高二文科数学上学期期末试卷及答案

合集下载

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题(含答案解析)

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题(含答案解析)

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知实数a 、b ,那么||||||a b a b +=-是0ab <的()条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要2.若实数x ,y 满足约束条件020x y x y -≥⎧⎨+-≤⎩,则2z x y =-的最小值为()A .1-B .1C .2-D .23.已知数列{}n a 与{}n b 均为等差数列,且354a b +=,598a b +=,则47a b +=()A .5B .6C .7D .84.已知()110m a a a=++>,()31xn x =<,则m ,n 之间的大小关系是()A .m n >B .m n <C .m n=D .m n≤5.在ABC 中,内角A ,B ,C 所对的边为a ,b ,c ,若4,30a b A ===︒,则B =()A .30︒B .30︒或150︒C .60︒D .60︒或120︒6.若曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,则a b +=()A .2B .0C .1-D .2-7.抛物线()220x py p =>上一点M 的坐标为()2,1-,则点M 到焦点的距离为()A .3B .2C .1D .17168.函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,令(2)a f =',(4)b f =',(4)(2)2f f c -=,则下列数值排序正确的是()A .b a c <<B .a b c <<C .a c b <<D .c b a<<9.已知椭圆221(0)y x m m+=>的焦点在y 轴上,长轴长是短轴长的2倍,则m =()A .2B .1C .14D .410.已知函数()f x 的导函数()f x '的图像如图所示,以下结论:①()f x 在区间(2,3)-上有2个极值点②()f x '在=1x -处取得极小值③()f x 在区间(2,3)-上单调递减④()f x 的图像在0x =处的切线斜率小于0正确的序号是()A .①④B .②③④C .②③D .①②④11.函数()sin e xxf x =在[],ππ-上大致的图象为()A .B .C .D .12.已知定义在R 上的函数()f x 的导函数为()f x ',若()e xf x '<,且()22e 2f =+,则不等式()ln 2f x x >+的解集是()A .()20,eB .()0,2C .()2,e-∞D .(),2-∞二、填空题13.若命题“x ∃∈R ,22x m ->”是真命题,则实数m 的取值范围是______.14.已知直线1l :()2100mx y m ++=>,与双曲线C :2214x y -=的一条渐近线垂直,则m =__________.15.设{}n a 是公差不为0的等差数列,11a =且248,,a a a 成等比数列,则1291011a a a a ++= ___16.已知钝角三角形的三边a =k ,b =k +2,c =k +4,则k 的取值范围是___________.三、解答题17.设2:3,:11180p a x a q x x <<-+≤.(1)若1a =,“p 且q ”为真,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.18.已知函数()29f x x x =+-.(1)解不等式()15f x <;(2)若关于x 的不等式()f x a <有解,求实数a 的取值范围.19.如图,已知平面四边形ABCD ,45A ∠=︒,75ABC ∠=︒,30BDC ∠=︒,2BD =,CD =(1)求CBD ∠;(2)求AB 的值.20.已知函数()2()4(),R f x x x a a =--∈且(1)0f '-=.(1)求a 的值;(2)讨论函数()f x 的单调性;(3)求函数()f x 在[2,2]-上的最大值和最小值.21.已知椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -,椭圆上任一点到两个焦点的距离之和(1)求椭圆C 的方程;(2)是否存在实数m ,使直线:l y x m =+与椭圆有两个不同的交点M 、N ,并使||||AM AN =,若存在,求出m 的值;若不存在,请说明理由.22.已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程;(2)当0a ≤时,对于任意0x >,证明:()cos f x x >.参考答案:1.D【分析】等式两边平方结合反例即可判断.【详解】因为2222||||||2|2|||0a b a b a ab b a ab b ab ab ab +=-⇒++=-+⇒=-⇒≤,所以必要性不成立;当1,2a b ==-时,满足0ab <,但||||||a b a b +≠-,所以必要性不成立;所以||||||a b a b +=-是0ab <的既不充分也不必要条件.故选:D .2.A【分析】画出可行域,平移基准直线20x y -=到可行域边界位置,由此来求得z 的最小值.【详解】020x y x y -=⎧⎨+-=⎩,解得1x y ==,设()1,1A ,平移基准直线20x y -=到可行域边界()1,1A 处时,2z x y =-取得最小值1211-⨯=-.故选:A3.B【分析】根据等差数列的性质即可求解.【详解】因为354a b +=,598a b +=,所以355912a b a b ++=+,即355912a a b b ++=+,根据等差数列的性质可知3559472212a a b b a b ++=+=+,所以476a b +=.故选:B.4.A【分析】利用基本不等式及其指数函数的单调性即可求解.【详解】∵0a >,∴1113m a a=++≥=,当且仅当1a =时,等号成立,即3m ≥,又∵1x <,∴1333x n =<=,即3n <,则m n >,故选:A .5.D【分析】根据4,30a b A ===︒,利用正弦定理求解.【详解】解:在ABC 中,4,30a b A ===︒,由正弦定理得sin sin a bA B=,所以sin sin 30sin 42b A B a ⋅===,所以B =60︒或120︒,故选:D 6.A【分析】求出导数,将0x =代入后,可得1a =,将()0,b 代入10x y -+=后可得1b =,进而得到a b +.【详解】由2y x ax b =++得2y x a '=+,又曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,故当0x =时,1y a '==又点()0,b 在10x y -+=上,则1b =,故2a+b =.故选:A .7.B【分析】将点M 坐标代入抛物线可得p ,则所求距离为12p+.【详解】()2,1M - 在抛物线上,42p ∴=,解得:2p =,∴点M 到焦点的距离为122p+=.故选:B.8.C【分析】利用导数的几何意义判断.【详解】由函数图象知:()()()42(2)442f f f f -''<<-,所以a c b <<,故选:C 9.D【分析】根据椭圆的方程,结合椭圆的几何性质,列式求解.【详解】由条件可知,2a m =,21b =,且22=⨯,解得:4m =.故选:D 10.B【分析】根据导函数()f x '的图像,求出函数的单调区间,求出函数的极值点,分析判断①②③,对于④:由于()f x 的图像在0x =处的切线斜率为()0f ',从而可由导函数的图像判断.【详解】根据()f x '的图像可得,在()2,3-上,()0f x '≤,所以()f x 在()2,3-上单调递减,所以()f x 在区间()2,3-上没有极值点,故①错误,③正确;由()f x '的图像可知,()f x '在()2,1--单调递减,在()1,1-单调递增,故②正确;根据()f x '的图像可得()00f '<,即()f x 的图像在0x =处的切线斜率小于0,故④正确.故选:B.11.B【分析】分析函数()f x 的奇偶性及其在[]0,π上的单调性,结合排除法可得出合适的选项.【详解】对任意的[]π,πx ∈-,()()()sin sin eexxx x f x f x ---==-=-,所以,函数()sin ex xf x =在[],ππ-上的图象关于原点对称,排除AC 选项,当0πx ≤≤时,()sin ex xf x =,则()πcos sin 4e e xxx x xf x ⎛⎫- ⎪-⎝⎭'==-,因为ππ3π444x -≤-≤,由()0f x '<可得π3π044x <-≤,则ππ4x <≤,由()0f x ¢>可得ππ044x -≤-<,则π04x ≤<,所以,函数()f x 在π0,4⎡⎫⎪⎢⎣⎭上单调递增,在π,π4⎛⎤ ⎥⎝⎦上单调递减,排除D 选项.故选:B.12.A【分析】设()()e 2xg x f x =-+,求导可得()g x 在R 上单调递减,再根据()ln 2f x x >+转化为()ln 4g x >,再结合()g x 的单调性求解即可.【详解】设()()e 2x g x f x =-+,则()()e xg x f x '-'=.因为()e xf x '<,所以()e 0x f x '-<,即()0g x '<,所以()g x 在R 上单调递减.不等式()ln 2f x x >+等价于不等式()ln 24f x x -+>,即()ln 4g x >.因为()22e 2f =+,所以()()222e 24g f =-+=,所以()()ln 2g x g >.因为()g x 在R 上单调递减,所以ln 2x <,解得20e x <<故选:A 13.(),2-∞【分析】求得22y x =-的最大值,结合题意,即可求得结果.【详解】22y x =-的最大值为2,根据题意,2m >,即m 的取值范围是(),2-∞.故答案为:(),2-∞.14.4【分析】求得双曲线C 的渐近线方程,根据直线垂直列出等量关系,即可求得结果.【详解】对双曲线C :2214x y -=,其渐近线方程为12y x =±,对直线1l :()2100mx y m ++=>,且斜率为02m-<,根据题意可得1122m -⨯=-,解得4m =.故答案为:4.15.910【详解】分析:由题意先求出{}n a 的通项公式,再利用裂项相消法求和即可.详解:∵数列{a n }是公差不为0的等差数列,a 1=1,且a 2,a 4,a 8成等比数列,∴(1+3d )2=(1+d )(1+7d ),解得d=1,或d=0(舍),∴a n =1+(n ﹣1)×1=n .∴129101111111111191112239102239101010a a a a ++=+++=-+-++-=-=⨯⨯⨯故答案为910点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=;(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.16.26k <<【分析】先解不等式cos 0C <,再结合两边之和大于第三边求解.【详解】解:∵c b a >>,且ABC 为钝角三角形,∴C ∠为钝角,∴()()()()222222224412cos 022222k k k a b c k k C ab k k k k ++-++---===<++,∴24120k k --<,解得26k -<<,由两边之和大于第三边得24k k k ++>+,∴2k >.∴26k <<.故答案为:26k <<17.(1){23}x x ≤<(2){0a a ≤或23}a ≤≤【分析】(1)先分别求得P 为真命题和q 为真命题的实数x 的取值范围,再根据p 且q 为真命题,利用集合的交集运算求解;(2)记{3}C x a x a =<<,根据p 是q 的充分不必要条件,由C B Ü求解.【详解】(1)解:当1a =时,P 为真命题,实数x 的取值范围为{13}A x x =<<,211180(2)(9)029x x x x x -+≤⇒--≤⇒≤≤,q 为真命题,实数x 的取值范围为{}29B x x =≤≤,∵p 且q 为真命题所以实数x 的取值范围为{23}A B x x ⋂=≤<;(2)记{3}C x a x a =<<∵p 是q 的充分不必要条件所以C BÜ当0a ≤时,C =∅,满足题意;当0a >时,239a a ≥⎧⎨≤⎩解得23a ≤≤;综上所述:实数a 的取值范围为{0a a ≤或23}a ≤≤18.(1){}311x x <<;(2)9a >.【分析】(1)根据零点分段法可得()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,然后分段解不等式,即得;(2)由题可得()min a f x >,然后求函数的最小值即得.【详解】(1)因为函数()29f x x x =+-,所以()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,∵()15f x <,所以931815x x ≥⎧⎨-<⎩或091815x x ≤<⎧⎨-<⎩或018315x x <⎧⎨-<⎩,解得311x <<,所以原不等式的解集为{}311x x <<;(2)由()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,可得函数()f x 在(),9-∞上单调递减,在()9,+∞上单调递增,当9x =时,函数()f x 有最小值为9,∴9a >.19.(1)60︒;(2.【分析】(1)由余弦定理求2BC ,根据勾股逆定理知90DCB ∠=︒,即可求CBD ∠.(2)由(1)得120ADB ∠=︒,应用正弦定理即可求AB 的值.【详解】(1)在△BCD 中,由余弦定理,有2222cos301BC BD CD BD CD =+-⋅︒=,222BC CD BD ∴+=,即90DCB ∠=︒,60CBD ∴∠=︒.(1)在四边形ABCD 中,756015ABD ∠=︒-︒=︒,∴120ADB ∠=︒,在△ABD 中,由正弦定理sin120sin 45AB BD =︒︒,则sin120sin 45BD AB ⋅︒=︒20.(1)12a =(2)调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎛⎫- ⎪⎝⎭(3)最大值为92,最小值为5027-【分析】(1)求导得2()324f x x ax '=--,代入(1)0f '-=,得可得答案;(2)由题意可得()(34)(1)f x x x '=-+,分别解()0f x '>,()0f x '<,即可得函数的单调递增、减区间;(3)根据导数的正负,判断函数在[2,2]-上的单调性,即可得答案.【详解】(1)解:因为函数()2()4(),R f x x x a a =--∈,∴()22()2()4324f x x x a x x ax =-+-=--',由(1)0f '-=,得3240a +-=,解得12a =;(2)解:由(1)可知2()34(34)(1)f x x x x x ==-'--+,解不等式()0f x '>,得43x >或1x <-,所以函数()f x 的单调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,解不等式()0f x '<,得413x -<<,所以函数()f x 的单调递减区间为41,3⎛⎫- ⎪⎝⎭;(3)解:当22x -≤≤时,函数()f x 与()f x '的变化如下表所示:令()0f x '=,解得43x =或=1x -,x[)2,1--=1x -41,3⎛⎫- ⎪⎝⎭43x =4,23⎛⎤ ⎥⎝⎦()f x '+0-0+()f x 单调递增极大值单调递减极小值单调递增因为9(1)2f -=,(2)0f =;所以当=1x -时,函数()f x 取得极大值9(1)2f -=;又因为(2)0f -=,450327f ⎛⎫=- ⎪⎝⎭,所以当43x =时,函数()f x 取得极小值450327f ⎛⎫=- ⎪⎝⎭,∴函数()f x 的最大值为92,最小值为5027-.21.(1)2213x y +=(2)不存在,理由见解析【分析】(1)结合椭圆的定义,结合顶点坐标,即可求椭圆方程;(2)首先求线段MN 的中垂线方程,根据点A 在中垂线上,求m ,并判断是否满足0∆>.【详解】(1)椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -得1b =椭圆上任一点到两个焦点的距离之和2a =a =所以椭圆的方程为2213x y +=(2)设直线l 与椭圆C 两个不同的交点()()1122,,,M x y N x y ∵||||AM AN =所以,点A 在线段MN 的中垂线l ',下面求l '的方程联立方程2233y x m x y =+⎧⎨+=⎩去y ,可得2246330x mx m ++-=由()222(6)443312480m m m ∆=-⨯⨯-=-+>,解得22m -<<1232mx x +=-设MN 的中点为()00,P x y ,有120003244x x m m x y x m +==-=+=则l '的方程为344m m y x ⎛⎫-=-+ ⎪⎝⎭即2m y x =--由于点A 在直线MN 的中垂线l '上,解得2m =又∵22m -<<所以不存在实数m 满足题意.22.(1)1y x =-+或()2314y x =-(2)证明见解析【分析】(1)易知()1,0不在()f x 上,设切点()3000,1x x x -+,由导数的几何意义求出切线方程,将()1,0代入求出对应0x ,即可求解对应切线方程;(2)构造()()31cos 0g x x ax x x =-+->,求得()23sin g x x a x '=-+,再令()()u x g x '=,通过研究()u x '正负确定()g x '单调性,再由()g x '正负研究()g x 最值,进而得证.【详解】(1)由题,1a =时,()31f x x x =-+,()231f x x '=-,设切点()3000,1x x x -+,则切线方程为()()()320000131y x x x x x --+=--,该切线过点()1,0,则()()3200001311x x x x -+-=--,即3200230x x -=,所以00x =或032x =.又()01f =;()01f '=-;32328f ⎛⎫= ⎪⎝⎭,32324f ⎛⎫'= ⎪⎝⎭.所以,切线方程为1y x =-+或()2314y x =-;(2)设()()31cos 0g x x ax x x =-+->,则()23sin g x x a x '=-+,令()()()23sin 0u x g x x a x x '==-+>,则()6cos u x x x '=+,可知π02x <<,时,()0u x '>;π2x ≥时,()0u x '>,故0x >时均有()0u x '>,则()u x 即()g x '在()0,∞+上单调递增,()0g a '=-,因为0a ≤时,则()00g a '=-≥,()()00g x g ''>≥,故()g x 在()0,∞+上单调递增,此时,()()00g x g >=.所以,当0a ≤时,对于任意0x >,均有()cos f x x >.。

2021-2022年高二上学期期末数学试卷(文科) 含解析(I)

2021-2022年高二上学期期末数学试卷(文科) 含解析(I)

