凸轮机构设计

合集下载

第9章_凸轮机构及其设计

第9章_凸轮机构及其设计
是在圆柱面上开有曲线凹 槽或在圆柱端面上具有曲线轮 廓的构件。 它是一种空间凸轮机构。 行程可较大,但结构较复杂。e
ω
V
V
ω
ω
2、按推杆末端(the follower end)形状分:(如图9-5) 1)尖顶(knife-edge)推杆(图a、b): (a) (a) 结构简单,因是点接触,又是滑动 (d 摩擦,故易磨损。只宜用在受力不 (a)(a) ( (a) 大的低速凸轮机构中,如仪表机构。 图a) 图b)
▲ 注意:
1)所有运动过程的推杆位 移s是从行程的最近位臵 开始度量。回程时,推 杆的位移s是逐渐减小的。 2)凸轮的转角δ是从各个 运动过程的开始来度量。 如:在推程时,δ是从推程开始时进行度量;
在回程时,δ是从回程开始时进行度量。
3)有的凸轮δ01=0° (无远休),有的δ02=0°(无近休), 有的同时无远休和无近休。 e
2)运动线图——用于图解法
s = s(δ)—位移线图;如图9-8b所示。 v = v(δ)—速度线图; a = a(δ)—加速度线图。
图9-8
推杆的运动规律可分为基本运动规律和组合运动规律。 e
一)基本(Basic)运动规律
1、等速运动规律(一次多项式运动规律) v=常数。 s 1)方程: s=hδ/δ0 推程 v=hω/δ0 a=0 (9-3a) (δ:0~δ0)
对心直动尖顶 推杆盘形凸轮 机构
偏臵直动尖顶 推杆盘形凸轮 机构
对心直动滚子 直动平底推杆 推杆盘形凸轮 盘形凸轮机构 机构
摆动尖顶推杆 盘形凸轮机构
摆动滚子推杆 盘形凸轮机构
摆动平底推杆 盘形凸轮机构
上面介绍的是一些传统的凸轮机构,目前还研究出了 一些新型的凸轮机触,增加了接触面积, 提高了凸轮机构的承载能力。

机械原理第10章 凸轮设计

机械原理第10章 凸轮设计
移动从动件盘形凸轮机构凸轮廓线的设计 1)尖端从动件
①等分位移曲线;
②选定r0,画基圆;
③应用反转法逐点作图确 定 各 接 触 点 位 置 B0 , B1 , B2,……;
④光滑连接B0,B1,B2 , …… 点 , 就 得 所 要 设 计 的 凸轮廓线。
10.2 凸轮机构的廓线设计
2)滚子从动件
第10章 凸轮机构设计
Design of Cam Mechanisms
第10章 凸轮机构及其设计
1
凸轮机构的运动与传力特性
2
凸轮机构的廓线设计
10.1 凸轮机构的运动与传力特性
10.1.1 凸轮机构的工作循环
基圆——以凸轮轮廓的最小向径rb (或r0)为半径的圆。
图10-1 尖端移动从动件盘形凸轮机构的工作循环
从动件一方面随机架和导路以角速度-ω 绕O点转动,另一方面又在导 路中往复移动。由于尖端始终与凸轮轮廓相接触,所以反转后尖端的运动 轨迹就是凸轮轮廓。
10.2 凸轮机构的廓线设计
10.2.2 图解法设计过程
添加!
凸轮轮廓曲线的绘制 (图解法凸轮廓线的设计)
(26分钟)
10.2 凸轮机构的廓线设计
10.2 凸轮机构的廓线设计
10.2.3 凸轮廓线设计的解析方法
移动滚子从动件盘形凸轮机构
如图所示为一偏置移动滚子从动件盘形凸轮机构。建立直角坐标系oxy。若已
知凸轮以等角速度逆时针方向转动,凸轮基圆半径rb、滚子半径rr,偏距e,从动 件的运动规律s=s()。
1、理论廓线方程 B点坐标(凸轮的理论廓线方程)
s
v
a


j

h (1 cos)

