中考数学培优专题复习相似练习题及答案

合集下载

2020-2021初三数学相似的专项培优练习题(含答案)含详细答案

2020-2021初三数学相似的专项培优练习题(含答案)含详细答案

2020-2021初三数学相似的专项培优练习题(含答案)含详细答案一、相似1.在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC= ,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC= ,,直接写出tan∠CEB的值.【答案】(1)解:∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN(2)解:如图2,过点P作PM⊥AP交AC于M,PN⊥AM于N.∵∠BAP+∠1=∠CPM+∠1=90°,∴∠BAP=∠CPM=∠C,∴MP=MC∵tan∠PAC=,设MN=2m,PN=m,根据勾股定理得,PM=,∴tanC=(3)解:在Rt△ABC中,sin∠BAC= = ,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴ =同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC= =【解析】【分析】(1)根据垂直的定义得出∠AMB=∠BNC=90°,根据同角的余角相等得出∠BAM=∠CBN,利用两个角对应相等的两个三角形相似得出:△ABM∽△BCN;(2)过点P作PF⊥AP交AC于F,在Rt△AFP中根据正切函数的定义,由tan∠PAC=,同(1)的方法得,△ABP∽△PQF,故,设AB= a,PQ=2a,BP= b,FQ=2b(a>0,b>0),然后判断出△ABP∽△CQF,得从而表示出CQ,进根据线段的和差表示出BC,再判断出△ABP∽△CBA,得出再得出BC,从而列出方程,表示出BC,AB,在Rt△ABC中,根据正切函数的定义得出tanC的值;(3)在Rt△ABC中,利用正弦函数的定义得出:sin∠BAC=,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,根据平行线分线段成比例定理得出,同(1)的方法得,△ABG∽△BCH ,故,设BG=4m,CH=3m,AG=4n,BH=3n,根据等腰三角形的三线合一得出EG=BG=4m,故GH=BG+BH=4m+3n,根据比例式列出方程,求解得出n与m的关系,进而得出EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中根据正切函数的定义得出tan∠BEC的值。

初三数学-相似三角形培优练习题(含答案)

初三数学-相似三角形培优练习题(含答案)

(3题图)EDC B ADBCA NM O相似三角形练习题1、如图1,当四边形PABN 的周长最小时,a = .2、如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个3、如图3,等腰ABC ∆中,底边BC=a ,A ∠=036,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,设512k =,则DE=( ) A 、2K a B 、3K a C 、2akD 、3a k4、如图4,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( )A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形5、如图5将放置于平面直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得△A′OB′.已知∠AOB =30°,∠B =90°,AB =1,则B′点的坐标为( ) A .33()22 B .33(22, C .13(22, D .31()226、如图小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )y xP (a ,0) N (a +2,0)A (1,-3)(1题图) B (4,-1)O图 4 图 5FED CBA E FADCB7、如图7,梯形ABCD 中,AD BC ∥,点E 在BC 上,AE BE =,点F 是CD 的中点,且AF AB ⊥,若2.746AD AF AB ===,,,则CE 的长为 A .2231 C. 2.5 D. 2.3(7题图)8、如图8,在ABC △中,AB AC =,点E F 、分别在AB 和AC 上,CE 与BF 相交于点D ,若AE CF D =,为BF 的中点,AE AF :的值为___________.9、如图9,已知ABC ∆,延长BC 到D ,使CD=BC 取AB 的中点F,连接FD 交AC 于点E 。

中考数学培优专题复习相似练习题及详细答案

中考数学培优专题复习相似练习题及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.(1)问题发现如图1,四边形ABCD为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF的两条直角边PE,PF分别交BC,DC于点M,N,当PM⊥BC,PN⊥CD时, =________(用含a,b的代数式表示).(2)拓展探究在(1)中,固定点P,使△PEF绕点P旋转,如图2,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决如图3,四边形ABCD为正方形,AB=BC=a,点P在对角线AC上,M,N分别在BC,CD 上,PM⊥PN,当AP=nPC时,(n是正实数),直接写出四边形PMCN的面积是________(用含n,a的代数式表示)【答案】(1)(2)解:如图3,过P作PG⊥BC于G,作PH⊥CD于H,则∠PGM=∠PHN=90°,∠GPH=90°∵Rt△PEF中,∠FPE=90°∴∠GPM=∠HPN∴△PGM∽△PHN∴由PG∥AB,PH∥AD可得, ,∵AB=a,BC=b∴,即 ,∴,故答案为(3)【解析】【解答解:(1)∵四边形ABCD是矩形,∴AB⊥BC,∵PM⊥BC,∴△PMC∽△ABC∴∵四边形ABCD是矩形,∴∠BCD=90°,∵PM⊥BC,PN⊥CD,∴∠PMC=∠PNC=90°=∠BCD,∴四边形CNPM是矩形,∴CM=PN,∴,故答案为;( 3 )∵PM⊥BC,AB⊥BC∴△PMC∽△ABC∴当AP=nPC时(n是正实数),∴PM= a∴四边形PMCN的面积= ,故答案为:.【分析】(1)由题意易得△PMC∽△ABC,可得比例式,由矩形的性质可得CM=PN,则结论可得证;(2)过P作PG⊥BC于G,作PH⊥CD于H,由辅助线和已知条件易得△PGM∽△PHN,则得比例式,由(1)可得比例式,即比值不变;(3)由(2)的方法可得,则四边形PMCN的面积= .2.如图,在一间黑屋子里用一盏白炽灯照一个球.(1)球在地面上的影子是什么形状?(2)当把白炽灯向上平移时,影子的大小会怎样变化?(3)若白炽灯到球心的距离是1 m,到地面的距离是3 m,球的半径是0.2 m,则球在地面上影子的面积是多少?【答案】(1)解:球在地面上的影子的形状是圆.(2)解:当把白炽灯向上平移时,影子会变小.(3)解:由已知可作轴截面,如图所示:依题可得:OE=1 m,AE=0.2 m,OF=3 m,AB⊥OF于H,在Rt△OAE中,∴OA= = = (m),∵∠AOH=∠EOA,∠AHO=∠EAO=90°,∴△OAH∽△OEA,∴,∴OH= == (m),又∵∠OAE=∠AHE=90°,∠AEO=∠HEA,∴△OAE∽△AHE,∴ = ,∴AH= ==2625 (m).依题可得:△AHO∽△CFO,∴ AHCF=OHOF ,∴CF= AH⋅OFOH = 2625×32425=64 (m),∴S影子=π·CF2=π· (64)2 = 38 π=0.375π(m2).答:球在地面上影子的面积是0.375π m2.【解析】【分析】(1)球在灯光的正下方,根据中心投影的特点可得影子是圆.(2)根据中心投影的特点:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;所以白炽灯向上移时,阴影会逐渐变小.(3)作轴截面(如图)由相似三角形的判定得三组三角形相似,再根据相似三角形的性质对应边成比例,可求得阴影的半径,再根据面积公式即可求出面积.3.(1)【发现】如图①,已知等边,将直角三角形的角顶点任意放在边上(点不与点、重合),使两边分别交线段、于点、.①若,,,则 ________;②求证: .________(2)【思考】若将图①中的三角板的顶点在边上移动,保持三角板与、的两个交点、都存在,连接,如图②所示.问点是否存在某一位置,使平分且平分?若存在,求出的值;若不存在,请说明理由.(3)【探索】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个顶点放在点处(其中),使两条边分别交边、于点、(点、均不与的顶点重合),连接 .设,则与的周长之比为________(用含的表达式表示).【答案】(1)解:4;证明:∵∠EDF=60°,∠B=160°∴∠CDF+∠BDE=120°,∠BED+∠BDE=120°,又∵∠B=∠C,∴(2)解:解:存在。

备战中考数学 相似 培优练习(含答案)及详细答案

备战中考数学 相似 培优练习(含答案)及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.(1)求抛物线的解析式和对称轴;(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)设四边形DECO的面积为s,求s关于t的函数表达式.【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入得:,解得:,∴抛物线的解析式为:,对称轴为:直线x=﹣;(2)解:存在,∵AD=2t,∴DF=AD=2t,∴OF=4﹣4t,∴D(2t﹣4,0),∵直线AC的解析式为:,∴E(2t﹣4,t),∵△EFC为直角三角形,分三种情况讨论:①当∠EFC=90°,则△DEF∽△OFC,∴,即,解得:t= ;②当∠FEC=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴DE= AF,即t=2t,∴t=0,(舍去),③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或;(3)解:∵B(1,0),C(0,2),∴直线BC的解析式为:y=﹣2x+2,当D在y轴的左侧时,S= (DE+OC)•OD= (t+2)•(4﹣2t)=﹣t2+4 (0<t<2);当D在y轴的右侧时,如图2,∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)•OD= (﹣8t+10+2)•(4t﹣4),即(2<t<).综上所述:【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。

