上海市黄浦区2019届高三数学二模试题(含解析)

合集下载

上海市黄浦区2019-2020学年高考数学二月模拟试卷含解析

上海市黄浦区2019-2020学年高考数学二月模拟试卷含解析

上海市黄浦区2019-2020学年高考数学二月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )AB .23C.2D .1【答案】C 【解析】试题分析:设200,)2y P y p (,由题意(,0)2p F ,显然00y <时不符合题意,故00y >,则 2001112()(,)3333633y y p OM OF FM OF FP OF OP OF OP OF p =+=+=+-=+=+u u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,可得:200023263OM y k y p y p p y p ==≤=++,当且仅当22002,y p y ==时取等号,故选C . 考点:1.抛物线的简单几何性质;2.均值不等式.【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件2PM MF =,利用向量的运算可知200(,)633y y p M p +,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.2.821x y x ⎛⎫++ ⎪⎝⎭的展开式中12x y -的系数是( ) A .160 B .240C .280D .320【答案】C 【解析】 【分析】首先把1x x +看作为一个整体,进而利用二项展开式求得2y 的系数,再求71x x ⎛⎫+ ⎪⎝⎭的展开式中1x -的系数,二者相乘即可求解. 【详解】由二项展开式的通项公式可得821x y x ⎛⎫++ ⎪⎝⎭的第1r +项为82181rr r r T C x y x -+⎛⎫=+ ⎪⎝⎭,令1r =,则712281T C x y x ⎛⎫=+ ⎪⎝⎭,又71x x ⎛⎫+ ⎪⎝⎭的第1r +为7271771rr r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令3r =,则3735C =,所以12x y -的系数是358280⨯=. 故选:C 【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.3.在ABC ∆中,内角A 的平分线交BC 边于点D ,4AB =,8AC =,2BD =,则ABD ∆的面积是( )A .B .C .3D .【答案】B 【解析】 【分析】利用正弦定理求出CD ,可得出BC ,然后利用余弦定理求出cos B ,进而求出sin B ,然后利用三角形的面积公式可计算出ABD ∆的面积. 【详解】AD Q 为BAC ∠的角平分线,则BAD CAD ∠=∠.ADB ADC π∠+∠=Q ,则ADC ADB π∠=-∠,()sin sin sin ADC ADB ADB π∴∠=-∠=∠,在ABD ∆中,由正弦定理得sin sin AB BDADB BAD =∠∠,即42sin sin ADB BAD =∠∠,①在ACD ∆中,由正弦定理得sin sin AC CD ADC ADC =∠∠,即8sin sin CDADC CAD=∠∠,②①÷②得212CD =,解得4CD =,6BC BD CD ∴=+=,由余弦定理得2221cos 24AB BC AC B AB BC +-==-⋅,sin B ∴==因此,ABD ∆的面积为1sin 2ABD S AB BD B ∆=⋅=故选:B. 【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.4.已知函数()sin(2)4f x x π=-的图象向左平移(0)ϕϕ>个单位后得到函数()sin(2)4g x x π=+的图象,则ϕ的最小值为( )A .4π B .38π C .2π D .58π 【答案】A 【解析】 【分析】首先求得平移后的函数()sin 224g x x πϕ⎛⎫=+- ⎪⎝⎭,再根据sin 22sin 244x x ππϕ⎛⎫⎛⎫+-=+ ⎪ ⎪⎝⎭⎝⎭求ϕ的最小值. 【详解】根据题意,()f x 的图象向左平移ϕ个单位后,所得图象对应的函数()sin 2()sin(22)sin(2)444g x x x x πππϕϕ⎡⎤=+-=+-=+⎢⎥⎣⎦,所以22,44k k Z ππϕπ-=+∈,所以,4k k Z πϕπ=+∈.又0ϕ>,所以ϕ的最小值为4π. 故选:A 【点睛】本题考查三角函数的图象变换,诱导公式,意在考查平移变换,属于基础题型. 5.已知复数()()2019311i i z i--=(i 为虚数单位),则下列说法正确的是( ) A .z 的虚部为4B .复数z 在复平面内对应的点位于第三象限C .z 的共轭复数42z i =-D .z =【答案】D 【解析】 【分析】利用i 的周期性先将复数z 化简为42i z =-+即可得到答案. 【详解】因为2i 1=-,41i =,5i i =,所以i 的周期为4,故4504334i 24i 24i 242i i i iz ⨯++++====-+-, 故z 的虚部为2,A 错误;z 在复平面内对应的点为(4,2)-,在第二象限,B 错误;z 的共轭复数为42z i =--,C 错误;z ==D 正确. 故选:D. 【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.6.已知全集U =R ,集合{|lg(1)}A x y x ==-,|B x y⎧==⎨⎩则()U A B =I ð( ) A .(1,)+∞ B .(0,1) C .(0,)+∞D .[1,)+∞【答案】D 【解析】 【分析】根据函数定义域的求解方法可分别求得集合,A B ,由补集和交集定义可求得结果. 【详解】{}()10,1A x x =->=-∞Q ,()0,B =+∞,[)1,U A ∴=+∞ð, ()[)1,U A B ∴=+∞I ð. 故选:D . 【点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题. 7.a 为正实数,i 为虚数单位,2a ii+=,则a=( )A .2 BCD .1【答案】B 【解析】 【分析】 【详解】||220,a ia a a i+==∴=>∴=Q B. 8.20201i i=-( )A .2B .C .1D .14【答案】A 【解析】 【分析】利用复数的乘方和除法法则将复数20201i i-化为一般形式,结合复数的模长公式可求得结果.【详解】()5052020450511ii===,()()20201111111122i i i i i i i +===+---+,因此,202012i i ==-. 故选:A. 【点睛】本题考查复数模长的计算,同时也考查了复数的乘方和除法法则的应用,考查计算能力,属于基础题. 9.五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为( ) A .25B .1325C .35D .1925【答案】D 【解析】 【分析】三个单位的人数可能为2,2,1或3,1,1,求出甲、乙两人在同一个单位的概率,利用互为对立事件的概率和为1即可解决. 【详解】由题意,三个单位的人数可能为2,2,1或3,1,1;基本事件总数有2231335352332222C C C C A A A A + 150=种,若为第一种情况,且甲、乙两人在同一个单位,共有122332C C A 种情况;若为第二种情况,且甲、乙两人在同一个单位,共有112332C C A 种,故甲、乙两人在同一个单位的概率 为36615025=,故甲、乙两人不在同一个单位的概率为61912525P =-=. 故选:D. 【点睛】本题考查古典概型的概率公式的计算,涉及到排列与组合的应用,在正面情况较多时,可以先求其对立事件,即甲、乙两人在同一个单位的概率,本题有一定难度.10.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下: 小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( ) A .小王或小李 B .小王 C .小董 D .小李【答案】D 【解析】 【分析】根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论. 【详解】解:由题意知,若只有小王的说法正确,则小王对应“入班即静”, 而否定小董说法后得出:小王对应“天道酬勤”,则矛盾; 若只有小董的说法正确,则小董对应“天道酬勤”, 否定小李的说法后得出:小李对应“细节决定成败”, 所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾; 若小李的说法正确,则“细节决定成败”不是小李的, 则否定小董的说法得出:小王对应“天道酬勤”,所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意. 所以“入班即静”的书写者是:小李. 故选:D. 【点睛】本题考查推理证明的实际应用.11.已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为( )A .1B .1或12C .2D .2±【答案】C 【解析】 【分析】由2474S S =可得()()123434a a a a +=+,故可求q 的值. 【详解】因为2474S S =,所以()()()124234344a a S S a a +=-=+,故234q =,因{}n a 为正项等比数列,故0q >,所以2q =,故选C. 【点睛】一般地,如果{}n a 为等比数列,n S 为其前n 项和,则有性质:(1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a =;(2)公比1q ≠时,则有nn S A Bq =+,其中,A B 为常数且0A B +=;(3)232,,,n n n n n S S S S S --L 为等比数列(0n S ≠ )且公比为nq .12.已知双曲线的中心在原点且一个焦点为F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是 A .22134x y -= B .22143x y -= C .22152x y -=D .22125x y -=【答案】D 【解析】 【分析】 根据点差法得2225a b=,再根据焦点坐标得227a b +=,解方程组得22a =,25b =,即得结果. 【详解】设双曲线的方程为22221(0,0)x y a b a b-=>>,由题意可得227a b +=,设()11,M x y ,()22,N x y ,则MN的中点为25,33⎛⎫-- ⎪⎝⎭,由2211221x y a b -=且2222221x ya b-=,得()()12122x x x x a +-= ()()12122y y y y b +-,2223a ⨯-=() 2523b ⨯-(),即2225a b=,联立227a b +=,解得22a =,25b =,故所求双曲线的方程为22125x y -=.故选D . 【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。

2019年最新上海市第二次高考模拟高三数学试卷及答案解析

2019年最新上海市第二次高考模拟高三数学试卷及答案解析

第二学期期中高三年级数学学科教学质量监测试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1. 若集合{}0A x x =>,{}1B x x =<,则AB = .2. 已知复数z 满1z i ⋅=+(i 为虚数单位),则z = .3. 函数()sinx cosxf x cosx sinx=的最小正周期是 .4. 已知双曲线222181x y a -=(0a >)的一条渐近线方程为3y x =,则a = .5. 若圆柱的侧面展开图是边长为4的正方形,则圆柱的体积为 .6. 已知x y ,满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值是 . 7. 直线12x t y t =-⎧⎨=-⎩(t 为参数)与曲线32x cos y sin θθ=⎧⎨=⎩(θ为参数)的交点个数是 .8. 已知函数()()220()01xx f x log x x ⎧≤⎪=⎨<≤⎪⎩ 的反函数是1()f x -,则11()2f -= .9. 设多项式231(1)(1)(1)nx x x x ++++++++(*0x n N ≠∈,)的展开式中x 项的系数为n T ,则2nn T limn →∞= .10. 生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为0.01和p ,每道工序产生废品相互独立.若经过两道工序后得到的零件不是废品的概率是0.9603,则p = .11. 设向量m ()x y =,,n ()x y =-,,P 为曲线1m n ⋅=(0x >)上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为 .12. 设1210x x x ,,,为1210,,,的一个排列,则满足对任意正整数m n ,,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为 .二、选择题(本大题共有4题,满分20分,每题5分) 每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13. 设a b R ∈,,则“4a b +>”是“1a >且3b >”的………………………( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分又不必要条件14. 如图,P 为正方体1111ABCD A BC D -中1AC 与1BD 的交点,则PAC ∆在该正方体各个面上的射影可能是 …………………………………………………………………( )(A )①②③④ (B )①③ (C )①④ (D )②④ 15. 如图,在同一平面内,点P 位于两平行直线12l l ,同侧,且P 到12l l ,的距离分别为13,.点M N ,分别在12l l ,上,8PM PN +=,则PM PN ⋅的最大值为…………………( )(A )15 (B )12 (C )10 (D )9 16. 若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”.设2()x f x xλ+=(0x >),若对于任意t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ的取值范围是…………………………………………………………………………………………( )(A )(]02, (B )(]12,(C )[]12, (D )[]14, 三、解答题(本大题共有5题,满分76分) 解答下列各题必须在答题纸的相应位置写出 必要的步骤.17. (本题满分14分,第1小题满分8分,第2小题满分6分)如图,在正方体1111ABCD A BC D -中,E F 、分别是线段1BC CD 、的中点.(1)求异面直线EF 与1AA 所成角的大小; (2)求直线EF 与平面11AA B B 所成角的大小.18. (本题满分14分,第1小题6分,第2小题8分)已知抛物线22y px =(0p >),其准线方程为10x +=,直线l 过点(0)T t ,(0t >)且与抛物线交于A B 、两点,O 为坐标原点.(1)求抛物线方程,并证明:OB OA ⋅的值与直线l 倾斜角的大小无关; (2)若P 为抛物线上的动点,记||PT 的最小值为函数()d t ,求()d t 的解析式.19. (本题满分14分,第1小题6分,第2小题8分)对于定义域为D 的函数()y f x =,如果存在区间[]m n D ⊆,(m n <),同时满足: ①()f x 在[]m n ,内是单调函数;②当定义域是[]m n ,时,()f x 的值域也是[]m n ,.则称函数()f x 是区间[]m n ,上的“保值函数”. (1)求证:函数2()2g x x x =-不是定义域[01],上的“保值函数”; (2)已知211()2f x a a x=+-(0a R a ∈≠,)是区间[]m n ,上的“保值函数”,求a 的取值范围.20. (本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)数列{}n a 中,已知12121()n n n a a a a k a a ++===+,,对任意*n N ∈都成立,数列{}n a 的前n 项和为n S .(这里a k ,均为实数) (1)若{}n a 是等差数列,求k 的值;(2)若112a k ==-,,求n S ; (3)是否存在实数k ,使数列{}n a 是公比不为1的等比数列,且任意相邻三项12m m m a a a ++,,按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.21. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)设T R ⊂≠,若存在常数0M >,使得对任意t T ∈,均有t M ≤,则称T 为有界集合,同时称M 为集合T 的上界.(1)设12121x x A y y x R ⎧⎫-⎪⎪==∈⎨⎬+⎪⎪⎩⎭,、212A x sinx ⎧⎫=>⎨⎬⎩⎭,试判断1A 、2A 是否为有界集合,并说明理由; (2)已知2()f x x u =+,记11()()()(())n n f x f x f x f f x -==,(23n =,,).若m R ∈,1[)4u ∈+∞,,且{}()n B f m n N *=∈为有界集合,求u 的值及m 的取值范围;(3)设a b c 、、均为正数,将222()()()a b b c c a ---、、中的最小数记为d .是否存在正数(01)λ∈,,使得λ为有界集合222{|dC y y a b c==++,a b c 、、均为正数}的上界,若存在,试求λ的最小值;若不存在,请说明理由.参考答案及评分标准一、填空题(本大题共有12题,满分54分) 1、()0,1 2、1 3、π 4、3 5、16π6、37、28、1-9、1210、0.03 1112、512 二、选择题(本大题共有4题,满分20分) 13、B 14、C 15、A 16、A三、解答题(本大题共有5题,满分76分)17. 解:(1)方法一:设正方体棱长为2,以D 为原点,直线DA ,DC ,1DD 为x ,y ,z 轴,建立空间直角坐标系,则(000)D ,,,(220)B ,,,(020)C ,,,1(002)D ,,,故(12E ,,,(011)F ,,,()111EF =--,,,()1002AA =,,, …………………4/设异面直线EF 与1AA 所成角的大小为α,向量EF 与1AA 所成角为β,则11EF AA cos cos EF AA αβ⋅==⋅…… 6/3==,……7/注意到02πα⎛⎤∈ ⎥⎝⎦,,故3arccosα=,即异面直线EF 与1AA 所成角的大小为3arccos.…………………8/ (2)由(1)可知,平面11AA B B 的一个法向量是(100)n =,,,…………………10/设直线EF 与平面11AA B B 所成角的大小是θ,向量EF 与n 所成角为γ,则EF n sin cos EF nθγ⋅==⋅………12/3=13/1又02πθ⎡⎤∈⎢⎥⎣⎦,,θ∴=线EF 与平面11AA B B 所成角的大小为.………………14/方法二:设正方体棱长为2.(1)在面11CC D D 内,作FH CD ⊥于H ,联结HE .因为正方体1111ABCD A BC D -,所以1AA ∥1DD ;在面11CC D D 内,有FH ∥1DD ,故异面直线EF 与1AA 所成的角就是EFH ∠(或其补角).………………………4/由已知及作图可知,H 为CD 的中点,于是,在Rt EFH ∆中,易得1FH =,HE=,故HE tanEFH FH∠=, ………………………………………… 6/== 7/ 又(0)2EFH π∠∈,,所以EFH∠=从而异面直线EF 与1AA 所成角的大小为8/(2)因为正方体1111ABCD A BC D -,所以平面11AA B B ∥平面11CC D D ,故直线EF 与平面11AA B B 所成角的大小就是直线EF 与平面11CC D D 所成角.注意到BC ⊥平面11CC D D ,即EC ⊥平面11CC D D ,所以直线EF 与平面11AA B B所成角的大小即为EFC∠. ………………………………10/在Rt EFC∆中,易得1EC FC ==,,故ECtan EFCFC∠=……………………12/2==,………………13/又(0)2EFCπ∠∈,,故2E F C a r c ta n∠=,即直线EF与平面11AA B B所成角的大小为……14/18.解:(1)方法一:由题意,2=p,所以抛物线的方程为xy42=.……………2/当直线l的斜率不存在时,直线l的方程为tx=,则(A t,(B t-,,ttOBOA42-=⋅.…………3/当直线l的斜率k存在时,则0≠k,设l的方程为)(txky-=,11()A x y,,22()B x y,,由24()y xy k x t⎧=⎨=-⎩消去x,得0442=--ktyky,故121244y yky y t⎧+=⎪⎨⎪=-⎩,所以,ttyyyyyyxx41622122212121-=+=+=⋅.…………………………………………5/综上,OBOA⋅的值与直线l倾斜角的大小无关.…………………………………………6/方法二:由题意,2=p,所以抛物线的方程为xy42=.………………………………2/依题意,可设直线l 的方程为x my t =+(m R ∈),11()A x y ,,22()B x y ,,由24y x x my t ⎧=⎨=+⎩得2440y my t --=, 故121244y y my y t+=⎧⎨=-⎩, 所以,12121212()()OA OB x x y y my t my t y y ⋅=+=+++221212(1)()m y y mt y y t =++++ …………………………5/22(1)(4)4m t mt m t =+-+⋅+24t t =-综上,OB OA ⋅的值与直线l倾斜角的大小无关. …………………………6/(2)设00()P x y ,,则0204x y =,||PT =, ……………………… (8)/注意到00≥x ,所以,若20t -≥,即2t ≥,则当02x t =-时,||PT 取得最小值,即()2)d t t =≥;………10/若20t -<,即有02t <<,则当00x =时,||PT 取得最小值,即()(02)d t t t =<<;………12/综上所述,()()2()02t d t tt ⎧≥⎪=⎨<<⎪⎩…………………………………………………14/19.解:(1)函数2()2g x x x =-在[01]x ∈,时的值域为[10]-,,…………………………4/不满足“保值函数”的定义,因此函数2()2g x x x =-不是定义域[01],上的“保值函数”.………………………6/(2)因xa a x f 2112)(-+=在[]m n ,内是单调增函数,故()()f m mf n n ==,,……8/这说明m n ,是方程x xa a =-+2112的两个不相等的实根, ………………………………10/其等价于方程1)2(222=++-x a a x a 有两个不相等的实根,……………………………11/由222(2)40a a a ∆=+->解得23-<a 或21>a . ………………………………………13/ 故a的取值范围为3122⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭,,. ………………………………………………14/20.解:(1)若{}n a 是等差数列,则对任意*n N ∈,有122n n n a a a ++=+,………………2/即121()2n n n a a a ++=+,………………………………………………………………………3/故12k =.………………………………………………………………………………………4/(2)当12k =-时,121()2n n n a a a ++=-+,即122n n n a a a ++=--, 211()n n n n a a a a ++++=-+,故32211()n n n n n n a a a a a a ++++++=-+=+. …………………………………………5/所以,当n 是偶数时,1234112()(11)22n n n n nS a a a a a a a a n -=++++++=+=+=;……………………7/当n 是奇数时,2312()2a a a a +=-+=-,12341n n n S a a a a a a -=++++++123451()()()n n a a a a a a a -=+++++++11(2)22n n -=+⨯-=-. ……………9/综上,()()222n n n S nn-=⎧⎪=⎨=⎪⎩(*k N ∈). …………………………………………10/(3)若}{n a 是等比数列 ,则公比a a a q ==12,由题意1≠a ,故1-=m m a a ,m m a a =+1,12++=m m a a .……11/① 若1m a +为等差中项,则122m m m a a a ++=+,即112m m m a a a -+=+⇔221a a =+,解得1=a (舍去);……12/② 若ma 为等差中项,则122m m m a a a ++=+,即112m m m a a a -+=+⇔22a a =+,因1≠a ,故解得,2a =-,11122215m m m m m m a a a k a a a a a +-++====-+++; ……………………………14/③ 若2m a +为等差中项,则212m m m a a a ++=+,即112221m mma a aa a+-=+⇔=+, 因为1≠a ,解得212215a a k a =-==-+,. …………………………………………15/综上,存在实数k满足题意,25k =-.…………………………………………………16/21.解:(1)对于1A ,由2121x xy -=+得1201x y y +=>-,解得11y -<<,………………2/1A ∴为有界集合; …………………………………………3/显然252266A x k x k k Z ππππ⎧⎫=+<<+∈⎨⎬⎭⎩,不是有界集合. ………………………4/(2)记()n n a f m =,则21n n a a u +=+.若14u =,则21()4f m m =+,22111()42n n n n n a a a a a +=+=-+≥,即1n n a a +≥,且211111()()2422n n n n a a a a +-=-=-+,从而1111222n n n a a a +-=-⋅+. (ⅰ)当12m =时,1()2n n f m a ==,所以1{}2B =,从而B 为有界集合.…………5/(ⅱ)当12m <时,由2114n n a a +=+,2111()()4a f m f m m ===+,显然,此时0n a >,利用数学归纳法可得12n a <,故B 为有界集合.…………………………………………6/(ⅲ)当12m >时,211111()()42n n a a a f m f m m m +≥≥≥===+≥>,2114n n n n a a a a +-=-+21()2n a =- 211()2a ≥-,即2111()2n n a a a +-≥-,由累加法得2111(1)()2n a a n a ≥+--→+∞,故B 不是有界集合.因此,当14u =,且12m ≤时,B 为有界集合;当14u =,且12m >时,B 不是有界集合; 若14u >,则211()()a f m f m m u u ===+≥,即114a u ≥>, 又2114n n a a u u +=+>>(n N *∈), 即14n a >(n N *∈). 于是,对任意n N *∈,均有221111()244n n n n n a a a a u a u u +-=-+=-+-≥-,即114n n a a u +-≥-(n N *∈),再由累加法得11(1)()4n a a n u ≥+--→+∞,故B 不是有界集合.………8/综上,当14u =,且12m ≤时,B 为有界集合;当14u =,且12m >时,B 不是有界集合;当14u >(m R ∈)时,B 不是有界集合. 故,满足题设的实数u 的值为14,且实数m 的取值范围是11[]22-,.………………10/ (3)存在.………………………………………………………………………11/不妨设a b c ≥≥.若2a cb +≤,则2a b c ≥-,且2()d b c =-. 故22222225()5()()d a b c b c a b c -++=--++22225()[(2)]b c b c b c ≤---++3(2)0c c b =-<,即22222215()05d d a b c a b c -++<⇔<++;…………13/若2a cb +>,则2a ac b <+<,即220a b a b <⇔-<, 又2a cb bc a b +>⇔->-,故2()d a b =-,又 22222225()5()()d a b c a b a b c -++=--++22(2)(2)0a b a b c =---<,即 2225()0d a b c -++<22215d a b c ⇔<++,因此,15是有界集合C 的一个上界.…………………………15/下证:上界15λ<不可能出现. 假设正数15λ<出现,取2a c b +=,1()05c a λ=->,则22a c d -⎛⎫= ⎪⎝⎭,此时,d22222213()()()55a b c a b c acλλ=+++-++-22221()()5a b c a acλλ>+++--222()a b c λ=++(*)…17/由式(*)可得222222()dd a b c a b c λλ>++⇔>++,与λ是C 的一个上界矛盾!.综上所述,满足题设的最小正数λ的值为15. …………………………………………18/。

