 E2 J3 313233 E3
此处σ不再是一个数,而是9个数构成一个方阵,称为电导率
张量,这是一个二阶张量。于是,各向异性晶体中的欧姆定
ijk l
ijk l i'i jj' k'k ll'
i' j'k'l'

张量分析书籍附详尽易懂

张量分析书籍附详尽易懂

n个
称为n维仿射空间。E n 中旳每一种元素称为点。
记:
o (0, ,0),
x (x1,, xn ) ,
(x1, , xn )
且分别称为放射空间旳原点、位置矢量和负矢量。
对于n维仿射空间,全部旳位置矢量构成一种集合:
V0 x (x1,, xn ) xi , xi F,1 i n
(1 t)(1,1) t(1,1) a t b
(1 2t,1 2t) a t b
当 t b 时:
(2t 1,2t 1) (1,1)
当 t a 时:
(2t 1,2t 1) (1,1)
由此可得 a 0 ,b 1 。显然 r1 等 r2 价。
r1 与 r5 : (取 s b5 b1 )
域上旳矢量空间。且仍记为V0 。
数域上旳矢量空间V0 具有如下性质:x, y, z V0 ,、 F
(1)
x yyx
(2)
(x y) z x ( y z)
(3)V0中存在称为有关加法旳单位元素o,使得:
xo x
x V0
(4)V0中每一种元素x都存在唯一旳(-x ),使得:
x (x) o
当t=b时:位置矢量标
定b点。即:
S
(4b 2,3 2b) (2,1)
由此拟定b=1 。
x2
当t=a时:位置矢量标
3
2
定a点。即:
1
(4a 2,3 2a) (1,1.5 )
由此拟定a=0.75 。
图中画出了计算成果 。
x2 3
2 u ab
1
2 (a)
u xy
x1
4
6
u xy u ab
1
2
。 Vx空间中旳矢量称为约束矢量。

张量分析提纲及部分习题答案

张量分析提纲及部分习题答案

y
对静止的连续介质,有
ζ n fd 0 , ζd fd 0 ,
A
ζ f 0。
(21) 证明应力是一个张量; 记 ij :表示在给定基 g i 下,在面 g j 上,单位面积受力 F j 在 g i 方向上的分量为
对斜圆锥面上任一点 (图中黑点处) , 不难由相似三角形得到,
z z R cos C i R sin j zk ,进而可得, H H r Rz sin zR cos r R cos C R g i j, gz i sin j k , H H z H H r
dx g dx I g dx II 1 4 x I 2 dx I 6 x I x II 2 dx II Pdx I Q dx II 11 12 1 1 I 。 2 4 dxII g 21dx I g 22 dx II 6 x I x II dx I 9 x II dx II P2 dx I Q2 dx II
Pi Qi 时,坐标 xI , xII 才可能存在。即向量场 P, Q 无旋时,其在两点间 x II x I Pi Qi 的路径积分与路径无关,积出的值就是坐标。本例中, II I ,故相应的“协 x x
当 变坐标”不存在。 (正因为如此,坐标也没有逆变、协变之说。 ) (9) 有点类似曲面第一基本型(1.3.12) 。 (10) Lame 常数定义(1.3.13)在非正交系中也成立,但此时(1.3.12a)不成立。
1.9-1.13:略; 1.14: 注意,所谓斜圆锥是指, O 点沿 z 方向在大圆平面上的投影 M 在大圆的直径上。