机械原理-第9章凸轮机构及其设计

机械原理-第9章凸轮机构及其设计
③等加速回程段:(见书上) ④等减速回程段:(见书上)
①等加速推程段:
s = 2hδ2/δ02 v = 4hω δ /δ02 a = 4h ω 2/ δ02
②等减速推程段: s = h-2h(δ0-δ)2/δ02 v = 4hω(δ0-δ)/ δ02 a = -4hω2/δ02
由图知,有柔性冲击。
凸轮机构的适用场合: 广泛用于各种机械,特别是自动机械、自动控制装置
和装配生产线。
2.凸轮机构的分类
盘形凸轮 (1)按凸轮的形状分:移动凸轮 (板凸轮 )
圆柱凸轮
尖端推杆 (2)按从动件端部型式分 滚子推杆
平底推杆
直动推杆 (3)按从动件的运动方式分 摆动推杆
凸轮机构的命名:
从动件
原动件
对心
• 沿-w方向将基圆作相应等分;
• 沿导路方向截取相应的位移, 得到一系列点;
• 光滑联接。
2)对心直动滚子推杆盘形凸轮机构
s
h
h/2
w
O 1 2 3 /2 5 6 7 5 /4 10 11 127 /4 2
4
89
13 14
14 1
取长度比例尺l绘图
13
2
12 w
3
实际廓线
11
4
10
5
9
6
7
A5
C
6
2
B B180°B
6 5
4C
C
5
4φ3
C
φ3 2
A1Leabharlann R(3)按-w 方向划分圆R得 A0、A1、A2等点; 即得机架 反转的一系列
位置;
A4 A3
A2
(4)找从动件反转后的一系

第9章凸轮机构及其设计

第9章凸轮机构及其设计
• 2 凸轮机构的分类 • (1)按凸轮形状分 • 1) 盘形凸轮( Plate camor disc cam) : 这种凸轮
是一个具有变化向径的盘形构件。当它绕固定轴转 动时,可推动推杆在垂直于凸轮轴的平面内运动。 如 图1所示。当转轴在无穷远处时,可转化为移动 凸轮(Translating cam) 。
不过这一突变值为有限值。因而引起的冲击是有限的。
称为柔性冲击。回程时的等加速等减速运动规律,由
于在起示点处推杆处于最高位置(s=h)。随着凸轮的转 动,推杆逐渐下降。故推杆的位移s因等于行程h减去 式(9-5)中的s,从而可得回程时的运动方程如下:
• 等加速时:s=h-2hδ2/δ´02

v=-4hωδ/δ´0² (δ=0~δ0´/2)
O
v
a
h /20
O
O
0/2
0
0/2 22 h /202
0
0/2 -22 h /202
0
• (2)正弦加速度运动规律 • 当推杆的加速度按正弦规律变化时,其推程时的运动方程为:
s=h[(δ/δ0)-sin(2πδ/δ0)/2π] v=hω[1-cos(2πδ/δ0)]/δ0 a=2πhω²sin(2πδ/δ0)/δ²0
过,因我们规定推杆的
位移由其最地位置开始,
故在回程时推杆的位移
是逐渐减小的。于是推 杆的回程方程为:
• s=h(1-δ/δ0’) • v=-hω/δ0’ • a=0
(9-3,b)
• 式中δ0 ’为回程的凸轮运 动角;而凸轮转角δ应从 此段运动的起始位计量 起。由上述可知,当推 杆采用一次多项式运动 规律时,推杆为等速运 动,称为等速运动规律。 下图为其运动线图。
★组合运动规律示例

机械原理第6章 凸轮机构及其设计

机械原理第6章  凸轮机构及其设计

优点: 1)从动件可以实现复杂运动规律。 2)结构简单、紧凑,能准确实现预期运动,运动特性好。 3)性能稳定,故障少,维护保养方便。 4)设计简单。 缺点: 凸轮与从动件为高副接触,易于磨损。由于凸轮的轮廓 曲线通常都比较复杂,因而加工比较困难。
2.凸轮机构的分类
盘形凸轮(图6-1)
(1)按凸轮的e and follo wer displacement(凸轮转角 与从动件的位移)
Fig.6-10 Motion of the follower(凸轮机构运动循环图)
6.2 从动件的运动规律及其设计
1.从动件的基本运动规律
(1)多项式类运动规律
1)一次多项式运动规律。
移动凸轮(图6-2)
圆柱凸轮(图6-3) 尖底从动件
(2)按从动件的形状分类
(图6-4)
滚子从动件
平底从动件
曲底从动件
(3)按从动件的运动形式分类
(图6-4、图6-5)
直动从动件 摆动从动件 力封闭方式(图6-6) 形封闭方式(图6-7)
(4)按凸轮与从动件维持高副接触的方式分类
Fig.6-2 Translating cam mechanisms(移动凸轮机构)
1.凸轮机构的相对运动原理
如图6-19a所示,在直动尖底从动件盘形凸轮机构中,当凸轮 以等角速度ω作逆时针方向转动时,从动件作往复直线移动。设 想给整个凸轮机构加上一个绕凸轮回转中心O的反向转动,使反 转角速度等于凸轮的角速度,即反转角速度为-ω。此时,凸轮 将静止不动,而从动件一方面随导路绕O点以角速度-ω转动,分 别占据B′1、B′2,同时又沿其导路方向作相对移动,分别占据B1、 B2等位置。因此,从动件尖底导路的反转和从动件相对导路移动 的复合运动轨迹,便形成了凸轮的轮廓曲线,这就是凸轮机构的 相对运动原理,也称反转法原理

