高一数学必修2立体几何概念定理公理整理

合集下载

高一数学必修2立体几何知识点详细总结

高一数学必修2立体几何知识点详细总结

立体几何一、立体几何网络图:(1)线线平行的判断:⑴平行于同一直线的两直线平行。

⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

⑿垂直于同一平面的两直线平行。

(2)线线垂直的判断:⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

(3)线面平行的判断:⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。

(4)线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

(5)面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。

⒀垂直于同一条直线的两个平面平行。

(6)面面垂直的判断:⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。

二、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。

高一数学必修2立体几何概念定理公理整理

高一数学必修2立体几何概念定理公理整理

(一)平面的三大基本公理和推论:公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即这条直线在这个面内)如图:A∈αB∈α公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线。

如图:A∈αA∈β公理3:经过不在同一直线上的三点,有且只有一个平面。

如图:A,B,C 为不在同一直线上的三点,有且只有一个平面α,使推论1:经过一条直线和这条直线外的一点,有且只有一个平面。

如图:B,C∈a,A∈a,有且只有一个平面α,使已知:有一条直线a 和直线外一点A求证:经过一条直线和这条直线外的一点,有且只有一个平面证明:在直线a 上取任意不重合两点B,C 又∵A∈a∴A,B,C 不在同一直线上即过A,B,C 三点有且只有一平面α(公理3)∵B,C∈a,又B,C∈α,所以a ⊂α(公理1)所以经过一条直线和这条直线外的一点,有且只有一个平面==>AB ⊂α==>α∩β=a 且A∈aA∈αB∈αC∈αA∈αa∈α:直线a∩b=A经过两条相交直线,有且只有一个平面上分别取不同于点A 的点B 和点C则过这不在同一直线上的三个点有且只有一个平面,B∈b,又A,B∈α;A,C∈a,又A ,C∈α∴a,b∈α(公理1:如果一条直线上的两点在一个平面内,那么这条直线就在这个平面内)α是过相交直线a,b 的平面.假设过直线a,b 还有一个平面βA,B,C∈βA,B,C 有两个平面α和β矛盾∴原假设错误a,b 的平面有且只有一个∴经过两条相交直线,有且只有一个平面b经过两条平行直线,有且只有一个平面根据平行线的定义:同一平面内,不相交的两条直线叫做平行在同一平面内(a,b∈α)上取一点A (A ∈a)a,b 有另一平面β和直线b ∴经过两条平行直线,有且只有一个平面立体几何的概念、公理、定理、推论整理(1.2)高一八单 郭祺整理1αABβ公理4 :平行于同一条直线的两条直线互相平行。

