中考数学培优专题复习相似练习题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学培优专题复习相似练习题及答案

一、相似

1.如图,在Rt△ABC中,,角平分线交BC于O,以OB为半径作⊙O.

(1)判定直线AC是否是⊙O的切线,并说明理由;

(2)连接AO交⊙O于点E,其延长线交⊙O于点D,,求的值;

(3)在(2)的条件下,设的半径为3,求AC的长.

【答案】(1)解:AC是⊙O的切线

理由:,

作于,

是的角平分线,

AC是⊙O的切线

(2)解:连接,

是⊙O的直径,

,即 .

.

又 (同角) ,

∽ ,

(3)解:设

在和中,由三角函数定义有:

得:

解之得:

即的长为

【解析】【分析】(1)利用角平分线的性质:角平分线上的点到角两边的距离相等证得点O到AC的距离为半径长,即可证得AC与圆O相切;(2)先连接BE构造一个可以利用正切值的直角三角形,再证得∠1=∠D,从而证得两个三角形ABE与ABD相似,即可求得两个线段长的比值;(3)也可以应用三角形相似的判定与性质解题,其中AB的长度是利用勾股定理与(2)中AE与AB的比值求得的.

2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:

(1)求证:△BEF∽△DCB;

(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;

(3)当t为何值时,△PQF为等腰三角形?试说明理由.

【答案】(1)解:∵四边形ABCD是矩形,

∴ AD∥BC,

在中,

∵别是的中点,

∴EF∥AD,

∴ EF∥BC,

(2)解:如图1,过点Q作于,

∴QM∥BE,

∴(舍)或秒

(3)解:当点Q在DF上时,如图2,

∴ .

当点Q在BF上时,,如图3,

时,如图4,

时,如图5,

综上所述,t=1或3或或秒时,△PQF是等腰三角形

【解析】【分析】(1)根据题中的已知条件可得△BEF和△DCB中的两角对应相等,从而可证△BEF∽△DCB;(2)过点Q作QM⊥EF 于M ,先根据相似三角形的预备定理可证△QMF ∽△BEF;再由△QM F ∽△BEF可用含t的代数式表示出QM的长;最后代入三角形的面积公式即可求出t的值。(3)由题意应分两种情况:(1)当点Q在DF上时,因为∠PFQ为钝角,所以只有PF = QF 。(2)当点Q在BF上时,因为没有指明腰和底,所以有 PF=QF;PQ = FQ;PQ = PF 三种情况,因此所求的t值有四种结果。

3.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:

(1)求证:△BEF∽△DCB;

(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;

(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;

(4)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:∵四边形是矩形,

在中,

分别是的中点,

(2)解:如图1,过点作于,

(舍)或秒

(3)解:四边形为矩形时,如图所示:

解得:

(4)解:当点在上时,如图2,

当点在上时,如图3,

时,如图4,

时,如图5,

综上所述,或或或秒时,是等腰三角形

【解析】【分析】(1)要证△BEF∽△DCB,根据有两对角对应相等的两个三角形相似可得证。根据三角形中位线定理可得EF∥AD∥BC,可得一组内错角相等,由矩形的性质可得∠C=∠A=∠BEF=,所以△BEF∽△DCB;

(2)过点Q 作QM⊥EF于M,结合已知易得QM∥BE,根据相似三角形的判定可得

△QMF∽△BEF,则得比例式,QM可用含t的代数式表示,PF=4-t,所以三角形

PQF的面积=QM PF=06,解方程可得t的值;

(3)因为QG⊥AB,结合题意可得PQ AB,根据相似三角形的判定可得QPF BEF,于是可得比例式求解;

(4)因为Q在对角线BD上运动,情况不唯一。

当点Q在DF上运动时,PF=QF;

当点Q在BF上运动时,分三种情况:

第一种情况;PF =QF ;第二种情况:PQ=PF;第三种情况:PQ=FQ。

4.如图,△ABC内接于⊙O,且AB=AC.延长BC到点D,使CD=CA,连接AD交⊙O于点E.

(1)求证:△ABE≌△CDE;

(2)填空:

①当∠ABC的度数为________时,四边形AOCE是菱形;

②若AE=6,BE=8,则EF的长为________.

【答案】(1)证明:∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD.

∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC.

∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS)

(2)60;

【解析】【解答】解:(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;

理由是:连接AO、OC.

∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°.

∵∠ABC=60,∴∠AEC=120°=∠AOC.

∵OA=OC,∴∠OAC=∠OCA=30°.

∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°.

∵∠ACB=∠CAD+∠D.

∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形.

∵OA=OC,∴▱AOCE是菱形;

②由(1)得:△ABE≌△CDE,∴BE=DE=8,AE=CE=6,∴∠D=∠EBC.

∵∠CED=∠ABC=∠ACB,∴△ECD∽△CFB,∴ = .

∵∠AFE=∠BFC,∠AEB=∠FCB,∴△AEF∽△BCF,∴ = ,∴EF= =

故答案为:①60°;② .

【分析】(1)由题意易证∠ABC=∠ACB,AB=CD;再由四点共圆和已证可得∠ABC=∠ACB=∠AEB,∠CED=∠AEB,则利用AAS可证得结论;

(2)①连接AO、CO.宪政△ABC是等边三角形,再证明四边形AOCE是平行四边形,又AO=CO可得结论;

②先证△ECD∽△CFB,可得EC:ED=CF:BC=6:8;再证△AEF∽△BCF,则AE:EF=BC:CF,从而求出EF.

5.已知抛物线y=ax2+bx+5与x轴交于点A(1,0)和点B(5,0),顶点为M.点C在x轴

相关文档
最新文档