机械原理凸轮机构含其设计

机械原理凸轮机构含其设计

第六讲凸轮机构及其设计(一)凸机构的用和分一、凸机构1.成:凸,推杆,机架。

2.点:只要合适地出凸的廓曲,就可以使推杆获取各种期的运律,而且机构凑。

缺点:凸廓与推杆之点、接触,易磨,所以凸机构多用在力不大的合。

二、凸机构的分1.按凸的形状分:形凸柱凸2.按推杆的形状分尖推杆:构,能与复的凸廓保持接触,任意期运。

易遭磨,只适用于作用力不大和速度低的合子推杆:摩擦力小,承力大,可用于大的力。

不能够与凹槽的凸廓保持接触。

平底推杆:不考摩擦,凸推杆的作用力与从件平底垂直,受力平;易形成油膜,滑好;效率高。

不能够与凹槽的凸廓保持接触。

3.按从件的运形式分(1)往来直运:直推杆,又有心和独爱式两种。

( 2)往来运:推杆,也有心和独爱式两种。

4.依照凸与推杆接触方法不同样分:(1)力封的凸机构:通其他外力(如重力,性力)使推杆始与凸保持接触,( 2)几何形状封的凸机构:利用凸或推杆的特别几何构使凸与推杆始保持接触。

①等凸机构②等径凸机构③共凸(二)推杆的运动规律一、基本名:以凸的回心O 心,以凸的最小半径r0半径所作的称凸的基,r 0称基半径。

推程:当凸以角速度,推杆被推到距凸中心最的地址的程称推程。

推杆上升的最大距离称推杆的行程,相的凸角称推程运角。

回程:推杆由最位置回到初步地址的程称回程,的凸角称回程运角。

休止:推杆于静止不的段。

推杆在最静止不,的凸角称休止角;推杆在近来静止不,的凸角称近休止角二、推杆常用的运律1.性冲:推杆在运开始和止,速度突,加速度在理大将出瞬的无大,致使推杆生特别大的性力,所以使凸碰到极大冲,种冲叫性冲。

2.柔性冲:加速度有突,所以推杆的性力也将有突,不一突有限,所以引起有限冲,叫柔性冲。

3.掌握等速运律和等加速等减速运律的推程的速度、位移、加速度的方程:推杆运律——推杆在推程或回程,其位移s、速度 v 和加速度 a 随t 化的律。

3.1 多式运律:一般表示:s = C0+ C1δ+ C2δ2+⋯ + C nδn( 1)一次多式运律(等速运律)δδν推程:s=hδ/ δ0v = hω/δ0δa =0δ/ωh+∞δ-∞图7-7回程: s=h(1- δ / δˊ )v=- hδ ˊ0ω/图示为其推程运动线图。