1.立体几何中基本概念、公理、定理、推论

1.立体几何中基本概念、公理、定理、推论

1.⽴体⼏何中基本概念、公理、定理、推论⽴体⼏何中基本概念、公理、定理、推论1. 三个公理和三条推论:(1)公理1:⼀条直线的两点在⼀个平⾯内,那么这条直线上的所有的点都在这个平⾯内.这是判断直线在平⾯内的常⽤⽅法.(2)公理2:如果两个平⾯有⼀个公共点,它们有⽆数个公共点,⽽且这⽆数个公共点都在同⼀条直线上.这是判断⼏点共线(证这⼏点是两个平⾯的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的⽅法之⼀.(3)公理3:经过不在同⼀直线上的三点有且只有⼀个平⾯.推论1:经过直线和直线外⼀点有且只有⼀个平⾯.推论2:经过两条相交直线有且只有⼀个平⾯.推论3:经过两条平⾏直线有且只有⼀个平⾯.公理3和三个推论是确定平⾯的依据.2. 直观图的画法(斜⼆侧画法规则):在画直观图时,要注意:(1)使045x o y '''∠=(或0135),x o y '''所确定的平⾯表⽰⽔平平⾯.(2)已知图形中平⾏于x 轴和z 轴的线段,在直观图中保持长度和平⾏性不变,平⾏于y 轴的线段平⾏性不变,但在直观图中其长度为原来的⼀半.3. 公理4:平⾏于同⼀直线的两直线互相平⾏.(即平⾏直线的传递性)等⾓定理:如果⼀个⾓的两边和另⼀个⾓的两边分别平⾏并且⽅向相同,那么这两个⾓相等. (此定理说明⾓平移后⼤⼩不变) 若⽆“⽅向相同”,则这两个⾓相等或互补.4. 空间直线的位置关系:(1)相交直线――有且只有⼀个公共点.(2)平⾏直线――在同⼀平⾯内,没有公共点.(3)异⾯直线――不在同⼀平⾯内,也没有公共点.5. 异⾯直线⑴异⾯直线定义:不同在任何⼀个平⾯内的两条直线叫做异⾯直线.⑵异⾯直线的判定:连结平⾯内⼀点与平⾯外⼀点的直线,和这个平⾯内不经过此点的直线是异⾯直线.⑶异⾯直线所成的⾓:已知两条异⾯直线a 、b ,经过空间任⼀点O 作直线a '、b ',使//a a '、//b b ',把a '与b '所成的锐⾓(或直⾓)叫做异⾯直线a 、b 所成的⾓(或夹⾓).⑷异⾯直线所成的⾓的求法:⾸先要判断两条异⾯直线是否垂直,若垂直,则它们所成的⾓为900;若不垂直,则利⽤平移法求⾓,⼀般的步骤是“作(找)—证—算”.注意,异⾯直线所成⾓的范围是π0,2??;求异⾯直线所成⾓的⽅法:计算异⾯直线所成⾓的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的⼏何体,如正⽅体、平⾏六⾯体、长⽅体等,以便易于发现两条异⾯直线间的关系)转化为相交两直线的夹⾓. ⑸两条异⾯直线的公垂线:①定义:和两条异⾯直线都垂直且相交的直线,叫做异⾯直线的公垂线;两条异⾯直线的公垂线有且只有⼀条.⽽和两条异⾯直线都垂直的直线有⽆数条,因为空间中,垂直不⼀定相交.②证明:异⾯直线公垂线的证明常转化为证明公垂线与两条异⾯直线分别垂直.⑹两条异⾯直线的距离:两条异⾯直线的公垂线在这两条异⾯直线间的线段的长度.6. 直线与平⾯的位置关系:(1)直线在平⾯内;(2)直线与平⾯相交.其中,如果⼀条直线和平⾯内任何⼀条直线都垂直,那么这条直线和这个平⾯垂直.注意:任⼀条直线并不等同于⽆数条直线;(3)直线与平⾯平⾏.其中直线与平⾯相交、直线与平⾯平⾏都叫作直线在平⾯外.平⾯与平⾯的位置关系:(1)平⾏――没有公共点;(2)相交――有⼀条公共直线.7.线⾯平⾏、⾯⾯平⾏⑴直线与平⾯平⾏的判定定理: 如果不在⼀个平⾯(α)内的⼀条直线(l )和平⾯(α)内的⼀条直线(m )平⾏,那么这条直线(l )和这个平⾯(α)平⾏.,,////l m l m l ααα (作⽤:线线平⾏?线⾯平⾏)⑵直线与平⾯平⾏的性质定理:如果⼀条直线(l )和⼀个平⾯(α)平⾏,经过这条直线(l )的平⾯(β)和这个平⾯(α)相交(设交线是m ),那么这条直线(l )和交线(m )平⾏.//,,//l l m l m αβαβ??=? (作⽤: 线⾯平⾏?线线平⾏)⑶平⾯与平⾯平⾏的判定定理:如果⼀个平⾯(β)内有两条相交直线(,a b )分别平⾏于另⼀个平⾯(α),那么这两个平⾯(,βα)平⾏.,,,//,////a b a b P a b ββααβα=? (作⽤:线⾯平⾏?⾯⾯平⾏)推论:如果⼀个平⾯(β)内有两条相交直线(,a b )分别平⾏于另⼀个平⾯(α)内的两条直线(,a b ''), 那么这两个平⾯(,βα)平⾏.,,,,,//,////a b a b P a b a a b b ββααβα''''=(作⽤: 线线平⾏?⾯⾯平⾏) ⑷平⾯与平⾯平⾏的性质定理:如果两个平⾏平⾯(,αβ)同时与第三个平⾯(γ)相交(设交线分别是,a b ),那么它们的交线(,a b )平⾏.//,,//a b a b αβαγβγ?=?=? (作⽤: ⾯⾯平⾏?线线平⾏)推论:如果两个平⾯(,αβ)平⾏,则⼀个平⾯(α)内的⼀条直线(a )平⾏于另⼀个平⾯(β). //,//a a αβαβ?? (作⽤: ⾯⾯平⾏?