哈工大理论力学(第七版)第11章__习题解

合集下载

理论力学[1](第七版)课后题答案哈工大.高等教育出版社

理论力学[1](第七版)课后题答案哈工大.高等教育出版社

如图 2-4a 所示。 火箭的推力 2-4 火箭沿与水平面成 β = 25° 角的方向作匀速直线运动,
F1=100 kN,与运动方向成 θ = 5° 角。如火箭重 P=200 kN,求空气动力 F2 和它与飞行方向 的交角 γ 。
y
F2
ϕ
γ β
F1
(a) 图 2-4
θ
x
P
(b)

坐标及受力如图 2-4b 所示,由平衡理论得
∠( FR , F1 ) = arccos( F1 + F2 × 4 / 5 ) FR 100 N + 50 N × 4 / 5 = arccos( ) = 29.74 o = 29 o 44′ 161 N
(2)解析法 建立如图 2-1c 所示的直角坐标系 Axy。
∑ Fx = F1 + F2 × 3 / 5 == 50 N + 50 N × 3 / 5 = 80 N ∑ Fy = F1 + F2 × 4 / 5 = 100 N + 50 N × 4 / 5 = 140 N
B ′ FB
D
q
FN 2 FN 3
(n2)
F
B
D
F
FA
A
(o)
B
FC
C
(o1)
F
FE
E
FG
G
FB
A FA
(o2)
B ′ FB
D
D
F
F C C (o3)
图 1-2
FD
′ FD
FE FF E (o4)
8
理论力学(第七版)课后题答案 哈工大.高等教育出版社
第2章 平面汇交力系与平面力偶系
2-1 铆接薄板在孔心 A,B 和 C 处受 3 个力作用,如图 2-1a 所示。 F1 = 100 N ,沿铅 直方向; F3 = 50 N ,沿水平方向,并通过点 A; F2 = 50 N ,力的作用线也通过点 A,尺 寸如图。求此力系的合力。

理论力学第11章习题答案

理论力学第11章习题答案

魏 魏
初位置
泳 泳
末位置
涛 涛
解: M 的初位置和末位置分别如图
末位置受力图
重力作功: mg 1.5mgr 1 1 2 1 弹性力做功: k (02 2 kS kr2 S) 2 2 2 根据动能定理: 1 2 1 mv 1.5mgr kr2 2 2 再根据末位置的受力图,有: v2 kr mg m r (1)、(2)联立求解: kr 2mg 2mg 490 N m 即: k r
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛
我在沙滩上写上你的名字,却被浪花带走了;我在云上写上你的名字,却被风儿带走了;于是我在理论力 学的习题答案上写上我的名字.
11.7 均质杆 CD 和 EA 分别重 50 N 和 80 N , 铰接于点 B 。 若杆 EA 以 2 rad s 绕 A 转动,试计算图示位置两杆的动能。
四川大学建筑与环境学院力学科学与工程系115计算图示各系统的动能1如图a所示质量为m长为l的均质圆盘在自身平面内作平面运动已知圆盘上ab两点的速度方向b点的速度为的均质圆盘中心另一端放在水平面上圆盘在地面上作纯滚动圆心速度为v3如图c所示质量为m的均质细圆环半径为r其上固结一个质量也为m的质点a细圆环在水平面上纯滚动图示瞬时角速度为1速度瞬心在bc直径左端mvmrmrmrmrmr我在沙滩上写上你的名 (2m)l 2 2m ( ) 2 ml 2 12 3 3 滑块 A 的速度: vA l cos sin 滑块 B 的速度: vB l 1 2 1 2 1 2 5 2 2 系统动能: J D mvA mvB ml 2 2 2 6 l 重力功: (sin 0 sin ) 2mg l (sin 0 sin ) mg 2mgl(sin 0 sin ) 2 1 弹性力功: k[l 2 (1 cos 0 ) 2 l 2 (1 cos ) 2 ] 2 根据动能定理: 5 2 2 1 ml 0 2mgl(sin 0 sin ) k[l 2 (1 cos 0 ) 2 l 2 (1 cos ) 2 ] ( 1 ) 6 2 当 0 60 、 0 时,