机械原理第四章凸轮机构及其设计

机械原理第四章凸轮机构及其设计
图示等加速—等速—等减速组合运动规律
组合运动规律
组合后的从动件运动规律应满足的条件: 1. 满足工作对从动件特殊的运动要求。 2. 各段运动规律的位移、速度和加速度曲线在连接点处其值应分别相等,避免刚性冲击和柔性冲击
,这是运动规律组合时应满足的边界条件。 3. 应使最大速度vmax和最大加速度amax的值尽可能小,以避免过大的动量和惯性力对机构运转造成
摆动从动件盘形凸轮廓线的设计
(1)选取适当的比例尺,作出从动件的位移线图,并将推程和回程区 间位移曲线的横坐标各分成若干等份。与移动从动件不同的是,这 里纵坐标代表从动件的摆角, 单位角度。
移动从动件盘形凸轮廓线的设计
若同时作出这族滚子圆的内、外包络线 h'和 h" 则形成槽凸轮的轮廓曲线。
由上述作图过程可知,在滚子从动件盘形凸 轮机构的设计中,r0指的是理论廓线的基圆半 径。需要指出的是,从动件的滚子与凸轮实 际廓线的接触点是变化的。
移动从动件盘形凸轮廓线的设计
偏置移动滚子从动件盘形凸轮机构具体设计 步骤演示
凸轮廓线设计的基本原理
反转时,凸轮机构的运动: 凸轮固定不动,而让从动件连同导路一起 绕O点以角速度(-ω)转过φ1角 。 此时从动件将一方面随导路一起以角速度 (-ω)转动,同时又在导路中作相对移动 ,运动到图中粉红色虚线所示的位置,从 动件向上移动的距离与前相同。 从动件尖端所占据的位置 B 一定是凸轮轮 廓曲线上的一点。若继续反转从动件,可 得凸轮轮廓曲线上的其它点。
基本概念
偏距 凸轮回转中心至从动件导路的偏置距离 e。
偏距圆 以e为半径作的圆。
基本概念
行程 从动件往复运动的最大位移,用h表示 。
基本概念
推程 从动件背离凸轮轴心运动的行程。

凸轮机构设计

凸轮机构设计

5.修正梯形曲线:
特点:将正弦曲线的加速度曲线改为近似梯形。 综合抛物线A值较小和摆线加速度曲线 连续的优点,但Vmax值仍较大,适用于高 速轻载的场合。
6.修正正弦曲线: 特点:由两条周期不同的正弦曲线拼接而成,即保持了加速度连续,又 减少V的峰值,故适用于中高速和重载的场合。 注:刚性冲击:由理论上加速度的无穷大引起惯性力在理论上的无穷大, 而实际上由于材料的弹性变形,加速度与惯性力不会达到 无穷大,不过会引起强烈的冲击,这种冲击称为刚性冲击。 柔性冲击:加速度有限值的突变,引起惯性力的有限值的突变所引起 的冲击。
五、从动件滚子半径的确定
一般取滚子半径 r< 0.8min, min—— 凸轮廓线最小曲率半径。
推荐 r7.5~ 15 mm
§2–4 凸轮基圆半径的确定 凸轮基圆半径是指凸轮理论廓线的最小半径,它的大小直接影响凸 轮机构的受力情况,它确定于最大压力角不大于允许值,不小于凸 轮轴直径。 一、直动从动件盘形凸轮基圆半径的确定
2H
t
2 H
t2
无因次表示: S 2T2 V4T
(0≤
t≤
tH 2

A4 (0 ≤ T ≤
S121T2 V41T A4
1 2
(
) 1<
2
T≤
1)
特征值: Vm ax 2 Am ax4
特点: Amax 值较小,速度曲线是连
续的,无刚性冲击,但加速 度有极值突变,有柔性冲击。 适用于中、低速轻载的场合。
二、凸轮机构的基本分类 1.按凸轮的形状分: 1)盘形凸轮 是一个具有变化向径的盘形构件,推杆行程不能太大,否则 凸轮和径向尺寸变化过大。 2)移动凸轮 当盘形凸轮的回转半径为无穷大时,凸轮相对机架作直线往 复运动。 3)圆柱凸轮 是一个在圆柱面上开有曲线凹槽,或在圆柱端面上作出曲线 轮廓的构件。可得到较大的行程。