2021-2022年高二上学期期末数学试卷(文科)含解析(I)一、选择题:(本大题共12小题,每小题5分,共60分)1.设集合{x|x2﹣3x﹣4<0},N={﹣2,﹣1,0,1,2},则M∩N=()A.{﹣1,0} B.{﹣2,﹣1,0} C.{0,1} D.{0,1,2}2.若命题p:∀x∈R,2x2+1>0,则¬p是()A.∀x∈R,2x2+1≤0 B.∃x∈R,2x2+1>0 C.∃x∈R,2x2+1<0 D.∃x ∈R,2x2+1≤03.下列三句话按“三段论”模式排列顺序正确的是()①y=cosx(x∈R)是三角函数;②三角函数是周期函数;③y=cosx(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①}的公比q=2,则的值为()4.已知等比数列{anA.B.C.D.15.在△ABC中,D为AB的中点,设,则=()A.B.C.D.6.已知函数f(x)=x2﹣6x+4lnx,则函数f(x)的增区间为()A.(﹣∞,1),(2,+∞)B.(﹣∞,0),(1,2)C.(0,1),(2,+∞)D.(1,2)7.“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.已知x,y的值如表所示:x234y546如果y与x呈线性相关且回归直线方程为,则b=()A.B.C.D.9.在△ABC中,A=60°,AB=2,且△ABC的面积为,则边BC的长为()A.B.3 C.D.710.动点P(x,y)满足,点Q为(1,﹣1),O为原点,λ||=,则λ的最大值是()A.﹣1 B.1 C.2 D.11.过抛物线y=x2的焦点F作直线交抛物线于P,Q,若线段PF与QF的长度分别为m,n,则2m+n的最小值为()A.B.C.D.12.已知函数y=f(x)的定义域内任意的自变量x都有f(﹣x)=f(+x),且对任意的x∈(﹣,),都有f′(x)+f(x)tanx>0(其中f′(x)是函数f (x)的导函数),设a=f(),b=f(),c=f(0),则a,b,c的大小关系为()A.a<c<b B.c<a<b C.c<b<a D.b<a<c二、填空题:(本大题共4小题,每小题5分,共20分).13.若抛物线y2=2px(p>0)的准线经过双曲线x2﹣y2=1的一个焦点,则p= .14.曲线y=﹣x3+3x2在点(1,2)处的切线方程为.15.某高校“统计初步”课程的教师为了检验主修统计专业是否与性别有关系,随机调查了选该课的学生人数情况,具体数据如表,则大约有%的把握认为主修统计专业与性别有关系.参考公式:.统计专非统计专业业男1510女520)0.0250.0100.0050.001P(Χ2>x6.6357.87910.828x0 5.02416.已知函数,若a,b是从集合{1,2,3,4}中任取两个不同的数,则使函数f(x)有极值点的概率为.三、解答题:(本大题共6小题,共70分.)17.已知等差数列{an }的前n项和为Sn,且a2=5,S15=150.(1)求数列{an}的通项公式;(2)记,{bn }的前n项和为Tn,求Tn.18.已知圆Q:x2+y2+Dx+Ey+F=0经过点(0,5),(1,﹣2),(1,6),且直线l:(2m+1)x+(m+1)y﹣7m﹣6=0与圆Q相交于C,D(1)求圆Q的方程.(2)若△QCD的周长为18,求m的值.19.在△ABC中,角A,B,C的对边分别为a,b,c,且a•cosC+c•cosA=2b•cosA.(1)求角A的大小;(2)求函数y=sinB+sin(C﹣)的值域.20.某校学生依次进行身体体能和外语两个项目的训练及考核.每个项目只有一次补考机会,补考不合格者不能进入下一个项目的训练及考核,若每个学生身体体能考核合格的概率是,外语考核合格的概率是,若每一次考试是否合格互不影响.(1)求学生甲体能考核与外语考核都合格的概率.(2)设学生甲不放弃每一次考核的机会,求学生甲恰好补考一次的概率.21.已知椭圆过点,且短轴两个顶点与一个焦点恰好为直角三角形.(1)求椭圆C的标准方程;(2)是否存在以原点为圆心的圆,使得该圆的任意一条切线与椭圆C恒有两个交点P,Q,且?若存在,求出该圆的方程;若不存在,请说明理由.22.已知函数,g(x)=xf(x)+(1﹣tx)e﹣x,t∈R(1)求函数f(x)的极大值;(2)若存在a,b,c∈[0,1]满足g(a)+g(b)<g(c),求实数t的取值范围.xx重庆一中高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分)1.设集合{x|x2﹣3x﹣4<0},N={﹣2,﹣1,0,1,2},则M∩N=()A.{﹣1,0} B.{﹣2,﹣1,0} C.{0,1} D.{0,1,2}【考点】交集及其运算.【分析】求出M中不等式的解集确定出M,找出M与N的交集即可.【解答】解:由M中不等式变形得:(x﹣4)(x+1)<0,解得:﹣1<x<4,即M={x|﹣1<x<4},∵N={﹣2,﹣1,0,1,2},∴M∩N={0,1,2},故选:D.2.若命题p:∀x∈R,2x2+1>0,则¬p是()A.∀x∈R,2x2+1≤0 B.∃x∈R,2x2+1>0 C.∃x∈R,2x2+1<0 D.∃x ∈R,2x2+1≤0【考点】命题的否定;全称命题.【分析】根据含有量词的命题的否定形式:将任意改为存在,结论否定,即可写出否命题【解答】解:由题意∀x∈R,2x2+1>0,的否定是∃x∈R,2x2+1≤0故选D3.下列三句话按“三段论”模式排列顺序正确的是()①y=cos x(x∈R)是三角函数;②三角函数是周期函数;③y=cosx(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①【分析】根据三段论”的排列模式:“大前提”→“小前提”⇒“结论”,分析即可得到正确的次序.【解答】解:根据“三段论”:“大前提”→“小前提”⇒“结论”可知:①y=cosx((x∈R )是三角函数是“小前提”;②三角函数是周期函数是“大前提”;③y=cosx((x∈R )是周期函数是“结论”;故“三段论”模式排列顺序为②①③故选B4.已知等比数列{a}的公比q=2,则的值为()nA.B.C.D.1【考点】等比数列的性质.}的公比q=2,可得==,即可得出结论.【分析】利用等比数列{an}的公比q=2,【解答】解:∵等比数列{an∴==,故选:A.5.在△ABC中,D为AB的中点,设,则=()A.B.C.D.【考点】向量的线性运算性质及几何意义.【分析】D为AB的中点,这样根据向量加法的平行四边形法则及向量的数乘运算便可得出.【解答】解:如图,D为AB中点;∴;∴.故选:A.6.已知函数f(x)=x2﹣6x+4lnx,则函数f(x)的增区间为()A.(﹣∞,1),(2,+∞)B.(﹣∞,0),(1,2)C.(0,1),(2,+∞)D.(1,2)【考点】利用导数研究函数的单调性.【分析】先确定函数的定义域然后求导数f′(x),在函数的定义域内解不等式f′(x)>0,解得的区间就是单调增区间.【解答】解:∵f(x)=x2﹣6x+4lnx,x>0,f′(x)=2x﹣6+=,令f′(x)>0,解得:x>2或0<x<1,故f(x)在(0,1),(2,+∞)递增,故选:C.7.“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由cos2α=cos2α﹣sin2α,即可判断出.【解答】解:由cos2α=cos2α﹣sin2α,∴“sinα=cosα”是“cos2α=0”的充分不必要条件.故选:A.8.已知x,y的值如表所示:x234y546如果y与x呈线性相关且回归直线方程为,则b=()A.B.C.D.【考点】线性回归方程.【分析】根据所给的三组数据,求出这组数据的平均数,得到这组数据的样本中心点,根据线性回归直线一定过样本中心点,把样本中心点代入所给的方程,得到b的值.【解答】解:根据所给的三对数据,得到=3,=5,∴这组数据的样本中心点是(3,5)∵线性回归直线的方程一定过样本中心点,∴5=3b+,∴b=,故选B.9.在△ABC中,A=60°,AB=2,且△ABC的面积为,则边BC的长为()A.B.3 C.D.7【考点】正弦定理;余弦定理.【分析】根据三角形的面积公式求出AC的值,再由余弦定理求得AC的值.【解答】解:根据三角形的面积公式得:,把A=60°,AB=2代入得,AC=1,由余弦定理得,BC2=AB2+AC2﹣2AB•AC•cosA=4+1﹣=3,则BC=,故选:A.10.动点P(x,y)满足,点Q为(1,﹣1),O为原点,λ||=,则λ的最大值是()A.﹣1 B.1 C.2 D.【考点】简单线性规划.【分析】根据向量的数量积公式将条件进行化简,利用数形结合即可得到结论.【解答】解::∵λ||==,∴λ=||cos<>,作出不等式组对应的平面区域如图,则OQ,OA的夹角最小,由,解得,即A(3,1),则=(3,1),又,则cos<>===,∴λ的最大值是||cos<>=.故选:D.11.过抛物线y=x2的焦点F作直线交抛物线于P,Q,若线段PF与QF的长度分别为m,n,则2m+n的最小值为()A.B.C.D.【考点】抛物线的简单性质.【分析】设PQ的斜率k=0,因抛物线焦点坐标为(0,),把直线方程y=代入抛物线方程得m,n的值,可得+=4,利用“1”的代换,即可得到答案.【解答】解:抛物线y=4x2的焦点F为(0,),设PQ的斜率k=0,∴直线PQ的方程为y=,代入抛物线y=x2得:x=±,即m=n=,∴+=4,∴2m+n=(2m+n)(+)=(3++)≥故选:C.12.已知函数y=f(x)的定义域内任意的自变量x都有f(﹣x)=f(+x),且对任意的x∈(﹣,),都有f′(x)+f(x)tanx>0(其中f′(x)是函数f (x)的导函数),设a=f(),b=f(),c=f(0),则a,b,c的大小关系为()A.a<c<b B.c<a<b C.c<b<a D.b<a<c【考点】利用导数研究函数的单调性.【分析】求出函数的对称轴,构造函数g(x),通过求导得到g(x)的单调性,从而判断出a,b,c的大小即可.【解答】解:∵f(﹣x)=f(+x),∴x=是函数的对称轴,令g(x)=,则g′(x)=,∵对任意的x∈(﹣,),都有f′(x)+f(x)tanx>0,∴对任意的x∈(﹣,),都有cosxf′(x)+sinf(x)>0,∴对任意的x∈(﹣,),都有g′(x)>0,∴g(x)在(﹣,)单调递增,∴g(x)在(,)单调递减,∴g()>g(0)=g(π)>g(),∴f()>f(0)=f(π)>f(),∴b>c>a,故选:A.二、填空题:(本大题共4小题,每小题5分,共20分).13.若抛物线y2=2px(p>0)的准线经过双曲线x2﹣y2=1的一个焦点,则p= 2 .【考点】抛物线的简单性质.【分析】先求出x2﹣y2=1的左焦点,得到抛物线y2=2px的准线,依据p的意义求出它的值.【解答】解:双曲线x2﹣y2=1的左焦点为(﹣,0),故抛物线y2=2px的准线为x=﹣,∴=,∴p=2,故答案为:2.14.曲线y=﹣x3+3x2在点(1,2)处的切线方程为y=3x﹣1 .【考点】利用导数研究曲线上某点切线方程.【分析】根据曲线方程y=﹣x3+3x2,对f(x)进行求导,求出f′(x)在x=1处的值即为切线的斜率,曲线又过点(1,2)利用点斜式求出切线方程;【解答】解:∵曲线y=﹣x3+3x2,∴y′=﹣3x2+6x,=﹣3+6=3,∴切线方程的斜率为:k=y′|x=1又因为曲线y=﹣x3+3x2过点(1,2)∴切线方程为:y﹣2=3(x﹣1),即y=3x﹣1,故答案为:y=3x﹣1.15.某高校“统计初步”课程的教师为了检验主修统计专业是否与性别有关系,随机调查了选该课的学生人数情况,具体数据如表,则大约有99.5 %的把握认为主修统计专业与性别有关系.参考公式:.非统计专业统计专业男1510女520)0.0250.0100.0050.001P(Χ2>xx6.6357.87910.8280 5.024【考点】独立性检验的应用.【分析】根据表格数据,利用公式,结合临界值,即可求得结论.【解答】解:根据具体数据表得,K2的观测值k=≈8.3,因为8.3>7.879,所以有1﹣0.5%=99.5%的把握认为主修统计专业与性别有关.故答案为:99.5%.16.已知函数,若a,b是从集合{1,2,3,4}中任取两个不同的数,则使函数f(x)有极值点的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】求出导数,由导数数值为0得到使函数f(x)有极值点的充要条件是a2≥5b,由此利用列举法能求出使函数f(x)有极值点的概率.【解答】解:∵函数,∴f′(x)=x2+2ax+5b,由f′(x)=x2+2ax+5b=0有解,得△=4a2﹣20b≥0,∴使函数f(x)有极值点的充要条件是a2≥5b,∵a,b是从集合{1,2,3,4}中任取两个不同的数,∴基本事件总数为4×3=12,满足a2≥5b的有:(4,1),(4,2),(4,3),(3,1),共4种,∴使函数f(x)有极值点的概率为p=.故答案为:.三、解答题:(本大题共6小题,共70分.)17.已知等差数列{an }的前n项和为Sn,且a2=5,S15=150.(1)求数列{an}的通项公式;(2)记,{bn }的前n项和为Tn,求Tn.【考点】数列的求和;数列递推式.【分析】(1)设等差数列{an }的首项为a1,公差为d,利用等差数列的通项公式即可得出;(2)易知:,再利用等比数列的前n项和公式即可得出.【解答】解:(1)设等差数列{an }的首项为a1,公差为d,则a2=a1+2d=5,S15=15a1+15×7d=150,解得a1=3,d=1,∴an=n+2.(2)易知:,∴Tn =b1+b2+…+bn=21+22+…+2n==2n+1﹣2.18.已知圆Q:x2+y2+Dx+Ey+F=0经过点(0,5),(1,﹣2),(1,6),且直线l:(2m+1)x+(m+1)y﹣7m﹣6=0与圆Q相交于C,D(1)求圆Q的方程.(2)若△QCD的周长为18,求m的值.【考点】圆的一般方程.【分析】(1)把(0,5),(1,﹣2),(1,6)代入圆Q:x2+y2+Dx+Ey+F=0,由此能求出圆方程.(2)圆x2+y2﹣8x﹣4y﹣5=0的圆心Q(4,2),半径r=5,从而弦CD的长度8,进而圆心(4,2)到直线l的距离为4,由此利用点到直线的距离公式能求出m 的值.【解答】解:(1)解:∵圆Q:x2+y2+Dx+Ey+F=0经过点(0,5),(1,﹣2),(1,6),∴由题意得:,∴则圆方程为x2+y2﹣8x﹣4y﹣5=0.(2)∵圆x2+y2﹣8x﹣4y﹣5=0的圆心Q(4,2),半径r==5,直线l:(2m+1)x+(m+1)y﹣7m﹣6=0与圆Q相交于C,D,△QCD的周长为18,弦CD的长度为:18﹣2r=18﹣10=8,∴圆心(4,2)到直线l的距离为=4,∴,解得.…19.在△ABC中,角A,B,C的对边分别为a,b,c,且a•cosC+c•cosA=2b•cosA.(1)求角A的大小;(2)求函数y=sinB+sin(C﹣)的值域.【考点】三角函数中的恒等变换应用.【分析】(1)根据正弦定理把题设等式中的边换成相应角的正弦,化简整理可求得cosA,进而求得A.(2)利用辅助角公式化简函数,即可求函数y=sinB+sin(C﹣)的值域.【解答】解:(1)根据正弦定理∵2b•cosA=c•cosA+a•cosC.∴2sinB•cosA=sinC•cosA+sinA•cosC,∵sinB≠0∴cosA=,又∵0°<A<180°,∴A=;(2)∵,∴,∴,∴,∵,∴y∈(1,2].20.某校学生依次进行身体体能和外语两个项目的训练及考核.每个项目只有一次补考机会,补考不合格者不能进入下一个项目的训练及考核,若每个学生身体体能考核合格的概率是,外语考核合格的概率是,若每一次考试是否合格互不影响.(1)求学生甲体能考核与外语考核都合格的概率.(2)设学生甲不放弃每一次考核的机会,求学生甲恰好补考一次的概率.【考点】离散型随机变量的期望与方差;分布列对于刻画随机现象的重要性.【分析】(1)分别求出两个项目都不补考能通过概率、两个项目中有一个项目要补考才能通过的概率和两个项目都要补考才能通过的概率,由此能求出学生甲体能考核与外语考核都合格的概率.(2)恰好补考一次记为ξ=1,由相互独立事件乘法概率计算公式能求出学生甲恰好补考一次的概率.【解答】解:(1)①两个项目都不补考能通过概率:②两个项目中有一个项目要补考才能通过的概率:③两个项目都要补考才能通过的概率:,∴学生甲体能考核与外语考核都合格的概率:(2)恰好补考一次记为ξ=1,则学生甲恰好补考一次的概率:.21.已知椭圆过点,且短轴两个顶点与一个焦点恰好为直角三角形.(1)求椭圆C的标准方程;(2)是否存在以原点为圆心的圆,使得该圆的任意一条切线与椭圆C恒有两个交点P,Q,且?若存在,求出该圆的方程;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)由题意得:, =1,由此能求出椭圆C的方程.(2)假设满足条件的圆存在,其方程为:x2+y2=r2(0<r<1),设直线方程为y=kx+m,二者联立,得:(1+2k2)x2+4kmx+2m2﹣2=0,由此利用韦达定理、向量垂直、直线与圆相切,结合已知能求出存在圆心在原点的圆满足题意.【解答】解:(1)∵椭圆过点,且短轴两个顶点与一个焦点恰好为直角三角形,∴由题意得:, =1,解得a=,b=1,∴椭圆C的方程为.…(2)假设满足条件的圆存在,其方程为:x2+y2=r2(0<r<1)当直线P,Q的斜率存在时,设直线方程为y=kx+m,由,得:(1+2k2)x2+4kmx+2m2﹣2=0,令P(x1,y1),Q(x2,y2),则有:,…∵⊥,∴.∴,∴3m2=2k2+2.…∵直线PQ与圆相切,∴,∴存在圆当直线PQ的斜率不存在时,也适合.综上所述,存在圆心在原点的圆满足题意.…22.已知函数,g(x)=xf(x)+(1﹣tx)e﹣x,t∈R(1)求函数f(x)的极大值;(2)若存在a,b,c∈[0,1]满足g(a)+g(b)<g(c),求实数t的取值范围.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求出f(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极大值;(2)求出g(x)的导数,通过讨论t的范围,确定函数的单调区间,从而求出t的具体范围.【解答】解:(1),当x≥0时,f′(x)≤0,所以f(x)在区间[0,+∞)上为减函数,当x<0时,f′(x)>0,所以f(x)在区间(﹣∞,0]上为增函数,=f(0)=1…所以f(x)极大值(2)因为,所以…设g(x)在[0,1]上的最大值为M,最小值为N,则2N<M,①当t≥1时,g′(x)≤0,g(x)在[0,1]上单调递减,由2N<M,所以2g(1)<g(0),即,得…②当t≤0时,g′(x)≥0,g(x)在[0,1]上单调递增,所以2g(0)<g(1)即,得t<3﹣2e…③当0<t<1时,在x∈[0,t),g'(x)<0,g(x)在[0,t]上单调递减,在x∈(t,1],g'(x)>0,g(x)在[t,1]上单调递增,所以2g(t)<g(0),且2g(t)<g(1)},即,且,由(Ⅰ)知在t∈(0,1)上单调递减,故,而,所以无解,综上所述,.…xx8月3日G[/p31030 7936 礶}C36304 8DD0 跐5;32454 7EC6 细20761 5119 儙k38259 9573 镳。

2020-2021学年人教版高二上册数学期末数学试卷(文科)带答案

2020-2021学年人教版高二上册数学期末数学试卷(文科)带答案

2020-2021学年高二(上)期末数学试卷(文科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若a<b<0,那么下列不等式中正确的是()A.ab<b2B.ab>a2C.1a <1bD.1a>1b2. 抛物线y=−4x2的准线方程为()A.y=−116B.y=116C.x=−1D.x=13. 下列求导结果正确的是()A.(cosπ6)′=−sinπ6B.(3x)′=x⋅3x−1C.(log2x)′=log2exD.(sin2x)′=cos2x4. 已知命题p:∃x0∈(1, +∞),使得;命题q:∀x∈R,2x2−3x+5> 0.那么下列命题为真命题的是()A.p∧qB.(¬p)∨qC.p∨(¬q)D.(¬p)∧(¬q)5. 已知在△ABC中,角A,B,C的对边分别为a,b,c.若,则B=()A. B. C. D.6. 若变量x,y满足约束条件,则z=2x+y的最小值为()A. B.6 C. D.47. 等比数列{a n}的前n项和为S n,若S2n=4(a1+a3+...+a2n−1)(n∈N∗),a1a2a3=−27,则a5=()A.81B.24C.−81D.−248. 已知a>0,b>0,且3a+2b=ab,则a+b的最小值为()A. B. C. D.9. 已知双曲线的一条渐近线平行于直线,且该双曲线的一个焦点在直线l上,则此双曲线的方程为()A. B. C. D.10. 若函数f(x)=e x−2ax2+1有两个不同的极值点,则实数a的取值范围是()A. B. C. D.二、选择题:(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多项是符合题目要求的,把正确答案的选项涂在答题卡上.全部选对的得5分,部分选对的得2分,有选错的得0分.))11. 已知在数列{a n}中,a5=4,其前n项和为S n,下列说法正确的是()A.若{a n}为等差数列,a2=1,则S10=45B.若{a n}为等比数列,a1=1,则a3=±2C.若{a n}为等差数列,则a1a9≤16D.若{a n}为等比数列,则a2+a8≥812. 已知曲线C:mx2+ny2=1,下列说法正确的是()A.若m=n>0,则C是圆,其半径为.B.若m>0,n=0,则C是两条直线.C.若n>m>0,则C是椭圆,其焦点在y轴上.D.若mn<0,则C是双曲线,其渐近线方程为.三、填空题(每题5分,满分20分,将答案填在答题纸上))13. 设等差数列{a n}的前n项和为S n,若2a5=a3+4,则S13=________.14. 设点P是曲线上的任意一点,曲线在点P处的切线的倾斜角为α,则α的取值范围是________.(用区间表示)15. 若△ABC的三边长分别为3,5,7,则该三角形的内切圆半径等于________.16. 设椭圆的左焦点为F,直线x=m与椭圆C相交于A,B两点.当△ABF的周长最大时,△ABF的面积为b2,则椭圆C的离心率e=________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.))17. 设命题p:实数x满足x2−4mx+3m2<0(m>0);命题q:实数x满足.若¬p是¬q的充分不必要条件,求实数m的取值范围.18. 已知数列{a n}的前n项和为S n,且2S n=3a n−3.(Ⅰ)求数列{a n}的通项公式;a n,,求数列{c n}的前n项和T n.(Ⅱ)设b n=log319. 已知函数f(x)=x3−2x2+x.(1)求曲线y=f(x)在点(−1, −4)处的切线方程;(2)求曲线y=f(x)过点(1, 0)的切线方程.20. 已知在△ABC中,角A,B,C的对边分别为a,b,c,且a+b+c=12.(Ⅰ)若a=2,b=5,求cos A的值;(Ⅱ)若sin A cos2=2sin C,且△ABC的面积为10sin C,试判断△ABC的形状并说明理由.21. 已知椭圆经过如下四个点中的三个,,P2(0, 1),,.(Ⅰ)求椭圆M的方程;(Ⅱ)设直线l与椭圆M交于A,B两点,且以线段AB为直径的圆经过椭圆M的右顶点C (A,B均不与点C重合),证明:直线l过定点.22. 已知函数f(x)=ln x+ax2+(2a+1)x+1.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a<0时,证明:f(x)≤−−1.参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】利用不等式的基本性质即可判断出.2.【答案】B【解析】利用抛物线的标准方程及其性质即可得出.3.【答案】C【解析】根据基本初等函数和复合函数的求导公式对每个选项的函数求导即可.4.【答案】B【解析】根据条件判断命题p,q的真假,结合复合命题真假关系进行判断即可.5.【答案】A【解析】利用正弦定理以及同角三角函数的关系式,直接求角B的大小6.【答案】C【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.7.【答案】C【解析】设等比数列{a n}的公比为q,由S2n=4(a1+a3+...+a2n−1)(n∈N∗),令n=1,则S2=4a1,可得a2=3a1,根据a1a2a3=−27,可得a23=−27,解得a2.利用等比数列的通项公式即可得出.8.【答案】B【解析】将3a+2b=ab变形为,再由“乘1法”,即可得解.9.【答案】B【解析】根据渐近线的方程和焦点坐标,利用a、b、c的关系和条件列出方程求出a2、b2,代入双曲线的方程即可.10.【答案】C【解析】由导数与极值的关系知可转化为方程f′(x)=0在R上有两个不同根,结合函数的性质可求.二、选择题:(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多项是符合题目要求的,把正确答案的选项涂在答题卡上.全部选对的得5分,部分选对的得2分,有选错的得0分.)11.【答案】A,C【解析】对于A,利用等差数列通项公式列出方程组,求出a1=0,d=1,由此能求出S10;对于B,利用等比数列能通项公式求出q2=2,进而能求出a3;对于C,利用等差数列通项公式得a1+a9=2a5=8,当a1,a9一正一负时,a1a9≤16成立,当a1,a9均大于0时,则a1a9≤()2=16;对于D,{a n}为等比数列时,a2a8==16,当a2,a8均大于0时,a2+a8≥2=8,当a2,a8均小于0时,a2+a8=−(−a2−a8)≤−2=−(8)12.【答案】A,B,D【解析】通过m,n的取值,判断曲线的形状,即可判断选项.三、填空题(每题5分,满分20分,将答案填在答题纸上)13.【答案】52【解析】利用等差数列{a n}的通项公式列方程求得a1+6d=4,再由S13==13(a1+6d),能求出结果.14.【答案】【解析】求出原函数的导函数,利用配方法求得导函数的值域,再由直线的斜率等于倾斜角的正切值,即可求得曲线在点P处的切线的倾斜角α的范围.15.【答案】【解析】由已知结合余弦定理可求C,易得三角形的面积,所以内切圆半径满足关系:S=(a+b+c)r.16.【答案】【解析】判断三角形周长取得最大值时,求出m的值,利用三角形的面积,列出方程,求解椭圆的离心率即可.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【答案】由x2−4mx+5m2<0,得(x−m)(x−5m)<0,又m>0,所以m<x<3m,由,得0<4−x<5因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件.设A=(3, m)B=(2,则B是A的真子集,故或即.【解析】求出命题p,q为真命题的等价条件,根据¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件,进行转化求解即可.18.【答案】(1)当n=1时,2a6=2S1=2a1−1,∴a8=1当n≥2时,8a n=2S n−2S n−2=(3a n−3)−(8a n−1−3)即:,∴数列{a n}为以3为首项,4为公比的等比数列.∴(2)由(Ⅰ)知,a n=n,所以b n=log3故.即①所以②①②得所以.【解析】(Ⅰ)直接利用数列的递推关系式求出数列的通项公式;(Ⅱ)利用乘公比错位相减法的应用求出数列的和.19.【答案】解:(1)由题意得f′(x)=3x2−4x+1,∴f′(−1)=8,∴曲线y=f(x)在点(−1, −4)处的切线方程为y+4=8(x+1),即8x−y+4=0.(2)设切点为(x0, y0),∵切点在函数图象上,∴y0=x03−2x02+x0,故曲线在该点处的切线为y −(x 03−2x 02+x 0)=(3x 02−4x 0+1)(x −x 0).∵ 切线过点(1, 0),∴ 0−(x 03−2x 02+x 0)=(3x 02−4x 0+1)(1−x 0)即(x 0−1)2(2x 0−1)=0,解得x 0=1或x 0=12,当x 0=1时,切点为(1,0),∵ f ′(1)=0,∴ 切线方程为y −0=0⋅(x −1)即y =0.当x 0=12时,切点为(12,18), ∵ f ′(12)=−14, ∴ 切线方程为y −0=−14(x −1)即x +4y −1=0.综上可得,切线方程为y =0或x +4y −1=0.【解析】(Ⅰ)求出原函数的导函数,得到函数在x =−1处的导数,再由直线方程的点斜式得答案;(Ⅱ)设出切点坐标,得到函数在切点处的切线方程,代入已知点的坐标,求得切点坐标,进一步求解过点(1, 0)的切线方程.利用导数研究某一点的切线方程问题(含参问题).20.【答案】(1)∵ a +b +c =12,a =2,∴ c =5. ∴ -(2)∵ △ABC 为直角三角形,, ∴,即sin A +sin B +sin A cos B +cos A sin B =4sin C ,∴ sin A +sin B +sin (A +B)=4sin C ,∵ A +B +C =π,A +B =π−C .∴ sin A +sin B =3sin C ,由正弦定理得a +b =3c ,∵ a +b +c =12,可得8c =12.从而a +b =9.又∵ △ABC 的面积为10sin C ,∴.即ab=20,∴a=5,b=5,又∵c=6,可得cos B==,可得B为直角,∴△ABC为直角三角形.【解析】(1)由题意可求c的值,进而根据余弦定理即可求解cos A的值.(2)由已知利用三角函数恒等变换的应用化简已知等式可得sin A+sin B=3sin C,由正弦定理得a+b=3c,解得c,可得a+b=9,利用三角形的面积公式可求ab=20,解得a,b的值,即可判断得解.21.【答案】(1);由题意,点与点,根据椭圆的对称性且椭圆过其中的三个点可知,点和点,又因为点与点,即椭圆过点,P3(,),P7(0, 1),所以,且,故a6=4,b2=3,所以,椭圆M的方程为.(2)证明:直线l恒过点.由题意,可设直线AB的方程x=ky+m(m≠2),联立消去x2+4)y2+2kmy+m2−4=0,设A(x1, y8),B(x2, y2),则有,①又以线段AB为直径的圆过椭圆的右顶点C,∴,由,,得(x2−2)(x2−8)+y1y2=5,将x1=ky1+m,x6=ky2+m代入上式得,将①代入上式求得或m=2(舍),则直线l恒过点.【解析】(Ⅰ)由椭圆的对称性可得椭圆过点,,P2(0, 1),代入椭圆的方程,列方程组,解得a,b,进而可得椭圆的方程.(Ⅱ)设直线AB的方程x=ky+m(m≠2),A(x1, y1),B(x2, y2),联立直线AB与椭圆的方程可得关于y的一元二次方程,由韦达定理可得y1+y2,y1y2,由线段AB为直径的圆过椭圆的右顶点C,得,用坐标表示,可得m,进而可得答案.22.【答案】(1)因为f(x)=ln x+ax2+(2a+5)x+1,所以,当a≥7时,f′(x)≥0恒成立,+∞)上单调递增;当a<0时,令f′(x)>5,所以,令f′(x)<0,则2ax+2<0,所以f(x)的增区间为,减区间为.综上:当a≥3时,f(x)的增区间为(0;当a<0时,f(x)的增区间为.(2)证明:由(Ⅰ)知,当a<0时max=f(−),,令g(t)=ln t−t+3(t>0),则,令g′(t)>0,则5<t<1,则t>1,所以g(t)在(6, 1)上单调递增,+∞)上单调递减,故g(t)max=g(1)=0,所以ln t−t+3≤0又因为,所以则,从而,所以.【解析】(Ⅰ)对f(x)求得,对a分类讨论,利用导数与单调性的关系求解即可;(Ⅱ)由(Ⅰ)可知f(x)max=f(−),,令g(t)=ln t−t+1(t>0),利用导数可得g(t)的最大值为0,可得,从而可得.。