理论力学(机械工业出版社)第十一章动量矩定理习题解答

理论力学(机械工业出版社)第十一章动量矩定理习题解答

习 题11-1 质量为m 的质点在平面Oxy 内运动,其运动方程为:t b y t a x ωω2sin ,cos ==。

其中a 、b 和w 均为常量。

试求质点对坐标原点O 的动量矩。

t a xv x ωωsin -== t b y v y ωω2cos 2== x mv y mv L y x O +-=)cos 2cos 22sin sin (t a t b t b t a m ωωωωωω⨯+⨯= )cos 2cos 22sin (sin t t t t mab ωωωωω⨯+⨯= )cos 2cos 2cos sin 2(sin t t t t t mab ωωωωωω⨯+⨯= )2cos (sin cos 22t t t mab ωωωω+= t mab ωω3cos 2=11-2 C 、D 两球质量均为m ,用长为2 l 的杆连接,并将其中点固定在轴AB 上,杆CD 与轴AB 的交角为θ,如图11-25所示。

如轴AB 以角速度w 转动,试求下列两种情况下,系统对AB 轴的动量矩。

(1)杆重忽略不计;(2)杆为均质杆,质量为2m 。

图11-25(1)θθ222sin 2)sin (2ml l m J z =⨯= θω22sin 2l m L z = (2)θθ2202sin 32d )sin (2ml x x lm J l z ==⎰杆 θ22sin 38ml J z = θω22sin 38l m L z =11-3 试求图11-26所示各均质物体对其转轴的动量矩。

各物体质量均为m 。

图11-26(a) ω231ml L O =(b) 22291)6(121ml l m ml J O =+= ω291ml L O -=(c) 2222452312121ml l m l m J O =⨯⨯+⨯⨯=ω2245ml L O = (d) 2222321mR mR mR J O =+= ω223mR L O =11-4 如图11-27所示,均质三角形薄板的质量为m ,高为h ,试求对底边的转动惯量J x 。

《理论力学》课件 第11章

《理论力学》课件 第11章
ds Rd
因此,力F的元功又可表示为 δW F cosds F cos Rd
由静力学可知, F cosR 即为力 F 对轴 Oz 的力矩 Mz (F) ,于是有
δW Mz (F )d
(11-16)
即作用于定轴转动刚体上力的元功,等于该力对转轴的矩(简称 转矩)和微转角的乘积。
图11-5
当刚体在力 F 的作用下,绕轴转过 角时,力 F 所做的功为
v2 v1
d
1 2
mv2
M2 F dr
M1

1 2
mv22
1 2
mv12
W12
(11-22)
这就是质点动能定理的积分形式,即质点在某运动过程中动能的改 变,等于作用于质点上的力在同一过程中所做的功。
质点动能定理建立了质点动能和力的功之间的关系,它把质点的速度、作 用力和质点的路程联系在一起,对于需要求解这三个物理量的动力学问题, 应用动能定理是方便的。此外,通过动能定理对时间求导,式中将出现加 速度,因此动能定理也常用来求解质点的加速度。
则这种约束力所做功的总和为零。
图11-8
4.无重刚杆
如图 11-9 所示,无重刚杆 AB 连接两个物体,由于刚杆重量不计,因此其约束 力 FN 与 FN 应是一对大小相等、方向相反,作用线相同的平衡力。设 A,B 两点的 微小位移分别是 drA 和 drB ,则 FN 与 FN 元功之和为
δW FN drA FN drB FN | drA | cosA FN | drB | cosB FN (| drA | cosA | drB | cosB )
当力偶矩 M 常量时,上式可写为
(11-19)
W M
五、约束力的功与理想约束

哈工大第七版理论力学课后思考题答案

哈工大第七版理论力学课后思考题答案

集美大学诚毅学院机械1093期末复习材料理论力学(思考题答案)思考题i-i猛明下列戏子与丈宇的盘义和区別.(D科二孔,(2)幵一盼⑶力靳等效于力列,*W?答】⑴力乌和町,大小相等帯柯相岡g(2)N和&大小相萄⑶耐刑耳的夫小相等, 方向si^ats同亠1-2试X别片=眄|压和血=凤+骂两个等戎代表的意义。