机械设计基础-凸轮机构设计

机械设计基础-凸轮机构设计
(1)取角度比例尺μφ,在横坐标轴上作出凸轮与行程h 对 应的推程角Φ,将其分成若 干等份(图中分为六等份),得到分 点1、2、…、6,过这些分点作横坐标轴的垂直线。
(2)取长度比例尺μl,在纵坐标轴上作出从动件的行程h。 (3)这些平行线与上述各对应的垂直线分别交于点1″、 2″、…、6″,将这些交点连成光 滑的曲线,即为余弦加速度运 动的位移线图。
凸轮机构设计
③ 等径凸轮:如图3-5(c)所示,从动件上装有两个滚子,其 中心线通过凸轮轴心,凸轮 与这两个滚子同时保持接触。这 种凸轮理论轮廓线上两异向半径之和恒等于两滚子的中心距 离,因此等径凸轮只能在180°范围内设计轮廓线,其余部分的 凸轮廓线需要按等径原则确定。
凸轮机构设计
④ 主回凸轮:如图3-5(d)所示,用两个固结在一起的盘形 凸轮分别与同一个从动件 上的两个滚子接触,形成结构封闭。 其中一个凸轮(主凸轮)驱使从动件向某一方向运动, 而另一 个凸轮(回凸轮)驱使从动件反向运动。主凸轮轮廓线可在 360°范围内按给定运动规 律设计,而回凸轮轮廓线必须根据 主凸轮轮廓线和从动件的位置确定。主回凸轮可用于高 精 度传动。
凸轮机构设计
二、 凸轮的分类 1.按凸轮的形状分类 (1)盘形凸轮。如图3-1所示,这种凸轮是绕固定轴转动并
且具有变化向径的盘形构 件,它是凸轮的基本形式。 (2)移动凸轮。这种凸轮外形通常呈平板状,如图3-2所示
的凸轮,可视作回转中心位于无穷远时的盘形凸轮,它相对于 机架作直线移动。
凸轮机构设计

凸轮机构设计
(6)远休止:从动件离转轴O 最远处静止不动。凸轮转过 角度Φs 称为远休止角。
(7)回程运动:从动件在弹簧力或重力作用下回到初始位 置,位移由Smax→0,凸轮转 过角度Φ'称为回程运动角。

凸轮机构设计

凸轮机构设计

4
3
2 1
设计:潘存云
1 2 34 5
h δ1 6
a2 =π2hω21 cos(πδ1/δt)/2δ2t 回程:
δt
v2 Vmax=1.57hω /2δ 0
s2=h[1+cos(πδ1/δh)]/2
δ1
v2=-πhω1sin(πδ1/δh)δ1/2δh
a2=-π2hω21 cos(πδ1/δh)/2δ2h
4).按保持接触方式分: 力封闭(重力、弹簧等)
几何形状封闭(凹槽、等宽、等径、主回凸轮)
刀架
o 2
1
内燃机气门机构
机床进给机构
凹 槽 凸 轮



W



r1



r2
r1+r2 =const
回 凸 轮
作者:潘存云教授
优点:只需要设计适当的轮廓曲线,从动件便可获得 任意的运动规律,且结构简单、紧凑、设计方便。 缺点:线接触,容易磨损。
回程等减速段运动方程为:
s2 =2h(δh-δ1)2/δ2h v2 =-4hω1(δh-δ1)/δ2h a2 =4hω21/δ2h
应用:存在柔性冲击,应用于 中、低速轻载的场合。
3.余弦加速度(简谐)运动规律 5 6 s2
推程: s2=h[1-cos(πδ1/δt)]/2 v2 =πhω1sin(πδ1/δt)δ1/2δt
设计:潘存云
rmin O rmin
§3-4 设计凸轮机构应注意的问题
一、压力角与作用力的关系
定义:正压力与推杆上力作用点B速度方向间的夹角α
பைடு நூலகம்
不考虑摩擦时,作用力沿法线方向。

凸轮机构的设计和计算

凸轮机构的设计和计算

凸轮机构的设计和计算凸轮机构是一种常见的运动机构,由凸轮和从动件组成,通过凸轮的形状和运动来驱动从动件进行指定的运动。

凸轮机构广泛应用于各种机械设备和工业生产中,如发动机、机械传动系统、自动化生产线等。

本文将介绍凸轮机构的设计和计算方法,具体内容如下:一、凸轮机构的设计:1.确定从动件的运动要求:根据机械装置的功能和要求,确定从动件的运动方式,如直线运动、往复运动、旋转运动等。