中考数学 相似 培优练习(含答案)含答案解析

中考数学 相似 培优练习(含答案)含答案解析

中考数学相似培优练习(含答案)含答案解析一、相似1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。

(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。

专题27.46 《相似》全章复习与巩固(培优篇)(专项练习)-2022-2023学年九年级数学下册基

专题27.46 《相似》全章复习与巩固(培优篇)(专项练习)-2022-2023学年九年级数学下册基

专题27.46《相似》全章复习与巩固(培优篇)(专项练习)一、单选题1.已知AB =2,点P 是线段AB 上的黄金分割点,且AP >BP ,则AP 的长为( )A B 1 C 352D .32.如图,在△ABC 中,已知MN△BC ,DN△MC .小红同学由此得出了以下四个结论:△AN CN =AM AB ;△AD DM=AM MB ;△AM MB =AN CN ;△AD AM =ANAC .其中正确结论的个数为( )A .1个B .2个C .3个D .4个3.我们把宽与长的比等于黄金比)的矩形称为黄金矩形.如图,在黄金矩形ABCD ()AB BC <中,ABC ∠的平分线交AD 边于点E ,EF BC ⊥于点F ,则下列结论错误..的是( )A .AE DEAD AE= B .CF BFBF BC= C .AE BEBE BC= D .DE ABEF BC= 4.如图,正方形ABCD 中,AB=12,点E 在边BC 上,BE=EC ,将△DCE 沿DE 对折至△DFE ,延长EF 交边AB 于点G ,连接DG 、BF ,给出下列结论:△△DAG△△DFG ;△BG=2AG ;△△EBF△△DEG ;△S △BEF =725.其中正确结论的个数是( )A .1B .2C .3D .45.正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是( )cm 2.A .B .C .D .6.如图,已知在等腰Rt △ABC 中,△ACB =90°,AD 为BC 边的中线,过点C 作CE △AD 于点E ,交AB 于点F .若AC =2,则线段EF 的长为( )A .35B C D .237.如图,在矩形ABCD 中,点E 是对角线上一点,连接AE 并延长交CD 于点F ,过点E 作EG △AE 交BC 于点G ,若AB =8,AD =6,BG =2,则AE =( )A B C D 8.如图,在平面直角坐标系中,已知()20A -,,()04B ,,点C 与坐标原点O 关于直线AB对称.将ABC 沿x 轴向右平移,当线段AB 扫过的面积为20时,此时点C 的对应点1C 的坐标为( )A .7855⎛⎫ ⎪⎝⎭,B .9855⎛⎫ ⎪⎝⎭,C .1855⎛⎫- ⎪⎝⎭,D .1655⎛⎫- ⎪⎝⎭,9.如图,将矩形ABCD 折叠,使点D 落在AB 上点D ′处,折痕为AE ;再次折叠,使点C 落在ED ′上点C ′处,连接FC ′并延长交AE 于点G .若AB =8,AD =5,则FG 长为( )A .BC .203D .410.如图,在平面直角坐标系中,点A 、点B 在x 轴上,OB =5,OA =2,点C 是y 轴上一动点,连接AC ,将AC 绕点A 顺时针方向旋转60︒得到AD ,连接BD ,则BD 的最小值为( )A .72B .52C D 二、填空题11.如图,////AC EF DB ,若8AC =,12BD =,则EF =________.12.如图,在ABC 中,90BAC ∠=︒,4AB AC ==,点D 是BC 边上一点,且3BD CD =,连接AD ,并取AD 的中点E ,连接BE 并延长,交AC 于点F ,则EF 的长为________.13.如图,在ABC 中,90,8,6,ACB AC BC AD ∠=︒==为边BC 上的中线,BE 是ABC 的角平分线,,AD BE 交于点F .则EF 的长为______.14.如图,AD BC ⊥,垂足为C ,BF BC ⊥,点P 为线段BC 上一动点,连接AP ,过D 作DE AP ⊥交BF 于E ,连接PE ,若4AC BC ==,1CD =,则PE 长的最小值为______.15.如图,在矩形ABCD 中,AB =3,BC =4,将矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A ′B ′CD ′,B ′C 与AD 交于点E ,AD 的延长线与A ′D ′交于点F .当矩形A 'B 'CD '的顶点A '落在CD 的延长线上时,则EF =_____.16.如图,Rt △ABC 中,△ACB =90°,AC =BC ,D 、E 分别在AC 、BC 上,CE =AD ,CG △DE 于点F ,FE =1,FG =3,则AC =______.17.如图,在菱形ABCD 中,ABC ∠是锐角,过点A 作AE BC ⊥于点E ,作EAF ABC ∠=∠,交CD 于点F .连接EF 、BD ,若25ABCD S =菱形,25EF BD =,则AEF 的面积为_____.18.如图,平面直角坐标系中有正方形ABCD 和正方形EFGH ,若点A 和点E 的坐标分别为(2,3)-,(1,1)-,则两个正方形的位似中心的坐标是__________.三、解答题19.所谓黄金分割,指的是把长为L 的线段分为两部分,使其中较长部分对于全部之比,. (1 )如图△,在ABC 中,△A =36°,AB AC =,△ACB 的平分线CD 交腰AB 于点D .请你根据所学知识证明:点D 为腰AB 的黄金分割点:(2) 如图△,在Rt ABC △中,△ACB =90°,CD 为斜边AB 上的高,AD BD >,1AB =,若点D 是AB 的黄金分割点,求BC 的长,20.如图,在等边ABC 中,D 是BC 的中点,过点A 作AE BC ∥,且AE DC =,连接CE .(1) 求证:四边形ADCE 是矩形;(2) 连接BE 交AD 于点F ,连接CF .若4AB =,求CF 的长.21.已知菱形ABCD 中,E 是BC 边上一点. (1) 在BC 的右侧求作AEF ,使得EF BD ∥,且12EF BD =;(要求:尺规作图,不写作法,保留作图痕迹)(2) 在(1)的条件下,若12EAF ABC ∠=∠,求证:AE =.22.已知不等臂跷跷板AB 长为3米,当AB 的一端点A 碰到地面时,(如图1)点B 离地高1.5米;当AB 的另一端点B 碰到地面时,(如图2)点A 离地高1米,求跷跷板AB 的支撑点O 到地面的距离为多少米?23.如图1.已知四边形ABCD 是矩形.点E 在BA 的延长线上.. AE AD EC =与BD 相交于点G ,与AD 相交于点,.F AF AB =()1求证:BD EC ⊥;()2若1AB =,求AE 的长;()3如图2,连接AG ,求证:EG DG -=.24.如图1,在矩形ABCD 中,P 为CD 边上一点(DP <CP ),△APB=90°.将△ADP 沿AP 翻折得到△AD′P ,PD′的延长线交边AB 于点M ,过点B 作BN△MP 交DC 于点N .(1)求证:AD 2=DP•PC ;(2)请判断四边形PMBN 的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若DPAD =12,求EFAE的值.参考答案1.B【分析】根据黄金分割点的定义和AP>BP得出AB,代入数据即可得出AP 的长度.解:由于P为线段AB=2的黄金分割点,且AP >BP ,则AP ×21. 故选:B .【点拨】本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的352,较长的线段=. 2.C解:△△MN △ BC ,△ AN :CN = AM :BM ,该项错误;△△DN △ MC ,△ AD :DM = AN :NC ,再由(1)得 AD :DM = AM :BM ,该项正确;△根据(1)知,此项正确;△根据(2)知,此项正确.所以正确的有3个,故选C .点睛:本题考查平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.3.C【分析】先根据矩形的性质、角平分线的性质、正方形的判定可得四边形ABFE 是正方形,再根据正方形的性质可得AE EF AB BF ===,再根据黄金矩形的定义逐项判断即可得.解:四边形ABCD 是矩形, 90,A ABC AD BC ∴∠=∠=︒=,EF BC ⊥,即90BFE ∠=︒,∴四边形ABFE 是矩形,BE 是ABC ∠的平分线,且,?EA AB EF BC ⊥⊥, AE EF ∴=,∴四边形ABFE 是正方形,AE EF AB BF ∴===,又四边形ABCD 是黄金矩形,且AB BC <,AB BC ∴=设1)(0)AB a a =≠,则2BC a =,1),2AE EF BF AB a AD BC a ∴======,(3,(3DE AD AE a CF BC BF a ∴=-==-=,1)BE a ,则AB B A A C E D ==DE AE ==, 即AE DEAD AE=,选项A 正确;CF BF AB BF BC BC == 即 CF BF BF BC=,选项B 正确;AE BE BE B C 即 AE BE BE BC≠,选项C 错误;AE DE DE AB EF BC===,则选项D 正确; 故选:C .【点拨】本题考查了矩形的性质、角平分线的性质、正方形的判定与性质,掌握理解黄金矩形的定义是解题关键.4.C【分析】根据正方形的性质和折叠的性质可得AD=DF ,△A=△GFD=90°,于是根据“HL”判定Rt△ADG△Rt△FDG ,再由GF+GB=GA+GB=12,EB=EF ,△BGE 为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF 的面积,再由△BEF 是等腰三角形,而△GED 显然不是等腰三角形,判断△是错误的,即可得答案.解:如图,由折叠可知,DF=DC=DA ,△DFE=△C=90°, △△DFG=△A=90°,在Rt△ADG 和Rt△FDG 中,AD DFDG DG =⎧⎨=⎩, △Rt△ADG△Rt△FDG ,故△正确; △正方形边长是12, △BE=EC=EF=6,设AG=FG=x ,则EG=x+6,BG=12﹣x ,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4△AG=GF=4,BG=8,BG=2AG,故△正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,故△错误;△S△GBE=12×6×8=24,S△BEF:S△BGE=EF:EG,△S△BEF=610×24=725,故△正确.综上可知正确的结论是3个.故选C.【点拨】本题考查了相似三角形的判定和性质、图形的翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积计算,熟练掌握相似三角形的判定和性质是解题关键.5.B解:试题分析:阴影部分的面积可转化为两个三角形面积之和,根据角平分线定理,可知阴影部分两个三角形的高相等,正方形的边长已知,故只需将三角形的高求出即可,根据△DON△△DEC可将△ODC的高求出,进而可将阴影部分两个三角形的高求出.连接AC,过点O作MN△BC交AB于点M,交DC于点N,PQ△CD交AD于点P,交BC于点Q△AC为△BAD的角平分线,△OM=OP,OQ=ON;设OM=OP=h1,ON=OQ=h2,△ON△BC△,即,解得△OM=OP故选B.考点:角平分线的性质,三角形的面积公式,相似三角形的判定和性质点评:解题的关键是读懂题意及图形,正确作出辅助线,将阴影部分分成几个规则图形面积相加或相减求得.6.B【分析】过点B作BH△BC,交CF的延长线于H,由勾股定理可求AD的长,由面积法可求CE,由“AAS”可证△ACD△△CBH,可得CD=BH=1,AD=CH△ACF△△BHF,可得BH FHAC FC==12,可求CF的长,即可求解.解:如图,过点B作BH△BC,交CF的延长线于H,△AD为BC边的中线,AC=BC=2,△CD=BD=1,△AD△11S22ACDAC CD AD CE =⨯⨯=⨯⨯,△CE,△△ADC +△BCH =90°,△BCH +△H =90°,△△ADC =△H ,在△ACD 和△CBH 中,90ADC H ACD CBH AC BC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,△△ACD △△CBH (AAS ),△CD =BH =1,AD =CH△AC △BC ,BH △BC ,△AC △BH ,△△ACF △△BHF , △BH FH AC FC==12,△CF△EF =CF ﹣CE , 故选:B .【点拨】本题考查了相似三角形判定和性质,全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.7.B【分析】过点E 作AB 的平行线,分别交,AD BC 于点,M N ,先根据矩形的性质与判定可得四边形ABNM 和四边形CDMN 都是矩形,设(0)EM x x =>,则8EN x =-,再根据相似三角形的判定证出DEM DBA ,根据相似三角形的性质可得34x DM =,从而可得336,444x AM x GN =-=-,然后根据相似三角形的判定证出AEM EGN ,根据相似三角形的性质可得x 的值,最后在Rt AEM △中,利用勾股定理即可得.