7月全国自考概率论与数理统计(二)试题及答案解析
全国自考概率论与数理统计(二)试题和答案
B)14.设随机变量X 的分布律为,F (x )是X 的分布函数,则F (1)=______.正确答案:(2分) 2/315.设随机变量X 的概率密度为f (x )=2010,x x ≤≤⎧⎨⎩,,其他,则12P X ⎧⎫>⎨⎬⎩⎭=______.正确答案:(2分)3/416.已知随机变量X ~N (4,9),P {X >c }=P {X ≤c },则常数c =______. 正确答案:(2分) 417.设二维随机变量(X ,Y )的分布律为则常数a =______. 正确答案:(2分) 0.218.设随机变量X 与Y 相互独立,且X ~N (0,l),Y ~N (-1,1),记Z =X -Y ,则Z ~______. 正确答案:(2分) N(1,2)19.设随机变量X 服从参数为2的泊松分布,则E (X 2)=______. 正确答案:(2分) 620.设X ,Y 为随机变量,且E (X )=E (Y )=1,D (X )=D (Y )=5,ρXY =0.8,则E (XY )=______. 正确答案:(2分) 521.设随机变量X 服从区间[-1,3]上的均匀分布,随机变量Y =0111X X <⎧⎨≥⎩,,,,则E (Y )=______. 正确答案:(2分) 1/222.设随机变量X ~B (100,0.2),()x Φ为标准正态分布函数,()2.5Φ=0.9938,应用中心极限定理,可得P {20≤x ≤30)≈______. 正确答案:(2分) 0.493823.设总体X ~N (0,l),x 1,x 2,x 3,x 4为来自总体X 的样本,则统计量22221234x x x x +++~______.正确答案:(2分)x2(4)24.设总体X~N(μ,1),μ未知,x1,x2,…,x n为来自该总体的样本,x为样本均值,则μ的置信度为1-α的置信区间是______.正确答案:(2分)]1,1[22nuxnuxaa+-25.某假设检验的拒绝域为W,当原假设H0成立时,样本值(x1,x2,…,x n)落入W的概率为0.1,则犯第一类错误的概率为______.正确答案:(2分)0.1三、计算题(本大题共2小题,每小题8分,共16分)26.设二维随机变量(X,Y)的概率密度为26,01,01,()0,x y x yf x⎧≤≤≤≤⎪=⎨⎪⎩ 其他.求:(1)(X,Y)关于X的边缘概率密度f X(x);(2)P{X>Y}.正确答案:27.设总体X的概率密度为1,0,()0,0,xe xf xxθθ-⎧>⎪=⎨⎪≤⎩其中未知参数θ>0,x1,x2,…,x n是来自该总体的样本,求θ的极大似然估计.四、综合题(本大题共2小题,每小题12分,共24分)正确答案:28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球,从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)已知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率.正确答案:29.设随机变量X~N(0,l),记Y=2X.求:(1)P{X<-1>;(2)P{|X|<1};(3)Y的概率密度.(附:Φ(1)=0.8413)正确答案:五、应用题(10分)30.某产品的次品率为0.l,检验员每天抽检10次,每次随机取3件产品进行检验,且不存在误检现象,设产品是否为次品相互独立,若在一次检验中检出次品多于1件,则调整设备,以X表示一天调整设备的次数,求E(X).正确答案:。
自考概率论与数理统计(二)(02197)及答案
概率论与数理统计(二)(课程代码:02197)本试卷共五页,满分100分;考试时间150分钟。
一、单项选择题(每小题4分,共40分)1)、设事件A 、B 满足2.0)(=-A B P ,6.0)(=B P ,则)(AB P =( ) A )、0.12 B )、0.4 C )、0.6 D )、0.8 2)、设二维随机变量),(Y X 的分布律为 则}{Y X P ==( )A)、0.3 B )、0.5 C )、0.7 D )0.8 3)、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A )、5.0)(,5.0)(==X D X EB )、25.0)(,5.0)(==X D X EC )、4)(,2)(==XD X ED )、2)(,2)(==X D XE 4)、设随机变量X 服从正态分布(0,4)N ,()x Φ为标准正态分布函数,则{36}( ).P X ≤≤=. (6)(3) . (3)(1.5) 3. (1.5)(1) . (3)()4A B C D Φ-ΦΦ-ΦΦ-ΦΦ-Φ5)、设随机变量)2,1( ~2-N X ,则X 的概率密度=)(x f ( ) A )、4)1(241+-x eπB )、8)1(241+-x eπC )、8)1(2221+-x eπD )、8)1(2221--x eπ6)、设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( )A )、)2,0(NB )、)2(2χC )、)2(tD )、)1,1(F7)、设)2,1( ~2N X ,n X X ,,1 为X 的样本,记∑==n i i X n X 11则有( ) A )、)1,0(~/21N n X - B )、)1,0(~41N X - C )、)1,0(~21N X - D )、)1,0(~21N X - 8)、设总体),( ~2σμN X ,其中μ未知,4321,,,x x x x 为来自总体X的一个样本,则以下关于μ的四个估计:3211513151ˆx x x ++=μ,)(41ˆ43212x x x x +++=μ,1371ˆx =μ,2147261ˆx x +=μ中,哪一个是无偏估计?( )A )、1ˆμB )、2ˆμC )、3ˆμD )4ˆμ 9)、对随机变量X 来说,如果 EX DX ≠,则可断定X 不服从( )分布。
全国自学考试概率论与数理统计二历年真题及答案
全国 2010 年 7 月高等教育自学考试概率论与数理统计(二)试题课程代码: 02197一、单项选择题(本大题共 10 小题,每小题2 分,共 20 分 )在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设 A、B 为两事件,已知P(B)= 1,P(A B)= 2,若事件 A, B 相互独立,则P(A)=( )2 3A .1B .19 6C.1 D .13 2 2.对于事件 A, B,下列命题正确的是( )A .如果 A,B 互不相容,则 A , B 也互不相容B.如果 A B,则 A BC.如果 A B,则 A BD.如果 A,B 对立,则 A , B 也对立3.每次试验成功率为p(0< p<1) ,则在3 次重复试验中至少失败一次的概率为( )3 B . 1-p 3A . (1-p)C. 3(1-p) D . (1- p)3+p(1- p) 2+p2(1-p)4.已知离散型随机变量X 的概率分布如下表所示:X -1 0 1 2 4P 1/ 10 1/5 1/10 1/5 2/5 则下列概率计算结果正确的是( )A . P(X=3)=0B . P(X=0)= 0C. P(X>-1)=1 D . P(X<4)= 15.已知连续型随机变量X 服从区间 [a,b] 上的均匀分布,则概率P X2a b( )3A . 0B .13C.2 D . 1 36.设 (X,Y)的概率分布如下表所示,当X 与 Y 相互独立时 ,(p,q)=( )Y-1 1 X0 1p 151 1 Q51 3 2510A.(1,1 ) B.(1,1)5 15 15 5C.(1,2) D.(2,1)10 15 15107.设 (X,Y)的联合概率密度为f(x,y)= k( xy),0 x 2,0 y 1, 则k=() 0, 其他 ,A .1B .13 2C. 1 D . 38.已知随机变量 X~ N (0, 1),则随机变量Y=2X+10 的方差为 ( ) A . 1 B . 2C. 4 D.149.设随机变量 X 服从参数为0.5 的指数分布,用切比雪夫不等式估计P(|X-2| ≥ 3) ≤ ( )A .1B .29 9C.1 D .43 910.由来自正态总体 X~ N (μ, 22)、容量为400 的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是 (u0.025=1.96,u0.05=1.645)( )A . (44, 46)B . (44.804,45.196)C. (44.8355, 45.1645) D . (44.9, 45.1) 二、填空题 (本大题共15 小题,每小题2分,共 30 分)请在每小题的空格中填上正确答案。