(word完整版)人教版高二数学上册期末考试文科数学模拟试卷(附答案)

(word完整版)人教版高二数学上册期末考试文科数学模拟试卷(附答案)

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -高中二年级第一学期期末考试模拟试题高二数学(文)(全卷共8页,满分150分,120分钟完成)题号 一 二 三总分 15 16 17 18 19 20 得分一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 直线30x y -+=的倾斜角为( ).(A )30o (B )45o (C )60o (D )135o 2. 命题“对任意3x >,都有ln 1x >”的否定是( )(A )存在3x >,使得ln 1x > (B )对任意3x >,都有ln 1x ≤ (C )存在3x >,使得ln 1x ≤ (D )对任意3x ≤,都有ln 1x > 3. 双曲线221xy -=的焦点到其渐近线的距离为( )(A )1 (B )2 (C )2 (D )224. 设,αβ是两个不同的平面,,,a b c 是三条不同的直线,( )(A )若a b ⊥,b c ⊥,则//a c (B )若//a α,//b α,则//a b (C )若a b ⊥,a α⊥,则//b α (D )若a α⊥,a β⊥,则//αβ 5. “方程221x ym n+=表示的曲线为椭圆”是“0m n >>”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 6. 设,αβ是两个不同的平面,l 是一条直线,若//l α,//l β,m αβ=I ,则( ) (A )l 与m 平行 (B )l 与m 相交 (C )l 与m 异面 (D )l 与m 垂直7. 设抛物线24C yx =:的焦点为F ,直线3=2l x -:,若过焦点F 的直线与抛物线C 相交于,A B 两点,则以线段AB 为直径的圆与直线l 的位置关系为( ).(A )相交(B )相切(C )相离(D )以上三个答案均有可能8. 设a 为空间中的一条直线,记直线a 与正方体1111ABCD A B C D -的六个面所在 的平面相交的平面个数为m ,则m 的所有可能取值构成的集合为( ) (A ){2,4} (B ){2,6} (C ){4,6} (D ){2,4,6} 二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9. 命题“若220a b -=,则a b =”的逆否命题为_____.10. 经过点(2,1)M 且与直线380x y -+=垂直的直线方程为_____. 11. 一个四棱锥的三视图如图所示,那么这个四棱锥的体积为_____.12. 在ABC ∆中,3AB =,4BC =,AB BC ⊥. 以BC 所在的直线为轴将ABC ∆旋转一周,则旋转所得圆锥的侧面积为_____.13. 若双曲线C 的一个焦点在直线43+20=0l x y -:上,一条渐近线与l 平行,且双曲线C 的焦点在x 轴上,则双曲线C 的标准方程为_____;离心率为_____. 14. 在平面直角坐标系中,曲线C 是由到两个定点(1,0)A 和点(1,0)B -的距离之积等于2的所有点组成的. 对于曲线C ,有下列四个结论:○1 曲线C 是轴对称图形; 侧(左)视图正(主)视图 俯视图22 1 11 11○2 曲线C 是中心对称图形;○3 曲线C 上所有的点都在单位圆221x y +=内;○4 曲线C 上所有的点的纵坐标11[,]22y ∈-. 其中,所有正确结论的序号是_____.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)如图,在正三棱柱111ABC A B C -中,D 为AB 的中点.(Ⅰ) 求证:CD ⊥平面11ABB A ; (Ⅰ) 求证:1//BC 平面1A CD .16.(本小题满分13分)已知圆22680C x y x y m +--+=:,其中m ∈R .(Ⅰ)如果圆C 与圆221x y +=相外切,求m 的值;(Ⅰ)如果直线30x y +-=与圆C 相交所得的弦长为27,求m 的值.17.(本小题满分13分)BA CA 1 C 1B 1D如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD ,//AB CD ,AB AD ⊥,1AD CD ==,12AA AB ==,E 为1AA 的中点.(Ⅰ)求四棱锥1C AEB B -的体积; (Ⅱ)求证:1BC C E ⊥;(Ⅲ)判断线段1B C 上是否存在一点M (与点C 不重合),使得,,,C D E M 四点共面? (结论不要求证明)18.(本小题满分13分)设F 为抛物线22C y x =:的焦点,,A B 是抛物线C 上的两个动点. (Ⅰ)若直线AB 经过焦点F ,且斜率为2,求||AB ;(Ⅱ)若直线40l x y -+=:,求点A 到直线l 的距离的最小值.19.(本小题满分14分)A E C C 1B B 1D D A 1如图,在多面体ABCDEF中,底面ABCD为正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD.(Ⅰ)求证:平面ACF⊥平面BDEF;(Ⅱ)若过直线BD的一个平面与线段AE和AF分别相交于点G和H(点G 与点,A E均不重合),求证://EF GH;(Ⅲ)判断线段CE上是否存在一点M,使得平面//BDM平面AEF?若存在,求EMEC的值;若不存在,请说明理由.20.(本小题满分14分)已知椭圆22221 (0)x yC a ba b+=>>:的一个焦点为(5,0),离心率为53. 点P为圆2213M x y+=:上任意一点,O为坐标原点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线l经过点P且与椭圆C相切,l与圆M相交于另一点A,点A关于原点O的对称点为B,证明:直线PB与椭圆C相切.参考答案:FBCGEAHDBA C A 1 C 1B 1D O一、选择题:本大题共8小题,每小题5分,共40分. 1. B2. C3. A4. D5. B6. A7. C8. D二、填空题:本大题共6小题,每小题5分,共30分. 9. 若a b ≠,则220a b -≠ 10. 350x y +-=11. 1 12. 15π13. 221916x y -=,5314. ○1○2注:第13题第一空3分,第二空2分;第14题多选、少选或错选均不得分. 三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)(Ⅰ)证明:因为正三棱柱111ABC A B C -,D 为AB 的中点,所以CD AB ⊥,1AA ⊥底面ABC .……1分 又因为CD ⊂底面ABC , 所以1AA CD ⊥.……3分又因为1AA AB A =I ,AB ⊂平面11ABB A ,1AA ⊂平面11ABB A , 所以CD ⊥平面11ABB A .…6分(Ⅱ)证明:连接1AC ,设11AC AC O =I ,连接OD , …7分 由正三棱柱111ABC A B C -,得1AO OC =,又因为在1ABC ∆中,AD DB =, 所以1//OD BC ,…10分又因为1BC ⊄平面1A CD ,OD ⊂平面1A CD , 所以1//BC 平面1A CD .……13分16.(本小题满分13分)(Ⅰ)解:将圆C 的方程配方,得22(3)(4)25x y m -+-=-,…1分 所以圆C 的圆心为(3,4),半径2525)r m m =-<.……3分因为圆C 与圆221x y +=相外切,22(30)(40)125m -+-=+-…5分解得9m =.……7分(Ⅱ)解:圆C 的圆心到直线30x y +-=的距离222d ==.…9分因为直线30x y +-=与圆C 相交所得的弦长为27 所以由垂径定理,可得22225(22)(7)r m =-=+,…11分 解得10m =.…13分17.(本小题满分13分)(Ⅰ)解:因为1AA ⊥平面ABCD ,AD ⊂平面ABCD , 所以1AA AD ⊥.又因为AB AD ⊥,1AA AB A =I , 所以AD ⊥平面11ABB A .…1分 因为//AB CD ,所以四棱锥1C AEB B -的体积1113C AEB B AEB B V S AD -=⋅⋅四边形……2分11[(12)2]1132=⨯⨯+⨯⨯=. ……4分 (Ⅱ)证明:在底面ABCD 中,因为//AB CD ,AB AD ⊥,1AD CD ==,2AB =,所以AC =BC =,所以222AB AC BC =+,即BC AC ⊥.……6分因为在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD , 所以1CC BC ⊥, 又因为1CC AC C =I ,所以BC ⊥平面1CAEC ,……8分 又因为1C E ⊂平面1CAEC , 所以1BC C E ⊥.……10分(Ⅲ)答:对于线段1B C 上任意一点M (与点C 不重合),,,,C D E M 四点都不共面.…13分18.(本小题满分13分)(Ⅰ)解:由题意,得1(,0)2F ,则直线AB 的方程为12()2y x =-.…2分由2212(),2,y x y x ⎧⎪⎨⎪⎩=-= 消去y ,得24610x x -+=. …3分 设点11(,)A x y ,22(,)B x y ,则0∆>,且1232x x +=,1214x x =, …5分所以125|||2AB x x =-=. ……7分 (Ⅱ)解:设00(,)A x y ,则点A 到直线l距离d =.……8分由A 是抛物线C 上的动点,得202y x =,…9分所以220001|4|(1)7|2d y y y =-+=-+,…11分 所以当01y =时,min 4d =. 即点A 到直线l.……13分19.(本小题满分14分)(Ⅰ)证明:因为四边形ABCD 是正方形,所以AC BD ⊥.… 1分又因为平面BDEF ⊥平面ABCD ,平面BDEF I 平面ABCD BD =, 且AC ⊂平面ABCD ,所以AC ⊥平面BDEF .… 3分 又因为AC ⊂平面ACF ,所以平面ACF ⊥平面BDEF . … 5分(Ⅱ)证明:由题意,//EF BD ,EF ⊄平面BDGH ,BD ⊂平面BDGH , 所以//EF 平面BDGH ,… 7分又因为EF ⊂平面AEF ,平面AEF I 平面BDGH GH =, 所以//EF GH . … 9分(Ⅲ)答:线段CE 上存在一点M ,使得平面//BDM 平面AEF ,此时12EM EC =.…10分以下给出证明过程.证明:设CE 的中点为M ,连接DM ,BM , 因为//BD EF ,BD ⊄平面AEF ,EF ⊂平面AEF ,所以//BD 平面AEF . …… 11分设AC BD O =I ,连接OM ,在ACE ∆中,因为OA OC =,EM MC =,所以//OM AE ,又因为OM ⊄平面AEF ,AE ⊂平面AEF , 所以//OM 平面AEF . …… 13分又因为OM BD O =I ,,OM BD ⊂平面BDM , 所以平面//BDM 平面AEF .…14分20.(本小题满分14分) (Ⅰ)解:由题意,知5c =,53c a=,…1分所以3a =,222b a c =-=,……3分所以椭圆C 的标准方程为22 1 94x y +=.…4分(Ⅱ)证明:由题意,点B 在圆M 上,且线段AB 为圆M 的直径,所以PA PB ⊥. …5分当直线PA x ⊥轴时,易得直线PA 的方程为3x =±, 由题意,得直线PB 的方程为2y =±,显然直线PB 与椭圆C 相切.同理当直线//PA x 轴时,直线PB 也与椭圆C 相切.…7分 当直线PA 与x 轴既不平行也不垂直时,设点00(),P x y ,直线PA 的斜率为k ,则0k ≠,直线PB 的斜率1k-,所以直线PA :00()y y k x x -=-,直线PB :00()1y y x x k-=--,…9分 由0022(),1,94y y k x x x y -=-+=⎧⎪⎨⎪⎩ 消去y ,得2220000(94)18()9()360k x y kx kx y kx ++-+--=.…11分因为直线PA 与椭圆C 相切,所以22210000[18()]4(94)[9()36]0y kx k k y kx ∆=--+--=,整理,得22210000144[(9)24]0x k x y k y ∆=---+-=. (1) …12分 同理,由直线PB 与椭圆C 的方程联立,得2220000211144[(9)24]x x y y k k∆=--++-. (2) 因为点P 为圆22 13M x y +=:上任意一点,所以220013x y +=,即220013y x =-.代入(1)式,得2220000(9)2(9)0x k x y k x --+-=, 代入(2)式,得222200002144[(9)2(4)]x x y k y k k∆=--++- 22200002144[(9)2(9)]x x y k x k k =--++- 2220002144[(9)2(9)]x k x y k x k=--+- 0=.FB CM EAHD OG所以此时直线PB与椭圆C相切.综上,直线PB与椭圆C相切. …14分。

(完整版)高二第一学期数学期末考试题及答案(人教版文科),推荐文档

(完整版)高二第一学期数学期末考试题及答案(人教版文科),推荐文档

2017—2018学年度第一学期高二数学期末考试题文科(提高班)一、选择题(每题5分,共60分)1.在相距2km的A、B两点处测量目标C,若∠CAB=75°,∠CBA=60°,则A、C两点之间的距离是()A.2km B.3kmC.km D.3km2.已知椭圆()的左焦点为,则()A.9B.4C.3D.23.在等差数列中,,则的前5项和=()A.7B.15C.20D.254.某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为10m,则这个矩形的面积最大值是()A.50m2B.100m2C.200m2D.250m25.如图所示,表示满足不等式的点所在的平面区域为()A.B.C.D.6.焦点为(0,±6)且与双曲线有相同渐近线的双曲线方程是()A.B.C.D.7.函数的导数为()A.B.C.D.8.若<<0,则下列结论正确的是()A.b B.D.C.-29.已知命题:命题.则下列判断正确的是()A.p是假命题B.q是真命题C.是真命题D.是真命题10.某观察站与两灯塔、的距离分别为300米和500米,测得灯塔在观察站北偏东30,灯塔在观察站正西方向,则两灯塔、间的距离为()A.500米B.600米C.700米D.800米11.方程表示的曲线为()A.抛物线B.椭圆C.双曲线D.圆12.已知数列的前项和为,则的值是()A.-76B.76C.46D.13二、填空题(每题5分,共20分)13. 若,,是实数,则的最大值是_________14. 过抛物线的焦点作直线交抛物线于、两点,如果,那么=___________.15. 若双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是____________.16. 直线是曲线y=ln x(x>0)的一条切线,则实数b=___________2017—2018学年度第一学期高二数学期末考试文科数学(提高班)答题卡一、选择题(共12小题,每题5分)题号123456789101112答案C C B C B B B A C C A A二、填空题(共4小题,每题5分)13、2 14、815、 16、三、解答题(共6小题,17题10分,其他每小题12分)17. 已知数列(Ⅰ)求数列的通项公式;(Ⅱ)求证数列是等比数列;18. 已知不等式组的解集是,且存在,使得不等式成立.(Ⅰ)求集合;(Ⅱ)求实数的取值范围.19. 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)20. 根据下列条件,求双曲线的标准方程.(1)经过点,且一条渐近线为;(2)与两个焦点连线互相垂直,与两个顶点连线的夹角为.21. 已知函数在区间上有最小值1和最大值4,设.(1)求的值;(2)若不等式在区间上有解,求实数k的取值范围.22. 已知函数().(1)求曲线在点处的切线方程;(2)是否存在常数,使得,恒成立?若存在,求常数的值或取值范围;若不存在,请说明理由.文科(提高班)一.选择题(每题5分,共60分)1.考点:1.2 应用举例试题解析:由题意,∠ACB=180°-75°-60°=45°,由正弦定理得=,所以AC=·sin60°=(km).答案:C2.考点:2.1 椭圆试题解析:,因为,所以,故选C.答案:C3.考点:2.5 等比数列的前n项和试题解析:.答案:B4.考点:3.3 二元一次不等式(组)与简单的线性规划问题试题解析:如图,设矩形长为,则宽为,所以矩形面积为,故选C答案:C5.考点:3.3 二元一次不等式(组)与简单的线性规划问题试题解析:不等式等价于或作出可行域可知选B答案:B6.考点:2.2 双曲线试题解析:与双曲线有共同渐近线的双曲线方程可设为,又因为双曲线的焦点在y轴上,∴方程可写为.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为.答案:B7.考点:3.2 导数的计算试题解析:,故选B.答案:B8.考点:3.1 不等关系与不等式试题解析:根据题意可知,对两边取倒数的得,综上可知,以此判断:A.正确;因为:,所以:,B错误;,两个正数相加不可能小于,所以C错误;,D错误,综上正确的应该是A.答案:A9.考点:1.3 简单的逻辑联结词试题解析:当时,(当且仅当,即时取等号),故为真命题;令,得,故为假命题,为真命题;所以是真命题.答案:C10.考点:1.2 应用举例试题解析:画图可知在三角形ACB中,,,由余弦定理可知,解得AB=700.答案:C11.考点:2.1 椭圆试题解析:方程表示动点到定点的距离与到定直线的距离,点不在直线上,符合抛物线的定义;答案:A12.考点:2.3 等差数列的前n项和试题解析:由已知可知:,所以,,,因此,答案选A.答案:A二.填空题(每题5分,共20分)13.考点:3.4 基本不等式试题解析:,,即,则,化简得,即,即的最大值是2.答案:214.考点:2.3 抛物线试题解析:根据抛物线方程知,直线过焦点,则弦,又因为,所以.答案:815.考点:2.2 双曲线试题解析:椭圆长轴的端点为,所以双曲线顶点为,椭圆离心率为,所以双曲线离心率为,因此双曲线方程为答案:16.考点:3.2 导数的计算试题解析:设曲线上的一个切点为(m,n),,∴,∴.答案:三、解答题(共6小题,17题10分,其他每小题12分)17.考点:2.3 等差数列的前n项和试题解析:(Ⅰ)设数列由题意得:解得:(Ⅱ)依题,为首项为2,公比为4的等比数列(Ⅲ)由答案:(Ⅰ)2n-1;(Ⅱ)见解析;(Ⅲ){1,2,3,4}18.考点:3.2 一元二次不等式及其解法试题解析:(Ⅰ)解得;(Ⅱ)令,由题意得时,.当即,(舍去)当即,.综上可知,的取值范围是.答案:(Ⅰ);(Ⅱ)的取值范围是19.考点:3.4 生活中的优化问题举例试题解析:(1)(2)当时,∴当时,有最大值为当时,是减函数,∴当时,的最大值为答:每月生产台仪器时,利润最大,最大利润为元.答案:(1);(2)每月生产台仪器时,利润最大,最大利润为元20.考点:双曲线试题解析:(1)由于双曲线的一条渐近线方程为设双曲线的方程为()代入点得所以双曲线方程为(2)由题意可设双曲线的方程为则两焦点为,两顶点为由与两个焦点连线垂直得,所以由与两个顶点连线的夹角为得,所以,则所以方程为21.考点:3.2 一元二次不等式及其解法试题解析:(1),因为,所以在区间上是增函数,故,解得.(2)由已知可得,所以,可化为,化为,令,则,因,故,记,因为,故,所以的取值范围是22.考点:3.3 导数在研究函数中的应用试题解析:(1),所求切线的斜率所求切线方程为即(2)由,作函数,其中由上表可知,,;,由,当时,,的取值范围为,当时,,的取值范围为∵,恒成立,∴答案:(1)(2)存在,,恒成立100. 在中,角所对的边分别为,且满足,.(I )求的面积;(II)若,求的值.46.考点:正弦定理余弦定理试题解析:(Ⅰ)又,,而,所以,所以的面积为:(Ⅱ)由(Ⅰ)知,而,所以所以答案:(1)2(2)。

高二数学上学期期末考试试卷(文科)(共5套,含参考答案)

高二数学上学期期末考试试卷(文科)(共5套,含参考答案)