第一章张量分析基础知识

第一章张量分析基础知识

第⼀章张量分析基础知识晶体物理性能南京⼤学物理系由于近代科学技术的发展,单晶体⼈⼯培养技术的成熟,单晶体的各⽅⾯物理性能(如⼒、声、热、电、磁、光)以及它们之间相互作⽤的物理效应,在各尖端科学技术领域⾥,都得到了某些应⽤.特别是⽯英⼀类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电⼦技术中,⽐较早地在⼯业规模上进⾏⼤批⽣产和⼴泛应⽤.激光问世的四⼗多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应⽤中,已成单晶体应⽤中极为活跃的领域.《晶体物理性能》是我系晶体物理专业的专业课程之⼀,⽬的就是希望对晶体特别是光电技术中使⽤的晶体(包括基质晶体与⾮线性光学晶体)的有关物理性能及其应⽤⽅⾯的基本知识,有⼀个了解.对今后从事光电晶体的⽣长、检测和应⽤的⼯作,在分析问题、解决问题⽅⾯有所帮助,同时要在今后⼯作中不断从实践和理论两个⽅⾯扩⼤知识领域,有⼀个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个⽅⾯作深⼊全⾯的介绍,也将侧重于激光晶体有关的⼀些性能及其应⽤.鉴于以上考虑,《晶体物理性能》讲义将以离⼦晶体为主要对象,以光电技术上应⽤为线索组织内容,共分为⼋章.着重于从宏观⾓度结合微观机制介绍晶体基本物理性能以及各种交互作⽤过程的物理效应和它们在光电技术中的某些应⽤,包括弹性与弹性波(第⼆章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第⼋章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、⽅便地描述这些物理性能必须使⽤张量来表⽰.因此,在第⼀章,我们介绍了关于张量分析基础知识⽅⾯的内容.由于⽔平有限,实践经验缺乏,时间仓促,因⽽内容安排不妥、取舍不当、错误之处⼀定很多,希望同学们提出宝贵意见,批评指正.第⼀章张量的基础知识§1.1标量、⽮量和⼆阶张量…………………………………………………………………2§1.2坐标变换和变换矩阵……………………………………………………………………§1.3正交变换矩阵的性质……………………………………………………………………§1.4晶体对称操作的变换矩阵……………………………………………………………§1.5⼆阶张量的变换与张量的定义………………………………………………………§1.6张量的⾜符互换对称…………………………………………………………………§1.7张量的矩阵表⽰和矩阵的代数运算…………………………………………………§1.8⼆阶对称张量的⼏何表⽰和⼆阶张量的主轴………………………………………§1.9⼆阶对称张量主轴的确定……………………………………………………………§1.10晶体张量与晶体对称性的关系………………………………………………………第⼆章晶体的弹性与弹性波§2.1弹性性质与原⼦间⼒…………………………………………………………………§2.2应变……………………………………………………………………………………§2.3应⼒……………………………………………………………………………………§2.4推⼴的虎克定律、弹性系数…………………………………………………………§2.5⽴⽅晶体的弹性系数…………………………………………………………………§2.6各向同性材料的弹性系数……………………………………………………………§2.7弹性扰动的传播――弹性波…………………………………………………………§2.8简谐振动和驻波……………………………………………………………………§2.9弹性常数及振动衰减因⼦的测量⽅法……………………………………………第三章晶体的介电性质§3.1介质中的宏观电场强度与极化强度………………………………………………§3.2晶体中的有效场……………………………………………………………………§3.3⾼频电场的介电极化(光的⾊散与吸收)………………………………………§3.4介电常数的测量……………………………………………………………………§3.5离⼦晶体的静电击穿………………………………………………………………§3.6激光的电击穿(激光的电击穿损伤)……………………………………………第四章铁电与压电物理§4.1铁电体的⼀般性质…………………………………………………………………§4.2常⽤铁电体的实验规律……………………………………………………………§4.3铁电体的相变热⼒学………………………………………………………………§4.4铁电体相变的微观机制……………………………………………………………§4.5晶体的压电效应……………………………………………………………………§4.6压电⽅程和机电耦合系数…………………………………………………………§4.7压电晶体的应⽤实例――⽯英……………………………………………………第五章晶体光学§5.1光学各向异性晶体…………………………………………………………………§5.2各向异性介质中光的传播…………………………………………………………§5.3折射椭球与折射率曲⾯……………………………………………………………§5.4晶体表⾯上的折射…………………………………………………………………§5.5晶体偏光⼲涉及其应⽤……………………………………………………………第六章倍频与参量频率转换§6.1⾮线性极化…………………………………………………………………………§6.2⾮线性极化系数……………………………………………………………………§6.3⾮线性介质中电磁场耦合⽅程……………………………………………………§6.4光倍频………………………………………………………………………………§6.5光倍频的相匹配……………………………………………………………………§6.6第II类相匹配………………………………………………………………………§6.7⾓度匹配和温度匹配扫描实验曲线………………………………………………§6.8内腔倍频……………………………………………………………………………§6.9光参量放⼤…………………………………………………………………………§6.10参量振荡器…………………………………………………………………………§6.11参量振荡器的调谐⽅法……………………………………………………………§6.12参量频率上转换……………………………………………………………………§6.13⾮线性材料的性能要求……………………………………………………………第七章电光效应及其应⽤§7.1线性电光效应………………………………………………………………………§7.2两种典型材料的电光效应…………………………………………………………§7.3电光滞后……………………………………………………………………………§7.4电光调制原理………………………………………………………………………§7.5实际调制器的⼏个问题……………………………………………………………§7.6晶体电光开关………………………………………………………………………§7.7电光Q开关…………………………………………………………………………§7.8电光偏转……………………………………………………………………………§7.9电光材料……………………………………………………………………………§7.10晶体均匀性的实验检测……………………………………………………………§7.11晶体的激光损伤……………………………………………………………………§7.12晶体均匀性实验检测………………………………………………………………第⼋章声光效应及其应⽤§8.1弹光效应……………………………………………………………………………§8.2声光交互作⽤产⽣的衍射现象……………………………………………………§8.3声光交互作⽤的理论………………………………………………………………§8.4声光效应在⼀些物理常数测量中的应⽤…………………………………………§8.5声光调制器…………………………………………………………………………§8.6声光偏转器…………………………………………………………………………§8.7声光调Q……………………………………………………………………………§8.8声光材料……………………………………………………………………………附录A.32点群投影图…………………………………………………………………………B.各阶张量在不同点群中的矩阵形式……………………………………………………C.主要常数表………………………………………………………………………………D.单轴晶体中光线离散⾓α的推导………………………………………………………E.双轴晶体中双折射⾯相差Γ的推导……………………………………………………F.贝塞尔函数的基本性质…………………………………………………………………第⼀章张量分析基础知识以前学的课程中,有关⼒学、热学、电学、光学等的性质都是以各向同性介质来表述的或以⼀维问题来说明问题,这对于突出某些物理现象的微观的物理原因⽅⾯是必要的,但晶体物理性能是讲晶体中的⼒学、电学、光学、声学、磁学、热学等物理性能,⽽晶体的各向异性却是⼀种很普遍的特性,特别是很多现象如热电、压电、电光、声光、⾮线性光学效应……等等物理现象则完全因为晶体具有各向异性性质才能表现出来.因此,晶体结构对称性和这些性质之间的关系成为问题的主要⽅⾯。