全国2011年7月高等教育自学考试概率论与数理统计(二)试题
全国2011年7月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A={2,4,6,8},B={1,2,3,4},则A-B=()A.{2,4} B.{6,8}C.{1,3} D.{1,2,3,4}2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为()A. B.C. D.3.设事件A,B相互独立,,则=()A.0.2 B.0.3C.0.4 D.0.54.设某试验成功的概率为p,独立地做5次该试验,成功3次的概率为()A. B.C. D.5.设随机变量X服从[0,1]上的均匀分布,Y=2X-1,则Y的概率密度为()A. B.C. D.6.设二维随机变量(X,Y)的联合概率分布为()则c=A. B.C. D.7.已知随机变量X的数学期望E(X)存在,则下列等式中不恒成立的是()A.E[E(X)]=E(X) B.E[X+E(X)]=2E(X)C.E[X-E(X)]=0 D.E(X2)=[E(X)]28.设X为随机变量,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤()A. B.C. D.9.设0,1,0,1,1来自X~0-1分布总体的样本观测值,且有P{X=1}=p,P{X=0}=q,其中0<p<1,q=1-p,则p的矩估计值为()A.1/5 B.2/5C.3/5 D.4/510.假设检验中,显著水平表示()A.H0不真,接受H0的概率 B.H0不真,拒绝H0的概率C.H0为真,拒绝H0的概率 D.H0为真,接受H0的概率二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.盒中共有3个黑球2个白球,从中任取2个,则取到的2个球同色的概率为________.12.有5条线段,其长度分别为1,3,5,7,9,从这5条线段中任取3条,所取的3条线段能拼成三角形的概率为________.13.袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为________. 14.掷一枚均匀的骰子,记X为出现的点数,则P{2<X<5}=________. 15.设随机变量X的概率密度为,则常数C=________.16.设随机变量X服从正态分布N(2,9),已知标准正态分布函数值Φ(1)=0.8413,则P{X>5}=________.17.设二维随机变量(X,Y)的联合概率分布为则P(X>1)=________.18.设二维随机变量(X,Y)服从区域D上的均匀分布,其中D为x轴、y轴和直线x+y≤1所围成的三角形区域,则P{X<Y}=________. 19.设X与Y为相互独立的随机变量,X在[0,2]上服从均匀分布,Y服从参数的指数分布,则(X,Y)的联合概率密度为________.20.已知连续型随机变量X的概率密度为,则E(X)=________.21.设随机变量X,Y相互独立,且有如下分布律COV(X,Y)=________.22.设随机变量X~B(200,0.5),用切比雪夫不等式估计P{80<X<120}≥________.23.设随机变量t~t(n),其概率密度为f t(n)(x),若,则有________.24.设分别是假设检验中犯第一、二类错误的概率,H0,H1分别为原假设和备择假设,则P{接受H0|H0不真}=________.25.对正态总体,取显著水平=________时,原假设H0∶=1的接受域为.三、计算题(本大题共2小题,每小题8分,共16分)26.设某地区地区男性居民中肥胖者占25%,中等者占60%,瘦者占15%,又知肥胖者患高血压病的概率为20%,中等者患高血压病的概率为8%,瘦者患高血压病的概率为2%,试求:(1)该地区成年男性居民患高血压病的概率;(2)若知某成年男性居民患高血压病,则他属于肥胖者的概率有多大?27.设随机变量X在区间[-1,2]上服从均匀分布,随机变量求E(Y),D(Y).四、综合题(本大题共2小题,每小题12分,共24分)28.设随机变量X的概率密度函数为求(1)求知参数k;(2)概率P(X>0);(3)写出随机变量X的分布函数.29.设二维随机变量(X,Y)的概率密度为试求:E(X);E(XY);X与Y的相关系数.(取到小数3位)五、应用题(本大题共1小题,10分)30.假定某商店中一种商品的月销售量X~N(),均未知。
概率论与数理统计(二)(02197)
概率论与数理统计(二)(02197)1[计算题]设随机变量X的概率密度为2[计算题]设随机变量X服从[0,0.2]上的均匀分布,随机变量Y的概率密度为且X与Y相互独立,求(X,Y)的概率密度。
综合题]设(X,Y)的分布律为:且X与Y相互独立,求常数和的值。
[综合题]设随机变量X与Y相互独立,且X,Y的分布律分别为求二维随机变量(X,Y)的分布律。
[应用题]五家商店联营,它们每两周售出的某种农产品的数量(以千克计)分别记为随机变量.已知,,,,,且它们相互独立,求这五家商店两周的总销量的均值和方差?解:设随机变量X指五家商店两周的总销量,则由已知可得(1)这五家商店两周的总销量的均值(2)这五家商店两周的总销量的方差[应用题]设电压(以计),将电压施加于一检波器,其输出电压为,求输出电压Y的均值?[计算题][计算题][综合题]设随机变量X的分布律为记综合题]设离散型随机变量X的分布律为[应用题]已知甲进行一次射击的命中率为,求:“甲进行三次独立的射击,至少一次命中”的概率?应用题]随机地取8只活塞环,测得它们的直径为(以mm计)74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002试求总体均值的矩估计值?[计算题][计算题]12把钥匙中有4把能打开门,今任取两把,求能打开门的概率。
综合题]设袋中有依次标着-1,0,1,2,3,4数字的6个球,现从中任取一球,记随机变量X为取得的球标有的数字,求:(1)X的分布律;(2)的概率分布。
[综合题]设二维随机变量(X,Y)的分布律为(1)求(X,Y)分别关于X,Y的边缘分布律;(2)试问X与Y是否相互独立,为什么?[应用题]已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,今从男女人数相等的人群中随机地挑选一个人,恰好是色盲患者,问此人是男性的概率是多少?解:设A表示“男人”,B表示“女人”,C表示“这人有色盲”,则由贝叶斯公式可得:应用题]某同学的钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是0.7,0.2,0.1,而掉在上述三处地方被找到的概率分别是0.8,0.2,0.2,试求他找到钥匙的概率?解:设:A1 =“钥匙掉在宿舍里”,A2=“钥匙掉在教室里”,A3=“钥匙掉在路上”,B=“钥匙被找到”,已知。
历年自学考试01297概率论与数理统计(二)试题和答案