【岸答】町一耐十用朮示朋是任意方向上箭个为门和A的合力洽力弘的大小和方问由平行四边形抚阳鴉定;打=片一%表示忌足同方向上蘭个力几和月的合.乩含力A的大小为F L和E的大小的和I方向与Fl和F.的方向科同3【解答】均有错•正确图如答1一1图。

1—3图1 - 1C1)〜1-1(0中各物体的受力番是否错谋?如何改正?1-4 刚体上△点受力尸作用.in 18 1-2所示,问罷否在。

点加一个力懐刚体平箕。

为什么?Ul 1 -2(a)也fS P= 0【解答1 不能。

当在E 点械抑力怖时,不能同时保订丿 1,故不能平衡B2JM= o1- 5 如摆】一3所冻结均•科丿JF 作用在E 点,至统能否乎猶?若力F 仍作用在丑点,袒可住 愆改变F 的方向,F 在什么方向上结购能平衡? 上匕解答】不能, 来/在如簷范围内可以令结构平鸳,如着? 一 3圖所示.1- 6 将如下间题抽象为力学模型,充分发挥你们的想象、分析和抽躱能力*试画出它心的力 学荒圏及受力<1)用两根细绳將B 光灯吊挂在天花板上»(?)水面匕的一块浮冰*G) 本打开的韦静止于桌面上; <4) 一个人坐在一只足球上*【解答】⑴⑵图1-4<4)u1 -7若将图1-5屮力F作用于三锻拱供较陡C处的请订上,所有物体里虽不计试分别画出左、右两拱茂销匚的受力圈八刃若傭订匚碾于AC•分别画岀汗、右两拱的受力图H3)若洌订C 属于EC,分鬧画出古、右两拱的量力阳°3 1-5mA2_1输亀钱普麦/相同时,电线下垂量片趙小■电线捷易亍拉Wh 为什么?【網答】可儒得J = F B =疵;=好也越小恥越小不和尸庞儿助以电线更易于拉2-2图2 — 1所赤时三种机构,构件自童不计9翅略靡擦,, 平力F,问Aifc 的妁京力是否相同。

哈工大理论力学第七版思考题答案 完整

哈工大理论力学第七版思考题答案 完整

机械 1093 理论力学思考题答案 31
机械 1093 理论力学思考题答案
\
32
机械 1093 理论力学思考题答案 33
机械 1093 理论力学思考题答案 34
机械 1093 理论力学思考题答案 35
机械 1093 理论力学思考题答案 36
机械 1093 理论力学思考题答案 37
机械 1093 理论力学思考题答案 38
机械 1093 理论力学思考题答案 39
机械 1093 理论力学思考题答案 40
机械 1093 理论力学思考题答案 41
机械 1093 理论力学思考题答案
集美大学诚毅学院机械 1093 期末复习材料 理论力学(思考题答案)
1
机械 1093 理论力学思考题答案 2
机械 1093 理论力学思考题答案 3
机械 1093 理论力学思考题答案 4
机械 1093 理论力学思考题答案 5
机械 1093 理论力学思考题答案 6
机械 1093 理论力学思考题答案 7
机械 1093 理论力学思考题答案 8
机械 1093 理论力学思考题答案 9
机械 1093 理论力学思考题答案 10
机械 1093 理论力学思考题答案 11
机械 1093 理论力学思考题答案 12
机械 1093 理论力学思考题答案 13
机械 1093 理论力学思考题答案 14
机械 1093 理论力学思考题答案 24
机械 1093 理论力学思考题答案 25
机械 1093 理论力学思考题答案 26
机械 1093 理论力学思考题答案 27
机械 1093 理论力学思考题答案 28
机械 1093 理论力学思考题答案 29