[工学]第一章 张量分析初步

[工学]第一章 张量分析初步

2 x j
(

xi
)
两个特殊符号

两个特殊符号
为书写的方便,可以使用kronecker符号和排列符号简化书 写。

kronecker符号

定义
1 i j ij 0 i j
11 22 33 1 12 21 13 31 23 32 0
例题
Qii, S展开? 步骤:分析i,指标类型?字母类型?再展开 2. 写出a=Aijbicj的展开式。
1. 3. 4.
5.
写出 ti ji n j 的展开式。 写出 bik b jk ij 的展开式。 u j 的展开式。 ?写出 1 ui
eij
6.
1 ?写出 w 2 ij eij 的展开式。
第一章 张量分析初步
第一章 张量分析初步


本章学习目的 引入最基本的张量概念,为今后学习应变张量、 应力张量、广义虎克定律和弹性波方程等专业概 念及运算做准备。是本门课的数学基础。 ? 1 已学习过的物理量

标量? 向量?
a11 x1 a12 x2 a13 x3 b1 a 21 x1 a 22 x2 a23 x3 b2 a31 x1 a32 x2 a33 x3 b3
2

有了标量和向量是否足够描述自然现象?
如何用一个最简单 的式子来表示?

用矩阵? 还有更简单的表示方法吗? aij x j bi 可总结为: aij, xj, bi是些什么量?
§1.1 指标记号及两个特殊符号

指标记号


空间有个坐标系OXYZ,P (x, y, z)是其中的一点,坐 z 标为:x, y ,z P(x, y, z) 直角坐标系中的基向量:

张量分析第一章

张量分析第一章
第二章 应力分析
主要掌握:应力张量,应力张量的对称性,变换规律,主应力,主 方向,剪应力,应力偏张量等
第三章 连续介质运动学
4
主要掌握:物质坐标与空间坐标,物质导数,随波导数,速度张 量,速度分解定理等.
第四章 连续介质力学基本定律
三大守恒定律:质量守恒,动量守恒,能量守恒,状态方程,熵 不等式,热力学两大定律.
间位置的变化及各邻近点距离的变化;研究随时间变化 的物理量的时间变化率. 2)连续介质满足的物理基本定律
质量守恒,动量守恒,能量守恒,热力学基本定律 3)连续介质的本构方程
描述各种连续介质模型对外部作用的响应;
3
课程内容
第一章 连续介质力学中的数学模型
主要掌握:张量的概念,张量的表示方法以及张量的运算规律等
O
b
a -axb
12
(6)并矢 定义 ab ai eibj ej ai bj eiej
展开共9项, ei e j 可视为并矢的基
ai bj 为并矢的分解系数或分量
13
1.1.3 Einstein求和约定
在同一项内的一个指标的重复,将表示对该指标 在它的范围上遍历求和.
自由指标:无重复出现的指标,取值域1,2,3(三维空间中) 哑标: 重复出现一次且仅重复一次的指标为求和指标或 为哑标.
ds2 dx2 dy2 dz2 dxidxi ijdxidx j
ij jk ik
aiij a j
xi x j
xi, j
ij
19
例: Aijbj
分量形式:
Ai1b1 Ai2b2 Ai3b3
uii
u11 u22 u33
k
1 2 3