高二上学期期末考试数学试题(文)第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1. 已知,,a b c 满足a b c <<,且0ac <,则下列选项中一定成立的是( )A.ab ac <B.()0c a b ->C.22ab cb <D.()220a cac ->2.若不等式202mx mx ++>恒成立,则实数m 的取值范围是( ) A.2m > B.2m < C. 0m <或2m >D.02m <<3.2014是等差数列4,7,10,13,…的第几项( ). A .669B .670C .671D .6724.△ABC 中,a=80,b=100,A=450则三角形解的情况是( ) A .一解B .两解C .一解或两解D .无解5.一元二次不等式ax 2+bx +2>0的解集为(-12,13),则a +b 的值是( ). A .10B .-10C .14D .-146.等差数列{an}中s 5=7,s 10=11,则s 30=( ) A 13 B 18 C 24 D 317.△ABC 中a=6,A=600 c=6 则C=( ) A 450, B 1350C 1350,450D 6008.点(1,1)在直线ax+by-1=0上,a,b 都是正实数,则ba 11+的最小值是( )A 2B 2+22C 2-22D 4 9.若a ∈R ,则“a =1”是“|a|=1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件10.下列有关命题的说法正确的是 ( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”; B .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”; C .在ABC ∆中,“B A >”是“B A 22cos cos <”的充要条件; D .“2x ≠或1y ≠”是“3x y +≠”的非充分非必要条件.11中心在原点、焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A . +=1B . +=1C .+=1 D .+=112.抛物线x 2=4y 的焦点坐标为( )A .(1,0)B .(﹣1,0)C .(0,1)D .(0,﹣1)第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分) 13. 不等式31≤+xx 的解集是_____________ 14. 已知直线21=+y x 与曲线3y x ax b =++相切于点(1,3),则实数b 的值为_____. 15.在等比数列{a n }中,a 3a 7=4,则log 2(a 2a 4a 6a 8)=________.16.ABC ∆中,a 2-b 2 =c 2+bc 则A= .三、解答题17.已知函数()(2)()f x x x m =-+-(其中m>-2). ()22x g x =-. (I )若命题“2log ()1g x ≥”是假命题,求x 的取值范围;(II )设命题p :∀x ∈R ,f(x)<0或g(x)<0;命题q :∃x ∈(-1,0),f(x)g(x)<0. 若p q ∧是真命题,求m 的取值范围.18函数f(x)=3lnx-x 2-bx.在点(1,f (1))处的切线的斜率是0 (1)求b ,(2)求函数的单调减区间19.锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()2cos 2sin .2C B A -=(Ⅰ)求sin sin A B 的值;(Ⅱ)若3,2a b ==,求ABC ∆的面积.20. (本小题满分12分)数列{n a }的前n 项和为n S ,2131(N )22n n S a n n n *+=--+∈ (Ⅰ)设n n b a n =+,证明:数列{n b }是等比数列; (Ⅱ)求数列{}n nb 的前n 项和n T ;21已知椭圆C :=1(a >b >0)的短半轴长为1,离心率为(1)求椭圆C 的方程(2)直线l 与椭圆C 有唯一公共点M ,设直线l 的斜率为k ,M 在椭圆C 上移动时,作OH ⊥l 于H (O 为坐标原点),当|OH|=|OM|时,求k 的值. 22.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求,a b 的值;(Ⅱ)当[03]x ∈,时,函数()y f x = 的图像恒在直线2y c =的下方,求c 的取值范围.答案一选择题、D D C B . D D C B A .D A C二、填空题. {|0x x <或1}2x ≥ .3 4. 120017、.解:(I )若命题“2log ()1g x ≥”是假命题,则()2log 1g x <即()2log 221,0222x x -<<-<,解得1<x <2;(II )因为p q ∧是真命题,则p,q 都为真命题,当x >1时,()22x g x =->0,因为P 是真命题,则f(x)<0,所以f(1)= ﹣(1+2)(1﹣m) <0,即m <1;当﹣1<x <0时,()22x g x =-<0,因为q 是真命题,则∃x ∈(-1,0),使f(x) >0,所以f(﹣1)= ﹣(﹣1+2)( ﹣1﹣m) >0,即m >﹣1,综上所述,﹣1<m <1. 18,(1)b=1 (2)(1,∞)19. 解:(Ⅰ)由条件得cos(B -A)=1-cosC=1+cos(B+A), 所以cosBcosA+sinBsinA=1+cosBcosA -sinBsinA,即sinAsinB=12;(Ⅱ)sin 3sin 2A aB b ==,又1sin sin 2A B =,解得:sin 23A B ==,因为是锐角三角形,1cos ,cos 23A B ∴==,()sin sin sin cos cos sin C A B A B A B =+=+=11sin 322262S ab C ∆+==⨯⨯⨯=. 略20.【答案】解:(Ⅰ)∵ 213122n n a S n n +=--+,…………………………①∴ 当1=n 时,121-=a ,则112a =-, …………………1分当2n ≥时,21113(1)(1)122n n a S n n --+=----+,……………………②则由①-②得121n n a a n --=--,即12()1n n a n a n -+=+-,…………………3分∴ 11(2)2n n b b n -=≥,又 11112b a =+=, ∴ 数列{}n b 是首项为12,公比为12的等比数列,…………………4分 ∴ 1()2n n b =. ……………………5分(Ⅱ)由(Ⅰ)得2n nn nb =. ∴ n n n nn T 221..........242322211432+-+++++=-,……………③ 1232221..........24232212--+-+++++=n n n nn T ,……………④……………8分 由④-③得n n n nT 221......2121112-++++=- 1122212212nn n n n ⎛⎫- ⎪+⎝⎭=-=--.……………………12分21、【解答】解:(1)椭圆C:=1(a >b >0)焦点在x 轴上,由题意可知b=1,由椭圆的离心率e==,a 2=b 2+c 2,则a=2∴椭圆的方程为;﹣﹣﹣﹣﹣﹣﹣(2)设直线l :y=kx+m ,M (x 0,y 0).﹣﹣﹣﹣﹣﹣﹣,整理得:(1+4k 2)x 2+8kmx+4m 2﹣4=0,﹣﹣﹣﹣﹣﹣﹣令△=0,得m 2=4k 2+1,﹣﹣﹣﹣﹣﹣﹣由韦达定理得:2x0=﹣,x02=,﹣﹣﹣﹣﹣﹣﹣∴丨OM丨2=x02+y02=x02+(kx+m)2=①﹣﹣﹣﹣﹣﹣﹣又|OH|2==,②﹣﹣﹣﹣﹣﹣﹣由|OH|=|OM|,①②联立整理得:16k4﹣8k2+1=0﹣﹣﹣﹣﹣﹣﹣∴k2=,解得:k=±,k的值±.﹣﹣﹣﹣﹣﹣﹣22.(Ⅰ)a=-3,b=4(Ⅱ)(-∞,-1)∪(9,+∞)(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即6630241230a ba b++=⎧⎨++=⎩解得a=-3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<-1或c>9,第一学期期末调研考试高中数学(必修⑤、选修1-1)试卷说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若p q ∧是假命题,则A .p 是真命题,q 是假命题B .,p q 均为假命题C .,p q 至少有一个是假命题D .,p q 至少有一个是真命题 2.一个等比数列的第3项和第4项分别是12和18,则该数列的第1项等于 A .27 B .163 C .812D .8 3.已知ABC ∆中,角A 、B 的对边为a 、b ,1a =,b = 120=B ,则A 等于 A .30或150 B .60或120 C .30 D .60 4.曲线xy e =在点(1,)e 处的切线方程为(注:e 是自然对数的底)A . (1)x y e e x -=-B . 1y x e =+-C .2y ex e =-D .y ex =5.不等式组⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,表示的平面区域的面积是A .41 B .49 C .29 D .236.已知{}n a 为等差数列,1010=a ,前10项和7010=S ,则公差=d A .32- B .31- C . 31 D . 327.函数()f x 的导函数...()'f x 的图象如图所示,则 A .1x =是()f x 的最小值点xB .0x =是()f x 的极小值点C .2x =是()f x 的极小值点D .函数()f x 在()1,2上单调递增8. 双曲线22221(0,0)x y a bb a -=>>的一条渐近线方程是y =,则双曲线的离心率是A .B .2C . 3D .9.函数3()1f x ax x =++有极值的充分但不必要条件是 A . 1a <-B . 1a <C . 0a <D . 0a >10.已知点F 是抛物线x y =2的焦点,A 、B 是抛物线上的两点,且3||||=+BF AF ,则线段AB 的中点到y 轴的距离为 A .43 B .1 C .45 D .4711.已知直线2+=kx y 与椭圆1922=+my x 总有公共点,则m 的取值范围是 A .4≥m B .90<<m C .94<≤mD .4≥m 且9≠m12.已知定义域为R 的函数)(x f 的导函数是)(x f ',且4)(2)(>-'x f x f ,若1)0(-=f ,则不等式x e x f 22)(>+的解集为A .),0(+∞B .),1(+∞-C .)0,(-∞D .)1,(--∞二、填空题:本大题共4小题,每小题5分,满分20分.13.命题“若24x =,则2x =”的逆否命题为__________.14.ABC ∆中,若AB =1AC =,且23C π∠=,则BC =__________.15.若1x >,__________. 16.设椭圆()2222:10x y C a b a b+=>>的左右焦点为12F F ,,过2F 作x 轴的垂线与C 交于A B ,两点,若1ABF ∆是等边三角形,则椭圆C 的离心率等于________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知ABC ∆的三个内角A ,B ,C 的对边长分别为a ,b ,c ,60B =︒. (Ⅰ)若2b ac =,请判断三角形ABC 的形状;(Ⅱ)若54cos =A ,3c =+,求ABC ∆的边b 的大小.18.(本小题满分12分)等比数列{}n a 的各项均为正数,且11a =,4332=+a a (*n N ∈). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)已知(21)n n b n a =-⋅,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知椭圆的中心在坐标原点O ,长轴长为离心率e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(Ⅰ)求椭圆的方程; (Ⅱ)当直线l 的倾斜角为4π时,求POQ ∆的面积.20.(本小题满分12分)某农场计划种植甲、乙两个品种的水果,总面积不超过300亩,总成本不超过9万元.甲、乙两种水果的成本分别是每亩600元和每亩200元.假设种植这两个品种的水果,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种水果的种植面积,可使农场的总收益最大?最大收益是多少万元?21.(本小题满分12分)设函数329()62f x x x x a =-+-. 在 (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若方程()0f x =有且仅有三个实根,求实数a 的取值范围.22.(本小题满分12分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -. (Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行 的直线和过F 与AB 垂直的直线交于点N ,求N 的横坐标 的取值范围.x第一学期期末调研考试高中数学(必修⑤、选修1-1)参考答案与评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.若2x ≠,则24x ≠; 14.1 ; 15.15 ; 16. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. 解:(Ⅰ)由2222cos b a c ac B ac =+-⋅=,1cos cos 602B =︒=,……………………2分得0)(2=-c a ,即:c a =.………………………………………………………5分 又60B =︒,∴ 三角形ABC 是等边三角形. ……………………………………………………5分(Ⅱ)由4cos 5A =,得3sin 5A =,…………………………………………………………6分 又60B =︒,∴ sin sin()sin cos cos sin C A B A B A B =+=⋅+⋅314525=⨯+7分 由正弦定理得(3sin sin c Bb C+⋅===10分18.解:(Ⅰ)设等比数列{}n a 的公比为q ,∴43)(2132=+=+q q a a a ……………………………………………………1分 由432=+q q 解得:21=q 或23-(舍去).…………………………………3分∴所求通项公式11121--⎪⎭⎫ ⎝⎛==n n n q a a .………………………………………5分(Ⅱ)123n n T b b b b =++++即()0112123252212n n T n -=⋅+⋅+⋅+⋅⋅⋅+-⋅------------①…………………………………6分①⨯2得 2()132123252212nn T n =⋅+⋅+⋅+⋅⋅⋅+-⋅ -----②……………………7分①-②:()1121222222212n n n T n --=+⋅+⋅+⋅⋅⋅+⋅--…………………………………8分9分()3223n n =--,……………………………………………………………………………11分 ()3232n n T n ∴=-+.………………………………………………………………………12分19. 解:(Ⅰ)由题得:22222c a a b c a ===+..................................................................2分 解得1a b ==, (4)分椭圆的方程为2212x y +=. (5)分(Ⅱ)(1,0)F ,直线l 的方程是tan (1)14y x y x π=-⇒=- (6)分由2222232101x y y y x y ⎧+=⇒+-=⎨=+⎩(*)…………………………………………………………………………7分设1122(,),(,)P xy Q x y ,(*)2243(1)160∆=-⨯⨯-=>………………………………………………………8分124||3y y ∴-===……………………………………………………10分121142||||12233OPQ S OF y y ∆∴=-=⨯⨯= POQ ∆的面积是23……………………………………………………….…………………………………………12分20. 解:设甲、乙两种水果的种植面积分别为x ,y 亩,农场的总收益为z 万元,则 ………1分300,0.060.029,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩………① …………4分 目标函数为0.30.2z x y =+, ……………5分不等式组①等价于300,3450,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩可行域如图所示,……………………………7分 目标函数0.30.2z x y =+可化为z x y 523+-= 由此可知当目标函数对应的直线经过点M 时,目标函数z 取最大值.…………………9分 解方程组300,3450,x y x y +=⎧⎨+=⎩ 得75,225,x y =⎧⎨=⎩M 的坐标为(75,225).……………………………………………………………………10分所以max 0.3750.222567.5z =⨯+⨯=.…………………………………………………11分 答:分别种植甲乙两种水果75亩和225亩,可使农场的总收益最大,最大收益为67.5万元. ………………………………………………………………………………12分21. 解:(Ⅰ)/2()3963(1)(2)f x x x x x =-+=--,………………………………………2分令/()0f x >,得2x >或1x <;/()0f x <,得12x <<, …………………………4分∴()f x 增区间()1,∞-和()+∞,2;减区间是()2,1.………………………………………6分(Ⅱ)由(I )知 当1x =时,()f x 取极大值5(1)2f a =-,………………………………7分 当2x =时,()f x 取极小值 (2)2f a =-,………………………………………………8分因为方程()0f x =仅有三个实根.所以⎩⎨⎧<>0)2(0)1(f f …………………………………………10分解得:252<<a , 实数a 的取值范围是5(2,)2.………………………………………………………………12分22.解:(Ⅰ)由题意可得抛物线上点A 到焦点F 的距离等于点A 到直线1x =-的距离.……………………2分由抛物线的定义得12p=,即p =2. …………………………………………………………………………………4分(Ⅱ)由(Ⅰ)得抛物线的方程为()24,F 1,0y x =,可设()2,2,0,1A t t t t ≠≠± (5)分由题知AF 不垂直于y 轴,可设直线:1(0)AF x sy s =+≠,()0s ≠,由241y x x sy ⎧=⎨=+⎩消去x 得2440y sy --=,………………………………6分 故124y y =-,所以212,B tt ⎛⎫- ⎪⎝⎭.…………………………………………………………………………………7分又直线AB 的斜率为221tt -,故直线FN 的斜率为212t t --,从而的直线FN :()2112t y x t -=--,直线BN :2y t=-, (9)分由21(1)22t y x t y t ⎧-=--⎪⎪⎨⎪=-⎪⎩解得N 的横坐标是2411N x t =+-,其中220,1t t >≠…………………………………10分1N x ∴>或3N x <-.综上,点N 的横坐标的取值范围是()(),31,-∞-+∞.…………………………………………………12分注:如上各题若有其它解法,请评卷老师酌情给分.x绝密★启用前第一学期期末考试高二年级(文科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。

高二年级(文科)数学第一学期期末试卷(后附详细答案)

高二年级(文科)数学第一学期期末试卷(后附详细答案)

高二年级第一学期期末考试试卷数 学(文科)考试时间:120分钟 满分150分一、选择题:本大题共12小题,每小题5分,共60分.将答案写在后面的框内,否则一律不给0分.1.“1x ≠”是“2320x x -+≠”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知命题p q ,,若命题“p ⌝”与命题“p q ∨”都是真命题,则( )A .p 为真命题,q 为假命题B .p 为假命题,q 为真命题C .p ,q 均为真命题D .p ,q 均为假命题3. 设M 是椭圆22194x y +=上的任意一点,若12,F F 是椭圆的两个焦点,则12||||MF MF + 等于( )A . 2B . 3C . 4D . 64.命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .存在x 0∈R ,使得x 20<0B .对任意x ∈R ,都有x 2<0C .存在x 0∈R ,使得x 20≥0D .不存在x ∈R ,使得x 2<05. 抛物线24y x =的焦点到其准线的距离是( )A . 4B . 3C . 2D . 16. 两个焦点坐标分别是12(5,0)(5,0)F F -,,离心率为45的双曲线方程是( ) A .22143x y -= B .22153x y -= C .221259x y -= D .221169x y -= 7. “函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A .必要非充分条件 B .充分非必要条件 C.充分必要条件D .既非充分也非必要条件8.曲线y=x-1/x 在x=1处的切线方程为 ( )A .2x-y-2=0B .2x-y+2=0C .2x+y-2=0D .X-y-2=09. 双曲线221259x y -=的离心率e 等于 ( ) A .5B .534 C .3D .910. 若函数f(x)=13-8x+2x 2,且f /(x 0)=4,则x 0等于( )A .23B .22C .2D .011. 已知抛物线28y x =上一点A 的横坐标为2,则点A 到抛物线焦点的距离为( )A .2B .4C .6D .812.正方体1111ABCD A B C D -中,M 为侧面11ABB A 所在平面上的一个动点,且M 到平面11ADD A 的距离是M 到直线BC 距离的2倍,则动点M 的轨迹为( ) A .椭圆B .双曲线C .抛物线D .圆二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.命题“若0a >,则1a >”的否命题是_____________________.14.双曲线22194x y -=的渐近线方程是_____________________. 15.求曲线x xy sin =在点M (∏,0)处的切线方程为 .16. 已知椭圆12222=+by a x 的左、右焦点分别为21,F F ,点P 为椭圆上一点,且3021=∠F PF , 6012=∠F PF ,则椭圆的离心率e 等于 .高二年级第一学期期末考试试卷答题卡数 学(文科)考试时间:120分钟 满分150分学校: 班级: 姓名: 总分:命题人:高尚军二、填空题(每小题4分,共20分)13. 14.15. 16. 三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本题满分10分)已知函数x ex f x ln )(= ; 求这个函数的图像在x=1处的切线方程。

湖北省高二上册期末数学文科试题与答案

湖北省高二上册期末数学文科试题与答案

湖北省高二上册期末数学文科试题与答案一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用秦九韶算法求多项式当时的值,有如下说法:①要用到6次乘法;②要用到6次加法和15次乘法;③v3=12;④v0=11.其中说法正确的是A. ①③B. ①④C. ②④D. ①③④【答案】A根据秦九韶算法求多项式的规则变化其形式,把等到价转化为,就能求出结果.解:需做加法与乘法的次数都是6次,,,,,的值为12;其中正确的是①④故选:A.本题考查算法的多样性,正确理解秦九韶算法求多项式的原理是解题的关键,属于基础题.2.把[0,1]内的均匀随机数x分别转化为[0,2]和内的均匀随机数y1,y2,需实施的变换分别为( )A. ,B. ,C. ,D. ,【答案】C先看区间长度之间的关系:故可设或,再用区间中点之间的对应关系得到,解出,问题得以解决.解:将[0,1]内的随机数x转化为[0,2]内的均匀随机数,区间长度变为原来的2倍,因此设=2x+(是常数),再用两个区间中点的对应值,得当时,=1,所以,可得=0,因此x与的关系为:=2x;将[0,1]内的随机数x转化为[-2,1]内的均匀随机数,区间长度变为原来的2倍,因此设=3x+(是常数),再用两个区间中点的对应值,得当时,=,所以,可得,因此x与的关系为:=3x-2;故选C.本题考查均匀随机数的含义与应用,属于基础题.解决本题解题的关键是理解均匀随机数的定义,以及两个均匀随机数之间的线性关系.3.抛物线的准线方程是,则的值为()A. B. C. 8 D. -8【答案】B方程表示的是抛物线,,,抛物线的准线方程是,解得,故选A.4.执行如图所示的程序框图,若输出n的值为9,则判断框中可填入( )A. B. C. D.【答案】D执行程序框图,根据输出,可计算的值,由此得出判断框中应填入的条件.解:执行程序框图,可得该程序运行后是计算,满足条件后,输出,由此得出判断框中的横线上可以填入?.故选:D.本题主要考查了程序框图的应用问题,正确判断退出循环的条件是解题的关键,属于基础题.5.将二进制数110 101(2)转化为十进制数为( )A. 106B. 53C. 55D. 108【答案】B由题意可得110101(2)=1×25+1×24+0×23+1×22+0×21+1×20=53.选B。

高二上学期期末数学试卷含答案解析(文科)

高二上学期期末数学试卷含答案解析(文科)