上海市黄浦区2019-2020学年第二次高考模拟考试数学试卷含解析

上海市黄浦区2019-2020学年第二次高考模拟考试数学试卷含解析

上海市黄浦区2019-2020学年第二次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知椭圆2222:1x y C a b+=的短轴长为2,焦距为12F F 、分别是椭圆的左、右焦点,若点P 为C 上的任意一点,则1211PF PF +的取值范围为( ) A .[]1,2 B. C.⎤⎦D .[]1,4【答案】D 【解析】 【分析】先求出椭圆方程,再利用椭圆的定义得到124PF PF +=,利用二次函数的性质可求1214PF PF ≤≤,从而可得1211PF PF +的取值范围. 【详解】由题设有1,b c ==2a =,故椭圆22:14x C y +=,因为点P 为C 上的任意一点,故124PF PF +=.又()12121212111144=4PF PF PF PF PF PF PF PF PF PF ++==-,因为122PF ≤≤,故()11144PF PF ≤-≤,所以121114PF PF ≤+≤. 故选:D. 【点睛】本题考查椭圆的几何性质,一般地,如果椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是12F F 、,点P 为C 上的任意一点,则有122PF PF a +=,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.2.已知整数,x y 满足2210x y +≤,记点M 的坐标为(,)x y ,则点M满足x y +≥的概率为( )A .935B .635C .537D .737【答案】D 【解析】 【分析】列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率. 【详解】因为,x y 是整数,所以所有满足条件的点(,)M x y 是位于圆2210x y +=(含边界)内的整数点,满足条件2210x y +≤的整数点有(0,0),(0,1),(0,2),(0,3),(1,0),±±±±(2,0),(3,0),(1,1),(2,1),(3,1),(1,2),(2,2),(1,3)±±±±±±±±±±±±±±共37个,满足x y +≥7个,则所求概率为737. 故选:D . 【点睛】本题考查了古典概率的计算,意在考查学生的应用能力.3.已知直线y=k(x+1)(k>0)与抛物线C 2:4y x =相交于A ,B 两点,F 为C 的焦点,若|FA|=2|FB|,则|FA| =( ) A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】方法一:设(1,0)P -,利用抛物线的定义判断出B 是AP 的中点,结合等腰三角形的性质求得B 点的横坐标,根据抛物线的定义求得||FB ,进而求得FA .方法二:设出,A B 两点的横坐标,A B x x ,由抛物线的定义,结合||2||FA FB =求得,A B x x 的关系式,联立直线()1y k x =+的方程和抛物线方程,写出韦达定理,由此求得A x ,进而求得FA . 【详解】方法一:由题意得抛物线24y x =的准线方程为:1l x =-,直线(1)y k x =+恒过定点(1,0)P -,过,A B 分别作AM l ⊥于M ,BN l ⊥于N ,连接OB ,由||2||FA FB =,则||2||AM BN =,所以点B 为AP 的中点,又点O 是PF 的中点, 则1||||2OB AF =,所以||||OB BF =,又||1OF = 所以由等腰三角形三线合一得点B 的横坐标为12,所以13||122FB =+=,所以||2||3FA FB ==.方法二:抛物线24y x =的准线方程为:1l x =-,直线(1)y k x =+ 由题意设,A B 两点横坐标分别为,(,)0A B A B x x x x >, 则由抛物线定义得||1,||1A B FA x FB x =+=+又||2||,12(1)21A B A B FA FB x x x x =∴+=+⇒=+ ①222224(24)01(1)A B y xk x k x k x x y k x ⎧=⇒+-+=⇒⋅=⎨=+⎩ ② 由①②得220,2,||13A A A A x x x FA x --=∴==+=.故选:C 【点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.4.如图,在ABC ∆中,23AN NC =u u u v u u u v ,P 是BN 上一点,若13AP t AB AC =+u u u v u u u v u u u v,则实数t 的值为( )A .23B .25C .16D .34【答案】C 【解析】由题意,可根据向量运算法则得到25AP mAC =+u u u r u u u r (1﹣m )AB u u u r,从而由向量分解的唯一性得出关于t的方程,求出t 的值. 【详解】由题意及图,()()1AP AB BP AB mBN AB m AN AB mAN m AB =+=+=+-=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,又,23AN NC =u u u r u u u r ,所以25AN AC =u u u r u u u r ,∴25AP mAC =+u u u r u u u r (1﹣m )AB u u u r ,又AP =u u u r t 13AB AC +u u u r u u u r ,所以12153m t m -=⎧⎪⎨=⎪⎩,解得m 56=,t 16=,故选C . 【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.5.已知,a b r r 为非零向量,“22a b b a =r r r r ”为“a a b b =r r r r ”的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件【答案】B 【解析】 【分析】由数量积的定义可得220a a =>r r ,为实数,则由22a b b a =r r r r 可得22a b b a =r r r r ,根据共线的性质,可判断a b =r r ;再根据a a b b =r r r r 判断a b =rr ,由等价法即可判断两命题的关系.【详解】若22a b b a =r r r r 成立,则22a b b a =r r r r ,则向量a r 与b r 的方向相同,且22a b b a =r r r r ,从而a b =r r ,所以a b =r r ;若a a b b =r r r r ,则向量a r 与b r 的方向相同,且22a b =r r ,从而a b =r r ,所以a b =r r.所以“22a b b a =r r r r ”为“a a b b =r r r r ”的充分必要条件.故选:B 【点睛】本题考查充分条件和必要条件的判定,考查相等向量的判定,考查向量的模、数量积的应用.6.已知数列{}n a 满足()12347324n a a a n a n ++++-=L ,则23342122a a a a a a +++=L ( ) A .58B .34C .54D .52【解析】 【分析】利用()32n n a -的前n 项和求出数列(){}32nn a -的通项公式,可计算出na,然后利用裂项法可求出23342122a a a a a a +++L 的值.【详解】()12347324n a a a n a n ++++-=Q L .当1n =时,14a =;当2n ≥时,由()12347324n a a a n a n ++++-=L , 可得()()1231473541n a a a n a n -++++-⋅=-L , 两式相减,可得()324n n a -=,故432n a n =-,因为14a =也适合上式,所以432n a n =-.依题意,()()12161611313433134n n a a n n n n ++⎛⎫==- ⎪++++⎝⎭,故233421221611111111161153477101013616434644a a a a a a ⎛⎫⎛⎫+++=-+-+-++-=-=⎪ ⎪⎝⎭⎝⎭L L . 故选:C. 【点睛】本题考查利用n S 求n a ,同时也考查了裂项求和法,考查计算能力,属于中等题. 7.已知实数ln333,33ln 3(n ),l 3a b c ==+=,则,,a b c 的大小关系是( ) A .c b a << B .c a b <<C .b a c <<D .a c b <<【答案】B 【解析】 【分析】 根据41ln33<<,利用指数函数对数函数的单调性即可得出. 【详解】 解:∵41ln33<<, ∴33ln36b =+>,43336a <<<,34643327c ⎛⎫<=< ⎪⎝⎭.∴c a b <<. 故选:B . 【点睛】本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题.8.已知数列{}n a 的前n 项和为n S ,11a =,22a =且对于任意1n >,*n N ∈满足()1121n n n S S S +-+=+,则( ) A .47a = B .16240S =C .1019a =D .20381S =【答案】D 【解析】 【分析】利用数列的递推关系式判断求解数列的通项公式,然后求解数列的和,判断选项的正误即可. 【详解】当2n …时,111112(1)22n n n n n n n n n S S S S S S S a a +-+-++=+⇒-=-+⇒=+. 所以数列{}n a 从第2项起为等差数列,1,122,2n n a n n =⎧=⎨-⎩…,所以,46a =,1018a =. 21()(1)(1)12n n a a n S a n n +-=+=-+,1616151241S =⨯+=,2020191381S =⨯+=.故选:D . 【点睛】本题考查数列的递推关系式的应用、数列求和以及数列的通项公式的求法,考查转化思想以及计算能力,是中档题.9.若202031i iz i+=+,则z 的虚部是( )A .iB .2iC .1-D .1【答案】D 【解析】 【分析】通过复数的乘除运算法则化简求解复数为:a bi +的形式,即可得到复数的虚部. 【详解】由题可知()()()()202022131313123211111i i i i i i i z i i i i i i +-+++-=====++++--, 所以z 的虚部是1. 故选:D. 【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题. 10.下列函数中,在定义域上单调递增,且值域为[)0,+∞的是( ) A .()lg 1y x =+ B .12y x =C .2x y =D .ln y x =【答案】B 【解析】 【分析】分别作出各个选项中的函数的图象,根据图象观察可得结果. 【详解】对于A ,()lg 1y x =+图象如下图所示:则函数()lg 1y x =+在定义域上不单调,A 错误; 对于B ,12y x x ==的图象如下图所示:则y x =在定义域上单调递增,且值域为[)0,+∞,B 正确;对于C ,2xy =的图象如下图所示:则函数2xy =单调递增,但值域为()0,∞+,C 错误;对于D ,ln yx =的图象如下图所示:则函数ln y x =在定义域上不单调,D 错误. 故选:B . 【点睛】本题考查函数单调性和值域的判断问题,属于基础题.11.已知函数32,1()ln ,1(1)x x x f x a x x x x ⎧-+<⎪=⎨≥⎪+⎩,若曲线()y f x =上始终存在两点A ,B ,使得OA OB ⊥,且AB的中点在y 轴上,则正实数a 的取值范围为( ) A .(0,)+∞ B .10,e⎛⎤ ⎥⎝⎦C .1,e ∞⎡⎫+⎪⎢⎣⎭D .[e,)+∞【答案】D 【解析】 【分析】根据AB 中点在y 轴上,设出,A B 两点的坐标()32,A t t t-+,(,())B t f t ,(0t >).对t 分成1,1,1t t t =三类,利用OA OB ⊥则0OA OB ⋅=u u u r u u u r ,列方程,化简后求得ln t a t =,利用导数求得ln tt的值域,由此求得a 的取值范围. 【详解】根据条件可知A ,B 两点的横坐标互为相反数,不妨设()32,A t t t-+,(,())B t f t ,(0t >),若1t <,则32()f t t t =-+,由OA OB ⊥,所以0OA OB ⋅=u u u r u u u r ,即()()232320t t t t t -++-+=,方程无解;若1t =,显然不满足OA OB ⊥;若1t >,则ln ()(1)a t f t t t =+,由0OA OB ⋅=u u u r u u u r ,即()232ln 0(1)a t t t tt t -++=+,即ln t a t =,因为()'2ln 1ln ln t t t t -⎛⎫= ⎪⎝⎭,所以函数ln tt 在()0,e 上递减,在()e,+∞上递增,故在e t =处取得极小值也即是最小值e ln e e =,所以函数ln ty t=在(1)+∞上的值域为[),e +∞,故[e,)a ∈+∞.故选D.【点睛】本小题主要考查平面平面向量数量积为零的坐标表示,考查化归与转化的数学思想方法,考查利用导数研究函数的最小值,考查分析与运算能力,属于较难的题目.12.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是( ).A .26B .4C .23D .22【答案】A 【解析】 【分析】作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可. 【详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且2AD AB ==,4BC =,PA ⊥平面ABCD ,且2PA =,∴22222PB =+=222222PD =+=,22CD =2242026PC PA AC =+=+= ∴这个四棱锥中最长棱的长度是26 故选A . 【点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

2019届上海市黄浦区高三二模数学试题(解析版)

2019届上海市黄浦区高三二模数学试题(解析版)