张量分析1

张量分析1

第一章 张量的概念§ 1.1 引言什么是张量?这是读者在开始学习本课程时会提出的问题,现从读者已有的力学知识出发,举例对这个问题作一些初步的阐述,使读者对张量这个新的概念,有个初步的理解。

有三维空间,一个矢量(例如力矢量、速度矢量等)在某些参考坐标系中,有三个分量,这三个分量的集合,规定了这个矢量。

当坐标变化换时 ,这些分量按一定的变换法则变换。

在力学中还有一些更复杂的量。

例如受力物体内一点的应力状态,有9个应力分量,如以直角坐标表示,用矩阵形式列出,则有()⎪⎪⎪⎭⎫⎝⎛σσσσσσσσσ=σzz zyzxyz yy yxxz xy xx ij 这9个分量的集合,规定了一点的应力状态,称为应力张量。

当坐标变换时,应力张量的分量按一定的变换法则变换,再如,一点的应力状态,具有和应力张量相似的性质,称为应变张量。

把上述的力矢量、速度矢量、应力张量、应变张量等量的性质抽象化,撇开它们所表示的量的物理性质,抽出其数学上的共性,便得出抽象的张量概念。

所谓张量是一个物理量或几何量,它由在某参考坐标系中一定数目的分量的集合所规定,当坐标变换时,这些分量按一定的变换法则变换。

张量有不同的“阶”和“结构”,这由它们所遵循的不同的变换法则来区分。

矢量是一阶张量;应力张量、应变张量是二阶张量;还有三阶、四阶、......等高阶张量。

可以看出,张量是矢量概念的推广。

关于张量的严密的解析定义,将在 § 1.8中讨论。

由张量的特性可以看出,它是一种不依赖于特定坐标系的表达物理定律的方式。

采用张量记法表示的方程,在某一坐标系中成立,则在容许变换的其它坐标系中也成立,即张量方程具有不变性。

这使它特别适合于表达物理定律,因为物理定律与人们为了描述它所采用的坐标系无关。

因此,张量分析为人们提供了推导基本方程的有力工具。

此外,张量记法简洁,是一种非常精炼的数学语言。

张量这个名词是沃伊特(V oigt )首先提出的,用来表示晶体的应力(张力)状态,可见张量分析与弹性力学关系的密切。

张量分析01

张量分析01

附录I 张量分析近代力学在电子计算机的辅助下冲破了数学求解上的重重困难,取得了突飞猛进的发展,力求对复杂的物理现象和工程问题做出更为系统和真实的描述和研究。

张量分析能以简洁的表达形式和清晰的推导过程来有效地描述复杂问题的本质,已被近代力学文献和教科书普遍采用。

作为入门,此处着重介绍笛卡儿坐标系和正交曲线坐标系中的张量。

I.1 矢量和张量的记法,求和约定力学中常用的量可以分成三类:只有大小没有方向性的物理量称为标量。

例如温度T 、密度ρ、时间t 等。

既有大小又有方向性的物理量称为矢量,常用黑体(或加箭头)表示,为与课堂讲述一致,此处选择用上加箭头表示矢量。

例如矢径r 、位移u 、速度v 、力f 等。

具有多重方向性的更为复杂的物理量称为张量,常用黑体(或加下横)表示,为与课堂讲述一致,此处选择用下加横线表示矢量。

例如一点的应力状态要用应力张量来表示,它是具有二重方向性的二阶张量,记为σ。

矢量可以在参考坐标系中分解。

例如图1 中P 点的位移u 在笛卡儿坐标系()321,,x x x 中分解为∑==++=31332211i i i e u e u e u e u u (I.1)其中1u 、2u 、3u 是位移的三个分量,1e 、2e 、3e是沿坐标轴的三个单位基矢量。