线⾯平⾏)8.线线垂直、线⾯垂直、⾯⾯垂直⑴直线与平⾯垂直的判定定理:如果⼀条直线(l )和⼀个平⾯(α)内的两条相交直线(,m n )都垂直,那么这条直线(l )垂直于这个平⾯(α).,,,,l m l n m n m n P l ααα⊥⊥=?⊥ (作⽤: 线线垂直?线⾯垂直)⑵直线与平⾯垂直的性质定理:如果⼀条直线(l )和⼀个平⾯(α)垂直,那么这条直线(l )和这个平⾯(α)内的任意⼀条直线(m )垂直.,l m l m αα⊥??⊥ .⑶三垂线定理: 其作⽤是证两直线异⾯垂直和作⼆⾯⾓的平⾯⾓①定理: 在平⾯内的⼀条直线,如果它和这个平⾯的⼀条斜线的射影垂直,那么它也和这条斜线垂直.②逆定理:在平⾯内的⼀条直线,如果它和这个平⾯的⼀条斜线,那么它也和这条斜线在平⾯内的射影垂直.(作⽤: 线线垂直?线线垂直)⑷平⾯与平⾯垂直的判定定理: 如果⼀个平⾯(α)经过另⼀个平⾯(β)的⼀条垂线(l ),那么这两个平⾯(,αβ)互相垂直.,l l βααβ⊥??⊥ (作⽤: 线⾯垂直?⾯⾯垂直)⑸平⾯与平⾯垂直的性质定理:如果两个平⾯(,αβ)垂直,那么在⼀个平⾯(α)内垂直于它们交线(m )的直线(l )垂直于另⼀个平⾯(β).,,,m l l m l αβαβαβ⊥?=?⊥?⊥ (作⽤: ⾯⾯垂直?线⾯垂直)9. 直线和平⾯所成的⾓⑴最⼩⾓定理:平⾯的斜线和它在平⾯内的射影所成的⾓,是这条斜线和这个平⾯内任意⼀条直线所成的⾓中最⼩的⾓.满⾜关系式:12cos cos cos θθθ=?θ是平⾯的斜线与平⾯内的⼀条直线所成的⾓;1θ是平⾯的斜线与斜线在平⾯内的射影所成的⾓;2θ是斜线在平⾯内的射影与平⾯内的直线所成的⾓.⑵直线和平⾯所成的⾓: 平⾯的⼀条斜线和它在平⾯内的射影所成的锐⾓,叫这条直线和这个平⾯所成的⾓. 范围:[0,90]10.⼆⾯⾓⑴⼆⾯⾓的定义:从⼀条直线出发的两个半平⾯所组成的图形叫做⼆⾯⾓.这条直线叫做⼆⾯⾓的棱,每个半平⾯叫做⼆⾯⾓的⾯.棱为l ,两个⾯分别是α、β的⼆⾯⾓记为l αβ--.⼆⾯⾓的范围:[0,]π⑵⼆⾯⾓的平⾯⾓:在⼆⾯⾓的棱上取⼀点,在⼆⾯⾓的⾯内分别作两条垂直于棱的射线,这两条射线所成的⾓叫做⼆⾯⾓的平⾯⾓.11.空间距离⑴点到平⾯的距离:⼀点到它在⼀个平⾯内的正射影的距离.⑵直线到与它平⾏平⾯的距离:⼀条直线上的任⼀点到与它平⾏的平⾯的距离.⑶两个平⾏平⾯的距离:两个平⾏平⾯的公垂线段的长度.⑷异⾯直线的距离12. 多⾯体有关概念:(1)多⾯体:由若⼲个平⾯多边形围成的空间图形叫做多⾯体.围成多⾯体的各个多边形叫做多⾯体的⾯.多⾯体的相邻两个⾯的公共边叫做多⾯体的棱.(2)多⾯体的对⾓线:多⾯体中连结不在同⼀⾯上的两个顶点的线段叫做多⾯体的对⾓线.(3)凸多⾯体:把⼀个多⾯体的任⼀个⾯伸展成平⾯,如果其余的⾯都位于这个平⾯的同⼀侧,这样的多⾯体叫做凸多⾯体.13.棱柱⑴棱柱的定义: 有两个⾯互相平⾏,其余每相邻两个⾯的交线互相平⾏,这样的多⾯体叫棱柱.两个互相平⾏的⾯叫棱柱的底⾯(简称底);其余各⾯叫棱柱的侧⾯;两侧⾯的公共边叫棱柱的侧棱;两底⾯所在平⾯的公垂线段叫棱柱的⾼(公垂线段长也简称⾼).⑵棱柱的分类:侧棱不垂直于底⾯的棱柱叫斜棱柱.侧棱垂直于底⾯的棱柱叫直棱柱.底⾯是正多边形的直棱柱叫正棱柱.棱柱的底⾯可以是三⾓形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱……⑶棱柱的性质:①棱柱的各个侧⾯都是平⾏四边形,所有的侧棱都相等,直棱柱的各个侧⾯都是矩形,正棱柱的各个侧⾯都是全等的矩形.②与底⾯平⾏的截⾯是与底⾯对应边互相平⾏的全等多边形.③过棱柱不相邻的两条侧棱的截⾯都是平⾏四边形.⑷平⾏六⾯体、长⽅体、正⽅体:底⾯是平⾏四边形的四棱柱是平⾏六⾯体.侧棱与底⾯垂直的平⾏六⾯体叫直平⾏六⾯体,底⾯是矩形的直平⾏六⾯体叫长⽅体,棱长都相等的长⽅体叫正⽅体.⑸①平⾏六⾯体的任何⼀个⾯都可以作为底⾯;②平⾏六⾯体的对⾓线交于⼀点,并且在交点处互相平分;③平⾏六⾯体的四条对⾓线的平⽅和等于各棱的平⽅和;④长⽅体的⼀条对⾓线的平⽅等于⼀个顶点上三条棱长的平⽅和.14.棱锥⑴棱锥的定义: 有⼀个⾯是多边形,其余各⾯是有⼀个公共顶点的三⾓形,这样的多⾯体叫棱锥其中有公共顶点的三⾓形叫棱锥的侧⾯;多边形叫棱锥的底⾯或底;各侧⾯的公共顶点()S ,叫棱锥的顶点,顶点到底⾯所在平⾯的垂线段()SO ,叫棱锥的⾼(垂线段的长也简称⾼).⑵棱锥的分类:(按底⾯多边形的边数)分别称底⾯是三⾓形,四边形,五边形……的棱锥为三棱锥,四棱锥,五棱锥…… ⑶棱锥的性质:定理:如果棱锥被平⾏于底⾯的平⾯所截,那么所得的截⾯与底⾯相似,截⾯⾯积与底⾯⾯积⽐等于顶点到截⾯的距离与棱锥⾼的平⽅⽐.中截⾯:经过棱锥⾼的中点且平⾏于底⾯的截⾯,叫棱锥的中截⾯⑷正棱锥:底⾯是正多边形,顶点在底⾯上的射影是底⾯的中⼼的棱锥叫正棱锥.⑸正棱锥的性质:①正棱锥的各侧棱相等,各侧⾯都是全等的等腰三⾓形,各等腰三⾓形底边上的⾼(叫斜⾼)也相等。