高二(上)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)将命题“x2+y2≥2xy”改写成全称命题为()A.对任意x,y∈R,都有x2+y2≥2xy成立B.存在x,y∈R,使x2+y2≥2xy成立C.对任意x>0,y>0,都有x2+y2≥2xy成立D.存在x<0,y<0,使x2+y2≤2xy成立2.(5分)过点M(﹣2,a),N(a,4)的直线的斜率为﹣,则a等于()A.﹣8 B.10 C.2 D.43.(5分)方程x2+y2+2x+4y+1=0表示的圆的圆心为()A.(2,4)B.(﹣2,﹣4)C.(﹣1,﹣2)D.(1,2)4.(5分)命题p:“x2﹣3x﹣4=0”,命题q:“x=4”,则p是q的()条件.A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)给出下列结论:①若y=,则y′=﹣;②若f(x)=sinα,则f′(x)=cosα;③若f(x)=3x,则f′(1)=3.其中,正确的个数是()A.0个B.1个C.2个D.3个6.(5分)函数f(x)=1+3x﹣x3()A.有极小值,无极大值B.无极小值,有极大值C.无极小值,无极大值D.有极小值,有极大值7.(5分)到直线x=﹣2与到定点P(2,0)的距离相等的点的轨迹是()A.椭圆B.圆C.抛物线D.直线8.(5分)抛物线 x=﹣2y2的准线方程是()A.B.C.D.9.(5分)若双曲线﹣=1的一条渐近线经过点(3,﹣4),则此双曲线的离心率为()A.B.C.D.10.(5分)设椭圆+=1与双曲线﹣y2=1有公共焦点为F1,F2,P是两条曲线的一个公共点,则cos∠F1PF2的值等于()A.B.C.D.11.(5分)某几何体的三视图如图所示,则该几何体的体积是()A.B.2πC.D.12.(5分)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.﹣1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上二、填空题(本大题共4小题,每题5分,共20分.请把正确答案填在题中的横线上)13.(5分)在空间直角坐标系中,若点点B(﹣3,﹣1,4),A(1,2,﹣1),则|AB|= .14.(5分)函数f(x)=x3﹣8x2+13x﹣6的单调减区间为.15.(5分)设双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),则C的方程为.16.(5分)如图,正方体ABCD﹣A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为(注:把你认为正确的结论的序号都填上).三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(11分)已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.(1)当m=﹣1时,求A∪B;(2)若A⊆B,求实数m的取值范围.18.(11分)求适合下列条件的圆的方程.(1)圆心在直线y=﹣4x上,且与直线l:x+y﹣1=0相切于点P(3,﹣2);(2)过三点A(1,12),B(7,10),C(﹣9,2).19.(12分)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(Ⅰ)求证:DE∥平面A1CB;(Ⅱ)求证:A1F⊥BE.20.(12分)已知椭圆C 1: +y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上, =2,求直线AB 的方程.21.(12分)已知函数f (x )=为常数,e 是自然对数的底数),曲线y=f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值;(2)求f (x )的单调区间.22.(12分)已知点A (﹣2,0),B (2,0),曲线C 上的动点P 满足•=﹣3.(I )求曲线C 的方程;(Ⅱ)若过定点M (0,﹣2)的直线l 与曲线C 有公共点,求直线l 的斜率k 的取值范围;(Ⅲ)若动点Q (x ,y )在曲线上,求u=的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】直接把命题改写成含有全称量词的命题即可.【解答】解:命题“x2+y2≥2xy”是指对任意x,y∈R,都有x2+y2≥2xy成立,故命题“x2+y2≥2xy”改写成全称命题为:对任意x,y∈R,都有x2+y2≥2xy成立.故选:A.【点评】本题考查全称量词及全称命题,理解全称命题的定义及形式是解决问题的关键,是基础题.2.【分析】直接利用斜率公式求解即可.【解答】解:过点M(﹣2,a),N(a,4)的直线的斜率为﹣,∴,解得a=10.故选:B.【点评】本题考查直线的斜率公式的求法,基本知识的考查.3.【分析】把圆的一般方程化为圆的标准方程,可得圆心坐标.【解答】解:圆的方程 x2+y2+2x+4y+1=0,即(x+1)2+(y+2)2 =4,故圆的圆心为(﹣1,﹣2),故选:C.【点评】本题主要考查圆的标准方程,属于基础题.4.【分析】根据题意,求出方程x2﹣3x﹣4=0的根,分析可得若q:x=4成立,则有p:“x2﹣3x﹣4=0”成立,反之若p:“x2﹣3x﹣4=0”成立,则q:x=4不一定成立,结合充分必要条件的定义,分析可得答案.【解答】解:根据题意,p:“x2﹣3x﹣4=0”,即x=4或﹣1,则有若q:x=4成立,则有p:“x2﹣3x﹣4=0”成立,反之若p:“x2﹣3x﹣4=0”成立,则q:x=4不一定成立,则p是q的必要不充分条件;故选:B.【点评】本题考查充分必要条件的判断,关键是掌握充分必要条件的定义.5.【分析】根据题意,依次计算三个函数的导数,分析可得答案.【解答】解:根据题意,依次分析3个结论;对于①,y==x﹣3,则y′=(﹣3)x﹣4=,正确;对于②,f(x)=sinα,为常数,则f′(x)=0,错误;对于③,若f(x)=3x,则f′(x)=3,则f′(1)=3,正确;其中正确的有2个;故选:C.【点评】本题考查导数的计算,关键是掌握导数的计算公式,属于基础题.6.【分析】求出函数的导数,根据函数的单调性求出函数的极值即可.【解答】解:f′(x)=3(1+x)(1﹣x),令f′(x)>0,解得:﹣1<x<1,令f′(x)<0,解得:x>1或x<﹣1,故f(x)在(﹣∞,﹣1)递减,在(﹣1,1)递增,在(1,+∞)递减,故函数f(x)即有极大值也有极小值,故选:D.【点评】本题考查了函数的单调性,极值问题,考查导数的应用,是一道基础题.7.【分析】确定M的轨迹是以点P为焦点,直线l为准线的抛物线,即可得出结论.【解答】解:动点M到定点P(2,0)的距离与到定直线l:x=﹣2的距离相等,所以M的轨迹是以点P为焦点,直线l为准线的抛物线,故选:C.【点评】本题主要考查了抛物线的定义,考查学生的计算能力,比较基础.8.【分析】由于抛物线y2=﹣2px(p>0)的准线方程为x=,则抛物线 x=﹣2y2即y2=﹣x 的准线方程即可得到.【解答】解:由于抛物线y 2=﹣2px (p >0)的准线方程为x=,则抛物线 x=﹣2y 2即y 2=﹣x 的准线方程为x=, 故选:D .【点评】本题考查抛物线的方程和性质,主要考查抛物线的准线方程的求法,属于基础题. 9.【分析】利用双曲线的渐近线方程经过的点,得到a 、b 关系式,然后求出双曲线的离心率即可.【解答】解:双曲线﹣=1的一条渐近线经过点(3,﹣4),可得3b=4a ,即9(c 2﹣a 2)=16a 2,解得=. 故选:D .【点评】本题考查双曲线的简单性质的应用,基本知识的考查.10.【分析】先求出公共焦点分别为F 1,F 2,再联立方程组求出P ,由此可以求出,cos ∠F 1PF 2=【解答】解:由题意知F 1(﹣2,0),F 2(2,0),解方程组得取P 点坐标为(),,cos ∠F 1PF 2==故选:B .【点评】本题考查圆锥曲线的性质和应用,解题时要注意公式的灵活运用.11.【分析】由已知中几何体的三视图,我们可以判断出几何体的形状及底面直径,母线长,进而求出底面半径和高后,代入圆锥体积公式进行计算,此图圆锥下面放一个半球,把二者的体积进行相加即可;【解答】解:如图所示:俯视图为一个圆,说明图形底面是一个圆,再根据正视图和俯视图一样,可知上面是一个圆锥,高为2,直径为2,下面是一个半径为1的半球,可得该几何体的体积是V圆锥+V 半球=×π×12×2+=,故选:A .【点评】本题考查由三视图求几何体的体积,考查由三视图还原直观图,考查球和圆锥的体积,本题是一个基础题,运算量比较小.12.【分析】可采取排除法.分别考虑A ,B ,C ,D 中有一个错误,通过解方程求得a ,判断是否为非零整数,即可得到结论. 【解答】解:可采取排除法.若A 错,则B ,C ,D 正确.即有f (x )=ax 2+bx+c 的导数为f′(x )=2ax+b , 即有f′(1)=0,即2a+b=0,①又f (1)=3,即a+b+c=3②,又f (2)=8,即4a+2b+c=8,③由①②③解得,a=5,b=﹣10,c=8.符合a 为非零整数.若B 错,则A ,C ,D 正确,则有a ﹣b+c=0,且4a+2b+c=8,且=3,解得a ∈∅,不成立;若C 错,则A ,B ,D 正确,则有a ﹣b+c=0,且2a+b=0,且4a+2b+c=8,解得a=﹣不为非零整数,不成立;若D 错,则A ,B ,C 正确,则有a ﹣b+c=0,且2a+b=0,且=3,解得a=﹣不为非零整数,不成立. 故选:A .【点评】本题考查二次函数的极值、零点等概念,主要考查解方程的能力和判断分析的能力,属于中档题.二、填空题(本大题共4小题,每题5分,共20分.请把正确答案填在题中的横线上)13.【分析】根据空间直角坐标系中两点间的距离公式求出|AB|.【解答】解:空间直角坐标系中,点B(﹣3,﹣1,4),A(1,2,﹣1),则|AB|==5.故答案为:5.【点评】本题考查了空间直角坐标系中两点间的距离公式应用问题,是基础题.14.【分析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.【解答】解:f′(x)=3x2﹣16x+13=(x﹣1)(3x﹣13),令f′(x)<0,解得:1<x<,故函数的递减区间是:(1,),故答案为:(1,).【点评】本题考查了函数的单调性问题,考查导数的应用,是一道基础题.15.【分析】利用双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),可得c=,a=1,进而求出b,即可得出双曲线的方程.【解答】解:∵双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),∴c=,a=1,∴b=1,∴C的方程为x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线方程与性质,考查学生的计算能力,属于基础题.16.【分析】根据正方体的几何特征,结合已知中的图形,我们易判断出已知四个结论中的两条线段的四个端点是否共面,若四点共面,则直线可能平行或相交,反之则一定是异面直线.【解答】解:∵A、M、C、C四点不共面1是异面直线,故①错误;∴直线AM与CC1同理,直线AM与BN也是异面直线,故②错误.是异面直线,故③正确;同理,直线BN与MB1同理,直线AM与DD是异面直线,故④正确;1故答案为:③④【点评】本题考查的知识点是空间中直线与直线之间的位置关系判断,其中判断两条线段的四个顶点是否共面,进而得到答案,是解答本题的关键.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.【分析】(1)根据并集的定义即可求出,(2)由题意可知,解得即可.【解答】解:(1)当m=﹣1时,B={x|﹣2<x<2},A∪B={x|﹣2<x<3}.(2)由A⊆B,知,解得m≤﹣2,即实数m的取值范围为(﹣∞,﹣2].【点评】本题考查并集的法,考查实数的取值范围的求法,考查并集及其运算、集合的包含关系判断及应用等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.【分析】(1)设圆的标准方程为(x﹣a)2+(y﹣b)2=r2,由已知可得,求解方程组得到a,b,r的值,则圆的方程可求;(2)设圆的一般方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),由已知列关于D,E,F的方程组,求解得答案.【解答】解:(1)设圆的标准方程为(x﹣a)2+(y﹣b)2=r2,则有,解得a=1,b=﹣4,r=2.∴圆的方程为(x﹣1)2+(y+4)2=8;(2)设圆的一般方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),则,解得D=﹣2,E=﹣4,F=﹣95.∴所求圆的方程为x2+y2﹣2x﹣4y﹣95=0.【点评】本题考查利用待定系数法求圆的方程,考查计算能力,是基础题.19.【分析】(Ⅰ)由D,E分别是AC,AB上的中点,结合中位线定理和线面平行的判定定理可得结论;(Ⅱ)由已知易得对折后DE⊥平面A1DC,即DE⊥A1F,结合A1F⊥CD可证得A1F⊥平面BCDE,再由线面垂直的性质可得结论.【解答】证明:(Ⅰ)∵D,E分别为AC,AB的中点,∴DE∥BC,∵DE⊄平面A1CB,BC⊂平面A1CB,∴DE∥平面A1CB,(Ⅱ)由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,又DE⊥CD,A1D∩CD=D∴DE⊥平面A1DC,∵A1F⊂平面A1DC,∴DE⊥A1F,又∵A1F⊥CD,CD∩DE=D,CD,DE⊂平面BCDE;∴A1F⊥平面BCDE又∵BE⊂平面BCDE∴A1F⊥BE.【点评】本题考查直线与平面平行的判定,直线与平面垂直的判定与性质,考查学生的分析推理证明与逻辑思维能力,其中熟练掌握空间线面关系的判定及性质,会将空间问题转化为平面问题是解答本题的关键.20.【分析】(1)求出椭圆的长轴长,离心率,根据椭圆C2以C1的长轴为短轴,且与C1有相同的离心率,即可确定椭圆C2的方程;(2)设A,B的坐标分别为(xA ,yA),(xB,yB),根据,可设AB的方程为y=kx,分别与椭圆C1和C2联立,求出A,B的横坐标,利用,即可求得直线AB的方程.【解答】解:(1)椭圆的长轴长为4,离心率为∵椭圆C2以C1的长轴为短轴,且与C1有相同的离心率∴椭圆C2的焦点在y轴上,2b=4,为∴b=2,a=4∴椭圆C2的方程为;(2)设A,B的坐标分别为(xA ,yA),(xB,yB),∵∴O,A,B三点共线,当斜率不存在时, =2不成立,∴点A,B不在y轴上当斜率存在时,设AB的方程为y=kx将y=kx代入,消元可得(1+4k2)x2=4,∴将y=kx代入,消元可得(4+k2)x2=16,∴∵,∴ =4,∴,解得k=±1,∴AB的方程为y=±x【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,解题的关键是掌握椭圆几何量关系,联立方程组求解.21.【分析】(1)求出函数的导函数,函数在点(1,f(1))处的切线与x轴平行,说明f′(1)=0,则k值可求;(2)求出函数的定义域,然后让导函数等于0求出极值点,借助于导函数在各区间内的符号求函数f(x)的单调区间.【解答】解:(1)由题意得,又,故k=1;(2)由(1)知,,设,则h′(x)=﹣﹣<0,即h(x)在(0,+∞)上是减函数,由h(1)=0知,当0<x<1时,h(x)>0,从而当x>1时,h(x)<0,从而f'(x)<0,综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).【点评】本题考查利用导数研究函数的单调性,考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值.掌握不等式恒成立时所取的条件.22.【分析】(I)设P(x,y),运用向量的数量积的坐标表示,化简即可得到曲线C的方程;(Ⅱ)可设直线l:y=kx﹣2,运用直线和圆有公共点的条件:d≤r,运用点到直线的距离公式,解不等式即可得到取值范围;(Ⅲ)由动点Q(x,y),设定点N(1,﹣2),u=的几何意义是直线QN的斜率,再由直线和圆相交的条件d≤r,解不等式即可得到范围.【解答】解:(I)设P(x,y),=(x+2,y)•(x﹣2,y)=x2﹣4+y2=﹣3,即有x2+y2=1,P点的轨迹为圆C:x2+y2=1;(Ⅱ)可设直线l:y=kx﹣2,即为kx﹣y﹣2=0,当直线l与曲线C有交点,得,,解得,k或k.即有直线l的斜率k的取值范围是(﹣∞,﹣]∪[,+∞);(Ⅲ)由动点Q(x,y),设定点N(1,﹣2),则直线QN的斜率为k==u,又Q在曲线C上,故直线QN与圆有交点,由于直线QN方程为y+2=k(x﹣1)即为kx﹣y﹣k﹣2=0,当直线和圆相切时, =1,解得,k=﹣,当k不存在时,直线和圆相切,则k的取值范围是(﹣∞,﹣]【点评】本题考查平面向量的数量积的坐标表示,考查直线和圆的位置关系,考查直线斜率的公式的运用,考查运算能力,属于中档题.。

高二数学上学期期末试卷(文科含解析)

高二数学上学期期末试卷(文科含解析)

高二数学上学期期末试卷(文科含解析)单元练习题是所有考生最大的需求点,只有这样才能保证答题的准确率和效率,以下是店铺为您整理的关于高二数学上学期期末试卷(文科含解析)的相关资料,供您阅读。

高二数学上学期期末试卷(文科含解析)数学试卷(文科)一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于.14.f(x)=x3﹣3x2+2在区间上的最大值是.15.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= .16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥A B.20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先根据mn>0看能否得出方程mx2+ny2=1的曲线是椭圆;这里可以利用举出特值的方法来验证,再看方程mx2+ny2=1的曲线是椭圆,根据椭圆的方程的定义,可以得出mn>0,即可得到结论.【解答】解:当mn>0时,方程mx2+ny2=1的曲线不一定是椭圆,例如:当m=n=1时,方程mx2+ny2=1的曲线不是椭圆而是圆;或者是m,n都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程mx2+ny2=1的曲线是椭圆时,应有m,n都大于0,且两个量不相等,得到mn>0;由上可得:“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的必要不充分条件.故选B.2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【考点】命题的否定.【分析】根据已知我们可得命题“所有能被2整除的数都是偶数”的否定应该是一个特称命题,根据全称命题的否定方法,我们易得到结论.【解答】解:命题“所有能被2整除的数都是偶数”是一个全称命题其否定一定是一个特称命题,故排除A,B结合全称命题的否定方法,我们易得命题“所有能被2整除的数都是偶数”的否定应为“存在一个能被2整除的整数不是偶数”故选:D3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.7【考点】椭圆的简单性质.【分析】由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为7,求出P到另一焦点的距离即可.【解答】解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为7,由定义得点P到另一焦点的距离为2a﹣3=10﹣7=3.故选B4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q【考点】四种命题间的逆否关系.【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.【考点】双曲线的简单性质.【分析】由双曲线的离心率为,可得,解得即可.【解答】解:∵双曲线的离心率为,∴ ,解得 .∴其渐近线的斜率为 .故选:B.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.【考点】利用导数研究曲线上某点切线方程.【分析】先求出导函数,然后根据导数的几何意义求出函数f(x)在x= 处的导数,从而求出切线的斜率.【解答】解:∵∴y'==y'|x= = |x= =故选B.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )【考点】双曲线的简单性质;椭圆的简单性质;抛物线的简单性质.【分析】根据椭圆 (a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,得到a,b的关系式;再将抛物线ay=bx2的方程化为标准方程后,根据抛物线的性质,即可得到其焦点坐标.【解答】解:∵椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点∴2a2﹣2b2=a2+b2,即a2=3b2, = .抛物线ay=bx2的方程可化为:x2= y,即x2= y,其焦点坐标为:(0, ).故选D.8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则【考点】复数代数形式的乘除运算;命题的真假判断与应用.【分析】利用特例判断A的正误;复数的基本运算判断B的正误;复数的运算法则判断C的正误;利用复数的模的运算法则判断D的正误.【解答】解:若|z1|=|z2|,例如|1|=|i|,显然不正确,A错误.B,C,D满足复数的运算法则,故选:A.9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题【考点】四种命题间的逆否关系.【分析】先利用导数知识,确定原命题为真命题,从而逆否命题为真命题,即可得到结论.【解答】解:∵f(x)=e x﹣mx,∴f′(x)=ex﹣m∵函数f(x)=ex﹣mx在(0,+∞)上是增函数∴ex﹣m≥0在(0,+∞)上恒成立∴m≤ex在(0,+∞)上恒成立∴m≤1∴命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,是真命题,∴逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题∵m≤1时,f′(x)=ex﹣m≥0在(0,+∞)上不恒成立,即函数f(x)=ex﹣mx在(0,+∞)上不一定是增函数,∴逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是真命题,即B不正确故选D.10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.【解答】解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.【考点】直线的图象特征与倾斜角、斜率的关系.【分析】先由导数的几何意义,得到x0的范围,再求出其到对称轴的范围.【解答】解:∵过P(x0,f(x0))的切线的倾斜角的取值范围是,∴f′(x0)=2ax0+b∈,∴P到曲线y=f(x)对称轴x=﹣的距离d=x0﹣(﹣ )=x0+∴x0∈[ ,].∴d=x0+ ∈.故选:B.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6【考点】利用导数研究函数的极值;根的存在性及根的个数判断.【分析】由函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可得f′(x)=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2﹣12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解得个数.【解答】解:∵函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得 = .∵x1∴ , .而方程3(f(x))2+2af(x)+b=0的△1=△>0,∴此方程有两解且f(x)=x1或x2.不妨取00.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x 的方程3(f(x))2+2af(x)+b=0的只有3不同实根.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于 1 .【考点】复数代数形式的乘除运算.【分析】直接利用复数的代数形式的混合运算化简求解即可.【解答】解:复数,那么z• = = =1.故答案为:1.14.f(x)=x3﹣3x2+2在区间上的最大值是 2 .【考点】利用导数求闭区间上函数的最值.【分析】求出函数的导函数,令导函数为0,求出根,判断根是否在定义域内,判断根左右两边的导函数符号,求出最值.【解答】解:f′(x)=3x2﹣6x=3x(x﹣2)令f′(x)=0得x=0或x=2(舍)当﹣10;当0所以当x=0时,函数取得极大值即最大值所以f(x)的最大值为2故答案为215.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= ﹣1 .【考点】导数的运算.【分析】先求出f′(1)的值,代入解析式计算即可.【解答】解:∵f(x)=lnx﹣f′(1)x2+5x﹣4,∴f′(x)= ﹣2f′(1)x+5,∴f′(1)=6﹣2f′(1),解得f′(1)=2.∴f(x)=lnx﹣2x2+5x﹣4,∴f(1)=﹣1.故答案为:﹣1.16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .【考点】抛物线的简单性质.【分析】点斜式设出直线l的方程,代入抛物线方程,求出A,B 两点的纵坐标,利用抛物线的定义得出 = ,即可得出结论.【解答】解:设直线l的方程为:x=y﹣,A(x1,y1),B(x2,y2),由x=y﹣,代入x2=2py,可得y2﹣3py+ p2=0,∴y1= p,y2= p,从而, = = .故答案为: .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.【考点】复数求模;复数的基本概念.【分析】(Ⅰ)设z=a+bi,分别代入z+2i和,化简后由虚部为0求得b,a的值,则复数z可求;(Ⅱ)把z代入,利用复数代数形式的乘除运算化简,代入模的公式得答案.【解答】解:(Ⅰ)设z=a+bi,∴z+2i=a+(b+2)i,由a+(b+2)i为实数,可得b=﹣2,又∵ 为实数,∴a=4,则z=4﹣2i;(Ⅱ) ,∴ 的模为 .18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义,转化为集合的关系进行求解.【解答】解:(1)a>0时,,若x∈B是x∈A的充分不必要条件,所以,,检验符合题意;┅┅┅┅┅┅┅(2)a=0时,A=R,符合题意;┅┅┅┅┅┅┅(3)a<0时,,若x∈B是x∈A的充分不必要条件,所以,,检验不符合题意.综上.┅┅┅┅┅┅┅19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥AB.【考点】椭圆的简单性质.【分析】(1)通过题意,利用 =2 ,可得点M坐标,利用直线OM 的斜率为,计算即得结论;(2)通过中点坐标公式解得点N坐标,利用×( )=﹣1,即得结论.【解答】(Ⅰ)解:设M(x,y),已知A(a,0),B(0,b),由|BM|=2|MA|,所以 =2 ,即(x﹣0,y﹣b)=2(a﹣x,0﹣y),解得x= a,y= b,即可得,┅┅┅┅┅┅┅所以,所以椭圆离心率;┅┅┅┅┅┅┅(Ⅱ)证明:因为C(0,﹣b),所以N ,MN斜率为,┅┅┅┅┅┅┅又AB斜率为,所以×( )=﹣1,所以MN⊥AB.┅┅┅┅┅┅┅20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.【考点】利用导数研究函数的极值.【分析】(1)求出f′(x),因为函数在x=1时取极值,得到f′(1)=0,代入求出a值即可;(2)把f(x)的解析式代入到不等式中,化简得到,因为a>0,不等式恒成立即要,求出x的解集即可.【解答】解:(1)f′(x)=ax2﹣3x+(a+1)由于函数f(x)在x=1时取得极值,所以f′(1)=0即a﹣3+a+1=0,∴a=1(2)由题设知:ax2﹣3x+(a+1)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立即a(x2+2)﹣x2﹣2x>0对任意a∈(0,+∞)都成立于是对任意a∈(0,+∞)都成立,即∴﹣2≤x≤0于是x的取值范围是{x|﹣2≤x≤0}.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率和最小距离a﹣c,解方程可得a= ,c=1,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)设出直线y=kx+m,联立椭圆和抛物线方程,运用判别式为0,解方程可得k,m,进而得到所求直线的方程.【解答】解:(1)由题意可得e= = ,由椭圆的性质可得,a﹣c= ﹣1,解方程可得a= ,c=1,则b= =1,即有椭圆的方程为 +y2=1;(2)直线l的斜率显然存在,可设直线l:y=kx+m,由,可得(1+2k2)x2+4kmx+2m2﹣2=0,由直线和椭圆相切,可得△=16k2m2﹣4(1+2k2)(2m2﹣2)=0,即为m2=1+2k2,①由,可得k2x2+(2km﹣4)x+m2=0,由直线和抛物线相切,可得△=(2km﹣4)2﹣4k2m2=0,即为km=1,②由①②可得或,即有直线l的方程为y= x+ 或y=﹣ x﹣ .22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(Ⅱ)根据(Ⅰ)通过讨论a的范围,确定出满足条件的a的范围即可.【解答】解:(Ⅰ)f(x)=lnx﹣a(x﹣1)2﹣(x﹣1),(x>0),f′(x)=﹣,①a<﹣时,0<﹣ <1,令f′(x)<0,解得:x>1或00,解得:﹣∴f(x)在递减,在递增;②﹣﹣或00,解得:1∴f(x)在递减,在递增;③ ,f′(x)=﹣≤0,f(x)在(0,1),(1+∞)递减;④a≥0时,2ax+1>0,令f′(x)>0,解得:01,∴f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)函数恒过(1,0),由(Ⅰ)得:a≥﹣时,符合题意,a<﹣时,f(x)在(0,﹣ )递减,在递增,不合题意,故a≥﹣ .。

2020-2021学年河南省郑州市高二(上)期末数学试卷(文科)

2020-2021学年河南省郑州市高二(上)期末数学试卷(文科)