由此引出矢量(可推广至张量)的三种记法: ( l )实体记法:把矢量或张量的整个物理实体用一个黑体字母或上加箭头来表示。

例如把位移记为u 。

( 2 )分解式记法:同时写出矢量或张量的分量和相应分解方向的基矢量。

例如用式(I.1)表示位移u 。

( 3 )分量记法:把矢量或张量用其全部分量的集合来表示,省略相应的基矢量。

例如用三个位移分量()3,2,1=i u i 的集合表示位移u 。

下面详细讨论后两种记法中广泛采用的指标符号。

对于一组性质相关的n 个量可以采用指标符号来表示。

例如,n 维空间中矢量a 的n 个分量1a ,2a ,…,n a 可缩写成()n i a i ,,2,1 =。

弹性力学-张量

弹性力学-张量

n
n
n
ai xi ajxj ak xk
i1
j1
k 1
显然,指标 i, j, k 与求和无关,可用任意字母替代。
为简化体现式,引入Einstein求和约定:
每逢某个指标在一项中反复一次,就表达对该指标求和, 指标取遍正数1,2,…,n。这么反复旳指标称为哑标。
于是
or
or
S ai xi ajxj ak xk
1
例如: e123 e231 e312 1 3
k
循环方向 j
1 若(i, j,k) (1,2,3)或(2,3,1)或(3,1,2)时 正排列顺序
eijk -1 若(i, j,k) (2,1,3)或(1,3,2)或(3,2,1)时 逆排列顺序
0 若i, j,k中任意两指标相同时
1
1
3
2
eijk ( i,j,k =1,2,3) 共有27个元素
ai,i
ai xi
a1 x1
a2 x2
a3 x3
ij, j
ij
x j
i1
x1
i2
x2
i3
x3
*若反复出现旳标号不求和,应尤其申明
1.2.3 自由指标
一种体现式中假如出现非反复旳标号或一种方程每项中出现非
反复旳旳指标,称为自由指标。对于自由指标能够从最小数取
到最大数。
例如
xi aijxj
aij x j xi (aij ij )x j
② 微分运算
xi x j
xi, j
ij
aii a jk
jk
aij aklBiblioteka 1 2(ik
jl
il jk )

张量分析各章要点

张量分析各章要点

各章要点第一章:矢量和张量指标记法:哑指标求和约定 :同一项中出现一对相同的协、逆变指标则对该指标求和 自由指标规则:同一项中只能出现一次,不同项中保持在同一水平线上 协变基底和逆变基底:ki k i i x ∂∂==∂ξ∂ξr g e j j i i ⋅=δg giik k x∂ξ=∂g e123 ===g g g 张量概念i i'i'i =βg g i'i'ii =βg g i k i k j j''''ββ=δ i'i'i i v v =β ii 'i 'iv v =β i 'j'i 'j'k l ij ..k 'l'i j k 'l'..kl T T =ββββ i i i i v v ==v g g ..kl ij ijk l T =⊗⊗⊗T g g g g 度量张量ij i i i j i i g =⊗=⊗=⊗G g g g g g g⋅=⋅=⋅=⋅=v G G v v T G G T T.j kj i ik T T g =张量的商法则lm ijk T(i,j,k,l,m)S U = ijk...lmT(i,j,k,l,m)T = 置换符号312n 1n123n i i i i i 123n 1n i i i ...i A a a a ......a a e -- i j k Lmnijk .L.m .n a a a e e A = i j k .L .m .n ijk Lmn a a a e e A =置换张量i j k ijk ijk i j k =ε⊗⊗=ε⊗⊗εg g g g g gijk i j k ()e ε=⋅⨯=g g gijk ijk i j k ()ε=⋅⨯=g g gi j k ijk ijk i j k a b a b ()::()⨯=ε=ε=⊗=⊗a b g g a b εεa b广义δ符号i ii r s tj j j ijk ijk ijk r s t rst rst rst k k k r s te e δδδδδδ==εε=δδδδijk j k j k jk ist s t t s st δ=δδ-δδδijk k ijt t 2δ=δijk ijk 6δ=性质:是张量重要矢量等式:()()()⨯⨯=⋅-⋅a b c a c b a b c第二章: 二阶张量重要性质:T =T.u u.T 主不变量i 1.i Tr()T ζ==T i j l m2l m .i .j 1T T 2ζ=δ 3det()ζ=T1()()(())(())()⋅⋅⨯⋅⋅⨯⋅⨯⋅=ζ⋅⨯T u v w +u T v w +u v T w u v w2)[)][()(]()[()]()⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=ξ⋅⨯T u (T v w +u T v T w)+T u (v T w u v w ( ()[()()]det()()⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w 标准形1. 特征值、特征向量⋅=λT v v ()-λ⋅=T G v 0 321230λ-ζλ+ζλ-ζ= 2. 实对称二阶张量标准形i 123i 112233=⋅⊗=λ⊗+λ⊗+λ⊗N N g g g g g gg g 3. 正交张量(了解方法)12112233(cos()sin())(sin()cos())=ϕ+ϕ⊗+-ϕ+ϕ⊗+⊗R e e e e e e e e4. 反对称二阶张量的标准形21123=μ⊗-μ⊗=μ⨯Ωe e e e e G⋅=⨯Ωu ωu31:2=-=μ⨯ωεΩe u=-⋅Ωεω5. 正则张量极分解=⋅=⋅T R U V R第三章 张量函数概念:各项同性张量函数、解析函数 计算 e T , sin()T 重要定理:1. Hamilton-Cayley 定理:32321231230λ-ζλ+ζλ-ζ=⇒-ζ+ζ-ζ=T T T G 0 2.对称各向同性张量函数表示定理:2012f ()k k k ==++H N G N N ;其中T T ;==H H N N ;而系数i k 是N 的主不变量的函数。