高中立体几何公理及推论及定理总汇表

高中立体几何公理及推论及定理总汇表

高中立体几何公理及推论及定理总汇表公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。

(1)判定直线在平面内的依据(2)判定点在平面内的方法公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线。

(1)判定两个平面相交的依据(2)判定若干个点在两个相交平面的交线上公理3:经过不在一条直线上的三点,有且只有一个平面。

(1)确定一个平面的依据(2)判定若干个点共面的依据推论1:经过一条直线和这条直线外一点,有且仅有一个平面。

(1)判定若干条直线共面的依据(2)判断若干个平面重合的依据(3)判断几何图形是平面图形的依据推论2:经过两条相交直线,有且仅有一个平面。

推论3:经过两条平行线,有且仅有一个平面。

立体几何直线与平面空间二直线平行直线公理4:平行于同一直线的两条直线互相平行等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。

异面直线空间直线和平面位置关系(1)直线在平面内——有无数个公共点(2)直线和平面相交——有且只有一个公共点(3)直线和平面平行——没有公共点立体几何直线与平面直线与平面所成的角(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角(2)一条直线垂直于平面,定义这直线与平面所成的角是直角(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角三垂线定理在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直三垂线逆定理在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直空间两个平面两个平面平行判定性质(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行(2)垂直于同一直线的两个平面平行(1)两个平面平行,其中一个平面内的直线必平行于另一个平面(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面相交的两平面二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角平面角是直角的二面角叫做直二面角两平面垂直判定性质如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内立体几何多面体、棱柱、棱锥多面体定义由若干个多边形所围成的几何体叫做多面体。

必修2立体几何(公理、定理)

必修2立体几何(公理、定理)