2.选择凸轮的类型:根据从动件的运动要求和机械结构的特点,选择合适的凸轮类型,如往复凸轮、圆柱凸轮等。

3.设计凸轮曲线:根据从动件的运动要求和凸轮的类型,设计凸轮曲线,使得从动件的运动符合需求。

4.确定凸轮轴的位置和方向:根据凸轮曲线和从动件的位置关系,确定凸轮轴所在的位置和方向。

5.合理布局机构:根据机械装置的空间限制和结构特点,合理布局凸轮机构的各个组成部分。

二、凸轮机构的计算:1.凸轮曲线参数计算:根据从动件的运动要求和机械结构的特点,计算凸轮曲线的参数,如内凸高度、内凸角度、外凸高度、外凸角度等。

2.凸轮轴的定位计算:根据凸轮曲线和从动件的位置关系,计算凸轮轴所在的位置和方向,以确保从动件能够完整地运动。

3.从动件的运动轨迹计算:根据凸轮曲线和凸轮轴的位置,计算从动件在运动轨迹上的坐标点,以确保从动件的运动符合需求。

4.从动件的运动速度和加速度计算:根据从动件的运动轨迹和凸轮轴的角速度、角加速度,计算从动件的运动速度和加速度,以确保运动过程的稳定性和安全性。

三、凸轮机构的优化:1.优化凸轮曲线形状:通过调整凸轮曲线的形状,使得从动件的运动更加平稳、稳定和高效。

2.优化凸轮轴的位置和方向:通过调整凸轮轴的位置和方向,使得整个凸轮机构的布局更加紧凑、简洁,并且符合实际使用要求。

3.优化从动件的设计:通过改进从动件的结构和材料,减小惯性负载和摩擦损失,提高机械装置的性能和使用寿命。

4.优化机构的传动方式:通过改变凸轮机构的传动方式,如采用齿轮传动或者链条传动,来提高传动效率和可靠性。

机械原理课程设计凸轮机构

机械原理课程设计凸轮机构

Part Three
机械原理课程设计 凸轮机构方案
设计目的和要求
设计目的:掌握凸轮机构的基本原 理和设计方法
设计内容:包括凸轮机构的设计、 制造、装配和调试
添加标题
添加标题
添加标题
添加标题
设计要求:满足凸轮机构的运动要 求,如速度、加速度、行程等
设计步骤:明确设计任务、选择设 计方案、进行设计计算、绘制设计 图纸、制作模型、进行实验验证等
凸轮轮廓曲线的设计方法包括解析法、图 解法和计算机辅助设计等。
凸轮轮廓曲线的设计需要满足凸轮机构 的运动规律、负载、速度、加速度等要 求,同时需要考虑到凸轮的制造工艺和 成本等因素。
凸轮机构压力角计算
压力角定义:凸轮与从动件接触点 处法线与凸轮轮廓线之间的夹角
压力角影响因素:凸轮轮廓线形状、 从动件形状、凸轮半径、从动件半 径
凸轮机构工作原理
凸轮机构通过凸轮与从动件 的接触,实现从动件的位移 和运动
凸轮机构由凸轮、从动件和 机架组成
凸轮机构的工作原理是利用 凸轮的轮廓曲线,使从动件
产生预定的运动
凸轮机构的应用广泛,如汽 车、机床、机器人等领域
凸轮机构分类
按照凸轮运动规律分类:等 速运动凸轮、等加速运动凸 轮、等减速运动凸轮等
Part Six
凸轮机构运动仿真 与优化
运动仿真模型的建立
确定凸轮机构的类型和参数 建立凸轮机构的三维模型 设定运动仿真的初始条件和边界条件 设定运动仿真的时间步长和仿真时间 设定运动仿真的输出变量和观察点 运行运动仿真,观察仿真结果,并进行优化
运动仿真结果分析
凸轮机构运动仿 真结果:包括位 移、速度、加速 度等参数
凸轮从动件的类 型:滚子从动件、 滑块从动件、圆 柱从动件等

凸轮机构设计(图文)

凸轮机构设计(图文)