2019届上海市黄浦区高三二模数学试题一、单选题1.设,“”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案】A【解析】先解不等式得到的范围,再根据充分条件与必要条件的概念即可求出结果.【详解】解不等式可得或,所以,由“”能推出“或”;由“或”不能推出“”,故“”是“”的充分不必要条件.故选A【点睛】本题主要考查充分条件与必要条件,熟记概念即可,属于常考题型.2.已知梯形,,设,向量的起点和终点分别是、、、中的两个点,若对平面中任意的非零向量,都可以唯一表示为、的线性组合,那么的个数为()A.6 B.8 C.10 D.12【答案】B【解析】根据对平面中任意的非零向量,都可以唯一表示为、的线性组合,可知:、不共线,进而可得出结果.【详解】因为对平面中任意的非零向量,都可以唯一表示为、的线性组合,所以、不共线;又,向量的起点和终点分别是、、、中的两个点,所以,起点和终点分别是、、、中的两个点的向量与共线的有,,,,共四个向量;又起点和终点分别是、、、中的两个点的向量共有,因此,满足题意的的个数为.故选B【点睛】本题主要考查平面向量基本定理以及排列组合问题,熟记可作为基底的向量的特征即可,属于常考题型.3.在某段时间内,甲地不下雨的概率为(),乙地不下雨的概率为(),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为()A.B.C.D.【答案】D【解析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为,乙地不下雨的概率为,且在这段时间内两地下雨相互独立,所以这段时间内两地都下雨的概率为.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.4.在△中,,,,下列说法中正确的是()A.用、、为边长不可以作成一个三角形B.用、、为边长一定可以作成一个锐角三角形C.用、、为边长一定可以作成一个直角三角形D.用、、为边长一定可以作成一个钝角三角形【答案】B【解析】由三角形的性质可得:任意两边之和大于第三边,再由余弦定理即可得出结果. 【详解】因为在△中,,,,所以,,,所以,所以;同理可得;,故、、可以作为三角形的三边;若、、分别对应三角形的三边,根据余弦定理可得:;;;即、、所对应的三个角均为锐角,所以用、、为边长一定可以作成一个锐角三角形.故选B【点睛】本题主要考查三角形的性质以及余弦定理,熟记余弦定理即可,属于常考题型.二、填空题5.行列式的值为__________.【答案】-1【解析】根据直接得,即可得出结果.【详解】因为.故答案为【点睛】本题主要考查行列式的简单计算,熟记公式即可,属于基础题型.6.计算:__________.【答案】【解析】分子分母同除以,即可求出结果.【详解】因为.故答案为【点睛】本题主要考查“”型的极限计算,熟记常用做法即可,属于基础题型.7.椭圆的焦距长为__________.【答案】2【解析】根据椭圆方程求出,进而可求出结果.【详解】因为椭圆中,,所以,所以焦距为.故答案为2【点睛】本题主要考查椭圆的焦距,熟记椭圆的性质即可,属于基础题型.8.若函数的反函数为,则________【答案】9【解析】根据函数的反函数解析式可求出解析式,进而可求出结果.【详解】因为函数的反函数为,令,则,所以,故.故答案为9【点睛】本题主要考查反函数,熟记反函数与原函数之间的关系即可求解,属于基础题型. 9.若球主视图的面积为,则该球的体积等于________【答案】【解析】根据球的三视图都相当于过球心的截面圆,由题中数据可得球的半径,从而可求出结果.【详解】设球的半径为,因为球主视图的面积为,所以,故,所以该球的体积为.故答案为【点睛】本题主要考查球的体积,熟记球的三视图以及球的体积公式即可,属于基础题型. 10.不等式的解集为________【答案】【解析】先由可得,从而可直接得出结果.【详解】因为,所以,所以或,即或,因此,原不等式的解集为.故答案为【点睛】本题主要考查含绝对值不等式的解法,先将原式进行变形即可求解,属于基础题型. 11.若等比数列的前项和,则实数________【答案】【解析】根据为等比数列,由求出,得到,再由即可求出结果.【详解】因为等比数列的前项和,所以,所以,又,所以.故答案为【点睛】本题主要考查等比数列,熟记前项和公式即可,属于基础题型.12.在的二项展开式中,若所有项的二项式系数之和为256,则常数项等于______【答案】112【解析】由题意可得:,结合二项式展开式通项公式可得:,令可得:,则常数项为:.13.若函数在区间上单调递增,则实数的取值范围为________【答案】【解析】由函数在区间上单调递增,得到在每一部分都单调递增,且,即可求出结果.【详解】因为函数在区间上单调递增,所以在每一部分都单调递增,且,即,解得.故答案为【点睛】本题主要考查分段函数单调的问题,只需满足每一部分单调,并且特别主要结点位置的取值即可,属于常考题型.14.设,若关于的方程在区间上有三个解,且它们的和为,则________【答案】或【解析】由关于的方程在区间上有三个解,且函数的最小正周期为可得,最大和最小的解分别为和,根据它们的和为,可求出中间的解,列出等式,根据的范围即可求出结果.【详解】因为关于的方程在区间上有三个解,且函数的最小正周期为,再由三角函数的对称性可知:方程在区间上的解的最小值与最大值分别为和;又它们的和为,所以中间的解为,所以有,即,故,又,所以或.故答案为或【点睛】本题主要考查三角函数的图像与性质,熟记正弦型函数的性质即可,属于常考题型.15.已知复数集合,其中为虚数单位,若复数,则对应的点在复平面内所形成图形的面积为________【答案】【解析】先由复数的几何意义确定集合所对应的平面区域,再确定集合所对应的平面区域,由复数,可得复数对应的点在复平面内所形成图形即为集合与集合所对应区域的重叠部分,结合图像求出面积即可.【详解】因为复数集合,所以集合所对应的平面区域为与所围成的正方形区域;又,设,且,,,所以,设对应的点为,则,所以,又,,所以,因为复数,对应的点在复平面内所形成图形即为集合与集合所对应区域的重叠部分,如图中阴影部分所示,由题意及图像易知:阴影部分为正八边形,只需用集合所对应的正方形区域的面积减去四个小三角形的面积即可.由得,由得,所以.故答案为【点睛】本题主要考复数的几何意义,以及不等式组所表示平面区域问题,熟记复数的几何意义,灵活掌握不等式组所表示的区域即可,属于常考题型.三、解答题16.如图,在棱长为2的正方体中,为的中点.(1)求证:直线平行于平面;(2)求异面直线与所成角的大小. (结果用反三角函数值表示)【答案】(1)略;(2)【解析】(1)取中点为,连结,证明,即可得出直线平面;(2)连结,根据可得,直线与所成角即等于直线与所成角,连结,解三角形即可得出结果.【详解】(1) 取中点为,连结,因为在棱长为2的正方体中,为的中点,所以平行且等于,所以四边形为平行四边形,因此,,又平面,平面,所以平面;(2) 连结,因为在正方体中,易知,所以直线与所成角,即等于直线与所成角,连结,因为正方体棱长为2,所以,,所以,所以异面直线与所成角的大小为.【点睛】本题主要考查线面平行的判定以及异面直线所成的角,熟记线面平行的判定定理以及异面直线所成角的几何求法即可,属于常考题型.17.经济订货批量模型,是目前大多数工厂、企业等最常采用的订货方式,即某种物资在单位时间的需求量为某常数,经过某段时间后,存储量消耗下降到零,此时开始订货并随即到货,然后开始下一个存储周期,该模型适用于整批间隔进货、不允许缺货的存储问题,具体如下:年存储成本费(元)关于每次订货(单位)的函数关系,其中为年需求量,为每单位物资的年存储费,为每次订货费. 某化工厂需用甲醇作为原料,年需求量为6000吨,每吨存储费为120元/年,每次订货费为2500元.(1)若该化工厂每次订购300吨甲醇,求年存储成本费;(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用为多少?【答案】(1),;(2),【解析】(1)根据题中数据求出,,,得到,再将代入即可得出结果;(2)根据基本不等式求出最小值,注意等号成立的条件,即可得出结果.【详解】(1)因为年存储成本费(元)关于每次订货(单位)的函数关系,其中为年需求量,为每单位物资的年存储费,为每次订货费.由题意可得:,,,所以存储成本费,若该化工厂每次订购300吨甲醇,所以年存储成本费为;(2)因为存储成本费,,所以,当且仅当,即时,取等号;所以每次需订购吨甲醇,可使该化工厂年存储成本费最少,最少费用为.【点睛】本题主要考查基本不等式的应用,熟记基本不等式即可求解,属于常考题型.18.已知函数.(1)设,判断函数的奇偶性,并说明理由;(2)设函数,对任意,求在区间上零点个数的所有可能值。

2019届上海市黄浦区高三下学期二模数学试卷(带解析)

2019届上海市黄浦区高三下学期二模数学试卷(带解析)

---------------------------------------------------------------最新资料推荐------------------------------------------------------2019届上海市黄浦区高三下学期二模数学试卷(带解析).2019 届上海市黄1、如果函数的则实数的取值范围是A. B.答案 A 解析试题分析:解:由函数的图象与方函数图象与方程代入方程 x2 +y 2 =1,整理足题意,由于△>0,1 是异号,满足题意; y=-x1=0,当 =-1 时,x=-1即-1<<1 时,方程两[-1,1),故选 A 考点:圆锥曲线的定义和点评:本题考查曲线的交数学思想,属于中档题 2、下列命题:①件;② 是存是不等式对一号是 A.③ B.②答案 B 解析试题分析:对于①充分条件,不成立。

黄浦区高三下学期二模数学解析)浦区高三下学期二模数学解析)的图像与曲线恰好有两个不同 C. D.可得,x0 时,y=x-2;x<0 时,方程 x2 +y 2 =1 的曲线必相交于(1,0)程 x2 +y 2 =1 的曲线恰好有两个不同的公共理可得(1+)x2 -2x+-1=0,当 =-是方程的根,<0,即-1<<1 时x-1 代入方程 x2 +y 2 =1,整理可得(1+)满足题意,由于△>0,-1 是方程的根,两根异号,满足题意;,综上知,实数和性质交点,考查学生分析解决问题的能力,考查是存在,使得成立在,使得成立的必要条件一切恒成立的1 / 12充要条件. 其中所以②③ C.①② D.① 是存在,使得试卷(带同的公共点,,y=-x-2,所以为了使共点,则 y=x-11 时,x=1 满时,方程两根)x2 +2x+- <0,的取值范围是查分类讨论的立的充分条件;③ 以真命题的序①③ 成立的对于② 是存在为结论可以推出条件。

对立的充要条件成立,故考点:命题的真值点评:解决的关键是利用3、函数A.C.答案 D 解析试题分析:根据题意原函数的值域为 y3,故考点:反函数的求解点评:解决的关键是根据式,属于基础题。

上海市黄浦区2019届高考二模数学试题含答案解析

上海市黄浦区2019届高考二模数学试题含答案解析

黄浦区2019年高考模拟考数学试卷一、填空题:1. 已知集合,若,则非零实数的数值是_________.【答案】【解析】由题,若则此时B集合不符合元素互异性,故若则符合题意;若则不符合题意.故答案为22. 不等式的解集是______________.【答案】【解析】或.即答案为.3. 若函数是偶函数,则该函数的定义域是_______________.【答案】【解析】因为函数是偶函数,则函数的定义域解得故函数的定义域为.及答案为.4. 已知的三内角所对的边长分别为,若,则内角的大小是__________.【答案】【解析】由已知,可得由余弦定理可得故答案为.5. 已知向量在向量方向上的投影为,且,则=_______.(结果用数值表示)【答案】【解析】由题向量在向量方向上的投影为,即即答案为-6.6. 方程的解_________.【答案】【解析】或(舍)即,解得即答案为2.7. 已知函数,则函数的单调递增区间是________.【答案】【解析】由题函数则函数的单调递增区间解得即函数的单调递增区间为.即答案为.8. 已知是实系数一元二次方程的一个虚数根,且,则实数的取值范围是__________.【答案】【解析】设,则.则也是一元二次方程的一个虚数根,∵实系数一元二次方程有虚数根,∴,解得.∴的取值范围是.故答案为.【点睛】本题考查了实系数一元二次方程有虚数根的充要条件及其根与系数的关系,考查了推理能力与计算能力,属于中档础题.9. 已知某市社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.【答案】【解析】根据题意可得抽样比为则这次抽样调查抽取的人数是即答案为140.10. 将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是_____.(结果用数值表示)【答案】【解析】一枚硬币连续抛掷5次,则恰好有3次出现正面向上的概率故答案为.11. 已知数列是共有个项的有限数列,且满足,若,则_____________.【答案】【解析】由题数列是共有个项的有限数列,且满足,则,则……以上各式子同向相加,将代入可得(舍).故答案为50.12. 已知函数对任意恒有成立,则代数式的最小值是___________.【答案】【解析】因为恒成立,所以,得又,所以所以【点睛】本题主要考查二次函数的性质,基本不等式的应用,以及换元法,其中对所求式子的恒等变形是解题的关键和难点,属于难题.二、选择题:13. 在空间中,“直线平面”是“直线与平面内无穷多条直线都垂直”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件【答案】A【解析】若“直线平面”则“直线与平面内无穷多条直线都垂直”,正确;反之,若“直线与平面内无穷多条直线都垂直”则“直线平面”是错误的,故直线平面”是“直线与平面内无穷多条直线都垂直”的充分非必要条件.故选A.14. 二项式的展开式中,其中是有理项的项数共有()A. 4项B. 7项C. 5项D. 6项【答案】B【解析】二项式式的展开式中,通项公式为时满足题意,共71个.故选B.15. 实数满足线性约束条件则目标函数的最大值是()A. 0B. 1C.D. 3【答案】D【解析】根据约束条件画出可行域如图所示,然后平移直线,当直线过点时,最大值为6.则目标函数的最大值是故选D.16. 在给出的下列命题中,是假命题的是()A. 设是同一平面上的四个不同的点,若,则点必共线B. 若向量是平面上的两个不平行的向量,则平面上的任一向量都可以表示为,且表示方法是唯一的C. 已知平面向量满足,且,则是等边三角形D. 在平面上的所有向量中,不存在这样的四个互不相等的非零向量,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直【答案】D【解析】由则点必共线,故A 正确;由平面向量基本定理可知B正确;由可知为的外心,由可知为的重心,故为的中心,即是等边三角形,故C正确;故选D.三、解答题:17. 在四棱锥中,平面,,.(1)画出四棱锥的主视图;(2)若,求直线与平面所成角的大小.(结果用反三角函数值表示)【答案】(1)正视图见解析;(2).【解析】试题分析:(1)根据三视图的画法,画出四棱锥的主视图;(2) 如图所示建立空间直角坐标系,求出相应点和向量的坐标,求出平面平面的法向量,可求出直线与平面所成角的大小.试题解析:(1)主视图如下:(2) 根据题意,可算得.又,按如图所示建立空间直角坐标系,可得,.于是,有 .设平面的法向量为,则即令,可得,故平面的一个法向量为.设直线与平面所成角的大小为,则.所以直线与平面所成角的大小为.18. 某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形挖去扇形后构成的).已知,线段与弧、弧的长度之和为米,圆心角为弧度.(1)求关于的函数解析式;(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值.【答案】(1);(2)当米时铭牌的面积最大,且最大面积为平方米. 【解析】试题分析:(1)更具体求出扇形的周长,即可得到关于的函数解析式;;(2)根据扇形面积公式,求出函数解析式利用二次函数求出的值最大.试题解析:(1)根据题意,可算得弧(),弧().又,于是,,所以,.(2) 依据题意,可知化简,得.于是,当(满足条件)时,().答所以当米时铭牌的面积最大,且最大面积为平方米.19. 已知动点到点的距离为,动点到直线的距离为,且.(1)求动点的轨迹的方程;(2)过点作直线交曲线于两点,若的面积(是坐标系原点),求直线的方程.【答案】(1);(2)......................试题解析:(1)结合题意,可得.又,于是,,化简得.因此,所求动点的轨迹的方程是.(2) 联立方程组得.设点,则于是,弦,点到直线的距离.由,得,化简得,解得,且满足,即都符合题意.因此,所求直线的方程为.20. 已知函数(1) 求函数的反函数;(2)试问:函数的图象上是否存在关于坐标原点对称的点,若存在,求出这些点的坐标;若不存在,说明理由;(3)若方程的三个实数根满足: ,且,求实数的值.【答案】(1);(2)存在点关于原点对称;(3).【解析】试题分析:(1)根据分段函数的反函数的求法求出函数的反函数;(2)设点是函数图象上关于原点对称的点,则,即,解方程求出,即可说明:函数图象上存在两点关于原点对称.(3) 根据函数与函数的图象,可得当时,,且.;当时,,于是,. 由,解得.,满足条件.因此,所求实数.试题解析:(1)当时,.由,得,互换,可得.当时,.由,得,互换,可得.(2) 答:函数图象上存在两点关于原点对称.设点是函数图象上关于原点对称的点,则,即,解得舍去),且满足 .因此,函数图象上存在点关于原点对称.(3) 考察函数与函数的图象,可得当时,有,原方程可化为,解得,且由,得.当时,有,原方程可化为,化简得,解得(当时,).于是,.由,得,解得.因为,故不符合题意,舍去;,满足条件.因此,所求实数.21. 定义:若数列和满足则称数列是数列的“伴随数列”.已知数列是数列的伴随数列,试解答下列问题:(1)若,,求数列的通项公式;(2)若,为常数,求证:数列是等差数列;(3)若,数列是等比数列,求的数值.【答案】(1);(2)证明见解析;(3).【解析】试题分析:(1)根据题意,由,,代入. 可求得,.(2)由,代入,可得,.即可证明数列是首项为公差为的等差数列.(3).由题意可得). 由是等比数列,且,设公比为,则.可证明当,和时均不成立.故,().根据数列是等比数列,有..根据可化为,. 可知关于的一元二次方程有且仅有两个非负实数根.可证明,,. 由,得. 把,代入可得..试题解析:(1)根据题意,有.由,,得,.所以,.(2) ,,∴,,.∴,.∴数列是首项为、公差为的等差数列.(3) ,,由,得.是等比数列,且,设公比为,则.∴当,即,与矛盾.因此,不成立.当,即,与矛盾.因此,不成立.,即数列是常数列,于是,()..,数列也是等比数列,设公比为,有.可化为,.,关于的一元二次方程有且仅有两个非负实数根.一方面,()是方程的根;另一方面,若,则无穷多个互不相等的都是该二次方程的根.这与该二次方程有且仅有两个非负实数根矛盾!,即数列也是常数列,于是,,.由,得.把,代入解得. .【点睛】本题新定义题型,考查的知识是数列的递推式,是数列知识较为综合的应用,,解题时要认真审题,注意数列性质的合理运用.。

上海市黄浦区2019-2020学年高考数学二模试卷含解析

上海市黄浦区2019-2020学年高考数学二模试卷含解析

上海市黄浦区2019-2020学年高考数学二模试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数满足48i z z +=+,则复数z 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】 设(,)z a bi a b R =+∈,则48z z a bi i +=+=+,可得48a b ⎧⎪+=⎨=⎪⎩,即可得到z ,进而找到对应的点所在象限.【详解】设(,)z a bi a b R =+∈,则48z z a bi i +=++=+,48a b ⎧⎪+=∴⎨=⎪⎩,6,68i 8a z b =-⎧∴∴=-+⎨=⎩, 所以复数z 在复平面内所对应的点为()6,8-,在第二象限.故选:B【点睛】本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力.2.已知集合{}{}2|1,|31x A x x B x ==<„,则()R A B U ð=( )A .{|0}x x <B .{|01}x x 剟C .{|10}x x -<„D .{|1}x x -… 【答案】D【解析】【分析】先求出集合A ,B ,再求集合B 的补集,然后求()R A B U ð【详解】 {|11},{|0}A x x B x x =-=<剟,所以 (){|1}R A B x x =-U …ð.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.3.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是A .M N N =IB .()U M N =∅I ðC .M N U =UD .()U M N ⊆ð 【答案】A【解析】【分析】求函数定义域得集合M ,N 后,再判断.【详解】 由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I .故选A .【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.4.执行如图的程序框图,若输出的结果2y =,则输入的x 值为( )A .3B .2-C .3或3-D .3或2-【答案】D【解析】【分析】 根据逆运算,倒推回求x 的值,根据x 的范围取舍即可得选项.【详解】因为2y =,所以当()12+12x =,解得3>0x = ,所以3是输入的x 的值;当122x --=时,解得20x =-<,所以2-是输入的x 的值,所以输入的x 的值为2- 或3,故选:D.【点睛】本题考查了程序框图的简单应用,通过结果反求输入的值,属于基础题.5.已知实数,x y 满足,10,1,x y x y y ≥⎧⎪+-≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .2B.32 C .1 D .0【答案】B 【解析】【分析】作出可行域,平移目标直线即可求解.【详解】解:作出可行域: 由2z x y =+得,1122y x z =-+ 由图形知,1122y x z =-+经过点时,其截距最大,此z 时最大 10y x x y =⎧⎨+-=⎩得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,11,22C ⎛⎫ ⎪⎝⎭ 当1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,max 1232222z =+⨯= 故选:B【点睛】考查线性规划,是基础题.6.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为A .12B .13C .16D .112【答案】B【解析】【分析】 求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动, 基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==, 所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】 本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.7.定义域为R 的偶函数()f x 满足任意x ∈R ,有(2)()(1)f x f x f +=-,且当[2,3]x ∈时,2()21218f x x x =-+-.若函数()log (1)a y f x x =-+至少有三个零点,则a 的取值范围是( )A .0,2⎛ ⎝⎭B .⎛ ⎝⎭C .⎛ ⎝⎭D .⎛ ⎝⎭【答案】B【解析】【分析】由题意可得()f x 的周期为2,当[2,3]x ∈时,2()21218f x x x =-+-,令()log (1)a g x x =+,则()f x 的图像和()g x 的图像至少有3个交点,画出图像,数形结合,根据(2)(2)g f >,求得a 的取值范围.【详解】()f x 是定义域为R 的偶函数,满足任意x ∈R ,(2)()(1)f x f x f +=-,令1,(1)(1)(1)x f f f =-=--,又(1)(1),(1))(2)(0,f f x f x f f -=∴+==,()f x ∴为周期为2的偶函数,当[2,3]x ∈时,22()212182(3)f x x x x =-+-=--,当2[0,1],2[2,3],()(2)2(1)x x f x f x x ∈+∈=+=--,当2[1,0],[0,1],()()2(1)x x f x f x x ∈--∈=-=-+,作出(),()f x g x 图像,如下图所示:函数()log (1)a y f x x =-+至少有三个零点,则()f x 的图像和()g x 的图像至少有3个交点, ()0f x ≤Q ,若1a >,()f x 的图像和()g x 的图像只有1个交点,不合题意,所以01a <<,()f x 的图像和()g x 的图像至少有3个交点,则有(2)(2)g f >,即log (21)(2)2,log 32a a f +>=-∴>-,221133,,01,033a a a a ∴><<<∴<<Q . 故选:B.【点睛】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.8.已知复数z 满足(12)43i z i +=+,则z 的共轭复数是( )A .2i -B .2i +C .12i +D .12i -【答案】B【解析】【分析】根据复数的除法运算法则和共轭复数的定义直接求解即可.【详解】由()1243i z i +=+,得43i 2i 12i z +==-+,所以2z i =+. 故选:B【点睛】本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题.9.已知公差不为0的等差数列{}n a 的前n 项的和为n S ,12a =,且139,,a a a 成等比数列,则8S =( ) A .56B .72C .88D .40 【答案】B【解析】【分析】2319a a a =⇔2111(2)(8)a d a a d +=+,将12a =代入,求得公差d ,再利用等差数列的前n 项和公式计算即可.【详解】由已知,2319a a a =,12a =,故2111(2)(8)a d a a d +=+,解得2d =或0d =(舍),故2(1)22n a n n =+-⨯=,1888()4(228)722a a S +==+⨯=. 故选:B.【点睛】 本题考查等差数列的前n 项和公式,考查等差数列基本量的计算,是一道容易题.10.设全集U =R ,集合{}02A x x =<≤,{}1B x x =<,则集合A B =U ( )A .()2,+∞B .[)2,+∞C .(],2-∞D .(],1-∞ 【答案】C【解析】 ∵集合{}02A x x =<≤,{}1B x x =<,∴A B ⋃= (],2-∞点睛:本题是道易错题,看清所问问题求并集而不是交集.11.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上且满足PA m PF =,若m 取得最大值时,点P 恰好在以,A F 为焦点的椭圆上,则椭圆的离心率为( )A1B1 C.12 D.12【答案】B【解析】【分析】 设(),P x y ,利用两点间的距离公式求出m 的表达式,结合基本不等式的性质求出m 的最大值时的P 点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设(),P x y ,因为A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,所以()()0,1,0,1A F -, 则PAm PF ==== 当0y =时,1m =,当0y >时,m ==≤= 当且仅当1y =时取等号,∴此时()2,1P ±,2PA PF ==, Q 点P 在以,A F 为焦点的椭圆上,22c AF ==,∴由椭圆的定义得22a PA PF =+=,所以椭圆的离心率212c c e a a ====,故选B. 【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.12.已知集合{}{}22(,)4,(,)2x A x y x y B x y y =+===,则A B I 元素个数为( ) A .1B .2C .3D .4【答案】B【解析】【分析】作出两集合所表示的点的图象,可得选项.【详解】y 的图象上的点,作出两由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数2x集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共I元素个数为2,元素,所以A B故选:B.【点睛】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