第1章 张量分析基础剖析

第1章 张量分析基础剖析

张量分析与连续介质力学教材:《The Mechanics and Thermodynamics of Continua》M.E. Gurtin, E. Fried, L. Anand. Cambridge University Press, 2010教学参考书:1、《An Introduction to Continuum Mechanics》, M.E. Gurtin, AcademicPress, 1981. (中译本:郭仲衡等译,连续介质力学引论,高等教育出版社,1992)2、《连续介质力学基础》,熊祝华等,湖南大学出版社,19973、《连续介质力学基础》,黄筑平,高等教育出版社,20034、《非线性连续介质力学》,匡正邦,上海交大出版社,2002x vy第一章张量分析基础第一节矢量和张量代数一、矢量代数本课程只在三维欧氏空间 内讨论连续介质力学的基础原理。

1、点——反应一定的空间位置,由x表示2、矢量——具有大小和方向且满足一定规则的空间实体,用v来表示。

(两点间的距离可由一矢量表示)(点x和矢量v之和是另一个点y)3、矢量的点积和叉积1)点积(θ为两个矢量间的夹角)u 表示矢量的大小,为一标量,有u u u ⋅=。

2)叉积w v u =⨯ (为一新的矢量)v u ⨯表示由u 和v 构成的平行四边形的面积。

θsin v u v u =⨯且u w ⊥,v w ⊥3)混合积()w v u ⨯⋅()w⋅表示由u,v和w三个矢量围成的体的体积。

vu⨯●如果该体的体积不为零,则称u,v和w线性无关。

●如果对于不为零的常数a,b,c,有:u cabv+w=+则称u,v和w线性相关。

不满足线性相关的矢量则是线性无关的。

4、矢量空间及其性质由欧氏空间ε中对应的点构成的矢量形成的空间称为矢量空间ν。

如果u,v和w是线性无关的,则{}wu,构成矢量空间ν的基,即ν中任一矢量v,都可以表示为:w v u γβα++=a1) 如果()0>⨯⋅w v u ,则基{}w v ,u,是正向的(右手法则)。

张量分析

张量分析

第一篇 张量分析第一章 矢 量 §1—1 矢量表示法物理中的位移、速度、力都是矢量。

利用三维空间中的有向线段ν表示矢量是最直观的表示法,如图1-1所示。

有向线段的长度v 代表矢量的大小。

这种方法不依赖于坐标系的选择。

矢量的分量表示法是另一种表示方法,选定一个坐标系。

比如通常的正交直线坐标系,即卡氏坐标系,然后确定矢量对于该坐标系的分量(,,)x y z v v v ν(1-1a)这一有序数也可视作一个单行矩阵。

矢量也可以用基矢与其对应分量写成x y z iv jv kv ν=++ (1-1b)其中,,x y z iv jv kv 称为分矢量。

而i(1,0,0),j(0,1,0),k(0,0,1) (1-1c)是单位矢量,它们组成卡氏系中的一组基矢(称为标架)。

§1-2指标符号上面所述用分量(,,)x y z v v v 或用基矢量i,j,k 来表示矢量的方法,在推广到比三维更高的空间时就有困难了。

因此,发展了另一种记法。

把x 、y 、z 分别记为111,,x y z 这样,一个n 维空间的矢量(无法用直观图表示)用分量表示时为123(,,,...,)n v v v v ν= (1-2a)它可视为一个M 维的单行矩阵,且可写为{}i v ν= (1,2,3,...,)i n =同理,基矢i,j,k 可分别写为123,,e e e ,n 维空间的基矢i e (1,2,3,...,)i n =。

而与式(1-1b)对应的写法为112233n n e v e v e v e v ν=++++ (1-2b)相应的分矢量为11,,,i i e v e v ,其中1e =(0,…,0,1,0,…,0) (1-2c)↑ 顺序第i 个这里i 叫做v 的下标,也有记作jv (如本书第三章以后章节所出现)的,这时j 称为上标。