全国2012年4月自学考试概率论与数理统计(二)试题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1. 设A ,B 为随机事件,且A ⊂B ,则AB 等于( )A. A BB. BC. AD. A2. 设A ,B 为随机事件,则P (A-B )=( ) A. P (A )-P (B )B. P (A )-P (AB )C. P (A )-P (B )+ P (AB )D. P (A )+P (B )- P (AB ) 3. 设随机变量X 的概率密度为f (x )= ⎪⎩⎪⎨⎧<<其他,,,0,6331x 则P {3<X ≤4}=( )A. P {1<X ≤2}B. P {4<X ≤5}C. P {3<X ≤5}D. P {2<X ≤7}4. 已知随机变量X 服从参数为λ的指数分布, 则X 的分布函数为 ( )A. F (x )=⎩⎨⎧≤>-.0,00,e x x λx ,λB. F (x )=⎩⎨⎧≤>--.0,00,e 1x x λx ,λC. F (x )=⎩⎨⎧≤>--.0,00,e 1x x λx ,D. F (x )=⎩⎨⎧≤>+-.0,00,e 1x x λx ,5. 已知随机变量X~N (2,2σ), P {X ≤4}=0.84, 则P {X ≤0}= ( ) A. 0.16 B. 0.32 C. 0.68 D. 0.84 6. 设随机变量X 与Y 相互独立,且都服从标准正态分布,则2X -Y +1~ ( )A. N (0,1)B. N (1,1)C. N (0,5)D. N (1,5)7. 设随机变量X 与Y 相互独立,它们的概率密度分别为f X (x ), f Y (y ), 则(X ,Y ) 的概率密度为( )A. 21[ f X (x )+f Y (y )] B. f X (x )+f Y (y ) C.21f X (x ) f Y (y ) D. f X (x ) f Y (y )8. 设随机变量X ~B (n ,p ), 且E (X )=2.4, D (X )=1.44, 则参数n ,p 的值分别为( ) A. 4和0.6 B. 6和0.4 C. 8和0.3D.3和0.89. 设随机变量X 的方差D (X )存在,且D (X )>0,令Y =-X ,则ρXY =( ) A. -1 B.0 C. 1D.210. 设总体X ~N (2,32),x 1,x 2,…,x n 为来自总体X 的样本,x 为样本均值,则下列统计量中服从标准正态分布的是( ) A.32-x B.92-x C. nx /32-D.nx /92-二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格上填上正确答案。
最新 年月全国自考概率论与数理统计(二)试题及答案
1 / 10全国2018年7月自学考试概率论与数理统计(二)课程代码:02197试卷来自百度文库 答案由绥化市馨蕾園的王馨磊导数提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ={2,4,6,8},B ={1,2,3,4},则A -B =( ) A .{2,4} B .{6,8} C .{1,3}D .{1,2,3,4}.B AB A B A B A B A 中的元素,故本题选中去掉集合合说的简单一些就是在集的差事件,记作与事件不发生”为事件发生而解:称事件“-2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为( )A .15B .14C .13D .12.31789105678;844104104848410C C C P C C ,故选本题的概率件正品中取,共有从件中没有次品,则只能若种取法;件,共有件产品中任取解:从=⨯⨯⨯⨯⨯⨯== 3.设事件A ,B 相互独立,()0.4,()0.7,P A P A B =⋃=,则()P B =( ) A .0.2 B .0.3 C .0.4D .0.52 / 10()()()()()()()()()()()()()().5.04.04.07.0D B P B P B P B P A P B P A P AB P B P A P B A P B P A P AB P B A ,故选,解得代入数值,得,所以,相互独立,,解:=-+=-+=-+=⋃= 4.设某实验成功的概率为p ,独立地做5次该实验,成功3次的概率为( )A .35CB .3325(1)C p p -C .335C pD .32(1)p p -()()()()()().1335.,...2,1,0110~23355B p p C P k n n k p p C k P k A p p A n p n B X kn kk n n ,故选,所以,本题,次的概率恰好发生则事件,的概率为次检验中事件重贝努力实验中,设每定理:在,解:-====-=<<-5.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为( )A .1,11,()20,,Y y f y ⎧-≤≤⎪=⎨⎪⎩其他 B .1,11,()0,,Y y f y -≤≤⎧=⎨⎩其他C .1,01,()20,,Y y f y ⎧≤≤⎪=⎨⎪⎩其他D .1,01,()0,,Y y f y ≤≤⎧=⎨⎩其他()()[]()()()()()()[]()[][][]..01,121.01,1211.01,1212121.01,12121211,1212112010101110~A y y y y f y f y y h y h f y f y h y y h y y x x y x x f U X X Y X Y X 故选其他,,其他,,其他,,,得其他,,由公式,,即,其中,解得由其他,,,,,,解:⎪⎩⎪⎨⎧-∈=⎪⎩⎪⎨⎧-∈⨯=⎪⎩⎪⎨⎧-∈⎪⎭⎫ ⎝⎛+=⎩⎨⎧-∈'=='+=-∈+=-=⎪⎩⎪⎨⎧≤≤=-=3 / 106.设二维随机变量(X ,Y )的联合概率分布为( )则c =A .112B .16C .14 D .13()().611411211214161.1,...2,1,0B c c P j i P Y X jij iij ,故选,解得由性质②,得②,①:的分布律具有下列性质,解:==+++++==≥∑∑7.已知随机变量X 的数学期望E (X )存在,则下列等式中不恒成立....的是( ) A .E [E (X )]=E (X ) B .E [X +E (X )]=2E (X ) C .E [X -E (X )]=0D .E (X 2)=[E (X )]2()()()().D C B A XE X E E X E X 均恒成立,故本题选、、由此易知,即,期望的期望值不变,的期望是解:=8.设X 为随机变量2()10,()109E X E X ==,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤( )A .14 B .518 C .34D .109364 / 10()()()()(){}(){}.416961091001092222A X P X D X E X P X E X E X D ,故选所以;切比雪夫不等式:,解:=≤≥-≤≥-=-=-=εε 9.设0,1,0,1,1来自X ~0-1分布总体的样本观测值,且有P {X =1}=p ,P {X =0}=q ,其中0<p <1,q =1-p ,则p 的矩估计值为( ) A .1/5 B .2/5 C .3/5D .4/5()()().53ˆ5301ˆC px p q p X E x X EX E x ,故选,所以,本题,,即估计总体均值用样本均值矩估计的替换原理是:解:===⨯+⨯== 10.假设检验中,显著水平α表示( ) A .H 0不真,接受H 0的概率 B .H 0不真,拒绝H 0的概率 C .H 0为真,拒绝H 0的概率D .H 0为真,接受H 0的概率{}.00C H H P ,故选为真拒绝即拒真,表示第一类错误,又称解:显著水平αα=二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计(二)试题及答案.