2019届上海市黄浦区高三二模考试数学试卷及解析

2019届上海市黄浦区高三二模考试数学试卷及解析

2019届上海市黄浦区高三二模考试数学试卷第Ⅰ卷(共60分)一、填空题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.行列式的值为__________.【答案】-1【解析】【分析】根据直接得,即可得出结果.【详解】因为.故答案为2.计算:__________.【答案】【解析】【分析】分子分母同除以,即可求出结果.【详解】因为.故答案为【点睛】本题主要考查“”型的极限计算,熟记常用做法即可,属于基础题型.3.椭圆的焦距长为__________.【答案】2【解析】【分析】根据椭圆方程求出,进而可求出结果.【详解】因为椭圆中,,所以,所以焦距为.故答案为24.若函数的反函数为,则________【答案】9【解析】【分析】根据函数的反函数解析式可求出解析式,进而可求出结果.【详解】因为函数的反函数为,令,则,所以,故.故答案为95.若球主视图的面积为,则该球的体积等于________【答案】【解析】【分析】根据球的三视图都相当于过球心的截面圆,由题中数据可得球的半径,从而可求出结果.【详解】设球的半径为,因为球主视图的面积为,所以,故,所以该球的体积为.故答案为6.不等式的解集为________【答案】【解析】【分析】先由可得,从而可直接得出结果.【详解】因为,所以,所以或,即或,因此,原不等式的解集为.故答案为7.若等比数列的前项和,则实数________【答案】【解析】【分析】根据为等比数列,由求出,得到,再由即可求出结果. 【详解】因为等比数列的前项和,所以,所以,又,所以.故答案为【点睛】本题主要考查等比数列,熟记前项和公式即可,属于基础题型.8.在的二项展开式中,若所有项的二项式系数之和为256,则常数项等于______【答案】112【解析】由题意可得:,结合二项式展开式通项公式可得:,令可得:,则常数项为:.9.若函数在区间上单调递增,则实数的取值范围为________【答案】【解析】 【分析】 由函数在区间上单调递增,得到在每一部分都单调递增,且,即可求出结果.【详解】因为函数在区间上单调递增, 所以在每一部分都单调递增,且,即,解得.故答案 10.设,若圆()与直线有交点,则的最小值为________ 【答案】【解析】 【分析】根据直线与圆相交,可得圆心到直线的距离小于等于半径,列出不等式即可求出结果.【详解】因为圆的圆心为, 又圆()与直线有交点,所以存在,使得圆心到直线的距离即可,即成立即可,其中,又,所以的最小值为.故答案为11.设,若关于的方程在区间上有三个解,且它们的和为,则________【答案】或 【解析】【分析】 由关于的方程在区间上有三个解,且函数的最小正周期为可得,最大和最小的解分别为和,根据它们的和为,可求出中间的解,列出等式,根据的范围即可求出结果. 【详解】因为关于的方程在区间上有三个解,且函数的最小正周期为,再由三角函数的对称性可知:方程在区间上的解的最小值与最大值分别为和;又它们的和为,所以中间的解为, 所以有,即,故,又,所以或.故答案为或 12.已知复数集合,其中为虚数单位,若复数,则对应的点在复平面内所形成图形的面积为________【答案】 【解析】 【分析】先由复数的几何意义确定集合所对应的平面区域,再确定集合所对应的平面区域,由复数,可得复数对应的点在复平面内所形成图形即为集合与集合所对应区域的重叠部分,结合图像求出面积即可. 【详解】因为复数集合,所以集合所对应的平面区域为与所围成的正方形区域;又,设,且,,,所以,设对应的点为,则,所以,又,,所以,因为复数,对应的点在复平面内所形成图形即为集合与集合所对应区域的重叠部分,如图中阴影部分所示,由题意及图像易知:阴影部分为正八边形,只需用集合所对应的正方形区域的面积减去四个小三角形的面积即可.由得,由得,所以.故答案为第Ⅱ卷(共90分)二、选择题(每题5分,满分20分,将答案填在答题纸上)13.设,“”是“”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】先解不等式得到的范围,再根据充分条件与必要条件的概念即可求出结果.【详解】解不等式可得或,所以,由“”能推出“或”;由“或”不能推出“”,故“”是“”的充分不必要条件.故选A【点睛】本题主要考查充分条件与必要条件,熟记概念即可,属于常考题型.14.已知梯形,,设,向量的起点和终点分别是、、、中的两个点,若对平面中任意的非零向量,都可以唯一表示为、的线性组合,那么的个数为()A. 6B. 8C. 10D. 12【答案】B【解析】【分析】根据对平面中任意的非零向量,都可以唯一表示为、的线性组合,可知:、不共线,进而可得出结果.【详解】因为对平面中任意的非零向量,都可以唯一表示为、的线性组合,所以、不共线;又,向量的起点和终点分别是、、、中的两个点,所以,起点和终点分别是、、、中的两个点的向量与共线的有,,,,共四个向量;又起点和终点分别是、、、中的两个点的向量共有,因此,满足题意的的个数为.故选B【点睛】本题主要考查平面向量基本定理以及排列组合问题,熟记可作为基底的向量的特征即可,属于常考题型.15.在某段时间内,甲地不下雨的概率为(),乙地不下雨的概率为(),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为()A. B. C. D.【答案】D【解析】【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为,乙地不下雨的概率为,且在这段时间内两地下雨相互独立,所以这段时间内两地都下雨的概率为.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.16.在△中,,,,下列说法中正确的是()A. 用、、为边长不可以作成一个三角形B. 用、、为边长一定可以作成一个锐角三角形C. 用、、为边长一定可以作成一个直角三角形D. 用、、为边长一定可以作成一个钝角三角形【答案】B【解析】【分析】由三角形的性质可得:任意两边之和大于第三边,再由余弦定理即可得出结果. 【详解】因为在△中,,,,所以,,,所以,所以;同理可得;,故、、可以作为三角形的三边;若、、分别对应三角形三边,根据余弦定理可得:;;;即、、所对应的三个角均为锐角,所以用、、为边长一定可以作成一个锐角三角形.故选B【点睛】本题主要考查三角形的性质以及余弦定理,熟记余弦定理即可,属于常考题型.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,在棱长为2的正方体中,为的中点.(1)求证:直线平行于平面;(2)求异面直线与所成角的大小. (结果用反三角函数值表示)【答案】(1)略;(2)【解析】【分析】(1)取中点为,连结,证明,即可得出直线平面;(2)连结,根据可得,直线与所成角即等于直线与所成角,连结,解三角形即可得出结果.【详解】(1) 取中点为,连结,因为在棱长为2的正方体中,为的中点,所以平行且等于,所以四边形为平行四边形,因此,,又平面,平面,所以平面;(2) 连结,因为在正方体中,易知,所以直线与所成角,即等于直线与所成角,连结,因为正方体棱长为2,所以,,所以,所以异面直线与所成角的大小为.【点睛】本题主要考查线面平行的判定以及异面直线所成的角,熟记线面平行的判定定理以及异面直线所成角的几何求法即可,属于常考题型.18.经济订货批量模型,是目前大多数工厂、企业等最常采用的订货方式,即某种物资在单位时间的需求量为某常数,经过某段时间后,存储量消耗下降到零,此时开始订货并随即到货,然后开始下一个存储周期,该模型适用于整批间隔进货、不允许缺货的存储问题,具体如下:年存储成本费(元)关于每次订货(单位)的函数关系,其中为年需求量,为每单位物资的年存储费,为每次订货费. 某化工厂需用甲醇作为原料,年需求量为6000吨,每吨存储费为120元/年,每次订货费为2500元.(1)若该化工厂每次订购300吨甲醇,求年存储成本费;(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用为多少?【答案】(1),;(2),【解析】【分析】(1)根据题中数据求出,,,得到,再将代入即可得出结果;(2)根据基本不等式求出最小值,注意等号成立的条件,即可得出结果.【详解】(1)因为年存储成本费(元)关于每次订货(单位)的函数关系,其中为年需求量,为每单位物资的年存储费,为每次订货费. 由题意可得:,,,所以存储成本费,若该化工厂每次订购300吨甲醇,所以年存储成本费为;(2)因为存储成本费,,所以,当且仅当,即时,取等号;所以每次需订购吨甲醇,可使该化工厂年存储成本费最少,最少费用为. 【点睛】本题主要考查基本不等式的应用,熟记基本不等式即可求解,属于常考题型.19.已知函数.(1)设,判断函数的奇偶性,并说明理由;(2)设函数,对任意,求在区间上零点个数的所有可能值。

上海市黄浦区2019-2020学年高考数学二模考试卷含解析

上海市黄浦区2019-2020学年高考数学二模考试卷含解析

上海市黄浦区2019-2020学年高考数学二模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知等比数列{}n a 满足21a =,616a =,等差数列{}n b 中54b a =,n S 为数列{}n b 的前n 项和,则9S =( ) A .36 B .72C .36-D .36±【答案】A 【解析】 【分析】根据4a 是2a 与6a 的等比中项,可求得4a ,再利用等差数列求和公式即可得到9S . 【详解】等比数列{}n a 满足21a =,616a =,所以4264a a a =±⋅=±,又2420a a q =⋅>,所以44a =,由等差数列的性质可得9549936S b a ===. 故选:A 【点睛】本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题. 2.执行程序框图,则输出的数值为( )A .12B .29C .70D .169【答案】C 【解析】 【分析】由题知:该程序框图是利用循环结构计算并输出变量b 的值,计算程序框图的运行结果即可得到答案. 【详解】0a =,1b =,1n =,022b =+=,5n <,满足条件,2012a -==,2n =,145b =+=,5n <,满足条件, 5122a -==,3n =,21012b =+=,5n <,满足条件,12252a -==,4n =,52429b =+=,5n <,满足条件,295122a -==,5n =,125870b =+=,5n =,不满足条件,输出70b =. 故选:C 【点睛】本题主要考查程序框图中的循环结构,属于简单题.3.已知A ,B 是函数()2,0ln ,0x x a x f x x x a x ⎧++≤=⎨->⎩图像上不同的两点,若曲线()y f x =在点A ,B 处的切线重合,则实数a 的最小值是( ) A .1- B .12-C .12D .1【答案】B 【解析】 【分析】先根据导数的几何意义写出()f x 在,A B 两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出()122112x a x e =-,令函数()()()22102xg x x e x =-≤ ,结合导数求出最小值,即可选出正确答案. 【详解】解:当0x ≤ 时,()2f x x x a =++,则()'21f x x =+;当0x >时,()ln x x a f x =-则()'ln 1f x x =+.设()()()()1122,,,A x f x B x f x 为函数图像上的两点, 当120x x << 或120x x <<时,()()12''f x f x ≠,不符合题意,故120x x <<. 则()f x 在A 处的切线方程为()()()2111121y x x a x x x -++=+-;()f x 在B 处的切线方程为()()2222ln ln 1y x x a x x x -+=+-.由两切线重合可知 21221ln 121x x x a a x +=+⎧⎨--=-⎩ ,整理得()()12211102x a x e x =-≤.不妨设()()()22102xg x x e x =-≤ 则()()22',''12xxg x x e g x e =-=- ,由()''0g x = 可得11ln 22x =则当11ln 22x =时,()'g x 的最大值为11111'ln ln 022222g ⎛⎫=-< ⎪⎝⎭.则()()2212x g x x e =-在(],0-∞ 上单调递减,则()102a g ≥=-. 故选:B. 【点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出a 和x 的函数关系式.本题的易错点是计算.4.已知集合{|{|2,}A x N y B x x n n Z =∈===∈,则A B =I ( )A .[0,4]B .{0,2,4}C .{2,4}D .[2,4]【答案】B 【解析】 【分析】计算{}0,1,2,3,4A =,再计算交集得到答案 【详解】{}{|0,1,2,3,4A x N y =∈==,{|2,}B x x n n Z ==∈表示偶数,故{0,2,4}A B =I . 故选:B . 【点睛】本题考查了集合的交集,意在考查学生的计算能力.5.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P 1,P 2,则( ) A .P 1•P 2=14B .P 1=P 2=13C .P 1+P 2=56D .P 1<P 2【答案】C 【解析】 【分析】将三辆车的出车可能顺序一一列出,找出符合条件的即可. 【详解】三辆车的出车顺序可能为:123、132、213、231、312、321 方案一坐车可能:132、213、231,所以,P 1=36; 方案二坐车可能:312、321,所以,P 1=26;所以P 1+P 2=56故选C. 【点睛】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题. 6.如图,矩形ABCD 中,1AB =,2BC =,E 是AD 的中点,将ABE △沿BE 折起至A BE 'V ,记二面角A BE D '--的平面角为α,直线A E '与平面BCDE 所成的角为β,A E '与BC 所成的角为γ,有如下两个命题:①对满足题意的任意的A '的位置,αβπ+≤;②对满足题意的任意的A '的位置,αγπ+≤,则( )A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立【答案】A 【解析】 【分析】作出二面角α的补角、线面角β、线线角γ的补角,由此判断出两个命题的正确性. 【详解】①如图所示,过'A 作'AO ⊥平面BCDE ,垂足为O ,连接OE ,作OM BE ⊥,连接'A M .由图可知'A MO πα∠=-,''A EO A MO βπα∠=≤∠=-,所以αβπ+≤,所以①正确.②由于//BC DE ,所以'A E 与BC 所成角''A ED A MO γππα=-∠≤∠=-,所以αγπ+≤,所以②正确.综上所述,①②都正确. 故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.7.已知复数21iz i =-,则z 的虚部为( ) A .-1 B .i -C .1D .i【答案】A 【解析】 【分析】分子分母同乘分母的共轭复数即可. 【详解】2i 2i(i 1)22i 1i i 1(i 1)(i+1)2z +-+====----,故z 的虚部为1-. 故选:A. 【点睛】本题考查复数的除法运算,考查学生运算能力,是一道容易题.8.已知集合{|A x y ==,{}2|log 1B x x =>则全集U =R 则下列结论正确的是( ) A .A B A =I B .A B B ⋃=C .()U A B =∅I ðD .U B A ⊆ð【答案】D 【解析】 【分析】化简集合A ,根据对数函数的性质,化简集合B ,按照集合交集、并集、补集定义,逐项判断,即可求出结论. 【详解】由2230,(23)(1)0x x x x -++≥-+≤, 则31,2A ⎡⎤=-⎢⎥⎣⎦,故U 3(,1),2A ⎛⎫=-∞-⋃+∞ ⎪⎝⎭ð,由2log 1x >知,(2,)B =+∞,因此A B =∅I ,31,(2,)2A B ⎡⎤⋃=-⋃+∞⎢⎥⎣⎦,()U (2,)A B ⋂=+∞ð,3(2,)(,1),2⎛⎫+∞⊆-∞-⋃+∞ ⎪⎝⎭,故选:D 【点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.9.已知定点1(4,0)F -,2(4,0)F ,N 是圆22:4O x y +=上的任意一点,点1F 关于点N 的对称点为M ,线段1F M 的垂直平分线与直线2F M 相交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线C .抛物线D .圆【答案】B 【解析】 【分析】根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可. 【详解】因为线段1F M 的垂直平分线与直线2F M 相交于点P ,如下图所示:所以有122PF PM PF MF ==-,而,O N 是中点,连接ON ,故224MF ON ==, 因此21214(4)PF PF F F -=<当N 在如下图所示位置时有,所以有122PF PM PF MF ==+,而,O N 是中点,连接ON ,故224MF ON ==,因此12214(4)PF PF F F -=<,综上所述:有12214(4)PF PF F F -=<,所以点P 的轨迹是双曲线. 故选:B 【点睛】本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想. 10.设i 为虚数单位,则复数21z i=-在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】利用复数的除法运算化简z ,求得z 对应的坐标,由此判断对应点所在象限. 【详解】()()()2121111i z i i i i +===+--+Q ,∴对应的点的坐标为()1,1,位于第一象限. 故选:A. 【点睛】本小题主要考查复数除法运算,考查复数对应点所在象限,属于基础题.11.已知定义在R 上的函数()f x 满足()()f x f x =-,且在(0,)+∞上是增函数,不等式()()21f ax f +≤-对于[]1,2x ∈恒成立,则a 的取值范围是A .3,12⎡⎤--⎢⎥⎣⎦B .11,2⎡⎤--⎢⎥⎣⎦C .1,02⎡⎤-⎢⎥⎣⎦D .[]0,1【答案】A 【解析】 【分析】根据奇偶性定义和性质可判断出函数为偶函数且在(),0-∞上是减函数,由此可将不等式化为121ax -≤+≤;利用分离变量法可得31a x x-≤≤-,求得3x -的最大值和1x-的最小值即可得到结果. 【详解】()()f x f x =-Q ()f x ∴为定义在R 上的偶函数,图象关于y 轴对称又()f x 在()0,∞+上是增函数 ()f x ∴在(),0-∞上是减函数()()21f ax f +≤-Q 21ax ∴+≤,即121ax -≤+≤121ax -≤+≤Q 对于[]1,2x ∈恒成立 31a xx∴-≤≤-在[]1,2上恒成立312a ∴-≤≤-,即a 的取值范围为:3,12⎡⎤--⎢⎥⎣⎦本题正确选项:A 【点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题. 12.已知纯虚数z 满足()122i z ai -=+,其中i 为虚数单位,则实数a 等于( ) A .1- B .1C .2-D .2【答案】B 【解析】 【分析】先根据复数的除法表示出z ,然后根据z 是纯虚数求解出对应的a 的值即可. 【详解】因为()122i z ai -=+,所以()()()()()21222421212125ai i a a iai z i i i ++-+++===--+, 又因为z 是纯虚数,所以220a -=,所以1a =. 故选:B. 【点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数z a bi =+为纯虚数,则有0,0a b =≠.二、填空题:本题共4小题,每小题5分,共20分。