解:如图,过点E 作AB 的平行线,分别交,AD BC 于点,M N ,四边形ABCD 是矩形,8,6AB AD ==,6,90,BC AD BAD AD BC ∴==∠=︒,∴四边形ABNM 是矩形,8,90MN AB AME ENG ∴==∠=∠=︒,同理可得:四边形CDMN 是矩形,DM CN ∴=,设(0)EM x x =>,则8EN MN EM x =-=-,EM AB ,DEMDBA ∴, DM EM DA BA∴=,即68DM x =, 解得34x DM =, 34x CN ∴=,364AM AD DM x =-=-, 2BG =,344x GN BC BG CN ∴=--=-, 90,AME EG AE ∠=︒⊥,90EAM AEM GEN AEM ∴∠+∠=︒=∠+∠,EAM GEN ∴∠=∠,在AEM △和EGN △中,90AME ENG EAM GEN ∠=∠=︒⎧⎨∠=∠⎩, AEM EGN ∴,AM EM EN GN ∴=,即3643844x x x x -=--,解得4825=x 或8x =, 经检验,4825=x 是所列分式方程的根,且符合题意;8x =不是所列分式方程的根,舍去,483114,625425EM AM x ∴==-=,AE ∴=== 故选:B .【点拨】本题考查了矩形的判定与性质、相似三角形的判定与性质等知识点,通过作辅助线,构造相似三角形是解题关键.8.B【分析】连接AA 1、BB 1,过C 点作CE △x 轴于E 点,过B 点作BD △CE ,交EC 的延长线于点D ,根据A (-2,0)、B (0,4),OA =2,OB =4,进而得到AC =2,BC =4,再证Rt △DBC △Rt △ECA ,得到422BD CD BC CE AE AC ====,设AE =x ,则有CD =2x ,OE =AO +AE =2+x ,在Rt △ACE 中,222AC CE AE =+,即有22222()2x x +=+,解方程求出x ,即可求出AE ,则C 点坐标可求,再根据AB 扫过的面积为20,求得15AA =,可知△ABC 向右平移了5个单位,则问题得解.解:平移后的效果如图,连接AA 1、BB 1,过C 点作CE △x 轴于E 点,过B 点作BD △CE ,交EC 的延长线于点D ,根据平移的性质可知AA 1=BB 1,且11//AA BB ,即有四边形11AA BB 是平行四边形.△CE △x 轴,BD △CE ,△△D =△CEA =90°,根据对称的性质可知△AOB △△ACB ,△△ACB =△AOB =90°,AO =AC ,OB =BC ,△A (-2,0)、B (0,4),△OA =2,OB =4,△AO =AC =2,OB =BC =4,△△ACB =90°=△D ,△△DCB +△ACE =90°,△DCB +△DBC =90°,△△ACE =△CBD ,△Rt △DBC △Rt △ECA , △422BD CD BC CE AE AC ====, 设AE =x ,则有CD =2x ,△OE =AO +AE =2+x ,△△D =△CEA =90°=△AOB ,△四边形OBDE 是矩形,△BD =OE ,即BD =2+x , △422BD CD BC CE AE AC ====, △222BD x CE +==, △在Rt △ACE 中,222AC CE AE =+,△有22222()2x x +=+,解得65x =,(负值舍去), △65AE =, △1625OE x =+=,2825x CE +==, △C 点坐标为168()55-,, 根据平移的性质可知直线AB 扫过的图形为是平行四边形11AA BB ,△根据题意有1120AA BB S =平行四边形,△11114AA BB S AA OB AA =⨯=平行四边形,△1420AA =,△15AA =,△可知△ABC向右平移了5个单位,△C168()55-,也向右平移了5个单位才得到C1,△即169555 -+=,△C1点坐标为98 () 55,,故选:B.【点拨】本题考查了平移的性质、平行四边形的判定与性质、勾股定理、相似三角形的判定与性质、一元二次方程的应用等知识,求出C点的坐标是解答本题的关键.9.C【分析】过点G作GI△AB,GH△ED',垂足分别为I、H,由折叠的性质可得C′E=5-4=1,在Rt△EFC′中,设FC′=x,则EF=3-x,由勾股定理得:12+(3-x)2=x2,解得:x=53,再证明△BC′D'△△C′GH,设C′H=3m,则GH=4m,C′G=5m,则HD'=GI=AI=4-3m,ID'=5-(4-3m)=1+3m=GH=4m,可得到C′G=5m=5,从而解决问题.解:由折叠的性质得,△AD'E=△D=90°,AD=AD',又△△DAB=90°,△四边形ADED'是矩形,△AD=AD',△四边形ADED'是正方形,过点G作GI△AB,GH△ED',垂足分别为I、H,△AD'ED是正方形,△AD=DE=ED'=AD'=5,BC=BC′=5,△C=△BC′F=90°,FC=FC′,△D'B=EC=8-5=3,在Rt△C′BD'中,C′D'=4,△C′E=5-4=1,在Rt△EFC′中,设FC′=x,则EF=3-x,由勾股定理得:12+(3-x)2=x2,解得:x=53,△△BC′D'+△GC′H=90°,△GC′H+△C′GH=90°,△△BC′D'=△C′GH,又△△GHC′=△BD'C′=90°,△△BC′D'△△C′GH,△C′H:GH:C′G=BD':C′D':BC′=3:4:5,设C′H=3m,则GH=4m,C′G=5m,△HD'=GI=AI=4-3m,ID'=5-(4-3m)=1+3m=GH=4m,解得:m=1,△C′G=5m=5,△FG=203;故选:C.【点拨】本题主要考查了矩形的性质,正方形的判定与性质,翻折的性质,勾股定理,相似三角形的判定与性质等知识,作辅助线构造三角形相似是解题的关键.10.A【分析】构造等边三角形OAE,过点E作AE△EF,垂足为E,交x轴于点F,截取ED=OC,证明△AOC△△AED,得到AC=AD,且△CAD=60°,从而得到点D在直线EF上,过点B作BD△EF,此时BD最小.解:构造等边三角形OAE,过点E作AE△EF,垂足为E,交x轴于点F,截取ED=OC,△等边三角形OAE,△AO=AE,△OAE=△AOE=60°,△ED=OC, △AED=△AOC=90°,△△AOC△△AED,△AC =AD ,且△CAD =60°,△点D 在直线EF 上,过点B 作BD △EF ,此时BD 最小,△OB =5,OA =2,△AE∥BD ,△OEF =△OFE =30°,△OF =OE =OA =AE =2,AB =3,△F A =4,FB =7,AE FA BD FB=, △247BD =, 解得BD =72, 故选A .【点拨】本题考查了等边三角形的判定和性质,三角形相似的判定和性质,三角形全等的判定和性质,垂线段最短,熟练掌握三角形相似的判定,垂线段最短原理是解题的关键.11.245【分析】根据平行线AC△EF 分线段成比例得到.EF BF CA AB =同理EF AF DB AB =,则由比例的性质得到DB EF BF DB AB -=,根据等量代换推知EF DB EF CA DB-=,所以把相关数据代入即可求得EF 的值.解:如图,△AC △EF ,△.EF BF CA AB= 又△EF △DB , △EF AF DB AB=, 则由比例的性质知,DB EF AB AF DB AB --= 即DB EF BF DB AB -=, △EF DB EF CA DB-=, △AC =8,BD =12,△12812EF EF -= △EF =245. 故答案是:245. 【点拨】考查平行线分线段成比例定理:一组平行线截两条直线,所截的线段对应成比例.12【分析】利用△ABC 是直角三角形构造直角坐标系,过点D 作DM △AC 于M ,过点D 作DN △AB 于N ,利用图中各线段的长度,再结合一次函数、中点坐标公式可以求出图中各点的坐标,即可求出EF 的长.解:根据△BAC =90°可知△ABC 是直角三角形,则以直角△ABC 的顶点A 点为坐标原点O ,以AC 为x 轴,以AB 为y 轴构造直角坐标系,过点D 作DM △AC 于M ,过点D 作DN △AB 于N ,如图,由AB =AC =4,可知B 点坐标为(4,0),C 点坐标为(0,4),则直线BC 的解析式为4y x =-,△BD =3CD ,△4CD =BC ,△DM △AC ,DN △AB ,△有MD AB ∥,MD AB ∥, 则有CD CM MD BC CA AB ==,即有:14CD CM MD BC CA AB ===, 则可求得D 点坐标为:(1,3),又△E 点为AD 中点,△根据中点坐标公式又E 点坐标为:13(,)22,则直线BE 的解析式为:31277y x =-+, 则易得F 点坐标为:12(0,)7,则EF 的长度为:EF =【点拨】本题考查了运用直角坐标系求线段的长度的问题,设计根据点的坐标求解一次函数解析式、中点坐标公式、线段长度公式等知识,利用直角三角形的特点构建直角坐标系是解答本题的关键.13【分析】过点E 作EG △AB ,垂足为G ,证明△CBE △△GBE ,求得CE ,EG ,AE 的长,过点F 作FO △AC ,垂足为O ,利用平行线分线段成比例定理求解即可.解:△90,8,6,ACB AC BC ∠=︒==,过点E 作EG △AB ,垂足为G ,△BE 是ABC 的角平分线,△△CBE =△GBE ,△△C =△BGE =90°,BE =BE ,△△CBE △△GBE ,△BC =BG =6,EC =EG ,设CE =x ,则EG =x ,AE =8-x ,AG =AB -BG =4,在直角三角形AEG 中,根据勾股定理,得222AE EG AE =+,即222(8)4x x -=+,解得x =3,△CE =3,AE =5,过点F 作FO △AC ,垂足为O ,90ACB ∠=︒,△FO∥BC , △OF OE BC CE =, △623OF BC OE CE ===即FO =2OE , △AD 是中线,BC =6,△CD =3,△FO∥DC , △8OF AE OE DC +=, △2538OE OE +=, 解得OE =1513, 在直角三角形OEF 中,22225EF EO OF EO =+=,△EF. 【点拨】本题考查了勾股定理,三角形全等,平行线分线段成比例定理,中线,角的平分线,构造辅助线实施全等证明,平行线分线段成比例证明是解题的关键.14【分析】设DE 交AP 于点Q ,DE 交BC 于点H ,根据DE AP ⊥,确定点Q 在以AD 为直径的圆周上运动,得到当点Q 与点P 重合时,PE 最小,此时,点Q 、点P 与点H 重合,取AD 的中点O ,连接OP ,利用勾股定理求出CP ,再证明△CDP △△BPE ,利用勾股定理求出答案.解:设DE 交AP 于点Q ,DE 交BC 于点H ,△DE AP ⊥,△90AQD EQP ∠=∠=︒,△点Q 在以AD 为直径的圆周上运动,当点Q 与点P 重合时,PE 最小,此时,点Q 、点P 与点H 重合,取AD 的中点O ,连接OP ,△52OA OD OP ===,32OC =,△2CP ==, △AD △BF ,△△CPD △△BPE ,△2BP CP ==,△△CDP △△BPE ,△PE PD =【点拨】此题考查图形中的动点问题,勾股定理,全等三角形的判定及性质,相似三角形的判定,正确理解点Q 的位置与点P 的位置确定PE 的最小值位置是解题的关键.15.154##334 【分析】根据矩形的性质得90D '∠=︒,根据勾股定理得222=+A C A D CD ''',再证明A DF A D C '''△∽△得A D DF A D CD''''=,证明CDE CB A ''△∽△得CD ED CB A B '''=,分别计算DF 和DE 的长即可得解.解:△四边形ABCD 是矩形,矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A ′B ′CD ′, △90D '∠=︒,=4AD A D BC ''==,3CD CD AB '===,在Rt A CD ''△中,=90D '∠︒,△222=+A C A D CD '''',△5A C '=,2A D '=,△=DA F CA D '''∠∠,=90A DF D ''∠∠=︒,△A DF A D C '''△∽△,△A D DF A D CD ''''=, △243DF =, △DF 32=, 同理可得CDE CB A ''△∽△, △CD ED CB A B '''=, △343ED =, △ED 94=, △EF =ED +DF 154=, 故答案为:154. 【点拨】本题考查了矩形的性质,相似三角形的判定与性质,解题的关键是掌握这些知识点.16.【分析】过点D 作DT △AD 交AB 于点T ,连接ET ,连接CT 交DE 于点M ,通过推导角度可知CT =CG ,且四边形DTEC 为矩形,设CF 为x ,表示出DF ,利用相似可求出x ,进而可得结果.解:过点D 作DT △AD 交AB 于点T ,连接ET ,连接CT 交DE 于点M ,△Rt △ABC 中,△ACB =90°,AC =BC ,△△A =△B =45°,△DT △AD ,△△ADT 为等腰直角三角形,△CE =AD ,△DT =CE ,△DT ∥CE ,△DCE =90°,△四边形DTEC 为矩形,△DE =CT ,设△BCG =α,则△CDE =α,△△DCT =α,△△CTB =45°+α,△△CGT =45°+α,△CT =CG ,△DE =CG ,设CF =x ,则DE =CG =x +3,△DF =x +2,△△CFE △△DFC , △CF EF DF CF=,即2CF EF DF =⋅, △22x x =+,解得x =2或x =-1(舍),△CF =2,△DF =4,CE =AD△CD△AC故答案为:【点拨】本题考查三角形与四边形综合知识,需要同学们熟练掌握等腰直角三角形的性质、矩形的性质、相似三角形的性质与判定,选择适当的辅助线将AD =CE 这一条件联系起来是解题关键.17.8【分析】连接AC ,设2CE a =,由菱形的性质和AE BC ⊥可证()ABE ADF ASA ≌,由全等三角形的性质可得BE DF =,从而推出CEF CBD ∠=∠,由相似三角形的判定得出CEF CBD ∽△△,所以25EC EF BC BD,所以5AB AD BC a ===,3BE a =,利用勾股定理得4AE a =,然后再证明FAE ABC △∽△,由相似三角形的性质得1625AEF ABC S S =△△,即可求解.