全国2009年7月自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题小题,,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的在每小题列出的四个备选项中只有一个是符合题目要求的,,请将其代码填写在题后的括号内请将其代码填写在题后的括号内。
错选错选、、多选或未选均无分选均无分。
1.设A 与B 互不相容,且P(A)>0,P(B)>0,则有( )A.P(A)=1-P(B)B.P(AB)=P(A)P(B)C.P(A B )=1D.P(AUB)=P(A)+P(B)2.设A 、B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( )A.P(AB)=0B.P(A-B)=P(A)P(B )C.P(A)+P(B)=1D.P(A | B)=03.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( )A.0.125B.0.25C.0.375D.0.504.设函数f (x)在[a ,b]上等于sin x ,在此区间外等于零,若f (x)可以作为某连续型随机变量的概率密度,则区间[a ,b]应为( ) A.[2π−,0] B.[0,2π] C.[0,π] D.[0,2π3] 5.设随机变量X 的概率密度为≤<−≤<=其它021210)(x x x x x f ,则P(0.2<X<1.2)= ( ) A.0.5B.0.6C.0.66D.0.76.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( ) A.61 B.41 C.31 D.21 7.221 α β 则有( )A.α=91,β=92 B. α=92,β=91 C. α=31,β=32 D. α=32,β=31 8.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( )A.-2B.0C.21D.2 9.设μn 是n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中发生的概率,则对于任意的ε>0,均有}|{|lim n εµ>−∞→p n P n ( )A.=0B.=1C.>0D.不存在 10.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H 0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H 0B.可能接受H 0,也可能拒绝H 0C.必拒绝H 0D.不接受,也不拒绝H 0二、填空题(本大题共15小题小题,,每小题2分,共30分)请在每小题的空格中填上正确答案请在每小题的空格中填上正确答案。
全国自考概率论与数理统计(二)试题及解析
全国 2021 年 7 月高等教育自学考试概率论与数理统计〔二〕试题课程代码: 02197一、单项选择题〔本大题共10 小题,每题2 分,共 20 分〕在每题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多项选择或未 选均无分。
1.设事件 A 与 B 互不相容,且 P(A)>0,P(B)>0, 那么有〔 〕 A.P(A B)=P(A)+P(B) B.P(AB)=P(A)P(B) C.A= BD.P(A|B)=P(A)2.某人独立射击三次,其命中率为 ,那么三次中至多击中一次的概率为〔〕3.设事件 {X=K} 表示在 n 次独立重复试验中恰好成功 K 次,那么称随机变量 X 服从〔〕A. 两点分布B. 二项分布C.泊松分布D.均匀分布4.设随机变量 X 的概率密度为 K (4x 2 x 2 ),1 x 2〕f(x)=那么 K= 〔, 其它 A. 5 B. 1 162C.3D.44 55.设二维随机向量〔 X , Y 〕的联合分布函数 F 〔x,y 〕,其联合分布列为Y12 X-10 0 00 1那么 F(1,1) = 〔 〕1(6 x y),0 x 2,2 y 4,6.设随机向量〔 X , Y 〕的联合概率密度为 f(x,y)= 80,其它 ;那么 P 〔 X<1,Y<3 〕 =〔〕1A. 3B.4 8 85 7C. D.8 87.随机量 X 与 Y 相互独立,且它分在区[-1 ,3] 和[2, 4]上服从均匀分布,E〔XY 〕 =〔〕8. X 1, X2 , ⋯ ,X n,⋯独立同分布的随机量序列,且都服从参数1的指数分布,当 n 充分大,随机量21 nX i 的概率分布近似服从〔〕Y n=n i 1A.N 〔 2, 4〕B.N 〔 2,4〕nC.N 〔1, 1 〕 D.N 〔 2n,4n〕2 4n1 2 nN〔 0,1〕的随机本,X 本均,2 本方差,有〔〕9. X ,X ,⋯, X (n≥ 2)来自正体SA. nX ~ N( 0,1) 2~χ2(n)(n 1)X ( n 1)X 12~ F(1, n 1)C. ~ t(n 1)D. nSX i2i 210.假设未知参数的估量,且足E〔〕 = ,称是的〔〕A. 无偏估量B. 有偏估量C.近无偏估量D.一致估量二、填空〔本大共15 小,每小 2 分,共 30 分〕在每小的空格中填上正确答案。
概率论与数量统计(二)-自考(课程代码02197)
率.
【例3】盒中有黄白两种颜色的乒乓球,黄色球7个,
其中3个是新球;白色球5个,其中4个是新球. 现从
中任取一球是新球,求它是白球的概率. 【例4】盒中有5个黑球3个白球,连续不放回地从中
取两次球,每次取一个,若已知第一次取出的是白
球,求第二次取出的是黑球的概率.
【例1】掷一颗质地均匀的骰子,求出现奇数点的概 率. 【例2】掷一枚硬币3次,设事件A为“恰有一次出现 正面”,B表示“三次均出现发面”,C表示“至少 一次出现正面”,试求P(A),P(B),P(C). 【例3】从0,1,2,…,9十个数字中任意选出三个不同的 数字,试求三个数字中不含0和5的概率.