2019年上海市黄浦区高考数学二模试卷(含解析)

2019年上海市黄浦区高考数学二模试卷(含解析)

2019年上海市黄浦区高考数学二模试卷一、选择题(本大题共4小题,共20.0分)1. 设x ∈R ,“x >0”是“x (x +1)>0”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件2. 已知梯形ABCD ,AB ∥CD ,设AB ⃗⃗⃗⃗⃗ =e 1⃗⃗⃗ ,向量e 2⃗⃗⃗ 的起点和终点分别是A 、B 、C 、D 中的两个点,若对平面中任意的非零向量a ⃗ ,都可以唯一表示为e 1⃗⃗⃗ 、e 2⃗⃗⃗ 的线性组合,那么e 2⃗⃗⃗ 的个数为( )A. 6B. 8C. 10D. 123. 在某段时间内,甲地不下雨的概率为P 1(0<P 1<1),乙地不下雨的概率为P 2(0<P 2<1),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( )A. P 1P 2B. 1−P 1P 2C. P 1(1−P 2)D. (1−P 1)(1−P 2)4. 在△ABC 中,BC =a ,CA =b ,AB =c ,下列说法中正确的是( )A. 用√a 、√b 、√c 为边长不可以作成一个三角形B. 用√a 、√b 、√c 为边长一定可以作成一个锐角三角形C. 用√a 、√b 、√c 为边长一定可以作成一个直角三角形D. 用√a 、√b 、√c 为边长一定可以作成一个钝角三角形二、填空题(本大题共12小题,共54.0分)5. 行列式∣∣∣1247∣∣∣的值为______6. 计算:n →∞lim n 2−n−23n 2+1=______ 7. 椭圆x 22+y 2=1的焦距长为______.8. 若函数f (x )的反函数为f −1(x)=x 12,则f (3)=______9. 若球主视图的面积为9π,则该球的体积等于______10. 不等式1|x−1|<12的解集为______11. 若等比数列{a n }的前n 项和S n =3×2n +a ,则实数a =______12. 在(√x 3−2x )n 的二项展开式中,若所有项的二项式系数之和为256,则常数项等于______13. 若函数f(x)={x 2−2x ≤1lg|x −m|x >1在区间[0,+∞)上单调递增,则实数m 的取值范围为______14. 设θ∈[0,2π),若圆(x -cosθ)2+(y -sinθ)2=r 2(r >0)与直线2x -y -10=0有交点,则r 的最小值为______15. 设φ∈[0,2π),若关于x 的方程sin (2x +φ)=a 在区间[0,π]上有三个解,且它们的和为4π3,则φ=______16.已知复数集合A={x+yi||x|≤1,|y|≤1,x,y∈R},B={z2|z2=(34+34i)z1,z1∈A},其中i为虚数单位,若复数z∈A∩B,则z对应的点Z在复平面内所形成图形的面积为______三、解答题(本大题共5小题,共76.0分)17.如图,在棱长为2的正方体ABCD-A'B'C'D'中,E为AB的中点.(1)求证:直线A'E平行于平面CC'D'D;(2)求异面直线A'E与B'C所成角的大小.(结果用反三角函数值表示)18.经济订货批量模型,是目前大多数工厂、企业等最常采用的订货方式,即某种物资在单位时间的需求量为某常数,经过某段时间后,存储量消耗下降到零,此时开始订货并随即到货,然后开始下一个存储周期,该模型适用于整批间隔进货、不允许缺货的存储问题,具体如下:年存储成本费T(元)关于每次订货x(单位)的函数关系为T(x)=Bx2+ACx,其中A为年需求量,B为每单位物资的年存储费,C为每次订货费.某化工厂需用甲醇作为原料,年需求量为6000吨,每吨存储费为120元/年,每次订货费为2500元.(1)若该化工厂每次订购300吨甲醇,求年存储成本费;(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用为多少?19.已知函数f(x)=sin x.(1)设a∈R,判断函数g(x)=a⋅f(x)+f(x+π2)的奇偶性,并说明理由;(2)设函数F(x)=2f(x)-√3,对任意b∈R,求y=F(x)在区间[b,b+10π]上零点个数的所有可能值.20.双曲线Γ:x2−y2=1(b>0).b2(1)若Γ的一条渐近线方程为y=2x,求Γ的方程;(2)设F1、F2是Γ的两个焦点,P为Γ上一点,且PF1⊥PF2,△PF1F2的面积为9,求b的值;(3)斜率为2的直线与Γ交于A、B两点,试根据常数b的不同取值范围,求线段AB中点的轨迹方程.21.已知以a1为首项的数列{a n}满足:|a n+1|=|a n+1|(n∈N*).(1)当a1=−1时,且-1<a n<0,写出a2、a3;3(2)若数列{|a n|}(1≤n≤10,n∈N*)是公差为-1的等差数列,求a1的取值范围;(3)记S n为{a n}的前n项和,当a1=0时,①给定常数m(m≥4,m∈N*),求S m-1的最小值;②对于数列a1,a2,…,a8,当S8取到最小值时,是否唯一存在满足|a j+2|=|a j-1+1|(2≤j≤6,j∈N*)的数列{a n}?请说明理由.答案和解析1.【答案】A【解析】解:由x(x+1)>0,解得x<-1或x>0,∵x>0能推出x<-1或x>0,但由x<-1或x>0推不出x>0∴“>0”是“x(x+1)>0”的充分非必要条件.故选:A.根据充分条件和必要条件的定义分别进行判断即可.本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.2.【答案】B【解析】解:由已知有、不共线,又起点和终点分别是A、B、C、D中的两个点,则此向量共有=12个,又,,,与共线,即的个数为12-4=8,故选:B.由平面向量基本定理得:、不共线,又起点和终点分别是A、B、C、D中的两个点,则此向量共有=12个,又,,,与共线,即的个数为12-4=8,得解.本题考查了平面向量基本定理,属中档题.3.【答案】D【解析】解:在某段时间内,甲地不下雨的概率为P1(0<P1<1),乙地不下雨的概率为P2(0<P2<1),在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为:P=(1-P1)(1-P2).故选:D.利用相互独立事件概率计算公式直接求解.本题考查概率的求法,考查相互独立事件概率计算公式等基础知识,考查运算求解能力,是基础题.4.【答案】B【解析】解:对于A.取,,,可以作成三角形,因此不正确.对于B,不妨设a≤b≤c,则a+b>c,≤≤.则0<A≤B≤C<π,cosC=>0,可得:C为锐角,因此△ABC必然为锐角三角形.正确.对于C.D.由B可知C,D不正确.因此只有B正确.故选:B.利用三角形三边大小关系、余弦定理,先判断A.B.的正误,进而判断出C.D的正误.本题考查了三角形三边大小关系、余弦定理,考查了推理能力与计算能力,属于中档题.5.【答案】-1【解析】解:由题意,可知:=1×7-2×4=-1.故答案为:-1.本题可根据二阶行列式的定义进行计算.本题主要考查二阶行列式的定义计算,本题属基础题.6.【答案】13【解析】解:===.故答案为:.直接利用数列的极限的运算法则化简求解即可.本题考查数列极限的运算法则的应用,是基本知识的考查.7.【答案】2【解析】解:因为椭圆:,所以a2=2,b2=1,所以c2=1,所以2c=2.所以椭圆的焦距为2.故答案为:2.直接利用椭圆的方程求出a,b然后求出2c,即可.本题考查椭圆的基本性质的应用,考查计算能力.8.【答案】9【解析】解:∵f(x)的反函数为,∴取f-1(x)=3,得,则x=9.∴f(3)=9.故答案为:9.要求f(3),只需在中取f-1(x)=3,求得x值即可.本题考查互为反函数的两函数图象间的关系,考查函数值的求法,是基础题.9.【答案】36π【解析】解:因为πR2=9π,所以R=3,所以体积公式为V==36π.故答案为36π.由球主视图是圆得圆的半径,得球的体积.本题考查球的体积公式,属于简单题.10.【答案】(-∞,-1)∪(3,+∞)【解析】解:由<可得|x-1|>2,可得x-1>2或x-1<-2,即x>3或x<-1,故答案为(-∞,-1)∪(3,+∞).去分母后解绝对值不等式即可.本题考查了绝对值不等式的解法,属基础题.11.【答案】-3【解析】解:数列{a n}是等比数列,①若q=1,显然,不成立.②故数列{a n}的公比q≠1,所以=,故q=2,=-3,故a=-3.故填:-3.将等比数列的前n项和公式分类讨论即可得到结论.本题考查了等比数列的前n项和公式,属于中档题,12.【答案】112【解析】解:由题意可得:2n=256,解得n=8.的通项公式为:T r+1==(-2)r.令=0,解得r=2.∴常数项==112.故答案为:112.由题意可得:2n=256,解得n,利用通项公式即可得出.本题考查了二项式定理的通项公式及其性质,考查了推理能力与计算能力,属于基础题.13.【答案】m≤910【解析】解:由题意可知f(x)在(1,+∞)上单调递增,∴当x>1时,f(x)=lg|x-m|=lg(x-m),x-m>0在(1,+∞)上恒成立.∴m≤1,又f(x)在(0,+∞)上单调递增,∴lg(1-m)≥-1,解得m≤.∴m的取值范围是:m≤.故答案为:m≤.由f(x)在(1,+∞)上单调递增可得x-m>0在(1,+∞)上恒成立,求得m≤1,由f(x)在(0,+∞)上单调递增可得lg(1-m)≥-1,从而可求得m的范围.本题考查了分段函数的单调性,不等式恒成立问题,属于中档题.14.【答案】2√5−1【解析】解:根据题意,圆(x-cosθ)2+(y-sinθ)2=r2(r>0)的圆心为(cosθ,sinθ),则圆心到直线2x-y-10=0的距离d==,若圆与直线有交点,则d≤r,又由-≤2cosθ-sinθ≤,则2-1≤d≤2+1,则有r≥2-1,即r的最小值为2-1,故答案为:2-1.根据题意,分析圆的圆心,求出圆心到直线的距离,结合直线与圆的位置关系可得d≤r,结合三角函数的性质分析d的范围,即可得答案.本题考查直线与圆的位置关系,涉及三角函数的最值,属于基础题.15.【答案】π6或7π6【解析】解:函数的周期为π,若方程sin(2x+φ)=a在区间[0,π]上有三个解,则三个解必有x=0,和x=π,另外一个根m可能与x=0关于对称轴对称,或者与x=π对称,由2x+φ=kπ+,得x=+-,若k=0则对称轴为x=-,此时m与0关于为x=-对称,则m=2(-)=-φ,则三个根之和为0+-φ+π=,得φ=,若k=1,则对称轴为x=-,此时m与0关于为x=-对称,则m=2(-)=-φ,则三个根之和为0+-φ+π=,得φ=,综上φ=或,故答案为:或.求出函数的周期,结合方程在区间[0,π]上有三个解,则等价为x=0和x=π是方程的两个解,结合对称性求解第三个解即可.本题主要考查函数与方程的应用,结合三角函数在一个周期内的性质,得到为x=0和x=π是方程的两个解以及通过三角函数的对称性进行求解是解决本题的关键.综合性较强.16.【答案】72【解析】解:集合A={x+yi||x|≤1,|y|≤1,x,y∈R)在复平面内所形成的图形为正方形ABCD内包括边界,z2=(1+i)z1=(cos+isin)z1对应的点在复平面内形成的图象为正方形PQRS,如图:所以所求图形的面积为-4×=-1=,故答案为:集合A={x+yi||x|≤1,|y|≤1,x,y∈R)在复平面内所形成的图形为正方形ABCD 内包括边界,z2=(1+i)z1=(cos+isin)z1对应的点在复平面内形成的图象为正方形PQRS,再用正方形PQRS的面积减去4个等腰直角三角形的面积可得.本题考查了复数的代数表示法及其几何意义,属中档题.17.【答案】证明:(1)取CD中点F,连结D′F,∵在棱长为2的正方体ABCD-A'B'C'D'中,E为AB的中点.∴A′E∥D′F,∵A′E⊄平面CC'D'D,D′F⊂平面CC'D'D,∴直线A'E平行于平面CC'D'D.解:(2)∵A′D∥B′C,∴∠DA′E是异面直线A'E与B'C所成角(或所成角的补角),∵A′E=DE=√22+12=√5,A′D=√22+22=2√2,∴cos∠DA′E=A′D2+A′E2−DE22×A′D×A′E =8+5−52×2√2×√5=√105.∴异面直线A'E与B'C所成角为arccos√105.【解析】(1)取CD中点F,连结D′F,推导出A′E∥D′F,由此能证明直线A'E平行于平面CC'D'D.(2)由A′D∥B′C,得∠DA′E是异面直线A'E与B'C所成角(或所成角的补角),由此能求出异面直线A'E与B'C所成角.本题考查线面平行的证明,考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.18.【答案】解:(1)由题意,A=6000,B=120,C=2500,则T(x)=120x2+6000×2500x=60x+15000000x;T(300)=60×300+15000000300=68000;(2)T(x)=60x+15000000x ≥2√60x⋅15000000x=60000.当且仅当60x=15000000x,即x=500时,T min=60000.故每次需订购500吨甲醇,可使该化工厂年存储成本费最少,最少费用为60000元.【解析】(1)由已知可得A,B,C的值,代入已知函数关系式化简即可;(2)直接利用基本不等式求最值.本题考查根据实际问题选择函数模型,训练了利用基本不等式求最值,是中档题.19.【答案】解:(1)g(x)=a sin x+sin(x+π2)=a sin x+cos x,由g(-x)=-a sin x+cos x,得若a=0,则g(-x)=g(x)=cos x,即此时g(x)为偶函数,当a≠0时,g(x)为非奇非偶函数,综上a=0,偶函数;a≠0,非奇非偶函数;(2)F(x)=2f(x)-√3=2sin x-√3,由F(x)=2f(x)-√3=0得sin x=√32,区间[b,b+10π]的长度为10π,对应5个周期,则每个周期[0,2π)内满足sin x =√32的根有两个, 若sin b =√32,则在5个周期内的交点个数为11个, 若sin b ≠√32,则在5个周期内的交点个数为10个, 即y =F (x )在区间[b ,b +10π]上零点个数可能有10或11个.【解析】(1)求出g (x )的解析式,结合函数奇偶性的定义进行讨论即可.(2)求出y=F (x )解析式,结合函数与方程之间的关系转化为sinx=,区间[b ,b+10π]的长度为10π,对应5个周期,结合每个周期内交点个数进行判断即可. 本题主要考查函数与方程的应用以及函数奇偶性的判断,结合函数的定义以及函数与方程之间的关系转化为sinx=在区间[b ,b+10π]内根的个数是解决本题的关键.利用数形结合是解决本题的关键.20.【答案】解:(1)由渐近线方程为y =±bx , 又Γ的一条渐近线方程为y =2x ,可得b =2,可得双曲线的方程为x 2−y 24=1;(2)可设|PF 1|=m ,|PF 2|=n ,即有|m -n |=2a ,PF 1⊥PF 2,可得m 2+n 2=4c 2,则4c 2-2mn =4a 2,即mn =2b 2,△PF 1F 2的面积为9,即为12mn =b 2=9,解得b =3;(3)设斜率为2的直线方程设为y =2x +t ,代入双曲线方程可得(b 2-4)x 2-4tx -t 2-b 2=0,△=16t 2+4(b 2-4)(t 2+b 2)>0,化为t 2+b 2-4>0,设A (x 1,y 1),B (x 2,y 2),可得x 1+x 2=4t b 2−4,AB 中点坐标为(2t b 2−4,b 2t b 2−4),消去t ,可得中点的轨迹方程为y =b 22x ,当b >2时,△>0恒成立,即有y =b 22x (x ∈R ); 当0<b <2时,即有y =b 22x (x >√4−b 2或x <-√4−b 2).【解析】(1)由双曲线的渐近线方程可得b ;(2)可设|PF 1|=m ,|PF 2|=n ,运用双曲线的定义和勾股定理,三角形的面积公式,可得所求值;(3)设斜率为2的直线方程设为y=2x+t ,代入双曲线方程,运用韦达定理和中点坐标公式,以及判别式大于0,即可得到所求轨迹方程.本题考查双曲线的定义和方程、性质,主要是渐近线方程,考查直线和双曲线方程联立,运用韦达定理和中点坐标公式,以及分类讨论思想方法,考查运算能力,属于中档题.21.【答案】解:(1)当a 1=−13时,且-1<a n <0,∴0<1+a n <1,∴|a 2|=|a 1+1|=23,∴a 2=-23.同理可得:a 3=-13.(2)数列{|a n |}(1≤n ≤10,n ∈N *)是公差为-1的等差数列,∴|a n |=|a 1|-(n -1)≥0,∴|a 1|≥n -1.n =10时,|a 1|≥9,∵|a n +1|=|a n +1|(n ∈N *).∴a n +1=±(|a 1|-n ),正号不成立,∴a n =-|a 1|+n -1≤0.∴a 1≤-9.(3)当a 1=0时,a n +1=±(a n +1).a 2=±1,a 3=±2,或0.a 4=±3,±1.…….∴①m 为奇数,最小值=0-1+0-1-……-1+0=−m−12,m 为偶数,最小值=0+1-2+3-……-(m -2)=−m−22. ②不唯一,S 8=-4,例如0、-1、0、-1、0、-1、0、-1.和0、1、-2、1、-2、1、-2、-1均符合.【解析】(1)当时,且-1<a n <0,可得0<1+a n <1,|a 2|=|a 1+1|=,可得a 2=-.同理可得:a 3.(2)数列{|a n |}(1≤n≤10,n ∈N *)是公差为-1的等差数列,由|a n |=|a 1|-(n-1)≥0,可得|a 1|≥n -1.n=10时,|a 1|≥9,由|a n+1|=|a n +1|(n ∈N *).可得a n +1=±(|a 1|-n ),正号不成立,因此a n =-|a 1|+n-1≤0.即可得出.(3)当a1=0时,a n+1=±(a n+1).a2=±1,a3=±2,或0.a4=±3,±1.…….可得①m为奇数,最小值=0-1+0-1-……-1+0,m为偶数,最小值=0+1-2+3-……-(m-2).②不唯一,S8=-4,例如0、-1、0、-1、0、-1、0、-1.和0、1、-2、1、-2、1、-2、-1均符合.本题考查了等差数列的通项公式与求和公式及其性质、分类讨论方法、绝对值应用,考查了推理能力与计算能力,属于中档题.。