解:连接AC ,设2CE a =,△四边形ABCD 是菱形,AE BC ⊥,△AB AD DC BC ===, AD BC ∥,ABC ADC ∠=∠,CBD CDB ∠=∠,90AEB =︒∠,△90DAE AEB ∠=∠=︒,△90ABC BAE EAF DAF ∠+∠=∠+∠=︒,△EAF ABC ∠=∠,△BAE DAF ∠=∠,在ABE △和ADF 中,BAE DAF AB ADABE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, △()ABE ADF ASA ≌,△BE DF =,AE AF =,△CE CF =,△CEF CFE ∠=∠,△CBD CDB ∠=∠,BCD ECF ∠=∠, △()11802CEF ECF ∠=︒-∠,()11802CBD BCD ∠=︒-∠, △CEF CBD ∠=∠,△CEF CBD ∽△△, △25ECEF BC BD , △5BC a =,△5AB AD BC a ===,523BE BC EC a a a =-=-=,△4AE a ==,△4AF AE a ==,△45AF AE BA BC ==, 又△FAE ABC ∠=∠,△FAE ABC △∽△,△22416525AEF ABC S AE a S BC a ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭△△, △四边形ABCD 是菱形,25ABCD S =菱形, △12522ABC ADC ABCD S S S ===△△菱形, △161625825252AEF ABC S S ==⨯=△△. 故答案为:8.【点拨】本题是相似综合题,考查了菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识. 掌握菱形的性质和等腰三角形的性质,证明三角形全等和三角形相似是解题的关键.18.1(,0)4或3(4,-)2 【分析】根据位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是点A 和E 是对应顶点,B 和F 是对应顶点;另一种是点A 和G 是对应顶点,C 和E 是对应顶点.解:△平面直角坐标系中有正方形ABCD 和正方形EFGH ,点A 和点E 的坐标分别为(2,3)-,(1,1)-,△(2,0)B -,(2,1)H -,(2,0)G ,(1)当点A 和E 是对应顶点,B 和F 是对应顶点时,位似中心就是AE 与BF 的交点, 如图所示:连接AE ,交x 轴于点N ,点N 即为两个正方形的位似中心,设AE 所在直线解析式为:y kx b =+,把(2,3)A -,(1,1)E -代入得:故321k b k b=-+⎧⎨-=+⎩, 解得:4313k b ⎧=-⎪⎪⎨⎪=⎪⎩, 故4133y x =-+;当0y =时,即41033x =-+,解得14x =,即点坐标为1(4,0), ∴两个正方形的位似中心的坐标是:1(4,0).(2)当点A 和G 是对应顶点,B 和H 是对应顶点时,位似中心就是AG 与BH 的交点,如图所示:连接AG ,DF ,BH ,CE 并延长交于点M ,设AG 所在直线解析式为:y kx b =+,把(2,3)A -,(2,0)G 代入得:故3202k b k b =-+⎧⎨=+⎩, 解得:3432k b ⎧=-⎪⎪⎨⎪=⎪⎩, 故3342y x =-+; 设BH 所在直线解析式为:y mx n =+,把(2,0)B -,(2,1)H -代入得:1412m n ⎧=-⎪⎪⎨⎪=-⎪⎩, 故1142y x =--,联立直线BH 、AG 得方程组:33421142y x y x ⎧=-+⎪⎪⎨⎪=--⎪⎩,解得:432x y =⎧⎪⎨=-⎪⎩, 故3(4,)2M -, 综上所述:两个正方形的位似中心的坐标是:1(4,0)或3(4,)2-. 故答案为:1(4,0)或3(4,)2-.【点拨】此题主要考查了位似图形的性质以及函数交点求法以及位似变化中对应点的连线一定经过位似中心.注意:本题应分两种情况讨论.根据点的对应关系利用一次函数求直线的交点是解题关键.19.(1)证明见分析(2)2【分析】(1)根据三角形内角和定理,等边对等角,等角对等边确定BC =AD ,△BCD =△A ,根据相似三角形的判定定理和性质即可证明.(2)根据黄金分割的定义求出BD 的长度,根据相似三角形的判定定理和性质求出BC 2,进而即可求出BC 的长度.(1)证明:△在ABC 中,△A =36°,AB AC =, △180722A B ACB ︒-∠∠=∠==︒. △CD 为△ACB 的平分线, △1362ACD BCD ACB ∠∠=∠︒==, △△ACD =△BCD =△A .△AD =DC .△18072BDC B BCD ∠=︒-∠-∠=︒.△△BDC =△B ,△BDC >△BCD .△DC =BC ,BC >BD .△BC =AD .△AD >BD .△CBD ABC ∠=∠,△CBD ABC ∽△△. △BC BD BA BC=,即AD BD BA AD =. △点D 是腰AB 的黄金分割点.(2)解:△点D 是AB 的黄金分割点,AD BD >,△AD BD AB AD ==.△1AB =,△2AD =.△1BD =.△90ACB ∠=︒,CD 是△ABC 斜边上的高,△90ACB CDB ∠=∠=︒.△ABC CBD ∠=∠,△ACB CDB ∽△△. △AB BC CB BD=.△)2114BC AB BD =⋅==. △2BC =.【点拨】本题考查三角形内角和定理,等边对等角,等角对等边,相似三角形的判定定理和性质,综合应用这些知识点是解题关键.20.(1)见分析【分析】(1)由AE BC ∥,AE DC =,可得四边形ADCE 是平行四边形,由ABC 是等边三角形,D 是BC 的中点,得到△ADC =90°,结论得证;(2)由等边三角形的三线合一求得BD ,在Rt ABD △中,由勾股定理得AD ,BE ,由AD EC ,D 为BC 的中点,得到F 为BE 的中点,△BCE 是直角三角形,由斜边上中线等于斜边的一半得到答案.(1)证明:△AE BC ∥,AE DC =,△四边形ADCE 是平行四边形.△ABC 是等边三角形,D 是BC 的中点,△AD BC ⊥.△90ADC ∠=︒.△四边形ADCE 是矩形.(2)解:如图,△ABC 是等边三角形,4AB =,△4BC AB ==.△D 是BC 的中点,△2BD =.在Rt ABD △中,90ADB ∠=︒,△AD =△四边形ADCE 为矩形,△==EC AD 90ECB ∠=︒,AD EC ∥.△BE =△AD EC ∥,D 为BC 的中点, △1==BF BD FE DC. △F 为BE 的中点.△△BCE 是直角三角形,△12==CF BE 【点拨】此题考查了矩形判定和性质、等边三角形的性质、平行四边形的判定、平行线分线段成比例、直角三角形的性质、勾股定理等知识,熟练掌握相关图形的性质和判定是解题的关键.21.(1)见分析;(2)见分析.【分析】(1)连接AC 交BD 于O ,在BC 右侧作△CEF =△CBD ,再在射线EF 截取EF =OB ,连接AE 、AF ,即可得△AEF ;(2)延长EF 交AD 延长线于点G ,先证明四边形BEGD 是平行四边形,可得EG =BD =2EF ,△G =△CBD ,(1)解:如图,连接AC 交BD 于O ,在BC 右侧作△CEF =△CBD ,再在射线EF 截取EF =OB ,连接AE 、AF ,则△AEF 即为所要求作的三角形,再证~EAF EGA ,可得EF AE AE EG=,最后证得结果;(2)证明:延长EF 交AD 延长线于点G ,△四边形ABCD 是菱形,△AD //BC∥又△EF //BD ,EF =12BD ,△四边形BEGD 是平行四边形,△EG =BD =2EF ,△G =△CBD ,又△在菱形ABCD 中,△CBD =12△ABC ,12EAF ABC ∴∠=∠, EAF G ∴∠=∠,又△AEF GEA ∠=∠,~EAF EGA ∴,EF AE AE EG∴=, 2222AE EF EG EF EF EF ∴=⋅=⋅=,AE ∴=;【点拨】本题考查作图-复杂作图、相似三角形的性质与判定、菱形的性质、平行四边形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.跷跷板AB 的支撑点O 到地面的距离为0.6米.【分析】过点B 作BN ⊥AH 于点N ,AM ⊥BH 于点M ,直接利用相似三角形的判定与性质分别得出OH AO BN AB=,OH BO AM AB =,即可得出答案. 解:如图所示:过点B 作BN ⊥AH 于点N ,AM ⊥BH 于点M ,可得HO ∥BN ,则△AOH ∽△ABN , 故OH AO BN AB=, ∵AB 长为3米,BN 长为1.5米, ∴1.53OH AO =, ∴2OH OA =同理可得:△BOH ∽△BAM , 则OH BO AM AB=, ∵AB 长为3米,AM 长为1米, ∴313OH AO -=,即3213OH OH -= ∴OH =0.6,答:跷跷板AB 的支撑点O 到地面的距离为0.6米.【点拨】此题主要考查了相似三角形的应用,正确得出比例式,建立方程是解题关键.23.(1)见分析;(2;(3)见分析 【分析】(1)由矩形的形及已知证得△EAF△△DAB ,则有△E=△ADB ,进而证得△EGB=90º即可证得结论;(2)设AE=x ,利用矩形性质知AF△BC ,则有EA AF EB BC=,进而得到x 的方程,解之即可;(3)在EF 上截取EH=DG ,进而证明△EHA△△DGA ,得到△EAH=△DAG ,AH=AG ,则证得△HAG 为等腰直角三角形,即可得证结论.解:(1)△四边形ABCD 是矩形,△△BAD=△EAD=90º,AO=BC ,AD△BC ,在△EAF 和△DAB ,AE AD EAF DAB AF AB =⎧⎪∠=∠⎨⎪=⎩,△△EAF△△DAB(SAS),△△E=△BDA ,△△BDA+△ABD=90º,△△E+△ABD=90º,△△EGB=90º,△BG△EC ;(2)设AE=x ,则EB=1+x ,BC=AD=AE=x ,△AF△BC ,△E=△E ,△△EAF△△EBC , △EA AF EB BC =,又AF=AB=1, △11x x x=+即210x x --=,解得:x =x =(舍去) 即; (3)在EG 上截取EH=DG ,连接AH ,在△EAH 和△DAG ,AE AD HEA GDA EH DG =⎧⎪∠=∠⎨⎪=⎩,△△EAH△△DAG(SAS),△△EAH=△DAG ,AH=AG ,△△EAH+△DAH=90º,△△DAG+△DAH=90º,△△HAG=90º,△△GAH 是等腰直角三角形,△222AH AG GH +=即222AG GH =,,△GH=EG -EH=EG -DG ,△EG DG -=.【点拨】本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角定义、相似三角形的判定与性质、解一元二次方程等知识,涉及知识面广,解答的关键是认真审题,提取相关信息,利用截长补短等解题方法确定解题思路,进而推理、探究、发现和计算.24.(1)证明见分析;(2)四边形PMBN 是菱形,理由见分析;(3)49EF AE = 【分析】(1)过点P 作PG△AB 于点G ,易知四边形DPGA ,四边形PCBG 是矩形,所以AD=PG ,DP=AG ,GB=PC ,易证△APG△△PBG ,所以PG 2=AG•GB ,即AD 2=DP•PC ;(2)DP△AB ,所以△DPA=△PAM ,由题意可知:△DPA=△APM ,所以△PAM=△APM ,由于△APB -△PAM=△APB -△APM ,即△ABP=△MPB ,从而可知PM=MB=AM ,又易证四边形PMBN 是平行四边形,所以四边形PMBN 是菱形;(3)由于12DP AD =,可设DP=k ,AD=2k ,由(1)可知:AG=DP=k ,PG=AD=2k ,从而求出GB=PC=4k ,AB=AG+GB=5k ,由于CP△AB ,从而可证△PCF△△BAF ,△PCE△△MAE ,从而可得59AF AC =,513AE AC =,从而可求出EF=AF -AE=59AC -513AC =20117AC ,从而可得2041175913AC EF AE AC ==. 解:(1)过点P 作PG△AB 于点G ,△易知四边形DPGA,四边形PCBG是矩形,△AD=PG,DP=AG,GB=PC△△APB=90°,△△APG+△GPB=△GPB+△PBG=90°,△△APG=△PBG,△△APG△△PBG,△PG GB AG PG=,△PG2=AG•GB,即AD2=DP•PC;(2)△DP△AB,△△DPA=△PAM,由题意可知:△DPA=△APM,△△PAM=△APM,△△APB-△PAM=△APB-△APM,即△ABP=△MPB△AM=PM,PM=MB,△PM=MB,又易证四边形PMBN是平行四边形,△四边形PMBN是菱形;(3)由于12 DPAD,可设DP=k,AD=2k,由(1)可知:AG=DP=k,PG=AD=2k,△PG2=AG•GB,△4k2=k•GB,△GB=PC=4k,AB=AG+GB=5k,△CP△AB,△△PCF△△BAF,△45 CF PCAF AB==,△59 AFAC=,又易证:△PCE△△MAE,AM=12AB=52k,△48552CE PC kAE AM k===△513 AEAC=,△EF=AF-AE=59AC-513AC=20117AC,△2041175913ACEFAE AC==.【点拨】本题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.。