1. 课本大体内容:全书分为两部分,
①概率论部分:第一章—第五章
②应用题:第六章—第八章
2. 大题分布
计算题:第一章、第二章
综合题:第三章、第四章
应用题:第七章或第八章
第一章
随机事件与概率
一、考核知识点
1、随机事件的关系和运算 2、概率的定义与性质 3、古典概型 4、条件概率和乘法公式、全概率公式和贝叶斯公式 5、事件的独立性、贝努利概型
§3 条件概率
☆概率的乘法公式 ①若P(A)>0,则 P(AB)=P(A)P(B|A); 若P(B)>0,则 P(AB)=P(B)P(A|B); ②推广到3个事件的情形 若P(AB)>0,则P(ABC)=P(A)P(B|A)P(C|AB) ③推广到n个事件的情形 若P( A1 A2 An1 ) 0 ,则
Ai 表示“第i次射 【例5】某射手向一目标射击三次,
击命中目标”,i=1,2,3, Bj 表示“三次射击中恰命中 的运算表示 B j ( j 0,1, 2,3)
(全新整理)7月全国自考概率论与数理统计试卷及答案解析
1浙江省2018年7月高等教育自学考试概率论与数理统计试题课程代码:10024一、单项选择题(本大题共5小题,每小题4分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列关系式中成立的个数( )(1)A-(B-C)=(A-B)∪C(2)(A ∪B)-B=A (3)(A-B)∪B=A(4)AB 与A B 互不相容 A.0个B.1个C.2个D.3个2.设一批产品共有1000个,其中50个次品,从中随机地有放回地选取500个产品,X 表示抽到次品的个数,则P(X=3)=( ) A.5001000497950350C C C B.5001000497950350A A A C.3500C (0.05)3(0.95)497 D.5003 3.设随机变量(X,Y)~N(1,1;4,9;21),则Cov(X,Y)=( ) A.0.5B.3C.18D.364.设总体X~N(0,12),从总体中取一个容量为6的样本X 1,…,X 6,设Y=(X 1+X 2+X 3)2+(X 4+X 5+X 6)2,若CY 服从2 (2)分布,则C 为( )A.3B.31 C.9 D.91 5.对正态总体的数学期望μ进行假设检验,如果在显著性水平0.05下接受H 0∶μ=μ0,那么在显著性水平0.01下,下列结论中正确的是( )A.必接受H 0B.可能接受,也可能拒绝H 02 C.必拒绝H 0 D.不接受,也不拒绝H 0二、填空题(本大题共7小题,每小题4分,共28分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____________.7则F(2)=____________.8.设X~N(0,1),Φ(x)为其分布函数,则Φ(x)+Φ(-x)=____________.9.某种产品上的缺陷数X 服从下列分布列:P(X=k)=1/2k+1,k=0,1,…,则此种产品的平均缺陷数为____________.10.设随机变量X~B(100,0.2),应用中心极限定理可得P{X ≥30}=__________________.(已知Φ(2.5)=0.9938)11.在一本书上随机检查了10页,发现每页上的错误数x i (i=1,…,10)分别为4,5,6,0,3,1,4,2,1,4,若常数c 使2101i i )c x(∑=-达到最小值,则c=____________.12.设总体X~N(μ,σ2),设样本X 1,…,X 7为来自该总体,X 为样本均值,则D(X )=________. 三、计算题(本大题共5小题,共42分)13.(8分)已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.03.求:(1)任意抽查一件产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品确实是合格品的概率.14.(8分)设顾客在某银行的窗口等待的时间X(分钟)服从参数为51指数分布,某顾客在窗口等待服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试求:(1)Y 的分布律;(2)P{Y ≥1}.15.(8分)设随机变量U 服从(-2,2)上的均匀分布,定义X 和Y 如下:X=⎩⎨⎧-≥-<-,1U ,1;1U ,1 Y=⎩⎨⎧≥<-,1U ,1;1U ,13 试求:(1)Z=X+Y 的分布律;(2)E(Z),D(Z).16.(10分)设x 1,…,x n 是总体的样本,已知总体的密度函数为: f(x)=θ--θ1x e 1, x>1, θ>0试求:(1)θ的矩估计;(2)θ的极大似然估计.17.(8分)从甲地发送一个讯号到乙地.设乙地接受到的讯号值是一个服从正态分布N(μ,0.22)的随机变量,其中μ为甲地发送的真实讯号值.现甲地重复发送同一讯号5次,乙地接受到的讯号值为8.05,8.15,8.2,8.1,8.25.设接受方有理由猜测甲地发送的讯号值为8,问能否接受这猜测?(α=0.05,u 0.025=1.96,u 0.05=1.645)四、证明题(本大题10分)18.设二维随机变量(X,Y)的联合概率密度为f(x,y).证明:X 与Y 相互独立的充要条件是f(x,y)可分离变量,即存在函数h(x),g(y),满足f(x,y)=h(x)g(y).又问h(x),g(y)与边际密度有什么关系?。
浙江7月高等教育自学考试概率论与数理统计(二)试题及答案解析
浙江省2018年7月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、填空题(每空2分,共32分)1.袋中装有3只白球、5只红球,在袋中取球两次,每次取1只,作不放回抽样,则取到2只红球的概率为________________2.设A 、B 是两个相互独立的事件,已知P(A)=0.3,P(B)=0.2,则P(A ∪B)=_______3.设正方形的边长在区间[0,2]服从均匀分布,则正方形面积A=X 2的期望为_________4.设X 的分布函数为F(x)=⎪⎩⎪⎨⎧>-其它,0100x ,x 1001, 其他则P{X>1500}=_________, P{2000<X ≤3000}=_________5.设D(X)=1,D(Y)=4,相关系数ρxy=12,则COV(X,Y)=_______6.设X 服从参数λ=3的泊松分布,则P{X<2}=_________7.设(X则Y 2+1的概率分布列为_______8.已知F 0.05(3,4)=6.59,则F 0.95(4,3)=________________;已知F ~F(5,9),则F1~_____ 布9.设(X ,Y)服从二维正态分布N(μ1,μ2,σ21,σ22,ρ),则X 的概率密度为____________,X ,Y 相互独立的充分且必要的条件是ρ=________________10.设X ~N(1,3),X 1、X 2,X 3,X 4是来自X 的样本,则31X -~________________分布,∑=-41i 2)31X (~________________分布,X 1+X 2~_________分布。
11.设x 21~x 2(2),x 22~x 2(3),且x 21、x 22相互独立,则x 21+x 22~_________分布。
二、计算题及应用题(共68分)1.一人携3发子弹去靶场打靶,命中一发或子弹打完他即离开靶场,他的射击命中率为p.设各次是否击中相互独立,求他离开靶场时己命中一发的概率(6分)2.设(X ,Y)的概率密度为f(x,y)=⎩⎨⎧≤≤≤≤+其它,01y 0,1x 0,Y X (1)求边缘概率密度f X (x),f Y (y)(4分)(2)问X 、Y 是否相互独立(需说明理由)(4分)(3)求E(X),D(X)(4分)(4)求概率P{Y ≤X/3}(4分)3.设随机变量X 的概率密度为(6分) f(x)=⎪⎩⎪⎨⎧<<-其它,01x 1,x 2320,其他求Y=3X+1的概率密度4.经验表明,有20%的顾客预订了餐厅的座位,但不来就餐,餐厅有30个座位,预订给了32位顾客(设各预订者是否来就餐相互独立),以X 表示预订了座位的顾客前来就餐的人数(1)写出X 的概率分布列(6分)(2)求前来就餐的顾客都有座位的概率(6分)5.0<θ<1,θ为未知参数,取到一个来自X 的样本X 1,X 2,…,X n(1)求θ的矩估计量(6分)(2)证明所得的矩估计量是无偏的(4分)6.设这两个总体依次服从正态分布N(μ1,σ2),N(μ2,σ2),μ1,μ2,σ2,均未知,试在水平 α=0.05下检验假设:H 0:μ1=μ2H 1: μ1≠μ2备用数据(x 2分布,t 分布的上侧α分位数):t 0.05(10)=1.8125 t 0.025(8)=2.3060 t 0.025(10)=2.22817.设随机变量X ~N(2,2),Y ~N(-1,4),且X ,Y 独立(1)求P{X<2,Y<4}(4分)(2)求E(XY)+D(X-Y)(4分)(3)求(X ,Y)的概率密度(4分)备用数据:Φ(0)=0.5Φ(1.25)=0.8944Φ(2.5)=0.9938Φ(x)为标准正态分布函数。
自考试卷概率论与数理统计(二)真题
1、设A ,B 为随机事件,且B A ,则AB 等于(B )A .AB .BC .ABD .A2、将一枚均匀的硬币抛掷三次,恰有二次出现正面的概率为( C )A .81B .14C .38D .123、掷一颗骰子,观察出现的点数。