上海市黄浦区2019-2020学年高考第二次模拟数学试题含解析

上海市黄浦区2019-2020学年高考第二次模拟数学试题含解析

上海市黄浦区2019-2020学年高考第二次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数2()ln(1)f x x x-=+-,则函数(1)=-y f x 的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像. 【详解】设2()(1)ln 1g x f x x x -=-=-+,由于120112ln 22g -⎛⎫=> ⎪⎝⎭+,排除B 选项;由于()2222(e),e 2e 3eg g --==--,所以()g e >()2e g ,排除C 选项;由于当x →+∞时,()0>g x ,排除D 选项.故A 选项正确. 故选:A 【点睛】本题考查了函数图像的性质,属于中档题.2.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .2- B .2C .12-D .12【答案】C【解析】 【分析】把()12112z ai a R z i =+∈=+,代入12z z ,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可. 【详解】∵()12112z ai a R z i =+∈=+,,∴121(1)(12)12212(12)(12)55z ai ai i a a i z i i i ++-+-===+++-, ∵12z z 为纯虚数, ∴12020a a +=⎧⎨-≠⎩,解得12a =-.故选C . 【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.3.已知函数()ln(1)f x x ax =+-,若曲线()y f x =在点(0,(0))f 处的切线方程为2y x =,则实数a 的取值为( ) A .-2 B .-1C .1D .2【答案】B 【解析】 【分析】求出函数的导数,利用切线方程通过f′(0),求解即可; 【详解】f (x )的定义域为(﹣1,+∞), 因为f′(x )11x =-+a ,曲线y =f (x )在点(0,f (0))处的切线方程为y =2x , 可得1﹣a =2,解得a =﹣1, 故选:B . 【点睛】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力.4.已知向量(a =r ,b r是单位向量,若a b -=r r ,则,a b =r r ( )A .6π B .4π C .3π D .23π 【答案】C 【解析】 【分析】设(,)b x y =r,根据题意求出,x y 的值,代入向量夹角公式,即可得答案; 【详解】设(,)b x y =r ,∴(1)a b x y -=-r r, Q b r是单位向量,∴221x y +=,Q a b -=r r,∴22(1))3x y -+=,联立方程解得:1,22x y ⎧=-⎪⎪⎨⎪=⎪⎩或1,0,x y =⎧⎨=⎩当1,22x y ⎧=-⎪⎪⎨⎪=⎪⎩时,13122cos ,212a b -+<>==⨯r r ;∴,3a b π<>=r r 当1,0,x y =⎧⎨=⎩时,11cos ,212a b <>==⨯r r ;∴,3a b π<>=r r 综上所述:,3a b π<>=r r .故选:C. 【点睛】本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意b r的两种情况.5.已知a ,b ,R c ∈,a b c >>,0a b c ++=.若实数x ,y 满足不等式组040x x y bx ay c ≥⎧⎪+≤⎨⎪++≥⎩,则目标函数2z x y =+( ) A .有最大值,无最小值 B .有最大值,有最小值 C .无最大值,有最小值 D .无最大值,无最小值【答案】B 【解析】【分析】判断直线0bx ay c ++=与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况. 【详解】由0a b c ++=,a b c >>,所以可得0,0a c ><.1112,22222c c c ca b a a c b c a c c a a a a>⇒>--⇒>->⇒-->⇒<-∴-<<-⇒<-<, 所以由0b cbx ay c y x a a++=⇒=--,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示:由此可以判断该目标函数一定有最大值和最小值. 故选:B 【点睛】本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用.6.若实数,x y 满足的约束条件03020y x y x y ≥⎧⎪+-≤⎨⎪-≥⎩,则2z x y =+的取值范围是( )A .[)4+∞,B .[]06,C .[]04,D .[)6+∞,【答案】B 【解析】 【分析】根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围. 【详解】实数,x y 满足的约束条件03020y x y x y ≥⎧⎪+-≤⎨⎪-≥⎩,画出可行域如下图所示:将线性目标函数2z x y =+化为2y x z =-+,则将2y x =-平移,平移后结合图像可知,当经过原点()0,0O 时截距最小,min 0z =; 当经过()3,0B 时,截距最大值,max 2306z =⨯+=, 所以线性目标函数2z x y =+的取值范围为[]0,6, 故选:B. 【点睛】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题. 7.M 、N 是曲线y=πsinx 与曲线y=πcosx 的两个不同的交点,则|MN|的最小值为( ) A .π B .2πC .3πD .2π【答案】C 【解析】 【分析】 【详解】两函数的图象如图所示,则图中|MN|最小,设M(x 1,y 1),N(x 2,y 2), 则x 1=4π,x 2=π, |x 1-x 2|=π,|y 1-y 2|=|πsinx 1-πcosx 2|=22π+22π =2π, ∴|MN|==π.故选C.8.设函数22sin ()1x x f x x =+,则()y f x =,[],x ππ∈-的大致图象大致是的( )A .B .C .D .【答案】B 【解析】 【分析】采用排除法:通过判断函数的奇偶性排除选项A ;通过判断特殊点(),2f f ππ⎛⎫⎪⎝⎭的函数值符号排除选项D 和选项C 即可求解. 【详解】对于选项A:由题意知,函数()f x 的定义域为R ,其关于原点对称,因为()()()()()2222sin sin 11x x x xf x f x x x ---==-=-+-+, 所以函数()f x 为奇函数,其图象关于原点对称,故选A 排除;对于选项D:因为2222sin 2202412f ππππππ⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎝⎭⎝⎭==> ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,故选项D 排除; 对于选项C:因为()()22sin 01f ππππ==+,故选项C 排除; 故选:B 【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.9.要得到函数2sin 2y x x =-的图像,只需把函数sin 22y x x =-的图像( )A .向左平移2π个单位 B .向左平移712π个单位 C .向右平移12π个单位D .向右平移3π个单位 【答案】A 【解析】 【分析】运用辅助角公式将两个函数公式进行变形得2sin 23y x π⎛⎫=--⎪⎝⎭以及2sin 23y x π⎛⎫=-⎪⎝⎭,按四个选项分别对2sin 23y x π⎛⎫=- ⎪⎝⎭变形,整理后与2sin 23y x π⎛⎫=--⎪⎝⎭对比,从而可选出正确答案. 【详解】 解:1sin 22sin 22sin 22sin 2233y x x x x x x ππ⎫⎛⎫⎛⎫=-=-=-=--⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1sin 222sin 222sin 223y x x x x x π⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭===-. 对于A :可得2sin 22sin 22sin 22333y x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=-+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 故选:A. 【点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数. 10.定义,,a a b a b b a b ≥⎧⊗=⎨<⎩,已知函数21()2sin f x x =-,21()2cos g x x =-,则函数()()()F x f x g x =⊗的最小值为( )A .23B .1C .43D .2【答案】A 【解析】 【分析】根据分段函数的定义得()()F x f x ≥,()()F x g x ≥,则2()()()F x f x g x ≥+,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得()()F x f x ≥,()()F x g x ≥,则2()()()F x f x g x ≥+,22222211111()()()[(2sin )(2cos )]2sin 2cos 32sin 2cos f x g x x x x x x x+=+=+-+-----222212cos 2sin 14(2)(232sin 2cos 33x x x x --=++≥+=--(当且仅当222cos 2sin x x --222sin 2cos x x -=-,即221sin cos 2x x ==时“=”成立.此时,2()()3f x g x ==,42()3F x ∴≥,()F x ∴的最小值为23, 故选:A. 【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出2()()()F x f x g x ≥+,再由基本不等式求得最值,属于中档题.11.己知函数sin ,2,2(),2223sin ,2,2(),222x x k k k z y x x k k k z ππππππππππ⎧⎛⎫⎡⎫+∈-+∈ ⎪⎪⎪⎢⎪⎝⎭⎣⎭=⎨⎛⎫⎡⎫⎪-+∈++∈ ⎪⎪⎢⎪⎝⎭⎣⎭⎩的图象与直线(2)(0)y m x m =+>恰有四个公共点()()()()11123344,,,,.,,,A x y B x y C x y D x y ,其中1234x x x x <<<,则()442tan x x +=( ) A .1- B .0C .1D.22+ 【答案】A 【解析】 【分析】先将函数解析式化简为|cos |y x =,结合题意可求得切点4x 及其范围4,2x ππ⎛⎫∈ ⎪⎝⎭,根据导数几何意义,即可求得()442tan x x +的值. 【详解】函数sin ,2,2(),2223sin ,2,2(),222x x k k k z y x x k k k z ππππππππππ⎧⎛⎫⎡⎫+∈-+∈ ⎪⎪⎪⎢⎪⎝⎭⎣⎭=⎨⎛⎫⎡⎫⎪-+∈++∈ ⎪⎪⎢⎪⎝⎭⎣⎭⎩即|cos |y x =直线(2)(0)y m x m =+>与函数|cos |y x =图象恰有四个公共点,结合图象知直线(2)(0)y m x m =+>与函数cos y x =-相切于4x ,4,2x ππ⎛⎫∈ ⎪⎝⎭, 因为sin y x '=, 故444cos sin 2x k x x -==+,所以()()()()4444444sin 1221c 2tan os 2x x x x x x x -+⨯=+⨯=-++=.故选:A. 【点睛】本题考查了三角函数的图像与性质的综合应用,由交点及导数的几何意义求函数值,属于难题. 12.用数学归纳法证明,则当时,左端应在的基础上加上( )A .B .C .D .【答案】C 【解析】 【分析】首先分析题目求用数学归纳法证明1+1+3+…+n 1=时,当n=k+1时左端应在n=k 的基础上加上的式子,可以分别使得n=k ,和n=k+1代入等式,然后把n=k+1时等式的左端减去n=k 时等式的左端,即可得到答案. 【详解】当n=k 时,等式左端=1+1+…+k 1,当n=k+1时,等式左端=1+1+…+k 1+k 1+1+k 1+1+…+(k+1)1,增加了项(k 1+1)+(k 1+1)+(k 1+3)+…+(k+1)1. 故选:C . 【点睛】本题主要考查数学归纳法,属于中档题./二、填空题:本题共4小题,每小题5分,共20分。

上海市黄浦区2019-2020学年高考数学模拟试题含解析

上海市黄浦区2019-2020学年高考数学模拟试题含解析

上海市黄浦区2019-2020学年高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足(1)21z i i ⋅+=+(i 为虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】先把(1)21z i i ⋅+=+变形为211i z i+=+,然后利用复数代数形式的乘除运算化简,求出z ,得到其坐标可得答案. 【详解】解:由(1)21z i i ⋅+=+,得21(21)(1)3311(1)(1)222i i i i z i i i i ++-+====+++-, 所以3122z i =-,其在复平面内对应的点为31,22⎛⎫- ⎪⎝⎭,在第四象限 故选:D 【点睛】此题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题. 2.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m k 的星的亮度为E k (k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为( ) A .1010.1 B .10.1C .lg10.1D .10–10.1【答案】A 【解析】 【分析】由题意得到关于12,E E 的等式,结合对数的运算法则可得亮度的比值. 【详解】两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选A.【点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.3.已知函数()(),12,1x e x f x f x x ⎧≤⎪=⎨->⎪⎩,若方程()10f x mx --=恰有两个不同实根,则正数m 的取值范围为( ) A .()1,11,12e e -⎛⎫-⎪⎝⎭U B .(]1,11,12e e -⎛⎫-⎪⎝⎭U C .()1,11,13e e -⎛⎫-⎪⎝⎭U D .(]1,11,13e e -⎛⎫-⎪⎝⎭U 【答案】D 【解析】 【分析】当1x >时,函数周期为2,画出函数图像,如图所示,方程两个不同实根,即函数()f x 和1y mx =+有图像两个交点,计算13AC e k -=,1BC k e =-,根据图像得到答案. 【详解】当1x >时,()()2f x f x =-,故函数周期为2,画出函数图像,如图所示: 方程()10f x mx --=,即()1f x mx =+,即函数()f x 和1y mx =+有两个交点.()x f x e =,()'x f x e =,故()'01f =,()1,B e ,()3,C e ,13AC e k -=,1BC k e =-. 根据图像知:(]1,11,13e m e -⎛⎫∈- ⎪⎝⎭U . 故选:D .【点睛】本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.4.若x ∈(0,1),a =lnx ,b =ln 12x⎛⎫ ⎪⎝⎭,c =e lnx ,则a ,b ,c 的大小关系为( )A .b >c >aB .c >b >aC .a >b >cD .b >a >c【答案】A 【解析】 【分析】利用指数函数、对数函数的单调性直接求解. 【详解】 ∵x ∈(0,1), ∴a =lnx <0, b =(12)lnx >(12)0=1, 0<c =e lnx <e 0=1,∴a ,b ,c 的大小关系为b >c >a . 故选:A . 【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.5.函数sin y x x =+在[]2,2x ππ∈-上的大致图象是( )A .B .C .D .【答案】D 【解析】 【分析】讨论x 的取值范围,然后对函数进行求导,利用导数的几何意义即可判断. 【详解】当0x ≥时,sin y x x =+,则cos 10y x '=+≥, 所以函数在[]0,2π上单调递增,令()cos 1g x x =+,则()sin g x x '=-, 根据三角函数的性质,当[]0,x π∈时,()sin 0g x x '=-<,故切线的斜率变小, 当[],2x ππ∈时,()sin 0g x x '=->,故切线的斜率变大,可排除A 、B ;当0x <时,sin y x x =-+,则cos 10y x '=-+≥, 所以函数在[]2,0π-上单调递增, 令 ()cos 1h x x =-+,()sin h x x '=,当[]2,x ππ∈--时,()sin 0h x x '=>,故切线的斜率变大, 当[],0x π∈-时,()sin 0h x x '=<,故切线的斜率变小,可排除C , 故选:D 【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.6.在ABC V 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cos cos 4c a B b A -=,则2222a bc-=( ) A .32B .12C .14D .18【答案】D 【解析】 【分析】利用余弦定理角化边整理可得结果. 【详解】由余弦定理得:222222224a cb bc a ca b ac bc +-+-⋅-⋅=,整理可得:2224c a b -=,222128a b c -∴=.故选:D . 【点睛】本题考查余弦定理边角互化的应用,属于基础题. 7.如图是一个算法流程图,则输出的结果是( )A .3B .4C .5D .6【答案】A 【解析】 【分析】执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案. 【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,2,1x y ==; 第2次循环:满足判断条件,4,2x y ==; 第3次循环:满足判断条件,8,3x y ==; 不满足判断条件,输出计算结果3y =, 故选A . 【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.8.函数2sin cos ()20x x xf x x =+在[2,0)(0,2]ππ-⋃上的图象大致为( ) A . B .C.D.【答案】A【解析】【分析】首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;【详解】解:依题意,22sin()()cos()sin cos()()2020x x x x x xf x f xx x----=+=+=-,故函数()f x为偶函数,图象关于y轴对称,排除C;而2()020fππ=-<,排除B;2(2)05fππ=>,排除D.故选:A.【点睛】本题考查函数图象的识别,函数的奇偶性的应用,属于基础题. 9.若点(3,4)P-是角α的终边上一点,则sin2α=()A.2425-B.725-C.1625D.85【答案】A 【解析】【分析】根据三角函数的定义,求得43sin,cos55αα==-,再由正弦的倍角公式,即可求解.【详解】由题意,点(3,4)P-是角α的终边上一点,根据三角函数的定义,可得43 sin,cos55αα==-,则4324sin22sin cos2()5525ααα==⨯⨯-=-,故选A.【点睛】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.10.在正项等比数列{a n}中,a5-a1=15,a4-a2 =6,则a3=()A .2B .4C .12D .8【答案】B 【解析】 【分析】根据题意得到4511115a a a q a -=-=,342116a a a q a q -=-=,解得答案.【详解】4511115a a a q a -=-=,342116a a a q a q -=-=,解得112a q =⎧⎨=⎩或11612a q =-⎧⎪⎨=⎪⎩(舍去).故2314a a q ==.故选:B . 【点睛】本题考查了等比数列的计算,意在考查学生的计算能力. 11.在ABC ∆中,30C =︒,2cos 3A =-,2AC =,则AC 边上的高为( ) AB .2CD.2【答案】C 【解析】 【分析】结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得BC 边长,由此求得AC 边上的高. 【详解】过B 作BD CA ⊥,交CA 的延长线于D .由于2cos 3A =-,所以A 为钝角,且sin A ==所以()()sin sin sin CBA CBA A C π∠=-∠=+212sin cos cos sin 32326A C A C =+=-⨯=.在三角形ABC 中,由正弦定理得sin sin a b A B==,所以BC =在Rt BCD ∆中有1sin 2BD BC C ===,即AC故选:C【点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题. 12.已知ABC ∆中内角,,A B C 所对应的边依次为,,a b c ,若2=1,7,3a b c C π+==,则ABC ∆的面积为( ) A .332B 3C .33D .23【答案】A 【解析】 【分析】由余弦定理可得227a b ab +-=,结合2=1a b +可得a ,b ,再利用面积公式计算即可. 【详解】由余弦定理,得2272cos a b ab C =+-=22a b ab +-,由22721a b ab a b ⎧=+-⎨=+⎩,解得23a b =⎧⎨=⎩,所以,11333sin 2322ABC S ab C ∆==⨯⨯=. 故选:A. 【点睛】本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题. 二、填空题:本题共4小题,每小题5分,共20分。