数学相似的专项培优 易错 难题练习题(含答案)含答案解析

数学相似的专项培优 易错 难题练习题(含答案)含答案解析

一、相似真题与模拟题分类汇编(难题易错题)1.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.(1)求证:AF⊥BE;(2)求证:AD=3DI.【答案】(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,∴AD=BD=CD,∠ACB=45°,∵在△ADC中,AD=DC,DE⊥AC,∴AE=CE,∵△CDE沿直线BC翻折到△CDF,∴△CDE≌△CDF,∴CF=CE,∠DCF=∠ACB=45°,∴CF=AE,∠ACF=∠DCF+∠ACB=90°,在△ABE与△ACF中,,∴△ABE≌△ACF(SAS),∴∠ABE=∠FAC,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE(2)证明:作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°∴四边形DECF是正方形,∴EC∥DF,EC=DF,∴∠EAH=∠HFD,AE=DF,在△AEH与△FDH中,∴△AEH≌△FDH(AAS),∴EH=DH,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE,∵M是IC的中点,E是AC的中点,∴EM∥AI,∴,∴DI=IM,∴CD=DI+IM+MC=3DI,∴AD=3DI【解析】【分析】(1)根据翻折的性质和SAS证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=90°,可证得结论。

(2)作IC的中点M,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。

相似三角形专题练习(培优)附答案

相似三角形专题练习(培优)附答案

相似三角形专题练习(培优)附答案一、基础知识(不局限于此)(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:bc ad d c b a =⇔= ac b c bb a =⇔=2 (2)合比定理:d dc b b ad c b a ±=±⇒= (3)等比定理:)0.(≠+++=++++++⇒==n d b ban d b m c a n m d c b a3.黄金分割:如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定● (1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。

● (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

● (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

● (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

4.相似三角形的性质● (1)对应边的比相等,对应角相等. ● (2)相似三角形的周长比等于相似比.● (3)相似三角形的面积比等于相似比的平方.● (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 5.三角形中位线定义:连接三角形两边中点的线段 叫做三角形的中位线. 三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。

6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半. 7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。

如求河的宽度、求建筑物的高度等。

中考数学复习《相似》专题训练-附带有答案

中考数学复习《相似》专题训练-附带有答案

中考数学复习《相似》专题训练-附带有答案一、单选题1.已知△ABC∽△A′B′C′,BCA′C′=23,ABA′B′=34则△ABC与△A′B′C′的面积之比为()A.49B.23C.916D.342.在△ABC中,点D、E分别在边AB、AC上,联结DE,那么下列条件中不能判断△ADE和△ABC相似的是()A.DE∥BC B.∠AED=∠BC.AE:AD=AB:AC D.AE:DE=AC:BC3.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A.1 B.2 C.3 D.44.如图,E是矩形ABCD的边CD上的点,BE交AC于O,已知△COE与△BOC的面积分别为2和8,则四边形AOED的面积为()A.16 B.32 C.38 D.405.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(6,0),则点A的坐标为()A.(3,5)B.(3,6)C.(2,6)D.(3,8)6.如图,直线,直线AC分别交,和于点A,B,C,直线DF分别交,和于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()A.B.2 C.D.7.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A.(-2,3)B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3)8.两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P是线段AB上一点(AP>BP),若满足BPAP =APAB,则称点P是AB的黄金分割点,世界上最有名的建筑物中几乎都包含“黄金分割”,若图中AB=8,则BP的长度是()A.12−4√5B.4+4√5C.4√5−4D.2二、填空题9.如图,在Rt△ABC中,∠A=30°,D是斜边AB的中点,G是Rt△ABC的重心,GE⊥AC于点E.若BC=6 cm,则GE= cm.10.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为.的图象11.如图,一次函数y=x+b(b>0)的图象与x轴交于点A,与y轴交于点B,与反比例函数y=8x交于点C,若AB=BC,则b的值为.12.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为.13.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,交BC于点E,若BD=6,AE=5,AB =7,则AC=.三、解答题14.如图,F为平行四边形ABCD的边AD的延长线上的一点,BF分别交于CD、AC于G、E,若EF=32,GE=8,求BE.15.在△ABC中,点D、E、F分别在AC、AB、BC上,且DE=3,BF=4.5,ADAC =AEAB=25求证:EF∥AC.16.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,求BF的长度.17.如图,AB是⊙O的弦,点C是AB⌢的中点,连接BC,过点A作AD∥BC交⊙O于点D.连接CD,延长DA 至E,连接CE,使CD=CE.(1)求证:CE是⊙O的切线;(2)若AB=6,AE=4求AD的长.18.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且ADAC =DFCG.(1)求证:△ADF∽△ACG;(2)若ADAC =12,求AFFG的值.答案1.C2.D3.B4.C5.B6.D7.D8.A9.210.2√5cm11.212.(2.5,5)13.45714.解答:设BE=x∵EF=32,GE=8∴ FG=32-8=24∵平行四边形ABCD∴AD∥BC∴△AFE∽△CBE∴EFEB =AFBC则32x =AD+DFBC=DFBC+1∵DG∥AB∴△DFG∽△CBG∴DFBC =FGBG则DFBC =248+x则32x =248+x+1解得:x=±16(负数舍去)故BE=16.15.证明:∵AD AC=AE AB =25∠DAE =∠CAB ∴△ADE ∽△ACB ∴DE BC =AD AC =25,∠AED =∠B ∴DE ∥BC ∵DE =3 ∴BC =7.5 ∵BF =4.5∴CF =BC −BF =7.5−4.5=3=DE又∵DE ∥CF∴四边形CDEF 是平行四边形 ∴EF ∥CD ,即EF ∥AC .16.解:设BF=x ,则CF=4﹣x ,由翻折的性质得B ′F=BF=x ,当△B ′FC ∽△ABC ,∴B′FAB =CFBC 即x3=4−x 4解得x=127,即BF=127.当△FB ′C ∽△ABC ,∴FB′AB =FCAC 即x3=4−x 4,解得:x=2.∴BF 的长度为:2或127.17.(1)证明:连接OC ,如图所示:∵AB ⌢=AB ⌢,OC 过圆心 ∴OC ⊥AB ∵CD =CE ∴∠E =∠D ∵AD ∥BC ∴∠DAB =∠B ∵∠B =∠D ∴∠B =∠DAB ∴AB ∥EC ∵OC ⊥AB∴OC ⊥EC ∵OC 为半径 ∴CE 是⊙O 的切线(2)解:连接AC ,如图所示:∵AE ∥BC ,AB ∥EC∴四边形AECB 是平行四边形∠ACE =∠CAB ∴EC =AB =6 ∵AC⌢=BC ⌢ ∴∠CAB =∠B ∴∠ACE =∠B ∵∠B =∠D ∴∠D =∠ACE ∵∠E =∠E ∴△CDE ∽△ACE ∴ECAE =ED EC∵EC =6,AE =4 ∴ED =9∴AD =ED −AE =9−4=518.(1)证明:∵∠AED=∠B ,∠DAE=∠DAE ∴∠ADF=∠C ∵AD AC =DFCG ∴△ADF ∽△ACG(2)解:∵△ADF ∽△ACG ∴AD AC = AFAG又∵AD AC =12 ∴AFAG = 12∴AF FG=1。

备战中考数学——相似的综合压轴题专题复习及答案解析

备战中考数学——相似的综合压轴题专题复习及答案解析

备战中考数学——相似的综合压轴题专题复习及答案解析一、相似真题与模拟题分类汇编(难题易错题)1.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.【答案】(1)解:结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴ = = ,∴CF=2DG(2)解:作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG= ,EG= ,DH= = ,∴EH=2DH=2 ,∴HM= =2,∴DM=CN=NK= =1,在Rt△DCK中,DK= = =2 ,∴△PCD的周长的最小值为10+2 .【解析】【分析】(1)结论:CF=2DG.理由如下:根据正方形的性质得出AD=BC=CD=AB,∠ADC=∠C=90°,根据中点的定义得出AD=CD=2DE,根据同角的余角相等得出∠CDF=∠DEG,从而判断出△DEG∽△CDF,根据相似三角形对应边的比等于相似比即可得出结论;(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK,由题意得CD=AD=10,ED=AE=5,DG=,EG=,根据面积法求出DH的长,然后可以判断出△DEH相似于△GDH,根据相似三角形对应边的比等于相似比得出EH=2DH=,再根据面积法求出HM的长,根据勾股定理及矩形的性质及对称的性质得出DM=CN=NK= 1,在Rt△DCK中,利用勾股定理算出DK的长,从而得出答案。

中考数学 相似 培优练习(含答案)附详细答案

中考数学 相似 培优练习(含答案)附详细答案

中考数学相似培优练习(含答案)附详细答案一、相似1.如图,在中,,于点,点在上,且,连接.(1)求证:(2)如图,将绕点逆时针旋转得到(点分别对应点),设射线与相交于点,连接,试探究线段与之间满足的数量关系,并说明理由.【答案】(1)证明:在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴(2)解:方法1:如图1,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,∴点C,H,G,A四点共圆,∴∠CGH=∠CAH,设CG与AH交于点Q,∵∠AQC=∠GQH,∴△AQC∽△GQH,∴,∵△EHF是由△BHD绕点H逆时针旋转30°得到,由(1)知,BD=AC,∴EF=AC∴即:EF=2HG.方法2:如图2,取EF的中点K,连接GK,HK,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,由旋转知,∠EHF=90°,∴EK=HK= EF∴EK=GK= EF,∴HK=GK,∵EK=HK,∴∠FKG=2∠AEF,∵EK=GK,∴∠HKF=2∠HEF,由旋转知,∠AHF=30°,∴∠AHE=120°,由(1)知,BH=AH,∵BH=EH,∴AH=EH,∴∠AEH=30°,∴∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,∴△HKG是等边三角形,∴GH=GK,∴EF=2GK=2GH,即:EF=2GH.【解析】【分析】(1)根据等腰直角三角形的性质得出AH=BH,然后由SAS判断出△BHD≌△AHC,根据全等三角形对应角相等得出答案;(2)方法1:如图1,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,从而得出点C,H,G,A四点共圆,根据圆周角定理同弧所对的圆周角相等得出∠CGH=∠CAH,根据对顶角相等得出∠AQC=∠GQH,从而得出△AQC∽△GQH,根据全等三角形对应边成比例得出 A C∶ H G = A Q∶ G Q = 1 ∶sin 30 ° = 2,根据旋转的性质得出EF=BD,由(1)知,BD=AC,从而得出EF=ACEF=BD,由E F∶ H G = A C∶ G H = A Q∶ G Q = 1∶ sin 30 ° = 2得出结论;方法2:如图2,取EF的中点K,连接GK,HK,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,由旋转知,∠EHF=90°,根据直角三角形斜边上的中线等于斜边的一半得出EK=HK= EF,EK=GK= EF,从而得出HK=GK,根据等边对等角及三角形的外角定理得出∠FKG=2∠AEF,∠HKF=2∠HEF,由旋转知,∠AHF=30°,故∠AHE=120°,由(1)知,BH=AH,根据等量代换得出AH=EH,根据等边对等角得出∠AEH=30°,∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,根据有一个角为60°的等腰三角形是等边三角形得出△HKG是等边三角形,根据等边三角形三边相等得出GH=GK,根据等量代换得出EF=2GK=2GH。

中考数学培优专题复习相似练习题含答案

中考数学培优专题复习相似练习题含答案

中考数学培优专题复习相似练习题含答案一、相似1.如图,△ABC是一锐角三角形余料,边BC=16cm,高AD=24cm,要加工成矩形零件,使矩形的一边在BC上,其余两个顶点E、F分别在AB、AC上.求:(1)AK为何值时,矩形EFGH是正方形?(2)若设AK=x,S EFGH=y,试写出y与x的函数解析式.(3)x为何值时,S EFGH达到最大值.【答案】(1)解:设边长为xcm,∵矩形为正方形,∴EH∥AD,EF∥BC,根据平行线的性质可以得出: = 、 = ,由题意知EH=x,AD=24,BC=16,EF=x,即 = , = ,∵BE+AE=AB,∴ + = + =1,解得x= ,∴AK= ,∴当时,矩形EFGH为正方形(2)解:设AK=x,EH=24-x,∵EHGF为矩形,∴ = ,即EF= x,∴S EFGH=y= x•(24-x)=- x2+16x(0<x<24)(3)解:y=- x2+16x配方得:y= (x-12)2+96,∴当x=12时,S EFGH有最大值96【解析】【分析】(1)设出边长为xcm,由正方形的性质得出,EH∥AD,EF∥BC,根据平行线的性质,可以得对应线段成比例,代入相关数据求解即可。