A 表示“出现3点”,B 表示“出现奇数点”,则(A)A. ACBB. ACBC. CD. ACB4、设A ,B 为随机事件,则(AUB)A= ( C )A. ABB. AC. BD. AUB5、设随机事件A 与B 互不相容,P(A)=0.4, P(B)=0.2, 则P(A/B)= ( D )A. 0.2B. 0.4C. 0.5D. 06、设随机变量X 服从参数为0. 5的指数分布,则下列各项中正确的是( D )A. E(x)=0.5 D(x)= 0.25B. E(x)=2 D(x)= 0.25C. E(x)=0.5 D(x)=4D. E(x)=2 D(x)=47.已知随机变量X ~N (0,1),则随机变量Y =2X -1的方差为(D )A .1B .2C .3D .48.事件A ,B 相互独立,且P(A)=0.7, P(B)=0.6, P(A -B)= ( A )。
B.0.42C.0.88D.0.189、如果函数f(x)= 2x, a≤x<b,0 ,其他,是某连续型随机变量X的概率密度,则区间[a, b]可以是(A )A. [0,1]B. [0,2]C. [0.√2]D. [1,2]10、已知D(X)=25,D(Y)=1,Pxy=0.4,则D(X-Y)=(B)A.6B.22C.30D.4611、已知随机变量X与Y相互独立,且它们分务别在区间[1,3]和[2,4]上)服从均与分布,则E(XY)=( B )A.3B.6C.10D.1212、设X~N(-1,2),Y~N(13),且X与Y相互独立,则2X+2Y~(C )A. N(1.8)B. N(1,14)C. N(0,20)D. N(1,40)13、设(X,Y)为二维随机变量,则与Cov(X,Y)=0不等价的是(A )A. X与Y相互独立B. D(X+Y)= D(X)+ D(Y)C. D(X-Y)= D(X)+ D(Y)D. E(X Y)= E(X).E(Y)14、从装有2只红球,2只白球的袋中任取两球,记: A="取到2只白球”则A= ( D )。
2013年7月概率论与数理统计(二)试题答案
绝密★考试结束前全国2013年7月高等教育自学考试概率论与数理统计(二)试题课程代码:02197请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相 应代码涂黑。
错涂、多涂或未涂均无分。
1.设A 、B 为随机事件且P(AB)=0,则有 A A .P(A —B)=P(A) B .A 和B 相互独立 C .P(A)=0或P(B)=0 D .A 和B 不相容 D :A=[0,1],B=[1,2],AB={1},P (A )=0(在连续型随机变量中,一点的概率为零) 2.随机事件A 、B 满足P(A)=0.8,P(B)=0.7,P(A|B)=0.8,则下列结论正确的是 B A .B ⊃A B .P(AB)=0.56 C .P(A ∪B)=P(A)+P(B) D .事件A 与事件B 互逆()()()P AB P A B P B ==0.8*0.7=0.563.设A ,B ,C 为三个随机事件,且A ,B 相互独立,则以下结论中不正确的是 D A .若P(C)=1,则AC 与BC 也独立 B .若P(C)=1,则A ∪C 与B 也独立 C .若P(C)=0,则A ∪C 与B 也独立 D .若C ⊂B ,则A 与C 也独立B :AC C =U ,()()()*1()*()P BC P B P B P B P C ===,所以BC 相互独立。
4.以下函数中能成为某随机变量的概率密度的是 D(1)()0f x ≥排除AB()1f x dx +∞-∞=⎰排除C5.某型号晶体三极管的寿命x(单位:小时)的概率密度为20,x 1000,f (x)1000,x 1000.x≤⎧⎪=⎨>⎪⎩,现将装有5个这种三极管的收音机,在使用的前1500小时内正好有2个管子需要更换的概率是 B A .40243B .80243 C .13D .23贝努力概型:2235(1)C p p -其中1500210001000p dx x =⎰13=6.设X 和Y 为两个随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,则P{max(X,Y) ≥0}= C A .1649 B .37 C .57D .4049第一象限概率3/7,第二、四象限概率1/7, P{max(X,Y) ≥0}包含第一、二、四象限7.设随机变量X 的E(X),E(Y),D(X),D(Y)及Cov(X ,Y)均存在,则D(X —Y)= C A .D(X)+D(Y) B .D(X)—D(Y) C .D(X)+D(y)—2Cov(X ,Y) D .D(X)—D(Y)+2Cov(X ,Y)()22D X Y D()()2(,)a b a X b D Y abCov X Y +=++8.设随机变量X ~B(10,12),Y ~N(2,10),又E(XY)=14,则X 与Y 的相关系数XY ρ= D A .-0.8 B .-0.16 C .0.1D .0.82()5,()2,()10,()10E X np E Y D X npq D Y σ=======XY ρ=(,)()()()Cov X Y E XY E X E Y =-9.在区间估计中,为了提高估计精度,指出下列说法正确的是 B A .在置信水平一定的条件下,要提高估计精度的可靠性,就应缩小样本容量 B .在置信水平一定的条件下,要提高估计精度的可靠性,就应增大样本容量 C .在样本容量一定的条件下,要提高估计精度的准确性,就降低置信水平 D .在样本容量一定的条件下,要提高估计精度的准确性,就提高置信水平 由置信度与精度的关系得到10.一种零件的标准长度5cm ,现要检验某天生产的零件是否符合标准要求,此时建立的原假设与备择假设应为 A A .H 0:μ=5, H 1:μ≠5 B .H 0:μ≠5, H 1:μ=5 C .H 0:μ≤5, H 1:μ>5 D .H 0:μ≥5, H 1:μ<5非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
全国自学考试概率论与数理统计二历年真题及答案
全国2010年7月高等教育自学考试 概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 、B 为两事件,已知P (B )=21,P (A ⋃B )=32,若事件A ,B 相互独立,则P (A )=( ) A .91B .61C .31D .21 2.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则A ,B 也互不相容 B .如果A ⊂B ,则B A ⊂ C .如果A ⊃B ,则B A ⊃D .如果A ,B 对立,则A ,B 也对立3.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3C .3(1-p )D .(1-p )3+p (1-p )2+p 2(1-p )4.已知离散型随机变量X则下列概率计算结果正确的是( ) A .P (X =3)=0 B .P (X =0)=0 C .P (X >-1)=1D .P (X <4)=1 5.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率P =⎭⎬⎫⎩⎨⎧+<32b a X ( )A .0B .31C .32 D .1A .(51,151)B .(151,51)C .(101,152) D .(152,101) 7.设(X ,Y )的联合概率密度为f (x ,y )=⎩⎨⎧≤≤≤≤+,,0,10,20),(其他y x y x k 则k =( )A .31B .21 C .1D .38.已知随机变量X ~N (0,1),则随机变量Y =2X +10的方差为( ) A .1 B .2 C .4D .149.设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计P (|X -2|≥3)≤( )A .91B .92C .31D .94 10.由来自正态总体X ~N (μ,22)、容量为400的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是(u 0.025=1.96,u 0.05=1.645)( ) A .(44,46)B .(44.804,45.196)C .(44.8355,45.1645)D .(44.9,45.1)二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
x全国2006年7月高等教育自学考试概率论与数理统计(二)试题 (1)
全国2006年4月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)1.从一批产品中随机抽两次,每次抽1件。