理论力学(百度文库)-第七版答案-哈工大

理论力学(百度文库)-第七版答案-哈工大

哈工大理论力学(I)第7版部分习题答案1-2两个老师都有布置的题目2-3 2-6 2-14 2- 20 2-30 6-2 6-4 7-9 7-10 7-17 7-21 8-5 8-8 8-16 8-24 10-4 10-6 11-5 11-15 10-3以下题为老师布置必做题目1-1(i,j), 1-2(e,k)2-3, 2-6, 2-14,2-20, 2-30 6-2, 6-47-9, 7-10, 7-17, 7-21, 7-268-5, 8-8(瞬心后留), 8-16, 8-24 10-3, 10-4 10-611-5, 11-1512-10, 12-15, 综4,15,16,18 13-11,13-15,13-166-2 图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5 m在铅垂面内转动,杆AB=0.8 m,A端为铰链,B端有放置工件的框架。

在机构运动时,工件的速度恒为0.05 m/s,杆AB始终铅垂。

设运动开始时,角0=?。

求运动过程中角?与时间的关系,以及点B的轨迹方程。

10-3 如图所示水平面上放1 均质三棱柱A,在其斜面上又放1 均质三棱柱B。

两三棱柱的横截面均为直角三角形。

三棱柱A 的质量为mA三棱柱B 质量mB的 3 倍,其尺寸如图所示。

设各处摩擦不计,初始时系统静止。

求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。

11-4解取A、B 两三棱柱组成1 质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在棱柱A 左下角的初始位置。

由于在水平方向无外力作用,且开始时系统处于静止,故系统质心位置在水平方向守恒。

设A、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标分别为当棱柱B 接触水平面时,如图c所示。

两棱柱质心坐标分别为系统初始时质心坐标棱柱B 接触水平面时系统质心坐标因并注意到得10-4 如图所示,均质杆AB,长l,直立在光滑的水平面上。

求它从铅直位无初速地倒下时,端点A相对图b所示坐标系的轨迹。

哈尔滨工业大学理论力学第七版W第11章 动量矩定理

哈尔滨工业大学理论力学第七版W第11章 动量矩定理

m v C
e
d LC dt
r
d rC dt
C
Fi
e
ri ' Fi
由于
vC ,
d rC dt
m vC 0
rC
d dt
m v C
e
rC F i
e


rC Fi
d LC dt
rC Fi
r 'i Fi
e
投影式 L M (m v ) L z z i i O

z
* 刚体的动量矩 1.平动刚体
L r m v m r v r mv
O i i i i i C C
C
L z M z ( m vC )
平动刚体对固定点(轴)的动量矩, == 刚体质心的动量(具有刚体的质量)对 该点(轴)的动量矩。
2 2
FOy 2 mg ma C 1 y ma C 2 y
2 8 9 . 8 8 ( 20 . 75 0 . 25 20 . 75 0 . 5 )
32 . 3 N
§11-5 质点系相对于质心的动量矩定理
1.对质心的动量矩
LC
M m v r m v
z1
z
1
a
C
b
z
2
J
z1
z2
J
z2
J M (a b)
2
?
J
z

M L 3
2
z
L
J
zc

M L 3
4M L 3
2
2

(NEW)哈工大理论力学教研室《理论力学》(第7版)笔记和课后习题(含考研真题)详解

(NEW)哈工大理论力学教研室《理论力学》(第7版)笔记和课后习题(含考研真题)详解

目 录第1章 静力学公理和物体的受力分析1.1 复习笔记
1.2 课后习题详解
1.3 名校考研真题详解
第2章 平面力系
2.1 复习笔记
2.2 课后习题详解
2.3 名校考研真题详解
第3章 空间力系
3.1 复习笔记
3.2 课后习题详解
3.3 名校考研真题详解
第4章 摩 擦
4.1 复习笔记
4.2 课后习题详解
4.3 名校考研真题详解第5章 点的运动学
5.1 复习笔记
5.2 课后习题详解
5.3 名校考研真题详解第6章 刚体的简单运动
6.1 复习笔记
6.2 课后习题详解
6.3 名校考研真题详解第7章 点的合成运动
7.1 复习笔记
7.2 课后习题详解
7.3 名校考研真题详解第8章 刚体的平面运动8.1 复习笔记
8.2 课后习题详解
8.3 名校考研真题详解
第9章 质点动力学的基本方程9.1 复习笔记
9.2 课后习题详解
9.3 名校考研真题详解
第10章 动量定理
10.1 复习笔记
10.2 课后习题详解
10.3 名校考研真题详解
第11章 动量矩定理
11.1 复习笔记
11.2 课后习题详解
11.3 名校考研真题详解
第12章 动能定理
12.1 复习笔记
12.2 课后习题详解
12.3 名校考研真题详解
第13章 达朗贝尔原理。