(2)设AK=x,则EH=16-x,根据平行的两三角形相似,再根据相似三角形的对应边上的高之比等于相似比,用含x的代数式表示出EF的长,根据矩形面积公式即可得出y与x的函数解析式。

(3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质可得出矩形EFGH的面积取最大值时的x的值。

2.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M 的坐标;如果不存在,请说明理由.【答案】(1)解:∴代入,得解得∴抛物线对应二次函数的表达式为:(2)解:如图,设直线CD切⊙P于点E.连结PE、PA,作点.由得对称轴为直线x=1,∴∴∴为等腰直角三角形.∴∴∴∴为等腰三角形.设∴在中,∴∴整理,得解得,∴点P的坐标为或(3)解:存在点M,使得∽.如图,连结∵∴为等腰直角三角形,∴由(2)可知,∴∴分两种情况.当时,∴,解得.∴∴当时,∴,解得∴∴综上,点M的坐标为或【解析】【分析】(1)用待定系数法即可求解;(2)由(1)中的解析式易求得抛物线的对称轴为直线x=1,顶点D(1,4),点C(0,3),由题意可设点P(1,m),计算易得△DCF为等腰直角三角形,△DEP为等腰三角形,在直角三角形PED和APQ中,用勾股定理可将PE、PA用含m的代数式表示出来,根据PA=PE可列方程求解;(3)由△DCM∽△BQC所得比例式分两种情况:或,根据所得比例式即可求解。

中考数学培优专题复习相似练习题附详细答案

中考数学培优专题复习相似练习题附详细答案

中考数学培优专题复习相似练习题附详细答案一、相似1.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证:(1)∠OAE=∠OBE;(2)AE=BE+ OE.【答案】(1)证明:在等腰Rt△ABC中,O为斜边AC的中点,∴OB⊥AC,∴∠AOB=90°,∵∠AEB=90°,∴A,B,E,O四点共圆,∴∠OAE=∠OBE(2)证明:在AE上截取EF=BE,则△EFB是等腰直角三角形,∴,∠FBE=45°,∵在等腰Rt△ABC中,O为斜边AC的中点,∴∠ABO=45°,∴∠ABF=∠OBE,∵,∴,∴△ABF∽△BOE,∴ = ,∴AF= OE,∵AE=AF+EF,∴AE=BE+ OE.【解析】【分析】(1)利用等腰直角三角形的性质,可证得∠AOB=∠AEB=90°,可得出A,B,E,O四点共圆,再利用同弧所对的圆周角相等,可证得结论。

(2)在AE上截取EF=BE,易证△EFB是等腰直角三角形,可得出BF与BE的比值为,再证明∠ABF=∠OBE,AB与BO的比值为,就可证得AB、BO、BF、BE四条线段成比例,然后利用两组对应边成比例且夹角相等的两三角形相似,可证得△ABF∽△BOE,可证得AF= OE,由AE=AF+EF,可证得结论。

2.如图,在一块长为a(cm),宽为b(cm)(a>b)的矩形黑板的四周,镶上宽为x(cm)的木板,得到一个新的矩形.(1)试用含a,b,x的代数式表示新矩形的长和宽;(2)试判断原矩形的长、宽与新矩形的长、宽是不是比例线段,并说明理由.【答案】(1)解:由原矩形的长、宽分别为a(cm),b(cm),木板宽为x(cm),可得新矩形的长为(a+2x)cm,宽为(b+2x)cm(2)解:假设两个矩形的长与宽是成比例线段,则有,由比例的基本性质,得ab+2bx=ab+2ax,∴2(a-b)x=0.∵a>b,∴a-b≠0,∴x=0,又∵x>0,∴原矩形的长、宽与新矩形的长、宽不是比例线段.【解析】【分析】(1)根据已知,观察图形,可得出新矩形的长和宽。

中考数学培优专题复习相似练习题附答案

中考数学培优专题复习相似练习题附答案

中考数学培优专题复习相似练习题附答案一、相似1.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=________,PD=________.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q 的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.【答案】(1)8-2t;(2)解:不存在在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10∵PD∥BC,∴△APD∽△ACB,∴,即,∴AD= ,∴BD=AB-AD=10- ,∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形,即8-2t= ,解得:t= .当t= 时,PD= ,BD=10- ,∴DP≠BD,∴▱PDBQ不能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8-vt,PD= ,BD=10- ,要使四边形PDBQ为菱形,则PD=BD=BQ,当PD=BD时,即 =10- ,解得:t=当PD=BQ,t= 时,即,解得:v=当点Q的速度为每秒个单位长度时,经过秒,四边形PDBQ是菱形.(3)解:如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴,解得,∴直线M1M2的解析式为y=-2x+6.∵点Q(0,2t),P(6-t,0)∴在运动过程中,线段PQ中点M3的坐标(,t).把x= 代入y=-2x+6得y=-2× +6=t,∴点M3在直线M1M2上.过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2=2∴线段PQ中点M所经过的路径长为2 单位长度.【解析】【解答】(1)根据题意得:CQ=2t,PA=t,∴QB=8-2t,∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,∴∠APD=90°,∴tanA= ,∴PD= .【分析】CQ=2t,PA=t,可得QB=8﹣2t,根据tanA=,可以表示PD;易得△APD∽△ACB,即可求得AD与BD的长,由BQ∥DP,可得当BQ=DP时,四边形PDBQ是平行四边形;求得此时DP与BD的长,由DP≠BD,可判定▱PDBQ不能为菱形;然后设点Q 的速度为每秒v个单位长度,由要使四边形PDBQ为菱形,则PD=BD PD=BQ,列方程即可求得答案.以C为原点,以AC所在的直线为x轴,建立平面直角坐标系,求出直线M1M2解析式,证明M3在直线M1M2上,利用勾股定理求出M1M2.2.如图,抛物线y=x2+bx+c经过B(-1,0),D(-2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q、P.(1)求抛物线的解析式;(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?【答案】(1)解:把B(﹣1,0),D(﹣2,5)代入,得:,解得:,∴抛物线的解析式为:(2)解:存在点P,使∠APB=90°.当y=0时,即x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴OB=1,OA=3.设P(m,m2﹣2m﹣3),则﹣1≤m≤3,PH=﹣(m2﹣2m﹣3),BH=1+m,AH=3﹣m,∵∠APB=90°,PH⊥AB,∴∠PAH=∠BPH=90°﹣∠APH,∠AHP=∠PHB,∴△AHP∽△PHB,∴,∴PH2=BH•AH,∴[﹣(m2﹣2m﹣3)]2=(1+m)(3﹣m),解得m1= ,m2= ,∴点P的横坐标为:或(3)解:如图,过点D作DN⊥x轴于点N,则DN=5,ON=2,AN=3+2=5,∴tan∠DAB= =1,∴∠DAB=45°.过点D作DK∥x 轴,则∠KDQ=∠DAB=45°,DQ= QG.由题意,动点M运动的路径为折线BQ+QD,运动时间:t=BQ+ DQ,∴t=BQ+QG,即运动的时间值等于折线BQ+QG的长度值.由垂线段最短可知,折线BQ+QG的长度的最小值为DK与x轴之间的垂线段.过点B作BH⊥DK于点H,则t最小=BH,BH与直线AD的交点,即为所求之Q点.∵A(3,0),D(﹣2,5),∴直线AD的解析式为:y=﹣x+3,∵B点横坐标为﹣1,∴y=1+3=4,∴Q(﹣1,4).【解析】【分析】(1)把点B,D的坐标代入二次函数中组成二元一次方程组,解方程组即可得到抛物线的解析式;(2)先按照存在点P使∠APB=90°,先根据抛物线的解析式求得点A,B的坐标,设出点P的坐标,根据点P的位置确定m的取值范围,再证△AHP∽△PHB,从而得到PH2=BH•AH,即可列出关于m的方程,解方程即可得到m即点P的横坐标,且横坐标在所求范围内,从而说明满足条件的点P存在;(3)先证明∠DAB=45°,从而证得DQ= 2 QG,那么运动时间t值等于折线BQ+QG的长度值,再结合垂线段最短确定点Q的位置,再求得点Q的坐标即可.3.已知,如图1,抛物线y=ax2+bx+3与x轴交于点B、C,与y轴交于点A,且AO=CO,BC=4.(1)求抛物线解析式;(2)如图2,点P是抛物线第一象限上一点,连接PB交y轴于点Q,设点P的横坐标为t,线段OQ长为d,求d与t之间的函数关系式;(3)在(2)的条件下,过点Q作直线l⊥y轴,在l上取一点M(点M在第二象限),连接AM,使AM=PQ,连接CP并延长CP交y轴于点K,过点P作PN⊥l于点N,连接KN、CN、CM.若∠MCN+∠NKQ=45°时,求t值.【答案】(1)解:如图1,当x=0时,y=3,∴A(0,3),∴OA=OC=3,∵BC=4,∴OB=1,∴B(﹣1,0),C(3,0),把B(﹣1,0),C(3,0)代入抛物线y=ax2+bx+3中得:,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)解:如图2,设P(t,﹣t2+2t+3)(0<t<3),过P作PG⊥x轴于G,∵OQ∥PG,∴△BOQ∽△BGP,∴,∴,∴d=d=﹣t+3(0<t<3)(3)解:如图3,连接AN,延长PN交x轴于G,由(2)知:OQ=3﹣t,OA=3,∴AQ=OA﹣OQ=3﹣(3﹣t)=t,∴QN=OG=AQ=t,∴△AQN是等腰直角三角形,∴∠QAN=45°,AN= t,∵PG∥OK,∴,∴,OK=3t+3,AK=3t,∵∠QAN=∠NKQ+∠ANK,。

中考数学 相似 培优练习(含答案)含答案

中考数学 相似 培优练习(含答案)含答案

中考数学相似培优练习(含答案)含答案一、相似1.已知抛物线y=ax2+bx+5与x轴交于点A(1,0)和点B(5,0),顶点为M.点C在x轴的负半轴上,且AC=AB,点D的坐标为(0,3),直线l经过点C、D.(1)求抛物线的表达式;(2)点P是直线l在第三象限上的点,联结AP,且线段CP是线段CA、CB的比例中项,求tan∠CPA的值;(3)在(2)的条件下,联结AM、BM,在直线PM上是否存在点E,使得∠AEM=∠AMB.若存在,求出点E的坐标;若不存在,请说明理由.【答案】(1)解:∵抛物线与x轴交于点A(1,0),B(5,0),∴ ,解得∴抛物线的解析式为(2)解:∵ A(1,0),B(5,0),∴ OA=1,AB=4.∵ AC=AB且点C在点A的左侧,∴ AC=4 .∴ CB=CA+AB=8.∵线段CP是线段CA、CB的比例中项,∴ .∴ CP= .又∵∠PCB是公共角,∴△CPA∽△CBP .∴∠CPA= ∠CBP.过P作PH⊥x轴于H.∵ OC=OD=3,∠DOC=90°,∴∠DCO=45°.∴∠PCH=45°∴ PH=CH=CP =4,∴ H(-7,0),BH=12,∴ P(-7,-4),∴,tan∠CPA= .(3)解:∵抛物线的顶点是M(3,-4),又∵ P(-7,-4),∴ PM∥x轴 .当点E在M左侧,则∠BAM=∠AME.∵∠AEM=∠AMB,∴△AEM∽△BMA.∴ ,∴ .∴ ME=5,∴ E(-2,-4).过点A作AN⊥PM于点N,则N(1,-4).当点E在M右侧时,记为点,∵∠A N=∠AEN,∴点与E 关于直线AN对称,则(4,-4).综上所述,E的坐标为(-2,-4)或(4,-4).【解析】【分析】(1)用待定系数法即可求解。