以A 表示事件“两次都抽得正品”,B 表示事件“至少抽得一件次品”,则下列关系式中正确的是( ) A .A ⊂B B .B ⊂A C .A=BD .A=B2.对一批次品率为p(0<p<1)的产品逐一检测,则第二次或第二次后才检测到次品的概率为( )A .pB .1-pC .(1-p)pD .(2-p)p3.设随机变量X~N (-1,22),则X 的概率密度f(x)=( ) A .8)1(2221+-x eπ B .8)1(2221--x eπC .4)1(241+-x e πD .8)1(241+-x eπ4.设F (x )和f(x)分别为某随机变量的分布函数和概率密度,则必有( ) A .f(x)单调不减 B .⎰+∞∞-=1)(dx x FC .F (-∞)=0D .⎰+∞∞-=dx x f x F )()(5若X 与Y 相互独立,则( )A .α=92,β=91B .α=91,β=92C .α=61,β=61D .α=185,β=1816.设二维随机向量(X ,Y )在区域G :0≤x ≤1,0≤y ≤2上服从均匀分布,f Y (y)为(X ,Y )关于Y 的边缘概率密度,则f Y (1)=( ) A .0 B .21C .1D .27.设随机向量X 1,X 2…,X n 相互独立,且具有相同分布列:,0<p<1,q=1-p,i=1,2,…,n. 令∑==ni i X nX 11,则D (X )=( )A .2npq B .npqC .pqD .npq8.设随机变量序列X 1,X 2,…,X n ,…独立同分布,且E (X i )=μ,D(X i )=2σ,0>σ,i=1,2,….)(x Φ为标准正态分布函数,则对于任意实数x ,=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥-∑=∞→x n n X P ni i n σμ1lim( ) A .0 B .Φ(x) C .1-Φ(x)D .19.设X 1,X 2,…,X 6是来自正态总体N (0,1)的样本,则统计量262524232221X X XX X X ++++服从( )A .正态分布B .2χ分布C .t 分布D .F 分布10.设X 1,X 2,X 3是来自正态总体N (0,σ2)的样本,已知统计量c(2232221X X X +-)是方差σ2的无偏估计量,则常数c 等于( ) A .41 B .21C .2D .4二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计(二) 自考试题及答案
概率论与数理统计(二) 自考试题及答案一、填空题(共14题,共28分)1.一枚硬币连丢3次,观察正面H﹑反面T出现的情形.样本空间是:S=2.丢一颗骰子.A:出现奇数点,则A=();B:数点大于2,则B=()3.一枚硬币连丢2次,A:第一次出现正面,则A=();B:两次出现同一面,则=();C:至少有一次出现正面,则C=()4.一枚硬币连丢3次,观察出现正面的次数.样本空间是:S=5.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A 、B、C都不发生表示为:6.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A与B都发生,而C不发生表示为:7.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A与B都不发生,而C发生表示为:8.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中最多二个发生表示为:9.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中至少二个发生表示为:10.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中不多于一个发生表示为:11.设S{x:0x5},A{x:1x3},B{x:24}:则12.设S{x:0x5},A{x:1x3},B{x:24}:则AB=13.丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是14.已知P(A)1/4,P(B|A)1/3,P(A|B)1/2,则二、问答题(共9题,共54分)15.有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人抽“中‘的概率相同。
16.第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随机地取一个球,求取到红球的概率。
17.某班有30个同学,其中8个女同学,随机地选10个,求正好有2个女同学的概率18.某班有30个同学,其中8个女同学,随机地选10个,求最多有2个女同学的概率19.某班有30个同学,其中8个女同学,随机地选10个,求至少有2个女同学的概率20.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率,(2)任取一出厂产品,求未经调试的概率。
全国历年自学考试概率论与数理统计(二)02197试题与答案
全国历年⾃学考试概率论与数理统计(⼆)02197试题与答案全国2011年4⽉⾃学考试概率论与数理统计(⼆)课程代码:02197 选择题和填空题详解试题来⾃百度⽂库答案由王馨磊导师提供⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错选、多选或未选均⽆分。
1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发⽣”可表⽰为() A .C B A B .C B A C .C B A D .C B A.A BC A A ABC CB AC B A C B A C B A ABC C B A A A A 故本题选;不发⽣,记作④仅;不全发⽣,记作,,不多于两个发⽣,即,,③;都不发⽣,记作,,②;都发⽣,记作,,①;的对⽴事件,记作不发⽣”为事件解:事件“2.设随机事件A 与B 相互独⽴, 且P (A )=51, P (B )=53, 则P (A ∪B )= ( )A .253B .2517C .54D .2523故本题选B.3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( ) A .0.352 B .0.432 C .0.784 D .0.936解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( ) A .0.2 B .0.35 C .0.55 D .0.8解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4)3(2e2π21)(+-=x x f , 则E (X ), D (X )分别为( ) A .2,3-B .-3, 2.251753515351)()()()()()()()(=?-+=-+=-+=B P A P B P A P AB P B P A P B A P B A 相互独⽴,与事件解:事件C .2,3D .3, 2()(),,度为解:正态分布的概率密+∞<<∞=--x ex f x -21222σµσπ与已知⽐较可知:E(X)=-3,D(X)=2,故选B. 6.设⼆维随机变量 (X , Y )的概率密度为?≤≤≤≤=,,0,20,20,),(其他y x c y x f 则常数c =( )A .41C .2D .4解:设D 为平⾯上的有界区域,其⾯积为S 且S>0,如果⼆维随机变量(X ,Y )的概率密度为则称(X ,Y )服从区域D 上的均匀分布,由0≤x ≤2,0≤y ≤2,知S=4,所以c=1/4,故选A.7.设⼆维随机变量 (X , Y )~N (-1, -2;22, 32;0), 则X -Y ~ ( ) A .N (-3, -5) B .N (-3,13) C .N (1, 13) D .N (1,13)解:由题设知,X~N(-1,22),Y~N(-2,32),且X 与Y 相互独⽴,所以E(X-Y)=E(X)-E(Y)=-1-(-2)=1,D(X-Y)=D(X)+D(Y)=13,故选D. 8.设X , Y 为随机变量, D (X )=4, D (Y )=16, Cov (X ,Y )=2, 则XY ρ=( ) A .321 B .161C .81D .41..41422)()()(D Y D X D Y X Cov xy 故选,解:直接代⼊公式=?==ρ 9.设随机变量X ~2χ(2), Y ~2χ(3), 且X 与Y 相互独⽴, 则3/2/Y X ~ ( ) A .2χ (5) B .t (5) C .F (2,3)D .F (3,2).)(~)(~)(~21212221C n m F F F n m nX mX F X X n x X m x X ,据此定义易知选,记为分布,的与的分布是⾃由度为独⽴,则称与,,解:设=10.在假设检验中, H 0为原假设, 则显著性⽔平α的意义是 ( ) A .P {拒绝H 0|H 0为真} B .P {接受H 0|H 0为真} C .P {接受H 0|H 0不真} D .P {拒绝H 0|H 0不真}解:在0H 成⽴的情况下,样本值落⼊了拒绝域W 因⽽0H 被拒绝,称这种错误为第⼀类错误;()??∈=其他,,),,(0,1D y x S x f.}|{..,""}|{0002002A H H P H W u u u H H u u P ,故本题选为真拒绝即即为显著⽔平,⽽概率即为误的由此可见,犯第⼀类错,从⽽拒绝了即样本值落⼊了拒绝域满⾜本值算得的成⽴的条件下,根据样,在成⽴因为αααααα=>=>⼆、填空题 (本⼤题共15⼩题, 每⼩题2分, 共30分)请在每⼩题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
全国2018年7月高等教育自学考试
概率论与数理统计(二)试题
课程代码:02197
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设事件A 与B 互不相容,且P(A)>0,P(B)>0,则有( )
A.P(A ⋃B)=P(A)+P(B)
B.P(AB)=P(A)P(B)
C.A=B
D.P(A|B)=P(A)
2.某人独立射击三次,其命中率为0.8,则三次中至多击中一次的概率为( )
A.0.002
B.0.008
C.0.08
D.0.104
3.设事件{X=K}表示在n 次独立重复试验中恰好成功K 次,则称随机变量X 服从( )
A.两点分布
B.二项分布
C.泊松分布
D.均匀分布
4.设随机变量X 的概率密度为f(x)=⎩⎨⎧<<-其它,02
x 1),x 2x 4(K 2 则K=( ) A.165
B.21
C.43
D.54
5.