上海市黄浦区2019届高三二模数学试题

上海市黄浦区2019届高三二模数学试题

上海市黄浦区2019届高三二模数学试题一、填空题(★) 1 . 行列式的值为__________.(★) 2 . 计算:__________.(★) 3 . 椭圆的焦距长为__________.(★) 4 . 若函数的反函数为,则________(★) 5 . 若球主视图的面积为,则该球的体积等于________(★) 6 . 不等式的解集为________(★) 7 . 若等比数列的前项和,则实数________(★★) 8 . 在的二项展开式中,若所有项的二项式系数之和为256,则常数项等于______(★) 9 . 若函数在区间上单调递增,则实数的取值范围为________(★) 10 . 设,若关于的方程在区间上有三个解,且它们的和为,则________(★★) 11 . 已知复数集合,其中为虚数单位,若复数,则对应的点在复平面内所形成图形的面积为________二、单选题(★) 12 . 设,“ ”是“ ”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件(★) 13 . 已知梯形,,设,向量的起点和终点分别是、、、中的两个点,若对平面中任意的非零向量,都可以唯一表示为、的线性组合,那么的个数为()A.6B.8C.10D.12(★) 14 . 在某段时间内,甲地不下雨的概率为(),乙地不下雨的概率为(),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为()A.B.C.D.(★) 15 . 在△中,,,,下列说法中正确的是()A.用、、为边长不可以作成一个三角形B.用、、为边长一定可以作成一个锐角三角形C.用、、为边长一定可以作成一个直角三角形D.用、、为边长一定可以作成一个钝角三角形三、解答题(★) 16 . 如图,在棱长为2的正方体中,为的中点.(1)求证:直线平行于平面;(2)求异面直线与所成角的大小. (结果用反三角函数值表示)(★) 17 . 经济订货批量模型,是目前大多数工厂、企业等最常采用的订货方式,即某种物资在单位时间的需求量为某常数,经过某段时间后,存储量消耗下降到零,此时开始订货并随即到货,然后开始下一个存储周期,该模型适用于整批间隔进货、不允许缺货的存储问题,具体如下:年存储成本费(元)关于每次订货(单位)的函数关系,其中为年需求量,为每单位物资的年存储费,为每次订货费. 某化工厂需用甲醇作为原料,年需求量为6000吨,每吨存储费为120元/年,每次订货费为2500元.(1)若该化工厂每次订购300吨甲醇,求年存储成本费;(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用为多少?(★★) 18 . 已知函数.(1)设,判断函数的奇偶性,并说明理由;(2)设函数,对任意,求在区间上零点个数的所有可能值。

上海市黄浦区2019学年度第二学期高三年级阶段性调研(二模)数学试题

上海市黄浦区2019学年度第二学期高三年级阶段性调研(二模)数学试题

黄浦区2019学年度第二学期高三年级阶段性调研数学试卷2020年5月(完卷时间:120分钟满分:150分)考生注意:1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行,写在试卷上的解答一律无效;2.答卷前,考生务必将姓名、准考证号等相关信息在答题卷上填写清楚3.本试卷共21试题,满分150分;考试时间120分钟一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.若集合2{1,2,3,4,5},{|60},A B x x x ==--<则A B =I ▲2.函数22cos 2y x =+的最小正周期为 ▲3.某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选 ▲ 户4.若直线1l :350ax y +-=与2:210l x y +-=互相垂直,则实数a 的值为 ▲5.如果sin ,3α=-α为第三象限角,则3sin()2πα+= ▲ 6.若一圆锥的主视图是边长为6的正三角形,则此圆锥的体积为 ▲7.已知双曲线()222210,0x y a b a b-=>>的一条渐近线平行于直线:,:210x l y =+双曲线的一个焦点在直线l 上,则双曲线的方程为 ▲8.已知函数()(0,1)xf x a b a a =+>≠的定义域和值域都是[-2,0],则()1f -= ▲ 9.当x,y 满足,1271,00,x x y y x +-≤⎧⎪⎨⎪≥-≤⎩-时,|2|x y a -≤恒成立,则实数a 的取值范围是 ▲10.某班共有4个小组,每个小组有4人报名参加志愿者活动,现从这8人中随机选出4人作为正式志愿者,则选出的4人中至少有2人来自同一小组的概率为 ▲11.已知,a R ∈函数()2,1(2)00a x xx x ⎧⎪⎨⎪+>⎩+≤若存在不相等的实数x 1,x 2,x 3,使得()()132123)2(x x x x x f f f x ===-,则a 的取值范围是 ▲ 12.点A是曲线)2y y =…上的任意一点,(0,2),(0,2),P Q -射线QA 交曲线218y x =于B 点,BC 垂直于直线3,y =垂足为点C,则下列结论: (1)||||AP AQ -为定值||||QB BC +为定值5;(3)||||||PA AB BC ++为定值5+其中正确结论的序号是 ▲二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分)13.”函数()()f x x R ∈存在反函数”是“函数f(x)在R 上为增函数”的 ( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件14.设12,z z 是复数,则下列命题中的假命题是( )A 若1212||0,z z z z -==则 B.1212,z z z z ==若则C.若121122,z z z z z z =⋅=⋅则D.若,221212,z z z z ==若则 15.已知,e f r u r 是互相垂直的单位向量,向量n a u u r 满足:,21,n n n e a n f a n b ⋅=⋅=+u u r u r u u r r 是向量n f a u r u u r 与夹角的正切值,则数列{b n }是( )A 单调递增数列且1lim .2n n bB →∞=单调递减数列且1lim 2n n b →∞= C.单调递增数列且lim 2n n b →∞=D.单调递减数列且lim 2n n b →∞=16.如图,直线l ⊥平面α,垂足为O,正四面体ABCD 的棱长为2,A,D 分别是直线l 和平面α上的动点,且,BC l ⊥则下列判断:①点O 到棱BC 中点E 1;②正四面体ABCD 在平面α.其中正确的说法是( )A ①②都正确B.①②都错误C.①正确,②错误 D.①错误,②正确三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分如图,在三棱椎P-ABC 中,PA ⊥平面ABC,∠BAC=90°,D 、E 、F 分别是棱AB 、BC 、CP 的中点,AB=BC=1,2PA =(1)求异面直线PB 与DF 所成的角;(2)求点P 到平面DEF 的距离.18.(本题满分14分)本题共有2小题,第1小题满分6分,第2小题满分8分.设A(x 1,y 1)(x 2,y 2)是函数21,log 21x y x =+-的图像上任意两点,点()00.(2,1)M y OM OA OB x =+u u u u r u u u r u u u r 满足 (1)若x 0=12求证:y 0为定值 (2)若212,x x =且y 0>1,求x 1的取值范围,并比较y 1与y 2的大小.19.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分。

上海市黄浦区2019届高三数学二模试题(含解析)

上海市黄浦区2019届高三数学二模试题(含解析)

上海市黄浦区2019届高三数学二模试卷第Ⅰ卷(共60分)一、填空题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.行列式的值为__________.【答案】-1【解析】【分析】根据直接得,即可得出结果.【详解】因为.故答案为【点睛】本题主要考查行列式的简单计算,熟记公式即可,属于基础题型.2.计算:__________.【答案】【解析】【分析】分子分母同除以,即可求出结果.【详解】因为.故答案为【点睛】本题主要考查“”型的极限计算,熟记常用做法即可,属于基础题型.3.椭圆的焦距长为__________.【答案】2【解析】【分析】根据椭圆方程求出,进而可求出结果.【详解】因为椭圆中,,所以,所以焦距为.故答案为2【点睛】本题主要考查椭圆的焦距,熟记椭圆的性质即可,属于基础题型.4.若函数的反函数为,则________【答案】9【解析】【分析】根据函数的反函数解析式可求出解析式,进而可求出结果.【详解】因为函数的反函数为,令,则,所以,故.故答案为9【点睛】本题主要考查反函数,熟记反函数与原函数之间的关系即可求解,属于基础题型.5.若球主视图的面积为,则该球的体积等于________【答案】【解析】【分析】根据球的三视图都相当于过球心的截面圆,由题中数据可得球的半径,从而可求出结果. 【详解】设球的半径为,因为球主视图的面积为,所以,故,所以该球的体积为.故答案为【点睛】本题主要考查球的体积,熟记球的三视图以及球的体积公式即可,属于基础题型.6.不等式的解集为________【答案】【解析】【分析】先由可得,从而可直接得出结果.【详解】因为,所以,所以或,即或,因此,原不等式的解集为.故答案为【点睛】本题主要考查含绝对值不等式的解法,先将原式进行变形即可求解,属于基础题型.7.若等比数列的前项和,则实数________【答案】【解析】【分析】根据为等比数列,由求出,得到,再由即可求出结果.【详解】因为等比数列的前项和,所以,所以,又,所以.故答案为【点睛】本题主要考查等比数列,熟记前项和公式即可,属于基础题型.8.在的二项展开式中,若所有项的二项式系数之和为256,则常数项等于______【答案】112【解析】由题意可得:,结合二项式展开式通项公式可得:,令可得:,则常数项为:.9.若函数在区间上单调递增,则实数的取值范围为________ 【答案】【解析】【分析】由函数在区间上单调递增,得到在每一部分都单调递增,且,即可求出结果.【详解】因为函数在区间上单调递增,所以在每一部分都单调递增,且,即,解得.故答案【点睛】本题主要考查分段函数单调的问题,只需满足每一部分单调,并且特别主要结点位置的取值即可,属于常考题型.10.设,若圆()与直线有交点,则的最小值为________【答案】【解析】【分析】根据直线与圆相交,可得圆心到直线的距离小于等于半径,列出不等式即可求出结果.【详解】因为圆圆心为,又圆()与直线有交点,所以存在,使得圆心到直线的距离即可,即成立即可,其中,又,所以的最小值为.故答案为【点睛】本题主要考查直线与圆位置关系,直线与圆有交点,只需圆心到直线的距离小于等于半径即可,属于常考题型.11.设,若关于的方程在区间上有三个解,且它们的和为,则________【答案】或【解析】【分析】由关于的方程在区间上有三个解,且函数的最小正周期为可得,最大和最小的解分别为和,根据它们的和为,可求出中间的解,列出等式,根据的范围即可求出结果.【详解】因为关于的方程在区间上有三个解,且函数的最小正周期为,再由三角函数的对称性可知:方程在区间上的解的最小值与最大值分别为和;又它们的和为,所以中间的解为,所以有,即,故,又,所以或.故答案为或【点睛】本题主要考查三角函数的图像与性质,熟记正弦型函数的性质即可,属于常考题型.12.已知复数集合,其中为虚数单位,若复数,则对应点在复平面内所形成图形的面积为________【答案】【解析】【分析】先由复数的几何意义确定集合所对应的平面区域,再确定集合所对应的平面区域,由复数,可得复数对应的点在复平面内所形成图形即为集合与集合所对应区域的重叠部分,结合图像求出面积即可.【详解】因为复数集合,所以集合所对应的平面区域为与所围成的正方形区域;又,设,且,,,所以,设对应的点为,则,所以,又,,所以,因为复数,对应的点在复平面内所形成图形即为集合与集合所对应区域的重叠部分,如图中阴影部分所示,由题意及图像易知:阴影部分为正八边形,只需用集合所对应的正方形区域的面积减去四个小三角形的面积即可.由得,由得,所以.故答案为【点睛】本题主要考复数的几何意义,以及不等式组所表示平面区域问题,熟记复数的几何意义,灵活掌握不等式组所表示的区域即可,属于常考题型.第Ⅱ卷(共90分)二、选择题(每题5分,满分20分,将答案填在答题纸上)13.设,“”是“”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】先解不等式得到的范围,再根据充分条件与必要条件的概念即可求出结果.【详解】解不等式可得或,所以,由“”能推出“或”;由“或”不能推出“”,故“”是“”的充分不必要条件.故选A【点睛】本题主要考查充分条件与必要条件,熟记概念即可,属于常考题型.14.已知梯形,,设,向量的起点和终点分别是、、、中的两个点,若对平面中任意的非零向量,都可以唯一表示为、的线性组合,那么的个数为()A. 6 B. 8 C. 10 D. 12【答案】B【解析】【分析】根据对平面中任意的非零向量,都可以唯一表示为、的线性组合,可知:、不共线,进而可得出结果.【详解】因为对平面中任意的非零向量,都可以唯一表示为、的线性组合,所以、不共线;又,向量的起点和终点分别是、、、中的两个点,所以,起点和终点分别是、、、中的两个点的向量与共线的有,,,,共四个向量;又起点和终点分别是、、、中的两个点的向量共有,因此,满足题意的的个数为.故选B【点睛】本题主要考查平面向量基本定理以及排列组合问题,熟记可作为基底的向量的特征即可,属于常考题型.15.在某段时间内,甲地不下雨的概率为(),乙地不下雨的概率为(),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为()A. B. C. D.【答案】D【解析】【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为,乙地不下雨的概率为,且在这段时间内两地下雨相互独立,所以这段时间内两地都下雨的概率为.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.16.在△中,,,,下列说法中正确的是()A. 用、、为边长不可以作成一个三角形B. 用、、为边长一定可以作成一个锐角三角形C. 用、、为边长一定可以作成一个直角三角形D. 用、、为边长一定可以作成一个钝角三角形【答案】B【解析】【分析】由三角形的性质可得:任意两边之和大于第三边,再由余弦定理即可得出结果.【详解】因为在△中,,,,所以,,,所以,所以;同理可得;,故、、可以作为三角形的三边;若、、分别对应三角形的三边,根据余弦定理可得:;;;即、、所对应的三个角均为锐角,所以用、、为边长一定可以作成一个锐角三角形. 故选B 【点睛】本题主要考查三角形的性质以及余弦定理,熟记余弦定理即可,属于常考题型.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,在棱长为2的正方体中,为的中点.(1)求证:直线平行于平面;(2)求异面直线与所成角的大小. (结果用反三角函数值表示)【答案】(1)略;(2)【解析】【分析】(1)取中点为,连结,证明,即可得出直线平面;(2)连结,根据可得,直线与所成角即等于直线与所成角,连结,解三角形即可得出结果.【详解】(1) 取中点为,连结,因为在棱长为2的正方体中,为的中点,所以平行且等于,所以四边形为平行四边形,因此,,又平面,平面,所以平面;(2) 连结,因为在正方体中,易知,所以直线与所成角,即等于直线与所成角,连结,因为正方体棱长为2,所以,,所以,所以异面直线与所成角的大小为.【点睛】本题主要考查线面平行的判定以及异面直线所成的角,熟记线面平行的判定定理以及异面直线所成角的几何求法即可,属于常考题型.18.经济订货批量模型,是目前大多数工厂、企业等最常采用的订货方式,即某种物资在单位时间的需求量为某常数,经过某段时间后,存储量消耗下降到零,此时开始订货并随即到货,然后开始下一个存储周期,该模型适用于整批间隔进货、不允许缺货的存储问题,具体如下:年存储成本费(元)关于每次订货(单位)的函数关系,其中为年需求量,为每单位物资的年存储费,为每次订货费. 某化工厂需用甲醇作为原料,年需求量为6000吨,每吨存储费为120元/年,每次订货费为2500元.(1)若该化工厂每次订购300吨甲醇,求年存储成本费;(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用为多少?【答案】(1),;(2),【解析】【分析】(1)根据题中数据求出,,,得到,再将代入即可得出结果;(2)根据基本不等式求出最小值,注意等号成立的条件,即可得出结果.【详解】(1)因为年存储成本费(元)关于每次订货(单位)的函数关系,其中为年需求量,为每单位物资的年存储费,为每次订货费.由题意可得:,,,所以存储成本费,若该化工厂每次订购300吨甲醇,所以年存储成本费为;(2)因为存储成本费,,所以,当且仅当,即时,取等号;所以每次需订购吨甲醇,可使该化工厂年存储成本费最少,最少费用为.【点睛】本题主要考查基本不等式的应用,熟记基本不等式即可求解,属于常考题型.19.已知函数.(1)设,判断函数的奇偶性,并说明理由;(2)设函数,对任意,求在区间上零点个数的所有可能值。

数学-2019黄浦高三数学二模

数学-2019黄浦高三数学二模

上海市黄浦区2019届高三二模数学试卷2019.4一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 行列式1247的值为 2. 计算:222lim 31n n n n →∞--=+ 3. 椭圆2212x y +=的焦距长为 4. 若函数()f x 的反函数为112()f x x -=,则(3)f = 5. 若球主视图的面积为9π,则该球的体积等于6. 不等式11|1|2x <-的解集为 7. 若等比数列{}n a 的前n 项和32n n S a =⨯+,则实数a =8. 在32)n x x的二项展开式中,若所有项的二项式系数之和为256,则常数项等于 9. 若函数221()lg ||1x x f x x m x ⎧-≤=⎨->⎩在区间[0,)+∞上单调递增,则实数m 的取值范围为10. 设[0,2)θπ∈,若圆222(cos )(sin )x y r θθ-+-=(0r >)与直线2100x y --=有交 点,则r 的最小值为11. 设[0,2)ϕπ∈,若关于x 的方程sin(2)x a ϕ+=在区间[0,]π上有三个解,且它们的和 为43π,则ϕ= 12. 已知复数集合{i |||1,||1,,}A x y x y x y =+≤≤∈R ,221133{|(i),}44B z z z z A ==+∈, 其中i 为虚数单位,若复数z AB ∈,则z 对应的点Z 在复平面内所形成图形的面积为二. 选择题(本大题共4题,每题5分,共20分)13. 设x ∈R ,“0x >”是“(1)0x x +>”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件14. 已知梯形ABCD ,AB ∥CD ,设1AB e =,向量2e 的起点和终点分别是A 、B 、C 、D 中的两个点,若对平面中任意的非零向量a ,都可以唯一表示为1e 、2e 的线性组合,那么2e 的个数为( )A. 6B. 8C. 10D. 1215. 在某段时间内,甲地不下雨的概率为1P (101P <<),乙地不下雨的概率为2P (201P <<),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( )A. 12PPB. 121PP- C. 12(1)P P - D. 12(1)(1)P P -- 16. 在△ABC 中,BC a =,CA b =,AB c =,下列说法中正确的是( )A. a 、b cB. 用a b cC. 用a b cD. a 、b c三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在棱长为2的正方体ABCD A B C D ''''-中,E 为AB 的中点.(1)求证:直线A E '平行于平面CC D D '';(2)求异面直线A E '与B C '所成角的大小.(结果用反三角函数值表示)18. 经济订货批量模型,是目前大多数工厂、企业等最常采用的订货方式,即某种物资在单 位时间的需求量为某常数,经过某段时间后,存储量消耗下降到零,此时开始订货并随即到 货,然后开始下一个存储周期,该模型适用于整批间隔进货、不允许缺货的存储问题,具体 如下:年存储成本费T (元)关于每次订货x (单位)的函数关系为()2Bx AC T x x=+,其 中A 为年需求量,B 为每单位物资的年存储费,C 为每次订货费. 某化工厂需用甲醇作为原 料,年需求量为6000吨,每吨存储费为120元/年,每次订货费为2500元.(1)若该化工厂每次订购300吨甲醇,求年存储成本费;(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用为多少?19. 已知函数()sin f x x =.(1)设a ∈R ,判断函数()()()2g x a f x f x π=⋅++的奇偶性,并说明理由;(2)设函数()2()3F x f x =b ∈R ,求()y F x =在区间[,10]b b π+上零点个数的所有可能值.20. 双曲线222:1y x bΓ-=(0b >). (1)若Γ的一条渐近线方程为2y x =,求Γ的方程; (2)设1F 、2F 是Γ的两个焦点,P 为Γ上一点,且12PF PF ⊥,△12PF F 的面积为9, 求b 的值;(3)斜率为2的直线与Γ交于A 、B 两点,试根据常数b 的不同取值范围,求线段AB 中点的轨迹方程.21. 已知以1a 为首项的数列{}n a 满足:1|||1|n n a a +=+(*n ∈N ).(1)当113a =-时,且10n a -<<,写出2a 、3a ;(2)若数列{||}n a (110n ≤≤,*n ∈N )是公差为1-的等差数列,求1a 的取值范围;(3)记n S 为{}n a 的前n 项和,当10a =时,① 给定常数m (4m ≥,*m ∈N ),求1m S -的最小值;② 对于数列128,,,a a a ⋅⋅⋅,当8S 取到最小值时,是否唯一存在满足21|||1|j j a a +-=+ (26j ≤≤,*j ∈N )的数列{}n a ?请说明理由.参考答案一. 填空题1. 1-2. 133. 24. 95. 36π6. (,1)(3,)-∞-+∞ 7. 3- 8. 112 9. 910m ≤10. 251 11. 6π或76π 12. 72二. 选择题 13. A 14. B 15. D 16. B三. 解答题17.(1)略;(2)10 18.(1)15000000()60T x x x=+,(300)68000T =;(2)500x =,min 60000T = 19.(1)0a =,偶函数;0a ≠,非奇非偶函数;(2)10或1120.(1)2214y x -=;(2)3;(3)2b <,22b y x =(22x b<-或22x b >- 2b >,22b y x =(x ∈R ) 21.(1)223a =-,313a =-;(2)19a ≤-;(3)① m 为奇数,最小值12m --, m 为偶数,最小值22m --;② 不唯一,84S =-,例如0、1-、0、1-、0、1-、0、1- 和0、1、2-、1、2-、1、2-、1-均符合。