哈工大理论力学第七版课后习题答案完整版

哈工大理论力学第七版课后习题答案完整版

1-1 画出下列各图中物体A ,ABC 或构件AB ,AC 的受力图。

未画重力的各物体的自重不计,所有接触处均为光滑接触。

P 2N F 1N F A (a)(a1)P N F A T F(b)(b1)P B A 2N F 3N F 1N F (c)(c1)A B 2P 1P Ax F Ay F T F (d)(d1)F B F A F B A (e)(e1)A BFAx F BF Ay F q(f) (f1)A B F C C F A F (g)(g1) A C 1P C F Ax F Ay F B 2P(h)(h1) B F C Ax F A D C F Ay F(i)(i1)(j) (j1)A B C P Ax F Ay F B F F (k)(k1)C A CAF AC F BA F AB F BA P ACF ′ABF ′ (l) (l1) (l2) (l3)图1-1 1-2画出下列每个标注字符的物体的受力图。

题图中未画重力的各物体的自重不计,所有接触处均为光滑接触。

2N F 2P C N F ′(a) (a1)1P 1N F 2N F AxF AyF 2P CA B1P 1N F Ax F A N F B Ay F(a2) (a3) 2P 1P A1N F 3N F 2N F B(b) (b1)1P A 1N F N F 2P 3N F N F ′2N F B(b2) (b3)B 1N F A2P Ax F AyF DC2N F 1P(c) (c1) 1P B 1N F D 2N F TF A 2P AxF AyF T F ′ (c2)(c3)B A CD C F Ay F q BF Ax F (d) (d1)A C DC F Ay F q Ax F DyF Dx F B D B F q Dx F ′DyF ′ (d2)(d3)ABC P qAx F Ay F Cy F Cx F A B q Ax F Ay F Bx F By F BC PCx F Cy F Bx F ′By F ′ (e) (e1)(e2) (e3)CA B 2F ByF Bx F Ax F Ay F 1F(f) (f1)C A AxF Ay F 1F CxF Cy F C B 2F ByF Bx F Cx F ′Cy F ′(f2)(f3) P BF AyF Ax F A C B(g) (g1) B F AyF AxF A C B T F Cx F D P C CxF ′Cy F ′TF(g2)(g3)BAx F Ay F A B F ′1F D BCx F Cy F C B F 2F(h)(h1) (h2)A O COyF Ox F Cx F CyF AxF Ay F C D F CyF ′Cx F ′E F A B E(i) (i1) (i2)A B O C OyF Ox F Bx F By F DFE ABBx F By F EF ′AxF ′Ay F ′(i3)(i4)AB C H E DP Ay F Ax F Bx F By F BCByF Bx F Cy F Cx F T F(j) (j1) (j2)D 2T F 1T F DyF Dx F E 2T F ′3T F Ex F Ey F A D Ax F Ay F Dy F ′DxF ′E C Cy F ′Cx F ′Ex F ′Ey F ′(j3) (j4) (j5)BB FC FDE F ′Cy F ′Cx F ′E θ(k)(k1)A BBF C F Ay F Ax F E Dθ A Cy F CFAy F AxF DEF CxF D θ−°90 (k2) (k3) D EA BA FB FC F CB D DF 1F BF ′(l) (l1) (l2)E EF 2F D D F ′ AB C DE 2F 1F AFC F E F (l3) (l4)或 B C CF Dy F Dx F 1F BF ′D DE DyF ′Ey F ExF Dx F ′2F A B C D E 2F 1F A F CF Ey F Ex F(l2)’(l3)’ (l4)’ CCyF 1F CxF B AAD F ′(m) (m1)E F E ADF DHF H 2F ADF AD F ′AD(m2) (m3)B O A Ox F OyF BN F AN F kF(n) (n1) D q1N F 3N F 2N F B F ′B(n2) B D G FA CE AF C F E F FG F (o) (o1)B A BF A F B D C F D F B F ′C D E F F F D F ′FF E(o2) (o3) (o4)图1-2第2章 平面汇交力系与平面力偶系2-1 铆接薄板在孔心A ,B 和C 处受3个力作用,如图2-1a 所示。