公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

公理2:过不在一条直线上的三点,有且只有一个平面。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

公理4:平行于同一条直线的两条直线互相平行。

定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

线面平行判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

面面平行判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

线面平行性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

面面平行性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

线面垂直判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

面面垂直判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

线面垂直性质定理:垂直于同一个平面的两条直线平行。

面面垂直性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

必修2立体几何(公理、定理)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

公理2:过不在一条直线上的三点,有且只有一个平面。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

公理4:平行于同一条直线的两条直线互相平行。

定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

线面平行判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

面面平行判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

线面平行性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

面面平行性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

线面垂直判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

高一必修二数学知识点归纳大全

高一必修二数学知识点归纳大全

高一必修二数学知识点归纳大全高一必修二人教版数学知识点归纳。

一、立体几何初步。

(一)空间几何体。

1. 棱柱。

- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的多面体。

- 性质:侧棱都平行且相等;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形。

- 分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱等;按侧棱与底面是否垂直分为直棱柱和斜棱柱。

2. 棱锥。

- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体。

- 性质:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比。

- 分类:按底面多边形的边数分为三棱锥(四面体)、四棱锥等。

3. 棱台。

- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

- 性质:各侧棱延长后交于一点;两底面是相似多边形;侧面是梯形。

4. 圆柱。

- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转形成的面所围成的旋转体。

- 性质:轴截面是矩形;平行于底面的截面是与底面全等的圆;圆柱的侧面展开图是矩形。

5. 圆锥。

- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转形成的面所围成的旋转体。

- 性质:轴截面是等腰三角形;平行于底面的截面是圆;圆锥的侧面展开图是扇形。

6. 圆台。

- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。

- 性质:轴截面是等腰梯形;平行于底面的截面是圆;圆台的侧面展开图是扇环。

7. 球。

- 定义:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体。

- 性质:球心和截面圆心的连线垂直于截面;R = √(r^2)+d^{2}(R为球的半径,r为截面圆的半径,d为球心到截面的距离)。

(二)空间几何体的三视图和直观图。

1. 三视图。

- 主视图(正视图):从物体的前面向后面投射所得的视图,能反映物体的高度和长度。

高中数学必修二立体几何知识点总结

高中数学必修二立体几何知识点总结

第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧()l r r S +=π2圆柱表 rl S π=圆锥侧面积()l r r S +=π圆锥表l R r S π)(+=圆台侧面积()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式 V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V=343R π ; S=24R π第二章 直线与平面的位置关系2。

11 2三个公理:(1符号表示为A ∈LB ∈L =〉l α⊂ A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α.L A · α C · B · A · α2.1.2 空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a ’与b ’所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

高中数学必修二立体几何知识点总结(精选.)

高中数学必修二立体几何知识点总结(精选.)

第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧 ()l r r S +=π2圆柱表rl S π=圆锥侧面积 ()l r r S +=π圆锥表 lR r S π)(+=圆台侧面积 ()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式 V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理(3公理 L A · α C · B · A · α1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

高中数学必修二立体几何立体几何总知识点

高中数学必修二立体几何立体几何总知识点

立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''EDCBAABCDE-或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''EDCBAP-几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''EDCBAP-几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

必修2立体几何公式定理

必修2立体几何公式定理

(必修2)空间几何体的公式定理一、空间几何体1、多面体的结构特征(1)棱柱的上下底面 ,侧棱都 且 ,上底面和下底面是 的多边形; (2)棱锥的底面是任意多边形,侧面是有一个 的三角形; (3)棱台可由 的平面截棱锥得到,其上下底面的两个多边形 。

2、旋转体的机构特征(1)圆柱可以由矩形绕其 旋转得到;(2)圆锥可以由直角三角形绕其 旋转得到;(3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上下底中点连线旋转得到,也可以由 的平面截圆锥得到。

(4)球可以由半圆或圆绕其 旋转得到。

注意:简单几何体是指棱柱、圆柱、棱锥、圆锥、棱台、圆台和球,简单组合体是由简单几何体拼接或截去(挖去)一部分而成的几何体。

柱体、台体的底面相互平行,棱台侧棱的延长线、圆台母线的延长线各交于一点。

柱体、台体、锥体的关系如图所示:3、空间几何体的三视图空间几何体的三视图是用 得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是 的,三视图包括 、 、 . 注意:①画三视图时,侧视图画在正视图的正右方,保持高度一致;俯视图画在正视图的正下方,保持宽度一致。

②对于能看到的几何体轮廓线画成实线,看不到的轮廓线应用虚线画出。

由三视图还原简单组合体时,注意根据虚线、实线确定轮廓。

③给出三视图求表面积和体积时,依据“正视图反映几何体的长和高,侧视图反映几何体的宽和高,俯视图反映几何体的长和宽”来确定表面积公式和体积公式里涉及的基本量。

4、空间几何体的直观图画空间几何体的直观图常用 画法,基本步骤:(1)在已知图形中取相互垂直的x 轴,y 轴,两轴相交于点O ,画直观图时,把它们画成对应的x ’轴,y ’轴,两轴相交于点O ’,且使'''x y z ∠= .(2)已知图形中平行于x 轴、y 轴的线段,在直观图中分别平行于 ;(3)已知图形中平行于x 轴的线段,在直观图中长度 ,平行于y 轴的线段,长度变为 ;(4)在已知图形中过O 点作z 轴垂直于xOy 平面,在直观图中对应的z ’轴也垂直于x ’O ’y ’平面,已知图形中平行于z 轴的线段,在直观图中仍平行于z ’轴且长度 。