即;由题意把A(1,0),B(5,0),代入解析式可得关于a、b的方程组,a + b + 5 = 0 ,25 a + 5 b + 5 = 0 ,解得a=1、b=-6,所以抛物线的解析式为 y =− 6 x + 5;(2)过P作PH⊥x轴于H.由题意可得OA=1,AB=4.而AC=AB且点C在点A的左侧,所以AC=4 ,则CB=CA+AB=8,已知线段CP是线段CA、CB的比例中项,所以,解得CP=4,因为∠PCB是公共角,所以根据相似三角形的判定可得△CPA∽△CBP ,所以∠CPA= ∠CBP;因为OC=OD=3,∠DOC=90°,∠DCO=45°.所以∠PCH=45°,在直角三角形PCH中,PH=CH=CP sin 45 ∘=4,所以H(-7,0),BH=12,则P(-7,-4),在直角三角形PBH中,tan ∠ CBP ==tan∠CPA;(3)将(1)中的解析式配成顶点式得y=-4,所以抛物线的顶点是M(3,-4),而P点的纵坐标也为-4,所以PM∥x轴.分两种情况讨论:当点E在M左侧,则∠BAM=∠AME,而∠AEM=∠AMB,根据相似三角形的判定可得△AEM∽△BMA,所以可得比例式,即,解得ME=5,所以E(-2,-4);当点E在M右侧时,记为点E ′ ,过点A作AN⊥PM于点N,则N(1,-4),因为∠A E ′ N=∠AEN,所以根据轴对称的意义可得点E ′ 与E 关于直线AN对称,则(4,-4).2.定义:如图,若点D在的边AB上,且满足,则称满足这样条件的点为的“理想点”(1)如图,若点D是的边AB的中点,,,试判断点D是不是的“理想点”,并说明理由;(2)如图,在中,,,,若点D是的“理想点”,求CD的长;(3)如图,已知平面直角坐标系中,点,,C为x轴正半轴上一点,且满足,在y轴上是否存在一点D,使点A,B,C,D中的某一点是其余三点围成的三角形的“理想点” 若存在,请求出点D的坐标;若不存在,请说明理由.【答案】(1)解:结论:点D是的“理想点”.理由:如图中,是AB中点,,,,,,,,∽,,点D是的“理想点”,(2)解:如图中,点D是的“理想点”,或,当时,,,,当时,同法证明:,在中,,,,,,.(3)解:如图中,存在有三种情形:过点A作交CB的延长线于M,作轴于H.,,,,,,,≌,,,设,,,,,,,,,,解得或舍弃,经检验是分式方程的解,,,①当时,点A是的“理想点” 设,,,∽,,,解得,.②当时,点A是的“理想点”.易知:,,.③当时,点B是的“理想点”.易知:,,.综上所述,满足条件的点D坐标为或或 .【解析】【分析】(1)结论:点D是的“理想点” 只要证明∽即可解决问题;(2)只要证明即可解决问题;(3)如图中,存在有三种情形:过点A作交CB的延长线于M,作轴于构造全等三角形,利用平行线分线段成比例定理构建方程求出点C坐标,分三种情形求解即可解决问题;3.如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连结AB.点P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于D,作DE⊥AC于E.F为射线CB上一点,且∠CEF=∠ABC.设点P的运动时间为x(秒).(1)用含有x的代数式表示CE的长;(2)求点F与点B重合时x的值;(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式;(4)当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值. 【答案】(1)解:∵∠C=90°,PD⊥BC,∴DP∥AC,∴△DBP∽△ABC,四边形PDEC为矩形,CE=PD..∴ .∴CE=6x;(2)解:∵∠CEF=∠ABC,∠C为公共角,∴△CEF∽△CBA,∴ .∴ .当点F与点B重合时,CF=CB,9x=20.解得 .(3)解:当点F与点P重合时,BP+CF=CB,4x+9x=20,解得 .当时,=-51x2+120x.当<x≤ 时,= (20-4x)2.(或)(4)解:①如图③,当PD=PF时,6x=20-13x,解得:x= ;△B′DE为拼成的三角形;②如图④当点F与点P重合时,4x+9x=20,解得:x= ;△BDC为拼成的三角形;③如图⑤,当DE=PB,20-4x=4x,解得:x= ,△DPF为拼成的三角形.【解析】【分析】(1)首先证明△ABC∽△DBP∽△FEC,即可得出比例式进而得出表示CE的长;(2)根据当点F与点B重合时,FC=BC,即可得出答案;(3)首先证明Rt△DOE∽Rt△CEF,得出,即可得出y与x之间的函数关系式;(4)根据三角形边长相等得出答案.4.如图1,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)请直接写出PM与PN的数量关系及位置关系________;(2)现将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H.请直接写出PM与PN的数量关系及位置关系________;(3)若图2中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图3,写出PM与PN的数量关系,并加以证明.【答案】(1)PM⊥PN,PM=PN(2)PM=PN,PM⊥PN(3)解:PM=kPN,∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE,∵点P、M、N分别为AD、AB、DE的中点,∴PM= BD,PN= AE.∴PM=kPN.【解析】【解答】解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠BCD=90°,∴∠CBD+∠BDC=90°,∴∠EAC+∠BDC=90°∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM= BD,PN= AE,∴PM=PN,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM∥BC,PN∥AE,∴∠NPD=∠EAC,∠MPN=∠BDC,∵∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案为:PM⊥PN,PM=PN;( 2 )PM=PN,PM⊥PN,理由:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS).∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM= BD,PM∥BD;PN= AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.故答案为:PM⊥PN,PM=PN【分析】(1)利用等腰直角三角形的性质得出结论判断出△ACE≌△BCD,得出AE=BD,再用三角形的中位线即可得出结论;(2)同(1)的方法即可得出结论;(3)利用两边对应成比例夹角相等,判断出△BCD∽△ACE,得出BD=kAE,最后用三角形的中位线即可得出结论.5.在平面直角坐标系中,点 A 点 B 已知满足.(1)点A的坐标为________,点B的坐标为________;(2)如图1,点E为线段OB上一点,连接AE,过A作AF⊥AE,且AF=AE,连接BF交轴于点D,若点D(-1,0),求点E的坐标;(3)在(2)的条件下,如图2,过E作EH⊥OB交AB于H,点M是射线EH上一点(点M不在线段EH上),连接MO,作∠MON=45°,ON交线段BA的延长线于点N,连接MN,探究线段MN与OM的关系,并说明理由。

中考数学培优专题复习相似练习题含详细答案

中考数学培优专题复习相似练习题含详细答案

中考数学培优专题复习相似练习题含详细答案一、相似1.如图,在平面直角坐标系中,直线y=﹣ x+ 与x轴、y轴分别交于点B、A,与直线y= 相交于点C.动点P从O出发在x轴上以每秒5个单位长度的速度向B匀速运动,点Q从C出发在OC上以每秒4个单位长度的速度,向O匀速运动,运动时间为t秒(0<t<2).(1)直接写出点C坐标及OC、BC长;(2)连接PQ,若△OPQ与△OBC相似,求t的值;(3)连接CP、BQ,若CP⊥BQ,直接写出点P坐标.【答案】(1)解:对于直线y=﹣ x+ ,令x=0,得到y= ,∴A(0,),令y=0,则x=10,∴B(10,0),由,解得,∴C(,).∴OC= =8,BC= =10(2)解:①当时,△OPQ∽△OCB,∴,∴t= .②当时,△OPQ∽△OBC,∴,∴t=1,综上所述,t的值为或1s时,△OPQ与△OBC相似(3)解:如图作PH⊥OC于H.∵OC=8,BC=6,OB=10,∴OC2+BC2=OB2,∴∠OCB=90°,∴当∠PCH=∠CBQ时,PC⊥BQ.∵∠PHO=∠BCO=90°,∴PH∥BC,∴,∴,∴PH=3t,OH=4t,∴tan∠PCH=tan∠CBQ,∴,∴t= 或0(舍弃),∴t= s时,PC⊥BQ.【解析】【分析】(1)根据直线与坐标轴交点的坐标特点求出A,B点的坐标,解联立直线AB,与直线OC的解析式组成的方程组,求出C点的坐标,根据两点间的距离公式即可直接算出OC,OB的长;(2)根据速度乘以时间表示出OP=5t,CQ=4t,OQ=8-4t,①当OP∶OC=OQ∶OB时,△OPQ∽△OCB,根据比例式列出方程,求解得出t的值;②当OP∶OB=OQ∶OC时,△OPQ∽△OBC,根据比例式列出方程,求解得出t的值,综上所述即可得出t的值;(3)如图作PH⊥OC于H.根据勾股定理的逆定理判断出∠OCB=90°,从而得出当∠PCH=∠CBQ时,PC⊥BQ.根据同位角相等二直线平行得出PH∥BC,根据平行线分线段成比例定理得出OP∶OB=PH∶BC=OH∶OC,根据比例式得出PH=3t,OH=4t,根据等角的同名三角函数值相等及正切函数的定义,由tan∠PCH=tan∠CBQ,列出方程,求解得出t的值,经检验即可得出答案。

中考数学 相似 培优练习(含答案)附答案

中考数学 相似 培优练习(含答案)附答案

中考数学相似培优练习(含答案)附答案一、相似1.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.【答案】(1)解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,而抛物线与x轴的一个交点A的坐标为(﹣1,0)∴抛物线与x轴的另一个交点B的坐标为(3,0)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,当x=0时,y=﹣3a,∴C(0,﹣3a)(2)解:∵A(﹣1,0),B(3,0),C(0,﹣3a),∴AB=4,OC=3a,∴S△ACB= AB•OC=6,∴6a=6,解得a=1,∴抛物线解析式为y=x2﹣2x﹣3(3)解:设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,∵点G与点C,点F与点A关于点Q成中心对称,∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,∴OF=2m+1,HF=1,当∠CGF=90°时,∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°,∴∠GQH=∠HGF,∴Rt△QGH∽Rt△GFH,∴ = ,即,解得m=9,∴Q的坐标为(9,0);当∠CFG=90°时,∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°,∴∠CFO=∠FGH,∴Rt△GFH∽Rt△FCO,∴ = ,即 = ,解得m=4,∴Q的坐标为(4,0);∠GCF=90°不存在,综上所述,点Q的坐标为(4,0)或(9,0).【解析】【分析】(1)根据抛物线是轴对称图形和已知条件可求得抛物线与x轴的另一个交点B的坐标,再用交点式可求得抛物线的解析式,然后根据抛物线与y轴交于点C可得x=0,把x=0代入解析式即可求得点C的坐标;(2)由(1)的结论可求得AB=4,OC=3a,根据三角形ABC的面积=AB•OC=6可求得a的值,则解析式可求解;(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,根据中心对称的性质可得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学培优专题复习相似练习题及答案一、相似1.如图,在Rt△ABC中,,角平分线交BC于O,以OB为半径作⊙O.(1)判定直线AC是否是⊙O的切线,并说明理由;(2)连接AO交⊙O于点E,其延长线交⊙O于点D,,求的值;(3)在(2)的条件下,设的半径为3,求AC的长.【答案】(1)解:AC是⊙O的切线理由:,,作于,是的角平分线,,AC是⊙O的切线(2)解:连接,是⊙O的直径,,即 ..又 (同角) ,∽ ,(3)解:设在和中,由三角函数定义有:得:解之得:即的长为【解析】【分析】(1)利用角平分线的性质:角平分线上的点到角两边的距离相等证得点O到AC的距离为半径长,即可证得AC与圆O相切;(2)先连接BE构造一个可以利用正切值的直角三角形,再证得∠1=∠D,从而证得两个三角形ABE与ABD相似,即可求得两个线段长的比值;(3)也可以应用三角形相似的判定与性质解题,其中AB的长度是利用勾股定理与(2)中AE与AB的比值求得的.2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:∵四边形ABCD是矩形,∴ AD∥BC,在中,∵别是的中点,∴EF∥AD,∴ EF∥BC,∴∴(2)解:如图1,过点Q作于,∴QM∥BE,∴∴∴(舍)或秒(3)解:当点Q在DF上时,如图2,∴∴ .当点Q在BF上时,,如图3,∴∴时,如图4,∴∴时,如图5,∴∴综上所述,t=1或3或或秒时,△PQF是等腰三角形【解析】【分析】(1)根据题中的已知条件可得△BEF和△DCB中的两角对应相等,从而可证△BEF∽△DCB;(2)过点Q作QM⊥EF 于M ,先根据相似三角形的预备定理可证△QMF ∽△BEF;再由△QM F ∽△BEF可用含t的代数式表示出QM的长;最后代入三角形的面积公式即可求出t的值。