则F(1,1) =( )
A.0.2
B.0.3
C.0.6
D.0.7
6.设随机向量(X ,Y )的联合概率密度为f(x,y)=⎪⎩⎪⎨⎧
<<<<--;
,0,4y 2,2x 0),y x 6(81
其它
则P (X<1,Y<3)=( )
2 A.8
3 B.8
4 C.8
5 D.87 7.设随机变量X 与Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )=( )
A.1
B.2
C.3
D.4
8.设X 1, X 2, …,X n ,…为独立同分布的随机变量序列,且都服从参数为
21的指数分布,则当n 充分大时,随机变量Y n =∑=n 1i i X
n 1的概率分布近似服从( )
A.N (2,4)
B.N (2,n
4) C.N (n 41,21) D.N (2n,4n )
9.设X 1,X 2,…,X n (n ≥2)为来自正态总体N (0,1)的简单随机样本,X 为样本均值,S 2为样本方差,则有( ) A.)1,0(N ~X n
B.nS 2~χ2(n)
C.)1n (t ~S X )1n (--
D.)1n ,1(F ~X
X )1n (n 2i 2i
21
--∑= 10.若θ 为未知参数θ的估计量,且满足E (θ )=θ,则称θ 是θ的( )
A.无偏估计量
B.有偏估计量
C.渐近无偏估计量
D.一致估计量
二、填空题(本大题共15小题,每小题2分,共30分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
11.设P (A )=0.4,P (B )=0.5,若A 、B 互不相容,则P (AB )=___________.
12.某厂产品的次品率为5%,而正品中有80%为一等品,如果从该厂的产品中任取一件来检验,则检验结果是一等品的概率为___________.
13.设随机变量X~B (n,p ),则P (X=0)=___________.
3
14.设随机变量X 的分布函数F (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<,
3x ,1;3x 1,32;1x 0,21;0x ,0 , 则P (X=1)=___________. 15.设随机变量X 在区间[1,3]上服从均匀分布,则P (1.5<X<2.5)=___________.
16.设随机变量X ,Y 相互独立,其概率密度各为
f x (x)=⎩⎨⎧≤>-;0x ,0,0x ,e x f Y (y)=⎩
⎨⎧≤>-;0y ,0,0y ,e y 则二维随机向量(X ,Y )的联合概率密度f(x,y)= ___________.
17.
则常数a=___________.
18.设二维随机向量(X ,Y )的概率密度为f(x,y)= ⎪⎩⎪⎨⎧≤≤≤≤+;,0,1y 0,2x 0),y x (31其它
则(X ,Y )关于X 的边缘概率密度f X (x)= ___________.
19.设随机变量X ,Y 相互独立,且有D (X )=3,D (Y )=1,则D (X-Y )=___________.
20.设随机变量X ,Y 的数学期望与方差都存在,若Y=-3X+5,则相关系数XY ρ=_________.
21.设(X ,Y )为二维随机向量,E (X )=E (Y )=0,D (X )=16,D (Y )=25,XY ρ=0.6,则有Cov(X,Y)=___________.
22.设随机变量X 服从参数为2的泊松分布,试由切比雪夫不等式估计P{|X-E (X )|<2}≥_____.
23.设总体X~N (2,σμ),X 1,…,X n 为X 的一个样本,若μ已知,则统计量∑=μ-σn 1i 2i 2~)X
(1_____分布.
24.设随机变量t~t(n),其概率密度为t(x;n),若P{|t|>t a/2(n)}=a ,则有⎰∞-=)
n (t 2/a dx )n ;x (t _____.
25.设总体X 服从泊松分布,即X~P (λ),则参数λ2的极大似然估计量为__________.
三、计算题(本大题共2小题,每小题8分,共16分)
26.设事件A 在5次独立试验中发生的概率为p ,当事件A 发生时,指示灯可能发出信号,以X 表示事件A 发生的次数.
(1)当P{X=1}=P{X=2}时,求p 的值;
(2)取p=0.3,只有当事件A 发生不少于3次时,指示灯才发出信号,求指示灯发出信号的概率.
4 27.设随机变量X 与Y 满足E(X)=1,E(Y)=0,D(X)=9,D(Y)=16,且21XY =
ρ,Z=2
Y 3X -,求: (1)E(Z)和D(Z);
(2)XZ ρ.
四、综合题(本大题共2小题,每小题12分,共24分)
28.设连续型随机变量X 的分布函数为
F(x)=⎪⎩⎪⎨⎧≤>+-;0x ,0,0x ,Be A 2x 2
(1)求常数A 和B ;
(2)求随机变量X 的概率密度;
(3)计算P{1<X<2}.
29.设二维随机向量(X,Y)的联合分布列为
(1)求(X ,Y )关于X ,Y 的边缘分布列;
(2)X 与Y 是否相互独立;
(3)计算P{X+Y=2}.
五、应用题(本大题共1小题,10分)
30.某工厂生产的铜丝的折断力(N )服从正态分布N (μ,82).今抽取10根铜丝,进行折断力试验,测得结果如下:
578 572 570 568 572 570 572 596 584 570
在显著水平α=0.05下,是否可以认为该日生产的铜丝的折断力的标准差显著变大?
(附:,919.16)9(205.0=χ,023.19)9(2025.0=χ,307.18)10(205.0=χ483.20)10(2025.0=χ)。