(完整word版)必修二立体几何公式

(完整word版)必修二立体几何公式
公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
确定直线在平面内
公理2过不在一条直线上的三点,有且只有一个平面.
公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
面与面的公共部分是一条直线
平行公理:公理4:平行于同一条直线的两条直线互相平行。
平行具有传递性
平面与平面平行的性质定理:
如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
等角定理:
空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直线平行有两条相交直线都平行于另一个平面,那么这两个平面平行
直线与平面平行的性质定理:
一条直线和一个平面平行,则过这条直线的任一平面与这个平面的交线与该直线平行。

高中数学必修二立体几何知识点总结

高中数学必修二立体几何知识点总结

第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧 ()l r r S +=π2圆柱表rl S π=圆锥侧面积 ()l r r S +=π圆锥表 lR r S π)(+=圆台侧面积 ()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式 V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥'2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 =>有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理(3公理 1 异面直线: 不同在任何一个平面内,没有公共点。

L A · α C · B · A · α2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

高中数学必修二立体几何知识点总结

高中数学必修二立体几何知识点总结

高中数学必修二立体几何知识点总结集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π 第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系12 三个公理:(1符号表示为A ∈LB ∈L => l α⊂A ∈αB ∈α公理1作用:判断直线是否在平面内.(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

公理3作用:判定两个平面是否相交的依据.2.1.2 空间中直线与直线之间的位置关系LA · α1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 —— 有无数个公共点(2)直线与平面相交 —— 有且只有一个公共点(3)直线在平面平行 —— 没有公共点共面直=>a ∥c2指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

必修二立体几何初步公理定理汇总

必修二立体几何初步公理定理汇总
13
直线与平面垂直的性质定理如果两 Nhomakorabea直线垂直于同一个平面,那么这两条直线平行。
14
两个平面平行的判定定理
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
15
两个平面平行的性质定理
如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行。
16
平面与平面垂直的判定定理
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
17
平面与平面垂直的性质定理
如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面
4
推论1
经过一条直线和直线外一点,有且只有一个平面。
5
推论2
经过两条相交的直线,有且只有一个平面。
6
推论3
经过两条平行的直线,有且只有一个平面。
7
公理4
平行于同一条直线的两条直线互相平行
8
等角定理
如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两角相等。
9
过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线
10
直线与平面平行的判定定理
平面外一条直线与和这个平面内一条直线平行,那么这条直线和这个平面平行。
(线线平行 线面平行)
11
直线与平面平行的性质定理
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(线面平行 线线平行)
12
直线与平面垂直的判定定理
如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
高一数学必修二立体几何初步
公理、推论及定理汇总

高中数学必修二立体几何知识点总结

高中数学必修二立体几何知识点总结

第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧()l r r S +=π2圆柱表 rl S π=圆锥侧面积()l r r S +=π圆锥表l R r S π)(+=圆台侧面积()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式 V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V=343R π ; S=24R π第二章 直线与平面的位置关系2.11 2三个公理:(1符号表示为A ∈LB ∈L =〉l α⊂ A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 =〉 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理(3公理 L A · α C · B · A · α2.1。

2 空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点.2 公理4:平行于同一条直线的两条直线互相平行.符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)平面的三大基本公理和推论:公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即这条直线在这个面内)如图:A∈αB∈α公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线。

如图:A∈αA∈β公理3:经过不在同一直线上的三点,有且只有一个平面。

如图:A,B,C 为不在同一直线上的三点,有且只有一个平面α,使推论1:经过一条直线和这条直线外的一点,有且只有一个平面。

如图:B,C∈a,A∈a,有且只有一个平面α,使已知:有一条直线a 和直线外一点A求证:经过一条直线和这条直线外的一点,有且只有一个平面证明:在直线a 上取任意不重合两点B,C 又∵A∈a∴A,B,C 不在同一直线上即过A,B,C 三点有且只有一平面α(公理3)∵B,C∈a,又B,C∈α,所以a ⊂α(公理1)所以经过一条直线和这条直线外的一点,有且只有一个平面==>AB ⊂α==>α∩β=a 且A∈aA∈αB∈αC∈αA∈αa∈α:直线a∩b=A经过两条相交直线,有且只有一个平面上分别取不同于点A 的点B 和点C则过这不在同一直线上的三个点有且只有一个平面,B∈b,又A,B∈α;A,C∈a,又A ,C∈α∴a,b∈α(公理1:如果一条直线上的两点在一个平面内,那么这条直线就在这个平面内)α是过相交直线a,b 的平面.假设过直线a,b 还有一个平面βA,B,C∈βA,B,C 有两个平面α和β矛盾∴原假设错误a,b 的平面有且只有一个∴经过两条相交直线,有且只有一个平面b经过两条平行直线,有且只有一个平面根据平行线的定义:同一平面内,不相交的两条直线叫做平行在同一平面内(a,b∈α)上取一点A (A ∈a)a,b 有另一平面β和直线b ∴经过两条平行直线,有且只有一个平面立体几何的概念、公理、定理、推论整理(1.2)高一八单 郭祺整理1αABβ公理4 :平行于同一条直线的两条直线互相平行。