(3)由题意应分两种情况:(1)当点Q在DF上时,因为∠PFQ为钝角,所以只有PF = QF 。

(2)当点Q在BF上时,因为没有指明腰和底,所以有 PF=QF;PQ = FQ;PQ = PF 三种情况,因此所求的t值有四种结果。

3.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:∵四边形是矩形,在中,分别是的中点,(2)解:如图1,过点作于,(舍)或秒(3)解:四边形为矩形时,如图所示:解得:(4)解:当点在上时,如图2,当点在上时,如图3,时,如图4,时,如图5,综上所述,或或或秒时,是等腰三角形【解析】【分析】(1)要证△BEF∽△DCB,根据有两对角对应相等的两个三角形相似可得证。

根据三角形中位线定理可得EF∥AD∥BC,可得一组内错角相等,由矩形的性质可得∠C=∠A=∠BEF=,所以△BEF∽△DCB;(2)过点Q 作QM⊥EF于M,结合已知易得QM∥BE,根据相似三角形的判定可得△QMF∽△BEF,则得比例式,QM可用含t的代数式表示,PF=4-t,所以三角形PQF的面积=QM PF=06,解方程可得t的值;(3)因为QG⊥AB,结合题意可得PQ AB,根据相似三角形的判定可得QPF BEF,于是可得比例式求解;(4)因为Q在对角线BD上运动,情况不唯一。

当点Q在DF上运动时,PF=QF;当点Q在BF上运动时,分三种情况:第一种情况;PF =QF ;第二种情况:PQ=PF;第三种情况:PQ=FQ。

4.如图,△ABC内接于⊙O,且AB=AC.延长BC到点D,使CD=CA,连接AD交⊙O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为________时,四边形AOCE是菱形;②若AE=6,BE=8,则EF的长为________.【答案】(1)证明:∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD.∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC.∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS)(2)60;【解析】【解答】解:(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC.∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°.∵∠ABC=60,∴∠AEC=120°=∠AOC.∵OA=OC,∴∠OAC=∠OCA=30°.∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°.∵∠ACB=∠CAD+∠D.∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形.∵OA=OC,∴▱AOCE是菱形;②由(1)得:△ABE≌△CDE,∴BE=DE=8,AE=CE=6,∴∠D=∠EBC.∵∠CED=∠ABC=∠ACB,∴△ECD∽△CFB,∴ = .∵∠AFE=∠BFC,∠AEB=∠FCB,∴△AEF∽△BCF,∴ = ,∴EF= =.故答案为:①60°;② .【分析】(1)由题意易证∠ABC=∠ACB,AB=CD;再由四点共圆和已证可得∠ABC=∠ACB=∠AEB,∠CED=∠AEB,则利用AAS可证得结论;(2)①连接AO、CO.宪政△ABC是等边三角形,再证明四边形AOCE是平行四边形,又AO=CO可得结论;②先证△ECD∽△CFB,可得EC:ED=CF:BC=6:8;再证△AEF∽△BCF,则AE:EF=BC:CF,从而求出EF.5.已知抛物线y=ax2+bx+5与x轴交于点A(1,0)和点B(5,0),顶点为M.点C在x轴的负半轴上,且AC=AB,点D的坐标为(0,3),直线l经过点C、D.(1)求抛物线的表达式;(2)点P是直线l在第三象限上的点,联结AP,且线段CP是线段CA、CB的比例中项,求tan∠CPA的值;(3)在(2)的条件下,联结AM、BM,在直线PM上是否存在点E,使得∠AEM=∠AMB.若存在,求出点E的坐标;若不存在,请说明理由.【答案】(1)解:∵抛物线与x轴交于点A(1,0),B(5,0),∴ ,解得∴抛物线的解析式为(2)解:∵ A(1,0),B(5,0),∴ OA=1,AB=4.∵ AC=AB且点C在点A的左侧,∴ AC=4 .∴ CB=CA+AB=8.∵线段CP是线段CA、CB的比例中项,∴ .∴ CP= .又∵∠PCB是公共角,∴△CPA∽△CBP .∴∠CPA= ∠CBP.过P作PH⊥x轴于H.∵ OC=OD=3,∠DOC=90°,∴∠DCO=45°.∴∠PCH=45°∴ PH=CH=CP =4,∴ H(-7,0),BH=12,∴ P(-7,-4),∴,tan∠CPA= .(3)解:∵抛物线的顶点是M(3,-4),又∵ P(-7,-4),∴ PM∥x轴 .当点E在M左侧,则∠BAM=∠AME.∵∠AEM=∠AMB,∴△AEM∽△BMA.∴ ,∴ .∴ ME=5,∴ E(-2,-4).过点A作AN⊥PM于点N,则N(1,-4).当点E在M右侧时,记为点,∵∠A N=∠AEN,∴点与E 关于直线AN对称,则(4,-4).综上所述,E的坐标为(-2,-4)或(4,-4).【解析】【分析】(1)用待定系数法即可求解。

即;由题意把A(1,0),B(5,0),代入解析式可得关于a、b的方程组,a + b + 5 = 0 ,25 a + 5 b + 5 = 0 ,解得a=1、b=-6,所以抛物线的解析式为 y =− 6 x + 5;(2)过P作PH⊥x轴于H.由题意可得OA=1,AB=4.而AC=AB且点C在点A的左侧,所以AC=4 ,则CB=CA+AB=8,已知线段CP是线段CA、CB的比例中项,所以,解得CP=4,因为∠PCB是公共角,所以根据相似三角形的判定可得△CPA∽△CBP ,所以∠CPA= ∠CBP;因为OC=OD=3,∠DOC=90°,∠DCO=45°.所以∠PCH=45°,在直角三角形PCH中,PH=CH=CP sin 45 ∘=4,所以H(-7,0),BH=12,则P(-7,-4),在直角三角形PBH中,tan ∠ CBP ==tan∠CPA;(3)将(1)中的解析式配成顶点式得y=-4,所以抛物线的顶点是M(3,-4),而P点的纵坐标也为-4,所以PM∥x轴.分两种情况讨论:当点E在M左侧,则∠BAM=∠AME,而∠AEM=∠AMB,根据相似三角形的判定可得△AEM∽△BMA,所以可得比例式,即,解得ME=5,所以E(-2,-4);当点E在M右侧时,记为点E ′ ,过点A作AN⊥PM于点N,则N(1,-4),因为∠A E ′ N=∠AEN,所以根据轴对称的意义可得点E ′ 与E 关于直线AN对称,则(4,-4).6.如图,Rt△AOB在平面直角坐标系中,已知:B(0,),点A在x轴的正半轴上,OA=3,∠BAD=30°,将△AOB沿AB翻折,点O到点C的位置,连接CB并延长交x轴于点D.(1)求点D的坐标;(2)动点P从点D出发,以每秒2个单位的速度沿x轴的正方向运动,当△PAB为直角三角形时,求t的值;(3)在(2)的条件下,当△PAB为以∠PBA为直角的直角三角形时,在y轴上是否存在一点Q使△PBQ为等腰三角形?如果存在,请直接写出Q点的坐标;如果不存在,请说明理由.【答案】(1)解:∵B(0,),∴OB= .∵OA= OB,∴OA=3,∴AC=3.∵∠BAD=30°,∴∠OAC=60°.∵∠ACD=90°,∴∠ODB=30°,∴ = ,∴OD=3,∴D(﹣3,0);(2)解:∵OA=3,OD=3,∴A(3,0),AD=6,∴AB=2 ,当∠PBA=90°时.∵PD=2t,∴OP=3﹣2t.∵△OBA∽△OPB,∴OB2=OP•OA,∴3﹣2t= =1,解得t=1,当∠APB=90°时,则P与O重合,∴t= ;(3)解:存在.①当BP为腰的等腰三角形.∵OP=1,∴BP= =2,∴Q1(0, +2),Q3(0. ﹣2);②当PQ2=Q2B时,设PQ2=Q2B=a,在Rt△OPQ2中,12+(﹣x)2=x2,解得x= ,∴Q2(0,);③当PB=PQ4时,Q4(0,﹣)综上所述:满足条件的点Q的坐标为Q1(0, +2),Q2(0,),Q3(0. ﹣2),Q4(0,﹣).【解析】【分析】(1)根据已知得出OA、OB的值以及∠DAC的度数,进而求得∠ADC,即可求得D的坐标;(2)根据直角三角形的判定,分两种情况讨论求得;(3)求得PB 的长,分四种情形讨论即可解决问题.7.定义:如图,若点D在的边AB上,且满足,则称满足这样条件的点为的“理想点”(1)如图,若点D是的边AB的中点,,,试判断点D是不是的“理想点”,并说明理由;(2)如图,在中,,,,若点D是的“理想点”,求CD的长;(3)如图,已知平面直角坐标系中,点,,C为x轴正半轴上一点,且满足,在y轴上是否存在一点D,使点A,B,C,D中的某一点是其余三点围成的三角形的“理想点” 若存在,请求出点D的坐标;若不存在,请说明理由.【答案】(1)解:结论:点D是的“理想点”.理由:如图中,是AB中点,,,,,,,,∽,,点D是的“理想点”,(2)解:如图中,点D是的“理想点”,或,当时,,,,当时,同法证明:,在中,,,,,,.(3)解:如图中,存在有三种情形:过点A作交CB的延长线于M,作轴于H.,,,,,,,≌,,,设,,,,,,,,,,解得或舍弃,经检验是分式方程的解,,,①当时,点A是的“理想点” 设,,,∽,,,解得,.②当时,点A是的“理想点”.易知:,,.③当时,点B是的“理想点”.易知:,,.综上所述,满足条件的点D坐标为或或 .【解析】【分析】(1)结论:点D是的“理想点” 只要证明∽即可解决问题;(2)只要证明即可解决问题;(3)如图中,存在有三种情形:过点A作交CB的延长线于M,作轴于构造全等三角形,利用平行线分线段成比例定理构建方程求出点C坐标,分三种情形求解即可解决问题;8.已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于 AD长为半径做弧,交于点B,AB∥CD.(1)求证:四边形ACDB为△CFE的亲密菱形;(2)求四边形ACDB的面积.【答案】(1)证明:由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA,四边形ACDB是菱形,又∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形.(2)解:设菱形ACDB的边长为x,∵CF=6,CE=12,∴FA=6-x,又∵AB∥CE,∴△FAB∽△FCE,∴ ,即,解得:x=4,过点A作AH⊥CD于点H,在Rt△ACH中,∠ACH=45°,∴sin∠ACH= ,∴AH=4× =2 ,∴四边形ACDB的面积为: .【解析】【分析】(1)依题可得:AC=CD,AB=DB,BC是∠FCE的角平分线,根据角平分线的定义和平行线的性质得∠ACB=∠ABC,根据等角对等边得AC=AB,从而得AC=CD=DB=BA,根据四边相等得四边形是菱形即可得四边形ACDB是菱形;再根据题中的新定义即可得证.(2)设菱形ACDB的边长为x,根据已知可得CF=6,CE=12,FA=6-x,根据相似三角形的判定和性质可得,解得:x=4,过点A作AH⊥CD于点H,在Rt△ACH中,根据锐角三角形函数正弦的定义即可求得AH ,再由四边形的面积公式即可得答案.9.已知一次函数y=− x−12的图象分别交x轴,y轴于A,C两点。

相关文档
最新文档