凸轮机构设计(图文)一、凸轮机构概述凸轮机构是一种常见的机械传动装置,主要由凸轮、从动件和机架组成。

它通过凸轮的轮廓曲线,使从动件实现预期的运动规律。

凸轮机构具有结构简单、运动可靠、传动精度高等优点,广泛应用于各种自动化设备和机械中。

二、凸轮机构设计要点1. 确定从动件的运动规律在设计凸轮机构之前,要明确从动件的运动规律,包括位移、速度和加速度等。

这将为后续的凸轮轮廓设计提供依据。

2. 选择合适的凸轮类型根据从动件的运动规律和实际应用需求,选择合适的凸轮类型,如平面凸轮、圆柱凸轮、摆动凸轮等。

3. 设计凸轮轮廓曲线凸轮轮廓曲线是凸轮机构设计的核心部分。

设计时,要确保凸轮与从动件之间的运动协调,避免干涉和冲击。

三、凸轮机构设计步骤1. 分析运动需求在设计之初,我们需要深入了解设备的工作原理和从动件的运动需求。

这包括从动件的运动轨迹、速度、加速度以及所需的力和行程。

这些信息将帮助我们确定凸轮的基本尺寸和形状。

2. 初步确定凸轮尺寸基于运动需求分析,我们可以初步确定凸轮的直径、基圆半径和宽度等关键尺寸。

这些尺寸将直接影响凸轮的强度、刚度和运动性能。

3. 设计凸轮轮廓确保从动件的运动平稳,避免突变和冲击。

考虑凸轮与从动件之间的间隙,防止运动干涉。

优化轮廓曲线,减少加工难度和提高耐磨性。

四、凸轮机构材料选择考虑耐磨性:凸轮在连续工作中会与从动件接触,因此应选择耐磨材料,如钢、铸铁或耐磨塑料。

考虑重量和成本:在满足性能要求的前提下,可以选择重量轻、成本较低的材料。

考虑环境因素:如果凸轮机构将工作在特殊环境中,如高温或腐蚀性环境,需要选择相应的耐高温或耐腐蚀材料。

五、凸轮机构的加工与装配精确加工:凸轮的轮廓必须严格按照设计图纸加工,以确保运动的精确性。

间隙调整:在装配时,需要适当调整凸轮与从动件之间的间隙,以确保运动的顺畅。

校验运动:装配完成后,应对凸轮机构进行运动校验,确保从动件的运动符合预期。

六、凸轮机构动态分析与优化在设计过程中,动态分析是不可或缺的一环。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h
δ1
δ1
δ1
-∞
2. 等加等减速运动规律 位移曲线为一抛物线。加、减速各占一半。
推程加速上升段边界条件:
起始点:δ1=0, s2=0, v2=0 中间点:δ1=δt /2,s2=h/2
求得:C0=0, C1=0,C2=2h/δ2t
加速段推程运动方程为:
s2 =2hδ21 /δ2t v2 =4hω1δ1 /δ2t a2 =4hω21 /δ2t
在起始和终止处理论上a2为有
δ1
限值,产生柔性冲击。
应用:存在柔性冲击,应用于中速 的场合。
4.正弦加速度(摆线)运动规律
推程:
s2
s2=h[δ1/δt-sin(2πδ1/δt)/2π]
v2=hω1[1-cos(2πδ1/δt)]/δt
a2=2πhω21 sin(2πδ1/δt)/δ2t
v2
δt
回程:
推程减速上升段边界条件:
中间点:δ1=δt/2,s2=h/2 终止点:δ1=δt ,s2=h,v2=0
求得:C0=-h, C1=4h/δt , C2=-2h/δ2t
减速段推程运动方程为:
s2 v2
==h-4-2hhω(1δ(tδ–t-δδ11))2//δδ22tt
a2 =-4hω21 /δ2t
重写加速段推程运动方程为:
s2 =2hδ2 1 /δ2t v2 =4hω1δ1 /δ2t
a2 =4hω21 /δ2t
s2
设计:潘存云
1 23 4 5
δt
v2 2hω/δt
h/2
h/2
6 δ1
δ1
a2 4hω2/δ2t
δ1
柔性冲击
同理可得回程等加速段的运动方程为:
s2 =h-2hδ21/δ2h v2 =-4hω1δ1/δ2h a2 =-4hω21/δ2h
运动规律:推杆在推程或回程时,其位移S2、速度V2、
和加速度a2 随时间t 的变化规律。
S2=S2(t) V2=V2(t) a2=a2(t)
s2 位移曲线
B’
h
A D δ’s rmin
o δt δs
δ 设计:t 潘存云
δh
ω1
δs
B
t δh δ’s δ1
C
1.等速运动(一次多项式)运动规律
在推程起始点:δ1=0, s2=0
3
2 1
设计:潘存云
1 2 34 5
h
δ1
6
a2 =π2hω21 cos(πδ1/δt)/2δ2t 回程:
δt v2 Vmax=1.57hω/2δ0
s2=h[1+cos(πδ1/δh)]/2
δ1
v2=-πhω1sin(πδ1/δh)δ1/2δh
a2=-π2hω21 cos(πδ1/δh)/2δ2h
a2
δ1
δt
vv22
o
δ1
a 2 +∞ o
δ1
-∞
正弦改进等速
§3-3 盘状凸轮轮廓的设计
1.凸轮廓线设计方法的基本原理 2.用作图法设计凸轮廓线
1)对心直动尖顶从动件盘形凸轮
2)滚子直动从动件盘形凸轮 3)对心直动平底从动件盘形凸轮 4)摆动尖顶从动件盘形凸轮机构
一、凸轮廓线设计方法的基本原理
反转原理:
4)设计轮廓曲线。
s2
而根据工作要求选定推杆运动规律,是设计凸轮轮廓曲线的前提。
B’
一、推杆的常用运动规律 名词术语:
基圆、基圆半径、 推程、 推程运动角、远休止角、
h
A D δ’s rmin
o δt δs
δt
δh
ω1
δs 设计:潘存云 B
回程、回程运动角、
近休止角、 行程。一个循环
C
t δh δ’s δ1
s2=h[1-δ1/δh +sin(2πδ1/δh)/2π]
v2=hω1[cos(2πδ1/δh)-1]/δh
a2
a2=-2πhω21 sin(2πδ1/δh)/δh2
应用:无冲击,应用于高速重载的 场合。
无冲击
h
δ1 δ1 δ1
二、改进型运动规律
s2
将几种运动规律组合,以改善
h
运动特性。
o
设计:潘存云
4).按保持接触方式分: 力封闭(重力、弹簧等)
几何形状封闭(凹槽、等宽、等径、主回凸轮)
刀架
o 2
1
内燃机气门机构
机床进给机构
凹 槽 凸 轮