(平行线的传递性)如图:a//bb//c(二)空间两条直线的位置关系(平行、相交、异面)==>a//c等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

如图: AC// A’C’AB//A’B’推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。

※补:如果一个角的两边和另一个角的两边分别平行并且方向相反,那么这两个角互补。

==>∠CAB=∠C’A’B’异面直线的定义:我们把不同在任何一个平面内的两条直线叫做异面直线。

异面直线判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线。

如图:A∈αB∈αa∈αA,B∈L已知:直线a在平面α内(a∈α),直线L与平面α交于B点(L∩α=B)在直线L上有不同于B点的一个A点(A≠B)且点A在平面α外(A∈a)求证:直线L与直线a异面证明:假设直线L与直线a共面,过B点和直线a有且只有一个平面α(推论1)∴直线a和直线L都在平面α内又A∈L,L⊂α,所以A∈α与点A在平面α外相矛盾∴原假设错误∴直线L与直线a不共面∴直线a与直线L为异面直线(异面直线的定义)ABL与a异面==>证明:∠CAB=∠C’A’B’分别在∠CAB和∠C’A’B’的两边上截取AC=A’C’,AB=A’B’连结AA’,CC’,BB’,CB,C’B’AB//A’B’AB= A’B’==>四边形ABB’A’是平行四边形==>AA’ BB’//同理,AA’ CC’//==>BB’ CC’ 四边形CBB’C’是平行四边形//==>AC=A’C’AB=A’B’CB=C’B’==>==>△ABC≌△A’B’C’==>∠CAB=∠C’A’B’※我们把直线L与直线a所成的锐角(或直角)叫做异面直线L,a所成的角(0°,90°]。

若异面直线L,a所成的角是直角,则称异面直线L,a互相垂直,记作L⊥a(线线垂直)一般异面直线求角度我们通过平移至相交求其所成的夹角大小。

在一个三角形内解决异面直线所成的角度是一种常用的方法。

两异面直线间距离:公垂线段公垂线段:和两条异面直线都垂直相交的直线叫做这两条异面直线的公垂线.两条异面直线,有且只有一条公垂线。

初中有关知识回顾(简略)平行线判定方法:1.同位角相等,两直线平行。

2.内错角相等,两直线平行。

3.同旁内角互补,两直线平行。

4.平行于同一直线的两条直线互相平行。

5.同一平面内,垂直于同一直线的两条直线互相平行。

6.同一平面内,永不相交的两条直线平行。

平行线的性质:如图:已知直线m//n,直线L与直线m,n分别相交于点A,点B。

1.两直线平行,同位角相等(如图:∠1=∠2)2.两直线平行,内错角相等(如图:∠2=∠3)3.两直线平行,同旁内角互补(如图:∠2+∠4=180°)平行四边形的判定定理:1.两组对边分别相等的四边形是平行四边形2.两组对边分别平行的四边形是平行四边形3.一组对边平行且相等的四边形是平行四边形4.一组对边平行且另一组对边相等的四边形是平行四边形5.对角线互相平分的四边形是平行四边形6.对角分别相等的四边形是平行四边形菱形的判定定理:1.对角线互相垂直平分的四边形是菱形2.对角线互相垂直的平行四边形是菱形3.邻边相等的平行四边形是菱形※矩形的判定定理:1.对角线相等的平行四边形是矩形2.有一个角是直角的平行四边形是矩形2.有三个角是直角的四边形是矩形正方形的判定定理:1.有一个角是直角的菱形是正方形2.对角线互相垂直的矩形是正方形3.四边相等的矩形是正方形立体几何的学习离不开平面几何的基础2纠正与补充:例:图中直线AB是异面直线a、b的公垂线.平行线分线段成比例定理:三条平行线截两条直线,所得对应线段成比例。

如图:∵AD∥BE∥CF,∴A B :BC=DE:EF;AB:AC=DE:DF;BC:AC=EF:DF。

也可以说AB:DE=BC:EF;AB:DE=AC:DF;BC:EF=AC:DF。

平行线分线段成比例定理推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例一条直线和一个平面的位置关系有且只有以下三种:1.如果一条直线a 和一个平面α没有公共点,我们就说直线a 与平面α平行(a// α)2.如果直线a 与平面α有且只有一个公共点,我们就说直线a 与平面α相交(a∩α=A)3.如果直线a 与平面有无数个公共点,我们就说直线a 在平面α内(a ⊂α)(三)直线和平面的位置关系αaαaAαa直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