哈工大理论力学(I)第七版答案、高等教育出版社出版

哈工大理论力学(I)第七版答案、高等教育出版社出版

哈工大理论力学(I)第7版部分习题答案1-2两个老师都有布置的题目2-3 2-6 2-14 2- 20 2-30 6-2 6-4 7-9 7-10 7-17 7-21 8-5 8-8 8-16 8-24 10-4 10-6 11-5 11-15 10-3以下题为老师布置必做题目1-1(i,j), 1-2(e,k)2-3, 2-6, 2-14,2-20, 2-30 6-2, 6-47-9, 7-10, 7-17, 7-21, 7-268-5, 8-8(瞬心后留), 8-16, 8-24 10-3, 10-4 10-611-5, 11-1512-10, 12-15, 综4,15,16,18 13-11,13-15,13-166-2 图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5 m在铅垂面内转动,杆AB=0.8 m,A端为铰链,B端有放置工件的框架。

在机构运动时,工件的速度恒为0.05 m/s,杆AB始终铅垂。

设运动开始时,角0=?。

求运动过程中角?与时间的关系,以及点B的轨迹方程。

10-3 如图所示水平面上放1 均质三棱柱A,在其斜面上又放1 均质三棱柱B。

两三棱柱的横截面均为直角三角形。

三棱柱A 的质量为mA三棱柱B 质量mB的 3 倍,其尺寸如图所示。

设各处摩擦不计,初始时系统静止。

求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。

11-4解取A、B 两三棱柱组成1 质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在棱柱A 左下角的初始位置。

由于在水平方向无外力作用,且开始时系统处于静止,故系统质心位置在水平方向守恒。

设A、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标分别为当棱柱B 接触水平面时,如图c所示。

两棱柱质心坐标分别为系统初始时质心坐标棱柱B 接触水平面时系统质心坐标因并注意到得10-4 如图所示,均质杆AB,长l,直立在光滑的水平面上。

求它从铅直位无初速地倒下时,端点A相对图b所示坐标系的轨迹。

哈尔滨工业大学理论力学课后习题答案

哈尔滨工业大学理论力学课后习题答案

.----------------------------------------理论力学(第七版)课后题答案 哈工大.高等教育出版社 -------------------------------- 第1章 静力学公理和物体的受力分析1-1 画出下列各图中物体 A ,ABC 或构件 AB ,AC 的受力图。

未画重力的各物体的自重不计,所有接触处均为光滑接触。

F N1A PF N 2(a) (a1)F TA PF N(b)(b1)AF N1P BF N 3F N 2(c) (c1)F TBF AyP 1P 2AF Ax(d) (d1)F AF BFAB(e)(e1)qFF Ay F BF AxA B(f) (f1)FBC F CAF A(g) (g1)F Ay FCCA F Ax BP1 P2(h) (h1)BFCF CF AxDAF Ay(i) (i1)(j) (j1)BF B FCPF AyF AxA(k) (k1)F CAF AB 2 F AC CA2 F ABBF ACF BAA P (l) (l1)(l2)(l3)图 1-11-2 画出下列每个标注字符的物体的受力图。