W
轮等Βιβλιοθήκη 径r1凸主

r2
r1+r2 =const
回 凸 轮
作者:潘存云教授
优点:只需要设计适当的轮廓曲线,从动件便可获得 任意的运动规律,且结构简单、紧凑、设计方便。 缺点:线接触,容易磨损。
给整个凸轮机构施以-ω1时,不影响各构件之间
的相对运动,此时,凸轮将静止,而从动件尖顶复合
运动的轨迹即凸轮的轮廓曲线。
依据此原理可以用几何作图的方法 设计凸轮的轮廓曲线,例如:
回程等减速段运动方程为:
s2 =2h(δh-δ1)2/δ2h v2 =-4hω1(δh-δ1)/δ2h a2 =4hω21/δ2h
应用:存在柔性冲击,应用于 中、低速轻载的场合。
3.余弦加速度(简谐)运动规律 5 6 s2
推程:
4
s2=h[1-cos(πδ1/δt)]/2 v2 =πhω1sin(πδ1/δt)δ1/2δt
应用实例:
3
线 2 A 设计:潘存云 1
绕线机构
卷带轮
12 1 放 放音 音键 键
设计:潘存云
5
3
3
摩擦轮
4 4
录音机卷带机构
皮皮带带轮轮
2
设计:潘存云
1 3
送料机构
§3-2 从动件的常用运动规律
凸轮机构设计的基本任务: 1)根据工作要求选定凸轮机构的形式;
2)推杆运动规律; 3)合理确定结构尺寸;
在推程终止点:δ1=δt ,s2=h
代 推入程得运: 动方C0=程0:, C1=h/δt
s2
s2 =hδ1/δt v2 = hω1 /δt a2 = 0 同理得回程运动方程: s2=h(1-δ1/δh ) v2=-hω1 /δh a2=0
δt
v2
a2 刚性冲击 +∞
应用:存在刚性冲击,应用于低速 轻载和从动件质量较小的场合。
应用:内燃机 、牙膏生产等自动线、补 鞋机、配钥匙机等。 分类:1)按凸轮形状分:盘形、 移动、
圆柱凸轮 ( 端面 ) 。 2)按推杆形状分:尖顶、 滚子、 特点: 平底从动件。 尖顶--构造简单、易磨损、用于仪表机构; 滚子――磨损小,应用广;
平底――受力好、润滑好,用于高速传动。
3).按推杆运动分:直动(对心、偏置)、 摆动
第三章 凸轮机构设计
§3-1 凸轮机构的应用和分类 §3-2 从动件的常用运动规律 §3-3 盘状凸轮轮廓的设计 §3-4 设计凸轮机构应注意的问题
§3-1 凸轮机构的应用和分类
组成:三个构件、盘(柱)状曲线轮廓、从动件呈杆状。
作用:将连续回转 => 从动件直线移动或摆动。
优点:可精确实现任意运动规律,简单紧凑。 实例 缺点:高副,线接触,易磨损,传力不大。
相关文档
最新文档