2020-2021学年河南省郑州市高二(上)期末数学试卷(文科)试题数:22,总分:1501.(单选题,5分)2020是等差数列2,4,6,8,…的()A.第1008项B.第1009项C.第1010项D.第1011项2.(单选题,5分)已知a<0<b,则下列结论正确的是()A.a2<b2B. $\frac{a}{b}$ <1C. $\frac{b}{a}$ + $\frac{a}{b}$ >2D.ab>b23.(单选题,5分)已知命题p:∃x0∈(0,+∞),x0lnx0<0,则¬p为()A.∀x∈(0,+∞),xlnx≥0B.∃x0∉(0,+∞),x0lnx0<0C.∃x∈(0,+∞),xlnx<0D.∀x∉(0,+∞),xlnx≥04.(单选题,5分)若椭圆 $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$ =1与双曲线$\frac{{x}^{2}}{{m}^{2}}$ -y2=1有相同的焦点,则正实数m为()A.1B.-1C.±1D.± $\sqrt{3}$5.(单选题,5分)已知命题p:x<2,q:2x2-3x-2<0,则p是q的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件6.(单选题,5分)曲线f(x)=ax+lnx在点(1,f(1))处的切线斜率为3,则实数a的值为()A.1B.2C.3D.47.(单选题,5分)在△ABC中,AC= $\sqrt{7}$ ,BC=2,B=60°,则sinA:sinC=()A. $\frac{2}{3}$B. $\frac{3}{2}$C. $\frac{3\sqrt{7}}{7}$D. $\frac{\sqrt{7}}{3}$8.(单选题,5分)设实数x,y满足约束条件 $\left\{\begin{array}cx-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$ ,则目标函数z=x+3y的最小值为()A.5B.6C.7D.109.(单选题,5分)在等比数列{a n}中,有a3a15=8a9,数列{b n}是等差数列,且b9=a9,则b7+b11等于()A.4B.8C.16D.2410.(单选题,5分)设F1,F2是椭圆C: $\frac{{x}^{2}}{5}$ +y2=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.1B.2C.3D. $\frac{7}{2}$11.(单选题,5分)已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则下列结论正确的是()A.函数y=f(x)在(-∞,-1)上是增函数B.x=3是函数y=f(x)的极小值点C.f′(3)<f′(5)D.f(-1)<f(3)12.(单选题,5分)已知函数f(x)=x2-m与函数g(x)=ln $\frac{1}{x}$ -x,x∈[ $\frac{1}{2}$ ,2]的图象上恰有两对关于x轴对称的点,则实数m的取值范围是()A.(0,2-ln2]B.(0,- $\frac{1}{4}$ +ln2]C.[- $\frac{1}{4}$ +ln2,2-ln2)D.(ln2,- $\frac{1}{4}$ +ln2]13.(填空题,5分)已知数列{a n}为递增等比数列,a1,a2是关于x的方程x2-3x+2=0的两个实数根,则其前5项和S5=___ .14.(填空题,5分)已知正实数x,y满足4x+y=8,则xy的最大值为___ .15.(填空题,5分)在△ABC中,角A,B,C的对边分别为a,b,c,b2=(a+c)2-6,B= $\frac{2π}{3}$,则△ABC的面积是___ .16.(填空题,5分)已知抛物线y2=2x的焦点为F,点A、B在抛物线上,若△FAB为等边三角形,则其边长为___ .17.(问答题,10分)已知命题p:当x∈[ $\frac{1}{2}$ ,2]时,a≤x+ $\frac{1}{x}$ 恒成立;命题q:对任意的x∈R,不等式x2-ax+a>0恒成立,若命题p∧q是真命题,求实数a的取值范围.18.(问答题,12分)已知数列{a n}为等差数列,其前n项和为S n,且a2=4,S4=22.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n= $\frac{1}{{a}_{n}{a}_{n+1}}$ ,求数列{b n}的前n项和T n.19.(问答题,12分)在△ABC中,角A,B,C的对边分别为a,b,c,且(2b-c)cosA=acosC,b+c=6,a=2 $\sqrt{3}$ .求:(Ⅰ)求角A的大小;(Ⅱ)求sin(B-A)的值.20.(问答题,12分)2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y(单位:万件)与年促销费用x(x≥0)(单位:万元)满足y=30- $\frac{k}{x+10}$ (k为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本)(Ⅰ)求k的值,并写出该产品的利润L(单位:万元)与促销费用x(单位:万元)的函数关系;(Ⅱ)该工厂计划投入促销费用多少万元,才能获得最大利润?21.(问答题,12分)已知椭圆C: $\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$ =1(a>b>0)的离心率为 $\frac{\sqrt{2}}{2}$ ,过左顶点与上顶点的直线与圆x2+y2=$\frac{4}{3}$ 相切.(Ⅰ)求椭圆C的方程;(Ⅱ)已知斜率为k的直线l在y轴上的截距为m(0<|m|<b),l与椭圆交于A,B两点,是否存在实数k使得k OA•k OB=k2成立?若存在,求出k的值,若不存在,说明理由.22.(问答题,12分)已知函数f(x)= $\frac{a}{3}$ x3+x2+3x-2(a∈R).(Ⅰ)若a=-1,求函数y=f(x)单调区间;(Ⅱ)当x∈(1,e3)时,不等式f′(x)>xlnx+2恒成立,求实数a的取值范围.2020-2021学年河南省郑州市高二(上)期末数学试卷(文科)参考答案与试题解析试题数:22,总分:1501.(单选题,5分)2020是等差数列2,4,6,8,…的()A.第1008项B.第1009项C.第1010项D.第1011项【正确答案】:C【解析】:求出a n=2n,即可求出n的值.【解答】:解:由题意可得公差为2,首项为2,则a n=2+2(n-1)=2n,∴2n=2020,即n=1010,故选:C.【点评】:本题考查了等差数列的通项公式,属于基础题.2.(单选题,5分)已知a<0<b,则下列结论正确的是()A.a2<b2B. $\frac{a}{b}$ <1C. $\frac{b}{a}$ + $\frac{a}{b}$ >2D.ab>b2【正确答案】:B【解析】:根据不等式的性质对每一选项进行判断即可.【解答】:解:已知a<0<b,对于a2<b2和ab>b2,若a=2,b=-1,AD选项错误,等于C,b正数,a负数, $\frac{b}{a}$ + $\frac{a}{b}$ =-[(- $\frac{b}{a}$ )+(-$\frac{a}{b}$ )]<-2 $\sqrt{(-\frac{b}{a})\bullet (-\frac{a}{b})}$ =-2,则C选项错误,而 $\frac{a}{b}$ 是负数,故B选项正确,故选:B.【点评】:本题考查了不等式的基本性质及不等式大小的判断,属于基础题.3.(单选题,5分)已知命题p:∃x0∈(0,+∞),x0lnx0<0,则¬p为()A.∀x∈(0,+∞),xlnx≥0B.∃x0∉(0,+∞),x0lnx0<0C.∃x∈(0,+∞),xlnx<0D.∀x∉(0,+∞),xlnx≥0【正确答案】:A【解析】:根据特称命题的否定是全称命题进行判断即可.【解答】:解:命题是特称命题,则其否定是全称命题,即∀x∈(0,+∞),xlnx≥0,故选:A.【点评】:本题主要考查含有量词的命题的否定,全称命题的否定是特称命题,特称命题的否定是全称命题是解决本题的关键,是基础题.4.(单选题,5分)若椭圆 $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$ =1与双曲线$\frac{{x}^{2}}{{m}^{2}}$ -y2=1有相同的焦点,则正实数m为()A.1B.-1C.±1D.± $\sqrt{3}$【正确答案】:A【解析】:先根据椭圆的方程求得焦点坐标,进而可知双曲线的半焦距,根据双曲线的标准方程,求得m,答案可得.【解答】:解:椭圆 $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$ =1得∴c1= $\sqrt{2}$ ,∴焦点坐标为( $\sqrt{2}$ ,0)(- $\sqrt{2}$ ,0),双曲线 $\frac{{x}^{2}}{{m}^{2}}$ -y2=1的焦点必在x轴上,则半焦距c2= $\sqrt{m+1}$ ,∴ $\sqrt{m+1}$ = $\sqrt{2}$解得实数m=1.故选:A.【点评】:此题考查学生掌握圆锥曲线的共同特征,考查椭圆、双曲线的标准方程,以及椭圆、双曲线的简单性质的应用,利用条件求出a,b,c值,是解题的关键.5.(单选题,5分)已知命题p:x<2,q:2x2-3x-2<0,则p是q的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【正确答案】:C【解析】:解关于q的不等式,再结合集合的包含关系判断即可.【解答】:解:由命题p:x<2,q:2x2-3x-2<0,即- $\frac{1}{2}$ <x<2,则p是q的必要不充分条件,故选:C.【点评】:本题考查了充分必要条件,考查集合的包含关系,是一道基础题.6.(单选题,5分)曲线f(x)=ax+lnx在点(1,f(1))处的切线斜率为3,则实数a的值为()A.1B.2C.3D.4【正确答案】:B【解析】:对f(x)求导,根据f(x)在点(1,f(1))处的切线斜率为3,得到关于a的方程,再求出a的值.【解答】:解:由f(x)=ax+lnx,得 $f'(x)=a+\frac{1}{x}$ ,∵f(x)在点(1,f(1))处的切线斜率为3,∴f'(1)=3,∴a+1=3,∴a=2.故选:B.【点评】:本题考查了利用导函数研究曲线上某点的切线,考查了方程思想,属基础题.7.(单选题,5分)在△ABC中,AC= $\sqrt{7}$ ,BC=2,B=60°,则sinA:sinC=()A. $\frac{2}{3}$B. $\frac{3}{2}$C. $\frac{3\sqrt{7}}{7}$D. $\frac{\sqrt{7}}{3}$【正确答案】:A【解析】:利用余弦定理|AC|2=|AB|2+|BC|2-2|AB|•|BC|cos∠ABC可求得|AB|,利用正弦定理即可求解.【解答】:解:∵△ABC中,AC= $\sqrt{7}$ ,BC=2,B=60°,∴由余弦定理得:|AC|2=|AB|2+|BC|2-2|AB|•|BC|cos∠ABC,可得:7=|AB|2+4-2|AB|,即|AB|2-2|AB|-3=0,∴|AB|=3.∴sinA:sinC=BC:AB=2:3.故选:A.【点评】:本题考查正弦定理,余弦定理在解三角形中的应用,熟练掌握相关定理是基础,属于基础题.8.(单选题,5分)设实数x,y满足约束条件 $\left\{\begin{array}cx-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$ ,则目标函数z=x+3y的最小值为()A.5B.6C.7D.10【正确答案】:B【解析】:作出不等式组对应的平面区域,利用目标函数的几何意义,数形结合进行求解即可求得最小值.【解答】:解:画出约束条件 $\left\{\begin{array}cx-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$ 表示的平面区域,如阴影部分所示:目标函数z=x+3y可化为y=- $\frac{1}{3}$ x+ $\frac{1}{3}$ z,平移目标函数知,当直线y=- $\frac{1}{3}$ x+ $\frac{1}{3}$ z经过点A时,直线y=-$\frac{1}{3}$ x+ $\frac{1}{3}$ z的截距最小,此时z最小.由 $\left\{\begin{array}{l}{x+2y-5=0}\\{x-y-2=0}\end{array}\right.$ ,解得A(3,1),代入目标函数得z=3+3×1=6.即z=x+3y的最小值为6.故选:B.【点评】:本题主要考查了线性规划的应用问题,利用目标函数的几何意义与数形结合法,是解决此类问题的基本方法,是中档题.9.(单选题,5分)在等比数列{a n}中,有a3a15=8a9,数列{b n}是等差数列,且b9=a9,则b7+b11等于()A.4B.8C.16D.24【正确答案】:C【解析】:由等比数列的性质即可求得a9,再由等差数列的性质即可求解.【解答】:解:因为在等比数列{a n}中,有a3a15=8a9,所以 ${{a}_{9}}^{2}$ =8a9,解得a9=8或a9=0(舍),所以b9=a9=8,因为数列{b n}是等差数列,所以b7+b11=2b9=16.故选:C.【点评】:本题主要考查等差数列与等比数列的综合,考查等差数列与等比数列的性质,属于基础题.10.(单选题,5分)设F1,F2是椭圆C: $\frac{{x}^{2}}{5}$ +y2=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.1B.2C.3D. $\frac{7}{2}$【正确答案】:A【解析】:由椭圆的方程求出a,b,c的值,再根据|OP|的值推出三角形PF1F2为直角三角形,结合椭圆的定义以及勾股定理即可求解.【解答】:解:由题意可得:a= $\sqrt{5}$ ,b=1,c=2,所以|F1F2|=2c=4,又|OP|=2,所以|OP|= $\frac{1}{2}|{F}_{1}{F}_{2}|$ ,所以三角形PF1F2是以点P为直角的直角三角形,所以|PF1|⊥|PF2|,则|PF ${}_{1}{|}^{2}+|P{F}_{2}{|}^{2}=4{c}^{2}=16$ ,又|PF ${}_{1}|+|P{F}_{2}|=2a=2\sqrt{5}$ ,所以|PF1||PF2|=2,则三角形PF1F2的面积为S= $\frac{1}{2}×|P{F}_{1}||P{F}_{2}|=\frac{1}{2}×2=1$ ,故选:A.【点评】:本题考查了椭圆的定义以及直角三角形的性质,考查了学生的运算能力,属于中档题.11.(单选题,5分)已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则下列结论正确的是()A.函数y=f(x)在(-∞,-1)上是增函数B.x=3是函数y=f(x)的极小值点C.f′(3)<f′(5)D.f(-1)<f(3)【正确答案】:D【解析】:分别根据导数图象,判断函数的单调性,即可.【解答】:解:对于A,由f′(x)图象知,当x<-1时,f′(x)<0,此时函数f(x)为减函数,故A错误,对于B,当-1<x<3时,f′(x)>0,函数为增函数,当3<x<5时,f′(x)<0,函数为减函数,则x=3是函数的一个极大值点,故B错误,对于C,f′(3)=f′(5),故C错误,对于D,当-1<x<3时,f′(x)>0,函数为增函数,则f(-1)<f(3)成立,故D正确,故选:D.【点评】:本题主要考查函数图象的识别和判断,结合函数单调性与导数之间的关系是解决本题的关键,是基础题.12.(单选题,5分)已知函数f(x)=x2-m与函数g(x)=ln $\frac{1}{x}$ -x,x∈[ $\frac{1}{2}$ ,2]的图象上恰有两对关于x轴对称的点,则实数m的取值范围是()A.(0,2-ln2]B.(0,- $\frac{1}{4}$ +ln2]C.[- $\frac{1}{4}$ +ln2,2-ln2)D.(ln2,- $\frac{1}{4}$ +ln2]【正确答案】:B【解析】:由已知得到方程m=x2-lnx-x在[ $\frac{1}{2}$ ,2]上有两解,构造函数h(x)=x2-lnx-x,求出h(x)的最值和端点值,即可得到m的范围.【解答】:解:由已知得到方程f(x)=-g(x)在[ $\frac{1}{2}$ ,2]上有两解,即m=x2-lnx-x在[ $\frac{1}{2}$ ,2]上有解.设h(x)=x2-lnx-x,则h′(x)=2x- $\frac{1}{x}$ -1= $\frac{2{x}^{2}-x-1}{x}$ ,令h′(x)=0得x=1.∴当 $\frac{1}{2}$ <x<1时,f′(x)<0,当1<x<2时,f′(x)>0,∴h(x)在( $\frac{1}{2}$ ,1)上单调递减,在(1,2)上单调递增.∴当x=1时,h(x)取得最小值h(1)=0,∵h( $\frac{1}{2}$ )=ln2- $\frac{1}{4}$ ,h(2)=-ln2+2,且h(2)>h( $\frac{1}{2}$ ),0<m≤ln2- $\frac{1}{4}$ .从而m的取值范围为(0,ln2- $\frac{1}{4}$ ]故选:B.【点评】:本题考查了构造函数法求方程的解及参数范围,解题关键是将已知转化为方程在某区间上有解,属于中档题.13.(填空题,5分)已知数列{a n}为递增等比数列,a1,a2是关于x的方程x2-3x+2=0的两个实数根,则其前5项和S5=___ .【正确答案】:[1]31【解析】:由x2-3x+2=0,解得x,然后求出公比q,再求出S5的值.【解答】:解:由x2-3x+2=0,解得x=1,2,∵数列{a n}为递增等比数列,a1,a2是关于x的方程x2-3x+2=0的两个实数根,∴a1=1,a2=2,∴公比q=2.∴其前5项和S5= $\frac{{2}^{5}-1}{2-1}$ =31.故答案为:31.【点评】:本题考查了一元二次方程的解法、等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.14.(填空题,5分)已知正实数x,y满足4x+y=8,则xy的最大值为___ .【正确答案】:[1]4【解析】:将4x+y=8转换为y=8-4x,代入xy=x(8-4x)=-4x2+8x=-4(x-1)2+4,解一元二次函数在x>0的区间的最值即可.【解答】:解:已知正实数x,y满足4x+y=8,则y=8-4x,即xy=x(8-4x)=-4x2+8x=-4(x-1)2+4,x>0,且仅当x=1时,xy的最大值为4.故答案为:4.【点评】:本题考查了一元二次不等式的解法,考查了计算能力,属于基础题.15.(填空题,5分)在△ABC中,角A,B,C的对边分别为a,b,c,b2=(a+c)2-6,B= $\frac{2π}{3}$,则△ABC的面积是___ .【正确答案】:[1] $\frac{3\sqrt{3}}{2}$【解析】:在△ABC中,由b2=(a+c)2-6,B= $\frac{2π}{3}$,结合余弦定理b2=a2+c2-2accosB可求得ac=6,从而可求得△ABC的面积.【解答】:解:在△ABC中,∵B= $\frac{2π}{3}$,b2=(a+c)2-6=a2+c2+2ac-6,又b2=a2+c2-2accosB=a2+c2-2ac×(- $\frac{1}{2}$ )=a2+c2+ac,∴ac=6,∴S△ABC= $\frac{1}{2}$ acsinB= $\frac{1}{2}$ ×6× $\frac{\sqrt{3}}{2}$ =$\frac{3\sqrt{3}}{2}$ ,故答案为: $\frac{3\sqrt{3}}{2}$ .【点评】:本题考查余弦定理与三角形面积公式的应用,考查运算能力,属于中档题.16.(填空题,5分)已知抛物线y2=2x的焦点为F,点A、B在抛物线上,若△FAB为等边三角形,则其边长为___ .【正确答案】:[1]【解析】:由已知可得AF=BF=AB,分析出点A,B关于x轴对称,设出点A的坐标代入抛物线方程,再由抛物线定义可得AF的关系式,联立方程即可求解.【解答】:解:因为三角形ABF为等边三角形,则AF=BF,又点F在抛物线的对称轴x轴上,所以点A,B两点的横坐标相等,纵坐标相反,则设点A(m,n)(n>0),所以B(m,-n),满足n2=2m,且AB=2n,又由抛物线的定义可得AF=AB=m+ $\frac{p}{2}=m+\frac{1}{2}$ =2n,联立方程 $\left\{\begin{array}{l}{{n}^{2}=2m}\\{m+\frac{1}{2}=2n}\end{array}\right.$ ,解得n=2 $±\sqrt{3}$ ,所以三角形ABF的边长为2n=4 $±2\sqrt{3}$ ,故答案为:4 $±2\sqrt{3}$ .【点评】:本题考查了抛物线的定义以及等边三角形的性质,考查了学生的运算能力,属于中档题.17.(问答题,10分)已知命题p:当x∈[ $\frac{1}{2}$ ,2]时,a≤x+ $\frac{1}{x}$ 恒成立;命题q:对任意的x∈R,不等式x2-ax+a>0恒成立,若命题p∧q是真命题,求实数a的取值范围.【正确答案】:【解析】:分别解出p、q命题为真命题时a的取值范围,再结合复合命题的真假可得答案.【解答】:解:命题p:当x∈[ $\frac{1}{2}$ ,2]时,a≤x+ $\frac{1}{x}$ 恒成立;若P真命题,则a≤(x+ $\frac{1}{x}$ )min.因为x∈[ $\frac{1}{2}$ ,2],所以x+ $\frac{1}{x}$ ≥2 $\sqrt{x\bullet \frac{1}{x}}$ =2,当且仅当x= $\frac{1}{x}$ 时,即x=1时等号成立,所以a≤2;命题q:对任意的x∈R,不等式x2-ax+a>0恒成立,若q真命题,则,Δ=a2-4a<0,即0<a<4.若命题p∧q是真命题,则p.q都是真命题,即 $\left\{\begin{array}{l}{a≤2}\\{0<a<4}\end{array}\right.$ ,所以0<a≤2.故答案为:实数a的取值范围为{a|0<a≤2}.【点评】:本题主要考查复合命题之间的关系,根据不等式的性质分别判定命题p,q的真假是解决本题的关键,比较基础.18.(问答题,12分)已知数列{a n}为等差数列,其前n项和为S n,且a2=4,S4=22.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n= $\frac{1}{{a}_{n}{a}_{n+1}}$ ,求数列{b n}的前n项和T n.【正确答案】:【解析】:(Ⅰ)先设等差数列{a n}的公差为d,然后根据已知条件列出关于首项a1与公差d 的方程组,解出a1与d的值,即可计算出等差数列{a n}的通项公式;(Ⅱ)先根据第(Ⅰ)题的结果计算出数列{b n}的通项公式,然后运用裂项相消法即可计算出前n项和T n.【解答】:解:(Ⅰ)由题意,设等差数列{a n}的公差为d,则 $\left\{\begin{array}{l}{{a}_{1}+d=4}\\{4{a}_{1}+6d=22}\end{array}\right.$ ,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=3}\end{array}\right.$ ,∴a n=1+3(n-1)=3n-2,n∈N*,(Ⅱ)由(Ⅰ),可得:b n= $\frac{1}{{a}_{n}{a}_{n+1}}$ = $\frac{1}{(3n-2)(3n+1)}$ =$\frac{1}{3}$ ( $\frac{1}{3n-2}$ - $\frac{1}{3n+1}$ ),∴T n=b1+b2+…+b n= $\frac{1}{3}$ ×(1- $\frac{1}{4}$ )+ $\frac{1}{3}$ ×( $\frac{1}{4}$ - $\frac{1}{7}$ )+…+ $\frac{1}{3}$ ×( $\frac{1}{3n-2}$ - $\frac{1}{3n+1}$ )= $\frac{1}{3}$ ×(1- $\frac{1}{4}$ + $\frac{1}{4}$ - $\frac{1}{7}$ +…+ $\frac{1}{3n-2}$ - $\frac{1}{3n+1}$ )= $\frac{1}{3}$ ×(1- $\frac{1}{3n+1}$ )= $\frac{n}{3n+1}$ .【点评】:本题主要考查等差数列的基本量的运算,以及运用裂项相消法求前n项和.考查了方程思想,转化与化归思想,定义法,以及逻辑推理能力和数学运算能力,是中档题.19.(问答题,12分)在△ABC中,角A,B,C的对边分别为a,b,c,且(2b-c)cosA=acosC,b+c=6,a=2 $\sqrt{3}$ .求:(Ⅰ)求角A的大小;(Ⅱ)求sin(B-A)的值.【正确答案】:【解析】:(Ⅰ)利用正弦定理化简已知等式,变形后利用两角和与差的正弦函数公式及诱导公式化简,根据sinB不为0求出cosA的值,即可确定出A的度数;(Ⅱ)利用余弦定理列出关系式,再利用完全平方公式变形,将b+c,a以及cosA的值代入求出bc的值,由此求得∠B,∠C的值,代入求值即可.【解答】:解:(Ⅰ)已知等式(2b-c)cosA=a•cosC,由正弦定理化简得(2sinB-sinC)cosA=sinA•cosC,整理得:2sinB•cosA=sinCcosA+sinAcosC,即2sinBcosA=sin(A+C)=sinB,在△ABC中,sinB≠0,∴cosA= $\frac{1}{2}$ ,∴A= $\frac{π}{3}$;(Ⅱ)∵b+c=6,a=2 $\sqrt{3}$ ,∴由余弦定理得:a2=b2+c2-2bcosA,即12=b2+c2-bc,∴12=(b+c)2-3bc,∵b+c=6,∴bc=8,∴ $\left\{\begin{array}{l}{b=2}\\{c=4}\end{array}\right.$ 或$\left\{\begin{array}{l}{b=4}\\{c=2}\end{array}\right.$ .当b=2,c=4时,C= $\frac{π}{2}$,B= $\frac{π}{6}$,∴sin(B-A)=sin(- $\frac{π}{6}$)=- $\frac{1}{2}$ .当b=4,c=2时,B= $\frac{π}{2}$,∴sin(B-A)=sin $\frac{π}{6}$ = $\frac{1}{2}$ .综上所述,sin(B-A)的值为- $\frac{1}{2}$ 或 $\frac{1}{2}$ .【点评】:此题考查了正弦、余弦定理,两角和与差的正弦函数公式,熟练掌握定理及公式是解本题的关键.20.(问答题,12分)2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y(单位:万件)与年促销费用x(x≥0)(单位:万元)满足y=30- $\frac{k}{x+10}$ (k为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本)(Ⅰ)求k的值,并写出该产品的利润L(单位:万元)与促销费用x(单位:万元)的函数关系;(Ⅱ)该工厂计划投入促销费用多少万元,才能获得最大利润?【正确答案】:【解析】:(1)当x=0时,y=28,代入y的解析式中,可求得k的值;由题意可得,每件产品的销售价格为1.5× $\frac{80+160y}{y}$ 元,然后根据利润=销售价格×年销售量-成本,写出L的解析式即可;(2)结合(1)中L的解析式,利用基本不等式,即可得解;【解答】:解:(1)∵不举行促销活动,该产品的年销售量为28万件,∴当x=0时,y=28,∴28=30- $\frac{k}{10}$ ,解得k=20,∴y=30- $\frac{20}{x+10}$ ,∵每件产品的销售价格定为每件产品平均成本的1.5倍,∴每件产品的销售价格为1.5× $\frac{80+160y}{y}$ 元,∴L=y•(1.5× $\frac{80+160y}{y}$ )-(80+160y+x)=40+80y-x=40+80•(30- $\frac{20}{x+10}$ )-x=2440- $\frac{1600}{x+10}$ -x(x≥0).(2)由(1)知,L=2440- $\frac{1600}{x+10}$ -x=2450- $\frac{1600}{x+10}$ -(x+10)≤2450-2 $\sqrt{\frac{1600}{x+10}\bullet (x+10)}$ =2370,当且仅当 $\frac{1600}{x+10}$ =x+10,即x=30时,等号成立,此时L取得最大值,为2370万元,故该工厂计划投入促销费用30万元,才能获得最大利润.【点评】:本题考查函数的实际应用,以及利用基本不等式解决最值问题,选择合适的函数模型是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.21.(问答题,12分)已知椭圆C: $\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$ =1(a >b>0)的离心率为 $\frac{\sqrt{2}}{2}$ ,过左顶点与上顶点的直线与圆x2+y2=$\frac{4}{3}$ 相切.(Ⅰ)求椭圆C的方程;(Ⅱ)已知斜率为k的直线l在y轴上的截距为m(0<|m|<b),l与椭圆交于A,B两点,是否存在实数k使得k OA•k OB=k2成立?若存在,求出k的值,若不存在,说明理由.【正确答案】:【解析】:(Ⅰ)根据题意可得e= $\frac{c}{a}$ = $\frac{\sqrt{2}}{2}$ ,b2=a2-c2,$\frac{\sqrt{2}c}{\sqrt{3}}$ = $\frac{2\sqrt{3}}{3}$ ,解得c,a,b,进而可得椭圆的方程.(Ⅱ)假设存在实数k满足题意,直线l的方程为y=kx+m,设A(x1,y1),B(x2,y2),联立直线与椭圆的方程,可得关于x的一元二次方程,由韦达定理可得x1+x2,x1x2,在化简计算k OA k OB=k2,即可解得k的值.【解答】:解:(Ⅰ)因为e= $\frac{c}{a}$ = $\frac{\sqrt{2}}{2}$ ,所以a= $\sqrt{2}$ c,又b2=a2-c2,所以b=c,所以左顶点与上顶点的直线方程为 $\frac{x}{-\sqrt{2}c}$ + $\frac{y}{c}$ =1,即x- $\sqrt{2}$ y+ $\sqrt{2}$ c=0,所以 $\frac{\sqrt{2}c}{\sqrt{3}}$ = $\frac{2\sqrt{3}}{3}$ ,c= $\sqrt{2}$ ,a=2,b=$\sqrt{2}$ ,所以椭圆的方程为 $\frac{{x}^{2}}{4}$ + $\frac{{y}^{2}}{2}$ =1.(Ⅱ)假设存在实数k满足题意,理由如下:由题知- $\sqrt{2}$ <m< $\sqrt{2}$ 且m≠0,直线l的方程为y=kx+m,设A(x1,y1),B(x2,y2),联立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\righ t.$ ,消去y得(1+2k2)x2+4kmx+2m2-4=0,所以x1+x2= $\frac{-4km}{1+2{k}^{2}}$ ,x1x2= $\frac{2{m}^{2}-4}{1+2{k}^{2}}$ ,Δ=(4km)2-4(1+2k2)(2m2-4)=8(4k2-m2+2)>0恒成立,因为k OA k OB= $\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$ =$\frac{(k{x}_{1}+m)(k{x}_{2}+m)}{{x}_{1}{x}_{2}}$ =$\frac{{k}^{2}{x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}}{{x}_{1}{x}_{2}}$= $\frac{{k}^{2}(2{m}^{2}-4)-4{k}^{2}{m}^{2}+{m}^{2}(1+2{k}^{2})}{2{m}^{2}-4}$ =$\frac{-4{k}^{2}+{m}^{2}}{2{m}^{2}-4}$ ,所以 $\frac{-4{k}^{2}+{m}^{2}}{2{m}^{2}-4}$ =k2,所以(2k2-1)m2=0,解得k=± $\frac{\sqrt{2}}{2}$ ,所以存在实数k=± $\frac{\sqrt{2}}{2}$ ,使得k OA k OB=k2成立.【点评】:本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的运算化简能力,属于中档题.22.(问答题,12分)已知函数f(x)= $\frac{a}{3}$ x3+x2+3x-2(a∈R).(Ⅰ)若a=-1,求函数y=f(x)单调区间;(Ⅱ)当x∈(1,e3)时,不等式f′(x)>xlnx+2恒成立,求实数a的取值范围.【正确答案】:【解析】:(Ⅰ)将a=-1代入f(x)中,求出f'(x),根据导函数f'(x)在不同区间上的符号,确定f(x)的单调区间;(Ⅱ)对f(x)求导,将f′(x)>xlnx+2恒成立转化为 $a>\frac{lnx}{x}-\frac{2}{x}-\frac{1}{x^{2}}$ 恒成立,然后令g(x)= $\frac{lnx}{x}$ - $\frac{2}{x}$ - $\frac{1}{x^{2}}$ ,判断g(x)的单调性,进一步求出a的取值范围.【解答】:解:(Ⅰ)f(x)定义域为R,由a=-1,得 $f(x)=-\frac{1}{3}x^{3}+x^{2}+3x-2$ ,∴f′(x)=-x2+2x+3=-(x+1)(x-3),令f′(x)>0,得-1<x<3,令f′(x)<0,得x<-1或x>3∴函数f(x)的单调增区间为(-1,3),单调减区间为(-∞,-1),(3,+∞).(Ⅱ)∵ $f(x)=\frac{a}{3}x^{3}+x^{2}+3x-2$ ,∴f′(x)>xlnx+2,即ax2+2x+3>xlnx+2,∵x∈(1,e3),∴原问题等价于 $a>\frac{lnx}{x}-\frac{2}{x}-\frac{1}{x^{2}}$ 恒成立.令 $g(x)=\frac{lnx}{x}-\frac{2}{x}-\frac{1}{x^{2}},(1<x<e^{3})$ ,则$g′(x)=\frac{1-lnx}{x^{2}}+\frac{2}{x^{2}}+\frac{2}{x^{3}}=\frac{3x-xlnx+2}{x^{3}}$ ,令h(x)=3x-xlnx+2(1<x<e3),则h′(x)=2-lnx,∴当x∈(1,e2)时,h′(x)>0,当x∈(e2,e3)时,h′(x)<0,∴h(x)在区间(1,e2)上是增函数,在区间(e2,e3)上是减函数,又h(1)=5>0,h(e3)=2>0,∴当x∈(1,e3)时,h(x)>0,∴g′(x)>0,∴函数 $g(x)=\frac{lnx}{x}-\frac{2}{x}-\frac{1}{x^{2}}$ 在区间(1,e3)上是增函数,∴ $g(x)<g(e^{3})=\frac{1}{e^{3}}-\frac{1}{e^{6}}$ ,∴ $a≥\frac{1}{e^{3}}-\frac{1}{e^{6}}$ ,即实数a的取值范围为 $[\frac{1}{e^{3}}-\frac{1}{e^{6}},+∞)$.【点评】:本题考查了利用导数研究函数的单调性和根据不等式恒成立求参数的范围,考查了转化思想,属中档题.。