如图:a ⊂αb ⊂αa// b==>a//α直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

如图:a // αa ⊂βα∩β=b==>a//b 已知:a//α,a ⊂β,α∩β=b(如图)求证:a//b 证明:a//α※本题还可以用反证法证明(略)==>直线a 与平面α没有公共点b ⊂α==>直线a 和b 没有公共点a,b ⊂β==>a//b求证:如果三个平面两两相交于三条直线,并且其中两条直线平行,那么第三条直线也和它们平行。

平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 如图:L1 //L2 //L3L4,L5,L6为任意三条截这组平行线的直线 若a=a,则b=b,c=c 推论:经过三角形一边中点且与另一边平行的直线必平分第三边经过梯形一腰的中点且与底边平行的直线必平分另一腰(证明略)L1L2L3L4L5L6mnLαβγ已知:平面α,β,γ(为图中三棱柱的三个侧面),α∩β=n,α∩γ=m,γ∩β=L,且m//n求证:L//m,L//n证明:m//n n∈γm∈γ==>n//γn ⊂ββ∩γ=L==>L//n 同理,L//m※如果三个平面两两相交于三条直线,并且其中两条直线平行,那么第三条直线也和它们平行。

可当作一个结论或定理来用纠正与补充:P31 思考题:如果三个平面两两相交于三条直线,并且其中两条直线相交,那么第三条直线和这两条直线有怎么样的位置关系答:第三条线过这两条直线的交点如图已知:α∩β=b,γ∩β=c,α∩γ=a,a∩b=s 求证: a ∩b∩c=s 证明:∵γ∩β=c∴c 为平面γ和β的交线又∵b ∈β,a ∈γ,a ∩b=s∴s ∈c (两个相交平面内的两条直线交于一点,则这一点必定在这两个面的交线上)∴a ∩b∩c=sab cαγβ※如果三个平面两两相交于三条直线,并且其中两条直线相交,那么第三条直线和这两条直线交于同一点(证明略)可当作一个结论来用直线与平面的垂直如果一条直线a 与一个平面α内的任意一条直线都垂直,我们就说直线a 与平面α互相垂直,记作a⊥α.直线a 叫做平面α的垂线,平面α叫做直线a 的垂面,垂线和平面的交点称为垂足.重要的两个结论:1.过一点有且只有一条直线与已知直线垂直 2.过一点有且只有一个平面与已知直线垂直.(证明方法参考《钥匙》P38)直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行.如图:已知:a ⊥α,b ⊥α求证:a//b 证明:假设b 不平行于a,设a∩b=P,b’是经过点P 与直线a 平行的直线.直线b 与b’确定平面β,设α∩β=c ∵a ⊥α,b ⊥α∴a ⊥c,b ⊥c 又∵b’// a ∴b’⊥c这样在平面β内,经过直线c 上同一点P ,有两条直线b,b’与c 垂直,与平面几何中经过直线上一点有且只有一条直线与已知直线垂直相矛盾。

∴原假设错误∴a//ba⊥αb ⊥α==>a//bPb ’纠正与补充:※本定理的证明在我们现在的知识范围内解决很麻烦,在此就不做详细证明,以后学习向量时可轻松解决。

你有办法证明吗?试一下吧!定理1:如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直这个平面。

如图:已知:a//b ,a⊥α求证:b⊥α证明:设m 为α任意一条直线bαmaa//ba⊥αb⊥α==>a⊥αm ⊂αa⊥mb//a==>==>b⊥m由m 的任意性可知,直线b 垂直于α内任意一条直线所以b⊥α定理2:一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面。

如图:已知:α//β,a⊥α求证:a⊥β证明:设a∩α=A,a∩β=B在平面α内取任意一条直线b,过b 做截面γ,γ∩α=b,γ∩β=c 又因为α//β所以b//β则b//c(直线和平面平行的性质定理)又a⊥α,b ⊂α所以a⊥b所以a⊥c(一条直线垂直于一组平行线中的任意一条,则这条直线也将垂直另一条)由于b 直线在平面α内具有任意性,则c 直线在β平面内也具有任意性所以a 垂直β中的任意直线所以a⊥β※可作为直线和平面垂直的判定定理直接使用α//βa⊥α==>a⊥β直线与平面所成的角:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线与平面的焦点叫做斜足,斜线上一点与斜足间的线段叫做这个点到平面的斜线段.如图,过平面外一点P 向平面α引斜线和垂线,那么过斜足Q 和垂足P’的直线就是斜线在平面内的正投影(简称投影),线段P’Q 就是斜线段PQ 在平面内的射影。

相关文档
最新文档