有些量比矢量更复杂,只用一个下(或上)指标还不够,还要采用更多的指标,比如,,,ij ij ijk A B C ,等等。

第一章 附张量基础14

第一章 附张量基础14
i, j, k , 英文字母下标表示三维指标,取值1,2,3.
n阶张量可表示为
ai1i2i3 ...in (i1 1,2,3;i2 1,2,3; ;in 1,2,3)
ai1i2i3 ...in
指标符号
指标: 用xi表示(x1, x2… xn)中任意一个变量
即 xi xi
aibi xi
1.2.3 自由指标
一个表达式中如果出现非重复的标号或一个方程每项中出现非 重复的的指标,称为自由指标。对于自由指标可以从最小数取 到最大数。 例如
xi aij x j
指标 i 在方程的各项中只出现一次,称之为自由指标。
一个自由指标每次可取整数1, 3, …, n,与哑标一样,无 特别说明总取n=3。于是,上式表示3个方程的缩写:
材料参数也 构成张量
某人从A点出发,向东走了四公里,向北走 了三公里,问此人到了什么位置? 答曰:到了离A点五公里的地方。


e北
A
r
r 4e东 3e北
e东

×
5公 里

矢量
r
r 、u、b
矢量和:
A

r
a
r ab
b
A
求导记号约定:
x i
, i

u j xi
uj ,i
ai a1 a2 a3 ai, i xi x1 x2 x3
ij, j
i1 i 2 i 3 x j x1 x2 x3 ij
*若重复出现的标号不求和,应特别声明
S aij xi xj
3 j1
S aij xi x j (a1j x1 x j a2j x2 x j a3j x3 x j )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体物理性能南京大学物理系由于近代科学技术的发展,单晶体人工培养技术的成熟,单晶体的各方面物理性能(如力、声、热、电、磁、光)以及它们之间相互作用的物理效应,在各尖端科学技术领域里,都得到了某些应用.特别是石英一类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电子技术中,比较早地在工业规模上进行大批生产和广泛应用.激光问世的四十多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应用中,已成单晶体应用中极为活跃的领域.《晶体物理性能》是我系晶体物理专业的专业课程之一,目的就是希望对晶体特别是光电技术中使用的晶体(包括基质晶体与非线性光学晶体)的有关物理性能及其应用方面的基本知识,有一个了解.对今后从事光电晶体的生长、检测和应用的工作,在分析问题、解决问题方面有所帮助,同时要在今后工作中不断从实践和理论两个方面扩大知识领域,有一个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个方面作深入全面的介绍,也将侧重于激光晶体有关的一些性能及其应用.鉴于以上考虑,《晶体物理性能》讲义将以离子晶体为主要对象,以光电技术上应用为线索组织内容,共分为八章.着重于从宏观角度结合微观机制介绍晶体基本物理性能以及各种交互作用过程的物理效应和它们在光电技术中的某些应用,包括弹性与弹性波(第二章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第八章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、方便地描述这些物理性能必须使用张量来表示.因此,在第一章,我们介绍了关于张量分析基础知识方面的内容.由于水平有限,实践经验缺乏,时间仓促,因而内容安排不妥、取舍不当、错误之处一定很多,希望同学们提出宝贵意见,批评指正.第一章张量的基础知识§1.1标量、矢量和二阶张量…………………………………………………………………2§1.2坐标变换和变换矩阵……………………………………………………………………§1.3正交变换矩阵的性质……………………………………………………………………§1.4晶体对称操作的变换矩阵……………………………………………………………§1.5二阶张量的变换与张量的定义………………………………………………………§1.6张量的足符互换对称…………………………………………………………………§1.7张量的矩阵表示和矩阵的代数运算…………………………………………………§1.8二阶对称张量的几何表示和二阶张量的主轴………………………………………§1.9二阶对称张量主轴的确定……………………………………………………………§1.10晶体张量与晶体对称性的关系………………………………………………………第二章晶体的弹性与弹性波§2.1弹性性质与原子间力…………………………………………………………………§2.2应变……………………………………………………………………………………§2.3应力……………………………………………………………………………………§2.4推广的虎克定律、弹性系数…………………………………………………………§2.5立方晶体的弹性系数…………………………………………………………………§2.6各向同性材料的弹性系数……………………………………………………………§2.7弹性扰动的传播――弹性波…………………………………………………………§2.8简谐振动和驻波……………………………………………………………………§2.9弹性常数及振动衰减因子的测量方法……………………………………………第三章晶体的介电性质§3.1介质中的宏观电场强度与极化强度………………………………………………§3.2晶体中的有效场……………………………………………………………………§3.3高频电场的介电极化(光的色散与吸收)………………………………………§3.4介电常数的测量……………………………………………………………………§3.5离子晶体的静电击穿………………………………………………………………§3.6激光的电击穿(激光的电击穿损伤)……………………………………………第四章铁电与压电物理