高二数学(文科)第一学期期末考试试卷.doc

高二数学(文科)第一学期期末考试试卷.doc

高二数学(文科)第一学期期末考试试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共150分.第Ⅰ卷(选择题共60分)一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目 要求的.)1.命题“若b a >,则c b c a +>+”的逆否命题为( ) A .若b a <,则c b c a +<+. B .若b a ≤,则c b c a +≤+. C .若c b c a +<+,则b a <. D .若c b c a +≤+,则b a ≤. 2.抛物线2y x =的焦点坐标是( )A .()1,0B .1,04⎛⎫ ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭ D .10,4⎛⎫ ⎪⎝⎭3.命题p :存在实数m ,使方程210x mx ++=有实数根,则“非p ”形式的命题是( )A .存在实数m ,使得方程210x mx ++=无实根. B .不存在实数m ,使得方程210x mx ++=有实根. C .对任意的实数m ,使得方程210x mx ++=有实根. D .至多有一个实数m ,使得方程210x mx ++=有实根.4. 顶点在原点,坐标轴为对称轴的抛物线过点()2,3-,则它的方程是( )A .292x y =-或243y x = B .292y x =-或243x y = C .243x y = D .292y x =-5.函数2221x y x =+的导数是( )A .()()23224141x x x y x +-'=+ B .()()22224141x x x y x +-'=+C .()()23222141x x x y x+-'=+ D .()()2224141x x xy x+-'=+6.若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( )A .4B .194C .94D .147.,,A B C 是三个集合,那么“B A =”是“A C B C =I I ”成立的( ) A .充分非必要条件. B .必要非充分条件. C .充要条件. D .既非充分也非必要条件.8.已知:点()2,3-与抛物线22(0)y px p =>的焦点的距离是5,则p 的值是( )A .2B .4C .8D .16 9.函数32y x x =-+的单调递减区间是( ) A .-∞(,)36-B .36(,)∞+ C .-∞(,36()36Y -,)∞+ D .36(-,)3610.抛物线x y 82=上的点),(00y x 到抛物线焦点的距离为3,则|y 0|=( ) A .2 B .22 C .2 D .411.以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是( ) A.222=-y x B .222=-x yC .422=-y x 或422=-x y D .222=-y x 或222=-x y12.已知函数()y f x =的导函数的图象如图甲所示, 则()y f x =的图象可能是( )AB C D第Ⅱ卷(非选择题共90分)二、填空题(每小题6分,共30分.)13.用符号“∀”与“∃”表示含有量词的命题:(1)实数的平方大于等于0. ______________________.(2)存在一对实数,使2x +3y +3>0成立.______________________. 14.离心率35=e ,一条准线为3=x 的椭圆的标准方程是______________________. 15.曲线32x x y -=在点(1,1)处的切线方程为___ _______.16.若直线l 过抛物线()20y ax a =>的焦点,并且与x 轴垂直,若l 被抛物线截得的线段长为4,则a =___ _______.17. 过双曲线822=-y x 的右焦点2F 有一条弦PQ ,7PQ =,1F 是左焦点,那么1F PQ ∆的周长为___ _______.三、解答题(共60分)18.已知命题P :“若,0≥ac 则二次方程02=++c bx ax 没有实根”. (1)写出命题P 的否命题;(4分)(2)判断命题P 的否命题的真假, 并证明你的结论.(6分)19.已知双曲线的一条渐近线方程是20x y -=,若双曲线经过点M ,求双曲线的标准方程.(12分)20.已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),求a 和b 的值.(14分) 21.求59623-+-=x x x y 的单调区间和极值.(10分)22.一段双行道隧道的横截面边界由椭圆的上半部分和矩形的三边组成,如图所示.一辆卡车 运载一个长方形的集装箱,此箱平放在车上与车同宽,车与箱的高度共计4.2米,箱宽3 米,若要求通过隧道时,车体不得超过中线. 试问这辆卡车是否能通过此隧道,请说明理由(14分)高二数学(文科)第一学期期末考试试卷参考答案一、选择题(每小题5分,共60分)二、填空题(每小题6分,共30分)13.(1)2,0x R x ∀∈≥ (2),,2330x y R x y ∃∈++> 14.2212059x y += 15. 20x y +-= 16. 4 17.2814+三、解答题(共60分.)18.已知命题P :“若,0≥ac 则二次方程02=++c bx ax 没有实根”.(1)写出命题P 的否命题;(4分)(2)判断命题P 的否命题的真假, 并证明你的结论.(6分)18.解:(1)命题P的否命题为:“若,0<ac 则二次方程02=++c bx ax 有实根”. (2)命题P 的否命题是真命题.证明:20040ac ac b ac <⇒->⇒∆=->⇒二次方程02=++c bx ax 有实根.∴该命题是真命题.19.已知双曲线的一条渐近线方程是20x y -=,若双曲线经过点M ,求双曲线的标准方程.(12分)解:由已知可知双曲线的两条渐近线为20x y ±=因此可设所求双曲线为()2240x y λλ-=≠ (6分)将M 代入()2240x y λλ-=≠,解得16λ= (4分)∴双曲线方程为22416x y -=∴标准方程为:221164x y -= (2分)20.已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),求a 和b 的值.(14分) 解:∵直线1y kx =+与曲线3y x ax b =++切于点(1,3)∴点(1,3)在直线1y kx =+与曲线3y x ax b =++上 (2分) ∴312k k =+⇒=31a b =++ (4分)又由()323y x ax bxa ''=++=+ (4分)由导数的几何意义可知:1|321x k y a a ='==+=⇒=- (2分) 将1a =-代入31a b =++,解得3b = (2分)21.求59623-+-=x x x y 的单调区间和极值.(10分)解:()3226953129y x x x xx ''=-+-=-+ (2分)令0y '=,即231290x x -+=,解得31x x ==或 (2分) 当0y '>时,即231290x x -+>,解得13x x <>或,函数59623-+-=x x x y 单调递增; (2分)当0y '<时,即231290x x -+<,解得13x <<,函数59623-+-=x x x y 单调递减; (2分)综上所述,函数59623-+-=x x x y 的单调递增区间是()(),13,-∞+∞或,单调递减区间是()1,3;当1x =时取得极大值1-,当3x =时取得极小值5-。

(完整word版)高二第一学期数学期末考试题及答案(人教版文科)

(完整word版)高二第一学期数学期末考试题及答案(人教版文科)

2017—2018学年度第一学期高二数学期末考试题文科(提高班)选择题(每题5分, 共60分)1.在相距2km的A、B两点处测量目标C, 若∠CAB=75°, ∠CBA=60°, 则A、C两点之间的B. 3 km距离是()A. 2 kmA.2kmC. kmD. 3 km2. 已知椭圆()的左B.4C.3D.2焦点为,则()A.93. 在等差数列中,,则B. 15C. 20D. 25的前5项和=()A.74. 某房地产公司要在一块圆形的土地上,设计一B. 100m2C. 200m2D. 250m2个矩形的停车场.若圆的半径为10m,则这个矩形的面积最大值是()A. 50m2A.50m25. 如图所示, 表示满足不等式的点所在的平面区域为()B .C .D .A .6. 焦点为(0, ±6)且与双曲线有相同渐近线的双曲线方程是()B .A .C .D .7. 函数的导数为()B .A .C .D .8. 若<<0, 则下列结论正确的是()B .A. bA .bC. -2D .9. 已知命题: 命题.则下列判断正确的是()B. q是真命题A. p是假命题A.p是假命题C. 是真命题D. 是真命题10. 某观察站B. 600米C. 700米D. 800米与两灯塔、的距离分别为300米和500米, 测得灯塔在观察站北偏东30 , 灯塔在观察站正西方向, 则两灯塔、间的距离为()A. 500米A.500米11. 方程表示的曲线为()A. 抛物线A.抛物线B. 椭圆 C. 双曲线D.圆12. 已知数列的前项和为, 则的值是()A. -76A.-76B. 76C. 46D. 13二、填空题(每题5分, 共20分)13.若, , 是实数, 则的最大值是_________14.过抛物线的焦点作直线交抛物线于、两点, 如果, 那么=___________.15.若双曲线的顶点为椭圆长轴的端点, 且双曲线的离心率与该椭圆的离心率的积为1, 则双曲线的方程是____________.16.直线是曲线y=l.x(x>0)的一条切线,则实数b=___________2017—2018学年度第一学期高二数学期末考试文科数学(提高班)答题卡二、填空题(共4小题, 每题5分)13. 2 14、 815. 16.三、解答题(共6小题, 17题10分, 其他每小题12分)17.已知数列(Ⅰ)求数列的通项公式;(Ⅱ)求证数列是等比数列;18.已知不等式组的解集是, 且存在, 使得不等式成立.(Ⅰ)求集合;(Ⅱ)求实数的取值范围.19.某公司生产一种电子仪器的固定成本为20000元, 每生产一台仪器需增加投入100元, 已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时, 公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)20.根据下列条件, 求双曲线的标准方程.(1)经过点, 且一条渐近线为;(2) 与两个焦点连线互相垂直, 与两个顶点连线的夹角为.21.已知函数在区间上有最小值1和最大值4, 设.(1)求的值;(2)若不等式在区间上有解, 求实数k的取值范围.22.已知函数().(1)求曲线在点处的切线方程;(2)是否存在常数, 使得, 恒成立?若存在, 求常数的值或取值范围;若不存在, 请说明理由.文科(提高班)选择题(每题5分, 共60分)1.考点: 1. 2 应用举例试题解析:由题意, ∠ACB=180°-75°-60°=45°, 由正弦定理得=, 所以AC=·sin60°=(km).答案:C2.考点: 2. 1 椭圆试题解析:, 因为, 所以, 故选C.答案:C3.考点: 2. 5 等比数列的前n项和试题解析: .答案:B4.考点: 3. 3 二元一次不等式(组)与简单的线性规划问题试题解析:如图,设矩形长为, 则宽为,所以矩形面积为 , 故选C答案: C5.考点:3..二元一次不等式(组)与简单的线性规划问题试题解析: 不等式等价于或作出可行域可知选B答案: B6.考点: 2. 2 双曲线试题解析:与双曲线有共同渐近线的双曲线方程可设为,又因为双曲线的焦点在y轴上,∴方程可写为.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12.∴双曲线方程为.答案:B7.考点: 3. 2 导数的计算试题解析:, 故选B.答案:B8.考点: 3. 1 不等关系与不等式试题解析:根据题意可知, 对两边取倒数的得, 综上可知, 以此判断:A.正确;因为:, 所以:, B错误;, 两个正数相加不可能小于, 所以C错误;, D错误, 综上正确的应该是A.答案:A9.考点: 1. 3 简单的逻辑联结词试题解析:当时, (当且仅当, 即时取等号), 故为真命题;令, 得, 故为假命题, 为真命题;所以是真命题.答案:C10.考点: 1. 2 应用举例试题解析:画图可知在三角形ACB中, , , 由余弦定理可知, 解得AB=700.答案:C11.考点: 2. 1 椭圆试题解析:方程表示动点到定点的距离与到定直线的距离, 点不在直线上, 符合抛物线的定义;答案:A12.考点: 2. 3 等差数列的前n项和试题解析:由已知可知:, 所以, , , 因此, 答案选A.答案:A二. 填空题(每题5分, 共20分)13.考点: 3. 4 基本不等式试题解析:, , 即,则, 化简得, 即, 即的最大值是2.答案:214.考点: 2. 3 抛物线试题解析:根据抛物线方程知, 直线过焦点, 则弦, 又因为, 所以.答案:815.考点: 2. 2 双曲线试题解析:椭圆长轴的端点为, 所以双曲线顶点为, 椭圆离心率为,所以双曲线离心率为, 因此双曲线方程为答案:16.考点: 3. 2 导数的计算试题解析:设曲线上的一个切点为(m, n), , ∴,∴.答案:三、解答题(共6小题, 17题10分, 其他每小题12分)17.考点: 2. 3 等差数列的前n项和试题解析: (Ⅰ)设数列由题意得:解得:(Ⅱ)依题,为首项为2, 公比为4的等比数列(Ⅲ)由答案: (Ⅰ)2n-1;(Ⅱ)见解析;(Ⅲ){1, 2, 3, 4}18.考点: 3. 2 一元二次不等式及其解法试题解析:(Ⅰ)解得;(Ⅱ)令, 由题意得时, .当即, (舍去)当即, .综上可知, 的取值范围是.答案: (Ⅰ);(Ⅱ)的取值范围是19.考点: 3. 4 生活中的优化问题举例试题解析:(1)(2)当时,∴当时, 有最大值为当时,是减函数,∴当时, 的最大值为答:每月生产台仪器时, 利润最大, 最大利润为元.答案:(1);(2)每月生产台仪器时, 利润最大, 最大利润为元20.考点: 双曲线试题解析:(1)由于双曲线的一条渐近线方程为设双曲线的方程为()代入点得所以双曲线方程为(2)由题意可设双曲线的方程为则两焦点为, 两顶点为由与两个焦点连线垂直得, 所以由与两个顶点连线的夹角为得, 所以, 则所以方程为21.考点: 3. 2 一元二次不等式及其解法试题解析: (1), 因为, 所以在区间上是增函数,故, 解得.(2)由已知可得, 所以, 可化为,化为, 令, 则, 因, 故,记, 因为, 故,所以的取值范围是22.考点: 3. 3 导数在研究函数中的应用试题解析:(1), 所求切线的斜率所求切线方程为即(2)由, 作函数,其中由上表可知, , ;,由, 当时, , 的取值范围为, 当时, , 的取值范围为∵, 恒成立, ∴答案:(1)(2)存在, , 恒成立100.在中, 角所对的边分别为, 且满足, .(.)求的面积;(II)若, 求的值.46.考点: 正弦定理余弦定理试题解析:(Ⅰ)又, , 而, 所以, 所以的面积为:(Ⅱ)由(Ⅰ)知, 而, 所以所以答案: (1)2(2)。

高二上学期期末考试数学(文)试题Word版含答案

高二上学期期末考试数学(文)试题Word版含答案

届高二上学期期末考试试卷文科数学考试时间:120 分钟满分:150 分注意事项: 1.本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分。

考试结束后,请将答题卡 上交。

2.答卷前,考生务必将自己的学校、姓名、班级、准考证号、考场号、座位号填写在答 题卡上。

3.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷、草稿纸上无效。

4.非选择题的作答:用黑色签字笔在答题卡上对应的答题区域内作答。

答在试卷、草稿 纸上无效。

5.考生务必保持答题卡的整洁。

第I卷一、选择题(本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 设全集U 1,2,3,4,5, M 1,2,4, N 2,4,5,则(CU M) (CU N ) 等于( )A. 4B. 1,3C. 2,5D. 32. 设,“ x 1”是“ x 1”的( )A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3. 已知直线 经过点 P2,5 ,且斜率为 3 ,则直线 l 的方程为( )4A. 3x 4y 14 0B. 3x 4y 14 0C. 4x 3y 14 0D. 4x 3y 14 04. 如果执行右面的程序框图,那么输出的 S ( )A.90B.110第1页 共11页C.250D.2095. 将一条 5 米长的绳子随机地切断为两段,则两段绳子都不短于 1 米的概率为( )A. 1 5B. 2 5C. 3 5D. 4 53x y 2≤06.已知变量x,y满足线性约束条件 xy2≥0x y 1≥0,则目标函数 z 1 x y 的最小值为 2()A. 5 4B. 2C. 2D. 13 47. 下列四个命题中正确的是( )①若一个平面经过另一平面的垂线,那么这两个平面相互垂直;②若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;③垂直于同一条直线的两个平面相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.A.①③B.①④C.①②④D.①③④8. 某四棱锥的三视图如图所示,则该四棱锥的体积为( )A. 4 3B. 2 3C. 8 3D. 29. 若,,则的值为( )A.B.C.D.10. 若圆 C 的半径为 1,圆心在第一象限,且与直线 4x 3y 0 和 x 轴都相切,则该圆的标准方程是( )A. (x 2)2 ( y 1)2 1B. (x 2)2 ( y 1)2 1C. (x 2)2 ( y 1)2 1D. (x 3)2 ( y 1)2 1第2页 共11页11. 《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有这样一道题:把 120 个面包分成 5 份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的 7 倍,则最少的那份有( )个面包.A.1B.2C.3D.412.设函数f x lg 1 2x11 x4,则使得f3x 2 f x 4 成立的 x 的取值范围是( )A. 1 3,1B. 1,3 2 C. ,3 2 D. ,1 3 , 2 第 II 卷(非选择题,共 90 分)注意事项:用 0.5 毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效.二、填空题(本大题共 4 小题,每小题 5 分,共 20 分。