题图中未画重力的各物体的自重不计,所 有接触处均为光滑接触。

F N 2C2 F P 2(a1) F N1N(a)BF N1BC F N 2F NP 2P1P1F AyF Ay F AxF AxAA(a2) (a3)F N1AP1F N3B P 2F N 2(b) (b1)2 F NF N3F N1ABP 2P1F N F N 2(b2)(b3)F AyF AxA C D F N2BP 2P 1F N1(c)(c1)F AyF TAF AxD2 F F N2TBP 1F N1P 2(c2)(c3)F AyF BqBAF AxCDF C(d)(d1)F DyF AyF BqqD2 FDxBAF AxCF Dx D 2 FDyF C(d2) (d3)F Ay2 FBxqBF AyF AxqAB 2F ByF AxF CxC F CyP F BxAB PF Cx (e1)CF ByF Cy(e)(e2)(e3)F 1CF 2F AyF ByABF AxF Bx(f)(f1)F Cx2 FCxCCF 1F CyF 2 F 2F AyCyF ByAF BxF Ax B(f2)(f3)F BF AyCBAF AxP(g)(g1)2 F CyF T2 FCxCF AyF BF TDCF AxBAF Cx P (g2)(g3)DF 1F CyF B2 F 2F BBCF CxBF Ay AF Ax(h)(h1)(h2)A F AxF AyF CyF CxC2 A F EF CyF F OyCDF OxF Cx 2EOB(i)(i1)(i2)A A2 F Ax2 FE2 F AyFEC D F ByF ByF OyF BxF OxF BxOBB (i3)(i4)F AyDE F CxF TA F AxF ByC CHF By F Cy BPF BxF BxB(j)(j1)(j2)F Ay F Dy 22 F Ey2 F CF Cx 2 E F AxT 2 D F T 22FExF ExA D F Dx 2E F DxF T3F T12FCyF DyF Ey(j3)(j4)(j5)EFF BCED2 BF Cx⎝2 2 F DEF Cy(k)(k1)F BF FC BF Cx⎝EC F Cy90︒ ⎝FDED DF AyF AyAAF AxF Ax(k2) (k3)F B2 FBF 1F DBBDCAF AF C(l)(l1)(l2)F 22 DF DF 1F 2DBAC EE F EF AF C F E(l3)(l4)或2 2 F DyF2F 1F F Dy F 2F 1B 2 DF DxF DxBBD D F ExA C E C E F ExF CF EyF AF CF Ey(l2)’(l3)’(l4)’2 F ADAF CyF CxCF 1B(m)(m1)F ADDF ADHEF 2A DF EF HF AD 2(m2)(m3)F N AAF kF N BF OyF OxBO(n) (n1)F N1B Dq2 F BF N 2F N3(n2)FB D FF C F EF AF G GCEA(o)(o1)FBB DFDF BF E F FF C F D2 FEA F AF B 2CD(o2)(o3) (o4) 图 1-2第2章 平面汇交力系与平面力偶系2-1 铆接薄板在孔心 A ,B 和 C 处受 3个力作用,如图 2-1a 所示。

哈尔滨工业大学 第七版 理论力学11

哈尔滨工业大学 第七版 理论力学11

上式代入式(4)得
FN = 4mB g − mB
11-10 如图 11-10a 所示,质量为 m 的滑块 A,可以在水平光滑槽中运动,具有刚性系 数为 k 的弹簧 1 端与滑块相连接,另 1 端固定。杆 AB 长度为 l,质量忽略不计,A 端与滑 块 A 铰接,B 端装有质量 m1,在铅直平面内可绕点 A 旋转。设在力偶 M 作用下转动角速度 ω 为常数。求滑块 A 的运动微分方程。
质量为 m2 的小车 D,由绞车拖动,相对于平台的运动规律为 s = 不计绞车的质量,求平台的加速度。
1 2 bt ,其中 b 为已知常数。 2
m2 g
y
S D
A
vr
m1 g FN
B
ω
v
(a) 图 11-8
x
(b)

受力和运动分析如图 11-8b 所示
& = bt vr = & s ar = & s& = b a Da = a e + a r = a AB + a r a Da = ar − a AB m2 (a r − a AB ) − m1a AB = F F = f (m1 + m2 ) g
1
(
)
开伞后,他受重力 mg 和阻力 F 作用,如图 11-2 所示。取铅直轴 y 向下为正, 根据动量定理有
mg y
图 11-2
mv 2 − mv1 = I y = (mg − F )t
由题知:当 t=5 s 时,有 v2=4.3 m/s 即
60 × (4.3 − 44.3) = (60 × 9.8 − F ) × 5
棱柱 B 接触水平面时系统质心坐标
a b ⎤ ⎡ m A (l − ) + m B ⎢l − (a − )⎥ 3 3 ⎦ 3(m A + m B )l − a (m A + 3m B ) + m B b ⎣ ′ = xC = m A + mB 3(m A + m B )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档