§4.1铁电体的一般性质…………………………………………………………………§4.2常用铁电体的实验规律……………………………………………………………§4.3铁电体的相变热力学………………………………………………………………§4.4铁电体相变的微观机制……………………………………………………………§4.5晶体的压电效应……………………………………………………………………§4.6压电方程和机电耦合系数…………………………………………………………§4.7压电晶体的应用实例――石英……………………………………………………第五章晶体光学§5.1光学各向异性晶体…………………………………………………………………§5.2各向异性介质中光的传播…………………………………………………………§5.3折射椭球与折射率曲面……………………………………………………………§5.4晶体表面上的折射…………………………………………………………………§5.5晶体偏光干涉及其应用……………………………………………………………第六章倍频与参量频率转换§6.1非线性极化…………………………………………………………………………§6.2非线性极化系数……………………………………………………………………§6.3非线性介质中电磁场耦合方程……………………………………………………§6.4光倍频………………………………………………………………………………§6.5光倍频的相匹配……………………………………………………………………§6.6第II类相匹配………………………………………………………………………§6.7角度匹配和温度匹配扫描实验曲线………………………………………………§6.8内腔倍频……………………………………………………………………………§6.9光参量放大…………………………………………………………………………§6.10参量振荡器…………………………………………………………………………§6.11参量振荡器的调谐方法……………………………………………………………§6.12参量频率上转换……………………………………………………………………§6.13非线性材料的性能要求……………………………………………………………第七章电光效应及其应用§7.1线性电光效应………………………………………………………………………§7.2两种典型材料的电光效应…………………………………………………………§7.3电光滞后……………………………………………………………………………§7.4电光调制原理………………………………………………………………………§7.5实际调制器的几个问题……………………………………………………………§7.6晶体电光开关………………………………………………………………………§7.7电光Q开关…………………………………………………………………………§7.8电光偏转……………………………………………………………………………§7.9电光材料……………………………………………………………………………§7.10晶体均匀性的实验检测……………………………………………………………§7.11晶体的激光损伤……………………………………………………………………§7.12晶体均匀性实验检测………………………………………………………………第八章声光效应及其应用§8.1弹光效应……………………………………………………………………………§8.2声光交互作用产生的衍射现象……………………………………………………§8.3声光交互作用的理论………………………………………………………………§8.4声光效应在一些物理常数测量中的应用…………………………………………§8.5声光调制器…………………………………………………………………………§8.6声光偏转器…………………………………………………………………………§8.7声光调Q……………………………………………………………………………§8.8声光材料……………………………………………………………………………附录A.32点群投影图…………………………………………………………………………B.各阶张量在不同点群中的矩阵形式……………………………………………………C.主要常数表………………………………………………………………………………D.单轴晶体中光线离散角α的推导………………………………………………………E.双轴晶体中双折射面相差Γ的推导……………………………………………………F.贝塞尔函数的基本性质…………………………………………………………………第一章 张量分析基础知识以前学的课程中,有关力学、热学、电学、光学等的性质都是以各向同性介质来表述的或以一维问题来说明问题,这对于突出某些物理现象的微观的物理原因方面是必要的,但晶体物理性能是讲晶体中的力学、电学、光学、声学、磁学、热学等物理性能,而晶体的各向异性却是一种很普遍的特性,特别是很多现象如热电、压电、电光、声光、非线性光学效应……等等物理现象则完全因为晶体具有各向异性性质才能表现出来.因此,晶体结构对称性和这些性质之间的关系成为问题的主要方面。

为描述晶体宏观上表现出来的各向异性,要表达一个物理学定律的方程式通常要比表达各向同性物质的方程式数目多得多.人们实践中探索出一套描述各向异性的数学方法,可以使问题简化得多,这种方法就是张量方法.在晶体物理中所涉及的张量分析是比较简单的,晶体对称性的操作对应的坐标变换,一般使用三维正交直角坐标系的变换就够了.本章介绍的将只限于这种坐标系统所定义的张量(称为卡迪生张量).此外,我们对于张量分析不作严格的数学论证,着重介绍张量分析的一些定义、运算的规则和方法,这对于从事晶体生长与应用的工作者来说是完全足够了.§1.1标量、矢量与二阶张量有些物理量只要一个数字加上一个单位就可以表达清楚了,譬如温度、质量、密度、频率……等等,只要表示︒C 、g 、g/cm 3、Hz 是多少就很清楚了,不管你取什么坐标,都是个数值,这种量称为标量,有时也称为数量.还有一些量,既有大小,又有方向,例如力、速度、位置、电场强度……等等,大家知道这些量称为矢量。

相关文档
最新文档