陕西省市高二上学期期末文科数学试题(解析版)

陕西省市高二上学期期末文科数学试题(解析版)

期末教学质量检测高二数学(文科)试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 命题“”的否定是() 30,31x x x ∃>≥+A. B. 30,31x x x ∃><+30,31x x x ∀<≥+C. D.30,31x x x ∀><+30,31x x x ∃<<+【答案】C 【解析】【分析】直接根据特称命题的否定是全称命题得答案.【详解】命题“”的否定是. 30,31x x x ∃>≥+30,31x x x ∀><+故选:C.2. 已知函数可导,且,()0()3f x '=000()()limx f x x f x x xΛ→+∆--∆=∆A. -3 B. 0C. 3D. 6【答案】D 【解析】【分析】利用导数的概念对进行整理,可得结论.000()()limx f x x f x x x∆→+∆--∆∆【详解】000()()limx f x x f x x x ∆→+∆--∆=∆000()()limx f x x f x x ∆→+∆-∆000()()limx f x f x x x∆→--∆+∆.()026f x '==故选:D.【点睛】本题主要考查了导数的概念.属于基础题. 3. 在等比数列中,若,,则 {}n a 127a =513a =3a =A. 或 B.C. 或D.33-39-99【答案】B 【解析】【分析】根据等比数列的通项公式求解,注意此题解的唯一性.【详解】是和的等比中项,则,3a 1a 5a 23159a a a ==解得,由等比数列的符号特征知.选B. 33a =±33a =【点睛】本题考查等比数列的通项公式,属于基础题. 4. 已知,则下列大小关系正确的是() 01,0a b <<<A.B.C.D.2ab b a b <<2b ab a b <<2b a b ab <<2a b b ab <<【答案】B 【解析】【分析】根据不等式性质,不等式两边同时乘负数,改变不等号,不等式两边同时乘正数,不改变不等号,可得答案.【详解】对于A ,因为,所以,故错误;01,0a b <<<ab >b 对于B ,因为,所以,又因为,所以, 01,0a b <<<ab >b 0a <2a b ab >则,故正确;易知C ,D 错误. 2b ab a b <<故选:B.5. 已知,,若,则的最大值为(). 0x >0y >41x y +=()()411x y ++A.B.C.D. 1941434【答案】A 【解析】【分析】由基本不等式求最大值.【详解】, ()()()()2411941124x y x y +++⎡⎤++≤=⎢⎥⎣⎦当且仅当,即,时,等号成立.41141x y x y +=+⎧⎨+=⎩18x =12y =故选:A .6. 已知函数f (x ) 的图象如图所示,则导函数f '(x )的图象可能是()A. B.C. D.【答案】D 【解析】【分析】根据导函数正负与原函数单调性关系可作答【详解】原函数在上先减后增,再减再增,对应到导函数先负再正,再负再正,且[]3,3-原函数在处与轴相切,故()0,0x ()'0=0f 可知,导函数图象为D 故选:D7. 已知是递增的等比数列,且,则其公比满足() {}n a 20a <q A. B. 1q <-10q -<<C. D.1q >01q <<【答案】D 【解析】【分析】先确定,由得,根据的单调性确定的取值范围. 0q >20a <10a <{}n a q 【详解】是等比数列,故,当时,各项正负项间隔,为摆动数{}n a 11n n a a q -=0q <{}n a 列,故,显然,0q >1q ≠由得,又是递增的等比数列,故为递减数列,由指数函数的120a a q =<10a <{}n a {}1n q -单调性知. 01q <<故选:D8. 已知抛物线的焦点为,点在抛物线上,为坐标原2:2(0)C y px p =>F ()03,A y C O 点,若,则() 6AF =OA =A. 3B.C. 6D.【答案】B【解析】【分析】根据焦半径公式求出,从而可求得,再根据两点间的距离公式即可得解. p 0y 【详解】解:由题意可得,解得, 362pAF =+=6p =则, 2026336y =⨯⨯=故.OA ==故选:B .9. 已知,则“”是“”的() a ∈R 6a >236a >A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】由充分条件、必要条件的定义判断即可得解. 【详解】由题意,若,则,故充分性成立; 6a >236a >若,则或,推不出,故必要性不成立; 236a >6a >6a <-6a >所以“”是“”的充分不必要条件. 6a >236a >故选:A.10. 若变量满足约束条件,则的最大值为()x y ,+4200x y x y x y ≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩2z x y =+A. 2 B. 7C. 8D. 10【答案】B 【解析】【分析】根据约束条件,作图表示可行域,根据目标函数的几何意义,可得答案. 【详解】在平面直角坐标系内,可行解域如下图所示:平移直线,在可行解域内,经过点时,直线在纵轴上的截距最2y x z =-+B 2y x z =-+大,解二元一次方程组:的最大值为, ()+=4=331=2=1x y x B z x y y ⇒∴-⎧⎧⎨⎨⎩⎩,,,2317⨯+=故选:B.11. 2022年11月30日7时33分,神舟十五号3名航天员顺利进驻中国空间站,与神舟十四号航天员乘组首次实现“太空会师”,一般来说,航天器绕地球运行的轨道近似看作为椭圆,其中地球的球心是这个椭圆的一个焦点,我们把椭圆轨道上距地心最近(远)的一点称作近(远)地点,近(远)地点与地球表面的距离称为近(远)地点高度.已知中国空间站在一个椭圆轨道上飞行,它的近地点高度约为351,远地点高度约为385,地球km km 半径约为6400,则该轨道的离心率约为() km A.B.C.D.17676817368385736678513536【答案】A 【解析】【分析】根据题意求出即可求解.,a c 【详解】由题可知,,38564006785a c +=+=,解得,35164006751a c -=+=6768,17a c ==所以离心率为, 176768c a =故选:A.12. 已知函数及其导函数,若存在使得,则称是()f x ()f x '0x ()()00f x f x '=0x ()f x 的一个“巧值点”,下列选项中没有“巧值点”的函数是() A.B.y x =e x y =C. D. cos y x =y =【答案】D 【解析】【分析】利用新定义:存在使得,则称是的一个“巧点”,对四0x ()()00f x f x '=0x ()f x 个选项中的函数进行一一的判断即可.【详解】对于A :,则,令,则,故有“巧()f x x =()f x '1=()f x =()f x '1x =()f x 值点”;对于B ,,则,令,故方程有解,故有“巧值()x f x e =()e x f x '=()f x =()f x '()f x 点”;对于C ,,则,令, ()cos f x x =()sin f x x '=-sin cos x x -=则.πππsin cos 00ππ,Z 444x x x x k x k k ⎛⎫+=⇒+=⇒+=⇒=-∈ ⎪⎝⎭∴方程有解,故函数有“巧值点”. ()()f x f x '=()cos f x x =对于D :定义域为,则,而, ()f x ={}|0x x >()f x '0=<()0f x >显然无根,故“巧值点”. ()f x =()f x '()f x =故选:D .二、填空题(本大题共4小题,每小题5分,共20分)13. 椭圆的焦点坐标是___________.22111y x +=【答案】 (0,【解析】【分析】根据椭圆方程可判断焦点位置,并利用之间的关系直接求出,即可求出,,a b c c 焦点坐标.【详解】由知椭圆焦点在轴上,且,22111y x +=y 2222211,1,10a b c a b ===-=故焦点坐标为:, (0,故答案为:.(0,14. 写出一个离心率为___________.【答案】(答案不唯一) 2217y x -=【解析】【分析】根据题意,由双曲线的离心率公式可得,假设双曲线ce a==c =的焦点在轴且,求出双曲线的标准方程,即可得答案. x 1a =【详解】根据题意,要求双曲线的离心率, ce a==c =若双曲线的焦点在轴,令,则,x 1a =c =b ==则要求双曲线的方程为, 2217y x -=故答案为: (其他符合的也对) 2217y x -=15. 已知命题是假命题,则实数的取值范围是___________. []:1,4,4ap x x x∃∈+>a 【答案】 (,0]-∞【解析】【分析】将问题等价转化为,恒成立,利用二次函数的性质即可求解. [1,4]x ∀∈4ax x+≤【详解】命题是假命题, []:1,4,4ap x x x∃∈+>即命题,是真命题, [1,4]x ∀∈4ax x+≤也即在上恒成立, 24a x x ≤-+[1,4]令,22()4(2)4f x x x x =-+=--+因为,所以当时函数取最小值, [1,4]x ∈4x =即,所以, min ()(4)0f x f ==0a ≤故答案为:.(,0]-∞16. 《墨经·经说下》中有这样一段记载:“光之人,煦若射,下者之人也高,高者之人也下,足蔽下光,故成景于上;首蔽上光,故成影于下.在远近有端,与于光,故景库内也.”这是中国古代对小孔成像现象的第一次描述.如图为一次小孔成像实验,若物距:像距,则像高为___________. 236:1,12,cos 32OA OB A OB ∠====''【答案】##1.5 32【解析】【分析】利用余弦定理求得,再根据物距∶像距,即可求得答案. 9AB =61=∶【详解】由 ,则,23cos 32A OB ''∠=23cos 32AOB ∠=又,12OA OB ==则, 2222323228821212813232AB OA OB OA OB +-⨯⨯⨯=-=⨯⨯⨯=即,9AB =又物距∶像距, 61=∶则,即像高为, 1362A B AB ''=⨯=32故答案为:. 32三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17. 设函数.2()6,f x ax ax a =-++∈R (1)当时,求关于x 的不等式的解集;1a =()0f x <(2)若关于x 的不等式的解集为,求实数a 的取值范围. ()0f x >R 【答案】(1)或 {|2x x <-3}x >(2) (24,0]-【解析】【分析】(1)由一元二次不等式的解法求解, (2)由题意列不等式组求解, 【小问1详解】当时,,即, 1a =260x x -++<260x x -->即,解得或,(2)(3)0x x +-><2x -3x >所以当时,不等式的解集为或. 1a =()0f x <{|2x x <-3}x >【小问2详解】当时,的解集为,满足题意; 0a =()0f x >R 当时,由,解得, 0a ≠2240a a a ->⎧⎨+<⎩240a -<<综上,实数a 的取值范围是. (24,0]-18. 已知是等差数列,,. {}n a 11a =47a =(1)求数列的通项公式及前项和;{}n a n n S (2)若等比数列满足,,求的通项公式.{}n b 22b a =35b a ={}n b 【答案】(1),21n a n =-2n S n =(2)13n n b -=【解析】【分析】(1)根据条件列出方程求出公差即可得解; (2)根据条件列出方程求出公比,即可得出通项公式. 【小问1详解】设等差数列的公差为, {}n a d 则. 41712413a a d --===-∴,()12121n a n n =+-=-.()21212n n n S n +-==【小问2详解】设等比数列的公比为, {}n b q 由,,可得, 223b a ==359==b a 323b q b ==∴的通项公式为.{}n b 21333n n n b --=⨯=19. 已知函数在处有极值.()325f x x ax bx =-++-1x =-1-(1)求实数的值;,a b (2)求函数在上的最值.()f x []4,2-【答案】(1) 69a b =-⎧⎨=-⎩(2)max min ()1,()55f x f x =-=-【解析】【分析】(1)求出函数的导数,根据题意列出方程,求得的值,可得答案. ,a b (2)求出函数的极值点,求得函数的极值以及区间端点处的函数值,比较可得答案. 【小问1详解】, ()325f x x ax bx =-++- ,()232f x x ax b '∴=-++解得,()()1411230f a b f a b ⎧-=--=-⎪∴⎨-=-+-='⎪⎩69a b =-⎧⎨=-⎩则,()239132(1)(3)f x x x x x =--=-++'-若,则;若,则或,()0f x ¢>31x -<<-()0f x '<3x <-1x >-即函数在处有极大值且极大值为,符合题意,()325f x x ax bx =-++-1x =-1-故:69a b =-⎧⎨=-⎩【小问2详解】由(1)知,,()32695f x x x x =----,()()()23129313f x x x x x ∴=---=-++'若,则;若,则或, ()0f x ¢>31x -<<-()0f x '<3x <-1x >-在上单调递增,在上单调递减,()f x \()3,1--[)(]4,3,1,2---又,()()()()41,35,11,255f f f f -=--=--=-=-.max min ()1,()55f x f x ∴=-=-20. 在三角形中,内角所对的边分别为,ABC ,,A B C ,,a b c cos cos 2sin a C c Ab B+=(1)求;B (2)若为锐角,,BC边上的中线长,求三角形的面积.B 6A π=AD =ABC 【答案】(1)或; 6B π=56π(2 【解析】【分析】⑴利用正弦定理进行边角互换,再结合求出;()sin sin A C B +=B⑵在三角形中利用余弦定理求出边,再利用三角形的面积公式求面积.ACD AC 【小问1详解】在△ABC 中,因为,由正弦定理得cos cos 2sin a C c A b B+=,sin cos sin cos 2sin sin 0A C C A B B +-=所以,即,又因为,所以sin()2sin sin 0A C B B +-=sin (12sin )0B B -=sin 0B ≠, 1sin 2B =因为B 是三角形的内角,所以或. 6B π=56π【小问2详解】因为为锐角,所以,△ABC 为等腰三角形,,在△ABC 中,设AC =BC B 6B π=23C π==2x , 在△ADC 中,由余弦定理得, 222222cos773AD AC DC AC DC x π=+-⋅==解得x =1,所以AC =BC =2,所以, 1sin 2ABC S AC BC C=⋅⋅=A 21. 已知椭圆的左,右焦点分别为. 222:1(1)x C y a a +=>12,F F (1)求椭圆的方程; C (2)椭圆上是否存在点使得?若存在,求的面积,若不存在,C P 12PF PF ⊥12PF F △请说明理由.【答案】(1) 2214x y +=(2)存在,面积为1【解析】【分析】(1)根据椭圆中的关系求解;,,a b c (2)根据可得,联立可求出,进而可求面积. 12PF PF ⊥22003x y +=220022003,1,4x y x y ⎧+=⎪⎨+=⎪⎩0y 【小问1详解】椭圆222:1(1)x C y a a+=>,解得. =24a =椭圆的方程为.∴C 2214x y +=【小问2详解】由(1)知, ())12,F F 假设椭圆上存在点,使得,C 00(,)P x y 12PF PF ⊥则, ())120000,,0PF PF x y x y ⋅=--⋅--= 即,22003x y +=联立解得. 220022003,1,4x y x y ⎧+=⎪⎨+=⎪⎩220081,33xy ==椭圆上存在点使得.∴C P 12PF PF ⊥. 1212011122PF F S F F y ∴==⨯=A 22. 已知函数. ()1mx x f x m=-(1)若,求曲线在处的切线方程;()e e 2.71828m =≈()y f x =1x =(2)若,证明:在上只有一个零点.01m <<()f x ()0,∞+【答案】(1)()e 1e 2e 20x y ---+=(2)证明见解析【解析】【分析】(1)通过求导求得曲线在处的切线斜率,再求切点坐标1x =(1)k f '=(1,(1))f ,点斜式求得切线方程即可;(2)将原函数的零点转化为函数的零点,通过求导判断在()m xg x x m =-()g x ()0,∞+单调,证明其在上只有一个零点.()0,∞+【小问1详解】当时,, e m =()e 1ex x f x =-.()()()()()''e e e 12e e e e e x xx x x x x x f x ---∴='=. ()()1111,11e ef f ∴=-=-'所求切线方程为, ∴()11111e e y x ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭即.()e 1e 2e 20x y ---+=【小问2详解】 证明:由,变形可得, ()10mx x f x m=-=0m x x m -=当时,,01m <<0x m >则函数只有一个零点等价于函数只有一个零点, ()1m x x f x m=-()m x g x x m =-可得,()1ln m x g x mx m m -'=-⋅又由,则,01m <<10,ln 0m mx m -><即在上单调递增,()()0,g x g x >'∴()0,∞+又,在上只有一个零点, ()0g m = ()g x ∴()0,∞+即函数在上只有一个零点. ()f x ()0,∞+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安庆一中2007——2008学年度第一学期高二(文科)数学期末考试卷一、选择题(本大题共11小题,每小题3分,共33分) 1、已知()ln f x x =,则()f e '的值为( ) A .1 B .-1 C .e D .1e2、设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( ) A .0 B .1 C .2 D .33、“a >b >0”是“ab <222b a +”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4、物体的运动位移方程是S =10t -t 2(S 的单位:m ; t 的单位:s), 则物体在t =2s 的速度是 ( ) A .2 m/s B .4 m/s C .6 m/s D .8 m/s5、椭圆1422=+y m x 的焦距为2,则m 的值等于 ( ). A .5 B .8 C .5或3 D .5或86、抛物线2y 4x =上的一点M 到焦点的距离为1,则点M 的纵坐标为( )A .1716 B .1516 C .78D .0 7、已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x +2y -3=0,则该双曲线的离心率为( )或54 或538、若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( ) A .a ≤1 B .a ≤3 C .a ≥1 D .a ≥39、()()()等于则可导在设xx x f x x f x x f x 3lim ,0000--+→( )A .()02x f 'B .()0x f 'C .()03x f 'D .()04x f '10、已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y +2|,则动点P 的轨迹是 ( ) A .椭圆B .双曲线C .抛物线D .无法确定11、已知P 是椭圆192522=+y x 上的一点,O 是坐标原点,F 是椭圆的左焦点且),(21OF OP OQ +=4||=,则点P 到该椭圆左准线的距离为( ) .4 C D.25安庆一中2007——2008学年度第一学期高二(文科)数学期末考试卷一、选择题(本大题共11小题,每小题3分,共33分)二、填空题(本大题共4小题,每小题3分,共12分)12、命题:01,2=+-∈∃x x R x 的否定是13、若双曲线 4422=-y x 的左、右焦点是1F 、2F ,过1F 的直线交左支于A 、B 两点,若|AB|=5,则△AF 2B 的周长是 14、写出导函数是)(x f '=x +x1的一个函数为 . 15、以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为正常数,||||PA PB k +=,则动点P 的轨迹为椭圆;②双曲线221259x y -=与椭圆22135x y +=有相同的焦点; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④和定点)0,5(A 及定直线25:4l x =的距离之比为54的点的轨迹方程为221169x y -=. 其中真命题的序号为 _______.三、解答题(本大题共6小题,共55分)16、(本题满分8分)已知命题p :方程11222=--m y m x 表示焦点在y 轴上的椭圆,命题q :双曲线1522=-mx y 的离心率)2,1(∈e ,若q p ,只有一个为真,求实数m 的取值范围.17、(本题满分8分)设0≠t ,点P (t ,0)是函数c bx x g ax x x f +=+=23)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线。

试用t 分别表示a ,b ,c 。

18、(本题满分8分)(1)已知双曲线的一条渐近线方程是x y 23-=,焦距为132,求此双曲线的标准方程;(2)求以双曲线191622=-x y 的焦点为顶点,顶点为焦点的椭圆标准方程。

19、(本题满分9分)双曲线22221x y a b-= (a>1,b>0)的焦距为2c,直线l 过点(a,0)和(0,b),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c.求双曲线的离心率e 的取值范围.20、(本题满分10分)如图所示,在直角梯形ABCD 中,|AD |=3,|AB |=4,|BC |= 3 ,曲线段DE 上任一点到A 、B 两点的距离之和都相等.(1)建立适当的直角坐标系,求曲线段DE 的方程; (2)过C 能否作一条直线与曲线段DE 相交,且所得弦以C 为中点,如果能,求该弦所在的直线 的方程;若不能,说明理由.21、(本题满分12分)若直线l :0=++c my x 与抛物线x y 22=交于A 、B 两点,O 点是坐标原点。

(1)当m =-1,c =-2时,求证:OA ⊥OB ;(2)若OA ⊥OB ,求证:直线l 恒过定点;并求出这个定点坐标。

(3)当OA ⊥OB 时,试问△OAB 的外接圆与抛物线的准线位置关系如何证明你的结论。

高二数学(文科)参考答案:1、D2、C3、A4、C5、C6、B7、B8、D9、D 10、A 11、D12、01,2≠+-∈∀x x R x 13、18 14、答案不唯一,如x x x f ln 21)(2+= 15、②③ 16、p :0<m <31 q :0< m <15 p 真q 假,则空集;p 假q 真,则1531<≤m 故m 的取值范围为1531<≤m17、因为函数)(x f ,)(x g 的图象都过点(t ,0),所以0)(=t f , 即03=+at t .因为,0≠t 所以2t a -=. .,0,0)(2ab c c bt t g ==+=所以即又因为)(x f ,)(x g 在点(t ,0)处有相同的切线,所以).()(t g t f '='而.23,2)(,3)(22bt a t bx x g a x x f =+='+='所以将2t a -=代入上式得.t b = 因此.3t ab c -==故2t a -=,t b =,.3t c -=18、(1)19422=-y x 或14922=-x y ;(2)125922=+y x . 19、:直线l 的方程为bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线l 的距离d 1 =22)1(ba ab +-.同理得到点(-1,0)到直线l 的距离d 2 =22)1(ba ab ++.s= d 1 +d 2=cabb a ab 2222=+.由s ≥54c,得c c ab 542≥,即22225c a c a ≥-.于是得22215e e ≥-.即4e 4-25e 2+25≤0.解不等式,得45≤e 2≤5.由于e>1>0,所以e 的取值范围是525≤≤e . 20、(1)以直线AB 为x 轴,线段AB 的中点为原点建立直角坐标系,则A (-2,0),B (2,0),C (2, 3 ),D (-2,3).依题意,曲线段DE 是以A 、B 为焦点的椭圆的一部分.12,2,4|)||(|212===+=b c BD AD a ∴所求方程为)320,42(1121622≤≤≤≤-=+y x y x (2)设这样的弦存在,其方程为:22(2),(2)11612x y y k x y k x =-=-++=即将其代入得2222(34)16)16360k x k x k ++-+--=设弦的端点为M (x 1,y 1),N (x 2,y 2),则由12122,4,4,2x x x x k +=+===知解得∴弦MN 所在直线方程为y x =+验证得知,这时(0,(4,0)M N 适合条件.故这样的直线存在,其方程为y x =+21、解:设A(x 1,y 1)、B(x 2,y 2),由⎩⎨⎧==++202x y c my x 得0222=++c my y 可知y 1+y 2=-2m y 1y 2=2c ∴x 1+x 2=2m 2—2c x 1x 2= c 2, (1) 当m =-1,c =-2时,x 1x 2 +y 1y 2=0 所以OA ⊥OB.(2) 当OA ⊥OB 时,x 1x 2 +y 1y 2=0 于是c 2+2c=0 ∴c=-2(c=0不合题意),此时,直线l :02=-+my x 过定点(2,0).(3) 由题意AB 的中点D(就是△OAB 外接圆圆心)到原点的距离就是外接圆的半径。

),(2m c m D --而(m 2—c+21)2-[(m 2—c)2+m 2]=c -41 由(2)知c=-2 ∴圆心到准线的距离大于半径,故△OAB 的外接圆与抛物线的准线相离。

相关文档
最新文档