2019年最新(统考)上海市高考数学二模试卷及答案解析

2019年最新(统考)上海市高考数学二模试卷及答案解析
(2)若A,B,C三点共线,求线段AC的长.
20.已知数列{an}的前n项和为Sn,且Sn=2an﹣2(n∈N*).
(1)求{an}的通项公式;
(2)设 ,b1=8,Tn是数列{bn}的前n项和,求正整数k,使得对任意n∈N*均有Tk≥Tn恒成立;
(3)设 ,Rn是数列{cn}的前n项和,若对任意n∈N*均有Rn<λ恒成立,求λ的最小值.
5.设点(9,3)在函数f(x)=loga(x﹣1)(a>0,a≠1)的图象上,则f(x)的反函数f﹣1(x)=.
6.若x,y满足 ,则目标函数z=x+2y的最大值为.
7.在平面直角坐标系xOy中,直线l的方程为x+y﹣6=0,圆C的参数方程为 ,则圆心C到直线l的距离为.
8.双曲线 =1的左右两焦点分别是F1,F2,若点P在双曲线上,且∠F1PF2为锐角,则点P的横坐标的取值范围是.
上海市高考数学二模试卷
一、填空题(第1题到第6题每题4分,第7题到第12题.
2.若关于x,y的方程组 无解,则a=.
3.已知{an}为等差数列,若a1=6,a3+a5=0,则数列{an}的通项公式为.
4.设集合A={x||x﹣2|≤3},B={x|x<t},若A∩B=∅,则实数t的取值范围是.
A.小于 B.等于 C.大于 D.大于1.6
16.如图,在△ABC中,BC=a,AC=b,AB=c.O是△ABC的外心,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,则OD:OE:OF等于( )
A.a:b:cB.
C.sinA:sinB:sinCD.cosA:cosB:cosC
三、解答题(第17-19题每题14分,第20题16分,第21题18分,满分76分)
【考点】84:等差数列的通项公式.

上海市黄浦区达标名校2019年高考二月仿真备考数学试题含解析

上海市黄浦区达标名校2019年高考二月仿真备考数学试题含解析

上海市黄浦区达标名校2019年高考二月仿真备考数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 是虚数单位,则复数24(1)i =-( ) A .2iB .2i -C .2D .2-2.点O 为ABC ∆的三条中线的交点,且OA OB ⊥,2AB =,则AC BC ⋅的值为( ) A .4B .8C .6D .123.已知1F ,2F 是双曲线222:1xC y a-=()0a >的两个焦点,过点1F 且垂直于x 轴的直线与C 相交于A ,B 两点,若2AB =,则△2ABF 的内切圆的半径为( )A .23B .33C .223D .2334.函数()1sin f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0)x ≠的图象是( ) A . B .C .D .5.已知曲线24x y =,动点P 在直线3y =-上,过点P 作曲线的两条切线12,l l ,切点分别为,A B ,则直线AB 截圆22650x y y +-+=所得弦长为( ) A 3B .2C .4D .36.已知f(x)=-1x x e e a+是定义在R 上的奇函数,则不等式f(x-3)<f(9-x 2)的解集为( )A .(-2,6)B .(-6,2)C .(-4,3)D .(-3,4)7.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为1ξ;当无放回依次取出两个小球时,记取出的红球数为2ξ,则( )A .12E E ξξ<,12D D ξξ<B .12E E ξξ=,12D D ξξ>C .12E E ξξ=,12D D ξξ<D .12E E ξξ>,12D D ξξ>8.学业水平测试成绩按照考生原始成绩从高到低分为A 、B 、C 、D 、E 五个等级.某班共有36名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为A 的学生有5人,这两科中仅有一科等级为A 的学生,其另外一科等级为B ,则该班( )A .物理化学等级都是B 的学生至多有12人 B .物理化学等级都是B 的学生至少有5人C .这两科只有一科等级为B 且最高等级为B 的学生至多有18人D .这两科只有一科等级为B 且最高等级为B 的学生至少有1人9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积( )A .623+B .622+C .442+D .443+10.设i 为虚数单位,z 为复数,若z i z+为实数m ,则m =( )A .1-B .0C .1D .211.如图,在平面四边形ABCD 中,满足,AB BC CD AD ==,且10,8AB AD BD +==,沿着BD 把ABD 折起,使点A 到达点P 的位置,且使2PC =,则三棱锥P BCD -体积的最大值为( )A .12B .122C .1623D .16312.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低; ④甲同学成绩的方差小于乙同学成绩的方差. 以上说法正确的是( ) A .③④B .①②C .②④D .①③④二、填空题:本题共4小题,每小题5分,共20分。

上海市黄浦区达标名校2019年高考二月调研数学试卷含解析

上海市黄浦区达标名校2019年高考二月调研数学试卷含解析

上海市黄浦区达标名校2019年高考二月调研数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠=== 若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A .2116B .32C .2516D .32.函数的图象可能是下列哪一个?( )A .B .C .D .3.如图,已知平面αβ⊥,l αβ⋂=,A 、B 是直线l 上的两点,C 、D 是平面β内的两点,且DA l ⊥,CB l ⊥,3AD =,6AB =,6CB =.P 是平面α上的一动点,且直线PD ,PC 与平面α所成角相等,则二面角P BC D --的余弦值的最小值是( )A .55B .32C .12D .14.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若点2F 关于双曲线渐近线的对称点A 满足11F AO AOF ∠=∠(O 为坐标原点),则双曲线的渐近线方程为( )A .2y x =±B .3y x =±C .2y x =±D .y x =±5.已知函数()()614,7,7x a x x f x ax -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( ) A .1(,0)2-B .1(2,)2- C .(1,1)-D .1(,1)26.若等差数列{}n a 的前n 项和为n S ,且130S =,3421a a +=,则7S 的值为( ). A .21B .63C .13D .847.执行如图所示的程序框图,若输入ln10a =,lg b e =,则输出的值为( )A .0B .1C .2lg eD .2lg108.设x 、y 、z 是空间中不同的直线或平面,对下列四种情形:①x 、y 、z 均为直线;②x 、y 是直线,z 是平面;③z 是直线,x 、y 是平面;④x 、y 、z 均为平面.其中使“x z ⊥且y z x y ⊥⇒∥”为真命题的是( ) A .③④B .①③C .②③D .①②9.集合{}2,A x x x R =>∈,{}2230B x x x =-->,则A B =( )A .(3,)+∞B .(,1)(3,)-∞-+∞C .(2,)+∞D .(2,3)10.函数cos ()cos x xf x x x+=-在[2,2]ππ-的图象大致为A .B .C .D .11.已知函数2,()5,x x x af x x x a⎧-≤=⎨->⎩(0a >),若函数()()4g x f x x =-有三个零点,则a 的取值范围是( ) A .(0,1)[5,)+∞ B .6(0,)[5,)5+∞C .(1,5]D .6(,5]512.若双曲线22214x y a -=3 )A .26B .25C .6D .8二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市黄浦区2019届高三数学二模试卷第Ⅰ卷(共60分)一、填空题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.行列式的值为__________.【答案】-1【解析】【分析】根据直接得,即可得出结果.【详解】因为.故答案为【点睛】本题主要考查行列式的简单计算,熟记公式即可,属于基础题型.2.计算:__________.【答案】【解析】【分析】分子分母同除以,即可求出结果.【详解】因为.故答案为【点睛】本题主要考查“”型的极限计算,熟记常用做法即可,属于基础题型.3.椭圆的焦距长为__________.【答案】2【解析】【分析】根据椭圆方程求出,进而可求出结果.【详解】因为椭圆中,,所以,所以焦距为.故答案为2【点睛】本题主要考查椭圆的焦距,熟记椭圆的性质即可,属于基础题型.4.若函数的反函数为,则________【答案】9【解析】【分析】根据函数的反函数解析式可求出解析式,进而可求出结果.【详解】因为函数的反函数为,令,则,所以,故.故答案为9【点睛】本题主要考查反函数,熟记反函数与原函数之间的关系即可求解,属于基础题型.5.若球主视图的面积为,则该球的体积等于________【答案】【解析】【分析】根据球的三视图都相当于过球心的截面圆,由题中数据可得球的半径,从而可求出结果. 【详解】设球的半径为,因为球主视图的面积为,所以,故,所以该球的体积为.故答案为【点睛】本题主要考查球的体积,熟记球的三视图以及球的体积公式即可,属于基础题型.6.不等式的解集为________【答案】【解析】【分析】先由可得,从而可直接得出结果.【详解】因为,所以,所以或,即或,因此,原不等式的解集为.故答案为【点睛】本题主要考查含绝对值不等式的解法,先将原式进行变形即可求解,属于基础题型.7.若等比数列的前项和,则实数________【答案】【解析】【分析】根据为等比数列,由求出,得到,再由即可求出结果.【详解】因为等比数列的前项和,所以,所以,又,所以.故答案为【点睛】本题主要考查等比数列,熟记前项和公式即可,属于基础题型.8.在的二项展开式中,若所有项的二项式系数之和为256,则常数项等于______【答案】112【解析】由题意可得:,结合二项式展开式通项公式可得:,令可得:,则常数项为:.9.若函数在区间上单调递增,则实数的取值范围为________ 【答案】【解析】【分析】由函数在区间上单调递增,得到在每一部分都单调递增,且,即可求出结果.【详解】因为函数在区间上单调递增,所以在每一部分都单调递增,且,即,解得.故答案【点睛】本题主要考查分段函数单调的问题,只需满足每一部分单调,并且特别主要结点位置的取值即可,属于常考题型.10.设,若圆()与直线有交点,则的最小值为________【答案】【解析】【分析】根据直线与圆相交,可得圆心到直线的距离小于等于半径,列出不等式即可求出结果.【详解】因为圆圆心为,又圆()与直线有交点,所以存在,使得圆心到直线的距离即可,即成立即可,其中,又,所以的最小值为.故答案为【点睛】本题主要考查直线与圆位置关系,直线与圆有交点,只需圆心到直线的距离小于等于半径即可,属于常考题型.11.设,若关于的方程在区间上有三个解,且它们的和为,则________【答案】或【解析】【分析】由关于的方程在区间上有三个解,且函数的最小正周期为可得,最大和最小的解分别为和,根据它们的和为,可求出中间的解,列出等式,根据的范围即可求出结果.【详解】因为关于的方程在区间上有三个解,且函数的最小正周期为,再由三角函数的对称性可知:方程在区间上的解的最小值与最大值分别为和;又它们的和为,所以中间的解为,所以有,即,故,又,所以或.故答案为或【点睛】本题主要考查三角函数的图像与性质,熟记正弦型函数的性质即可,属于常考题型.12.已知复数集合,其中为虚数单位,若复数,则对应点在复平面内所形成图形的面积为________【答案】【解析】【分析】先由复数的几何意义确定集合所对应的平面区域,再确定集合所对应的平面区域,由复数,可得复数对应的点在复平面内所形成图形即为集合与集合所对应区域的重叠部分,结合图像求出面积即可.【详解】因为复数集合,所以集合所对应的平面区域为与所围成的正方形区域;又,设,且,,,所以,设对应的点为,则,所以,又,,所以,因为复数,对应的点在复平面内所形成图形即为集合与集合所对应区域的重叠部分,如图中阴影部分所示,由题意及图像易知:阴影部分为正八边形,只需用集合所对应的正方形区域的面积减去四个小三角形的面积即可.由得,由得,所以.故答案为【点睛】本题主要考复数的几何意义,以及不等式组所表示平面区域问题,熟记复数的几何意义,灵活掌握不等式组所表示的区域即可,属于常考题型.第Ⅱ卷(共90分)二、选择题(每题5分,满分20分,将答案填在答题纸上)13.设,“”是“”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】先解不等式得到的范围,再根据充分条件与必要条件的概念即可求出结果.【详解】解不等式可得或,所以,由“”能推出“或”;由“或”不能推出“”,故“”是“”的充分不必要条件.故选A【点睛】本题主要考查充分条件与必要条件,熟记概念即可,属于常考题型.14.已知梯形,,设,向量的起点和终点分别是、、、中的两个点,若对平面中任意的非零向量,都可以唯一表示为、的线性组合,那么的个数为()A. 6 B. 8 C. 10 D. 12【答案】B【解析】【分析】根据对平面中任意的非零向量,都可以唯一表示为、的线性组合,可知:、不共线,进而可得出结果.【详解】因为对平面中任意的非零向量,都可以唯一表示为、的线性组合,所以、不共线;又,向量的起点和终点分别是、、、中的两个点,所以,起点和终点分别是、、、中的两个点的向量与共线的有,,,,共四个向量;又起点和终点分别是、、、中的两个点的向量共有,因此,满足题意的的个数为.故选B【点睛】本题主要考查平面向量基本定理以及排列组合问题,熟记可作为基底的向量的特征即可,属于常考题型.15.在某段时间内,甲地不下雨的概率为(),乙地不下雨的概率为(),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为()A. B. C. D.【答案】D【解析】【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为,乙地不下雨的概率为,且在这段时间内两地下雨相互独立,所以这段时间内两地都下雨的概率为.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.16.在△中,,,,下列说法中正确的是()A. 用、、为边长不可以作成一个三角形B. 用、、为边长一定可以作成一个锐角三角形C. 用、、为边长一定可以作成一个直角三角形D. 用、、为边长一定可以作成一个钝角三角形【答案】B【解析】【分析】由三角形的性质可得:任意两边之和大于第三边,再由余弦定理即可得出结果.【详解】因为在△中,,,,所以,,,所以,所以;同理可得;,故、、可以作为三角形的三边;若、、分别对应三角形的三边,根据余弦定理可得:;;;即、、所对应的三个角均为锐角,所以用、、为边长一定可以作成一个锐角三角形. 故选B 【点睛】本题主要考查三角形的性质以及余弦定理,熟记余弦定理即可,属于常考题型.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,在棱长为2的正方体中,为的中点.(1)求证:直线平行于平面;(2)求异面直线与所成角的大小. (结果用反三角函数值表示)【答案】(1)略;(2)【解析】【分析】(1)取中点为,连结,证明,即可得出直线平面;(2)连结,根据可得,直线与所成角即等于直线与所成角,连结,解三角形即可得出结果.【详解】(1) 取中点为,连结,因为在棱长为2的正方体中,为的中点,所以平行且等于,所以四边形为平行四边形,因此,,又平面,平面,所以平面;(2) 连结,因为在正方体中,易知,所以直线与所成角,即等于直线与所成角,连结,因为正方体棱长为2,所以,,所以,所以异面直线与所成角的大小为.【点睛】本题主要考查线面平行的判定以及异面直线所成的角,熟记线面平行的判定定理以及异面直线所成角的几何求法即可,属于常考题型.18.经济订货批量模型,是目前大多数工厂、企业等最常采用的订货方式,即某种物资在单位时间的需求量为某常数,经过某段时间后,存储量消耗下降到零,此时开始订货并随即到货,然后开始下一个存储周期,该模型适用于整批间隔进货、不允许缺货的存储问题,具体如下:年存储成本费(元)关于每次订货(单位)的函数关系,其中为年需求量,为每单位物资的年存储费,为每次订货费. 某化工厂需用甲醇作为原料,年需求量为6000吨,每吨存储费为120元/年,每次订货费为2500元.(1)若该化工厂每次订购300吨甲醇,求年存储成本费;(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用为多少?【答案】(1),;(2),【解析】【分析】(1)根据题中数据求出,,,得到,再将代入即可得出结果;(2)根据基本不等式求出最小值,注意等号成立的条件,即可得出结果.【详解】(1)因为年存储成本费(元)关于每次订货(单位)的函数关系,其中为年需求量,为每单位物资的年存储费,为每次订货费.由题意可得:,,,所以存储成本费,若该化工厂每次订购300吨甲醇,所以年存储成本费为;(2)因为存储成本费,,所以,当且仅当,即时,取等号;所以每次需订购吨甲醇,可使该化工厂年存储成本费最少,最少费用为.【点睛】本题主要考查基本不等式的应用,熟记基本不等式即可求解,属于常考题型.19.已知函数.(1)设,判断函数的奇偶性,并说明理由;(2)设函数,对任意,求在区间上零点个数的所有可能值。

【答案】(1),偶函数;,非奇非偶函数;(2)10或11【解析】【分析】(1)先根据题意判断函数的定义域,再根据函数奇偶性的定义,分类讨论,即可得出结论;(2)先由区间恰好含的5个周期,分为零点和不是零点两种情况讨论,即可得出结果.【详解】(1)因为,所以,;当时,,所以,所以为偶函数;当时,,所以,因此为非奇非偶函数;综上:当时,为偶函数;当时,为非奇非偶函数;(2)因为,所以区间恰好含的5个周期,因此,根据正弦函数的性质可知:当是零点时,也是零点,所以在区间上有11个零点;当不是零点时,也不是零点,所以在区间上有10个零点;综上,在区间上零点个数的所有可能值为10或11.【点睛】本题主要考查函数的奇偶性以及函数零点个数的问题,熟记函数奇偶性的概念以及正弦函数的性质即可,属于常考题型. 20.双曲线().(1)若的一条渐近线方程为,求的方程;(2)设、是的两个焦点,为上一点,且,△的面积为9,求的值;【答案】(1);(2)3;【解析】 【分析】(1)根据双曲线的渐近线方程,得到,从而可求出双曲线的方程; (2)根据双曲线定义先得到,再由△的面积为9,得到,根据,求出,即可得出结果;【详解】(1)因为双曲线()的一条渐近线方程为,所以,因此,的方程为;(2) 双曲线定义可得:,又,△的面积为9, 所以,且,所以,故,所以,因此,; 【点睛】本题主要考查双曲线的方程,以及双曲线的简单性质,熟记性质即可,属于常考题型.21.已知以为首项的数列满足:().(1)当时,且,写出、; (2)若数列(,)是公差为的等差数列,求的取值范围;【答案】(1),;(2)【解析】【分析】(1)根据题中条件以及,逐步计算即可;(2)先由数列(,)是公差为的等差数列,得到,再求出,即可结合题中条件求出结果.【详解】(1)因为以为首项的数列满足:,,,所以,所以;由得;(2)因为数列(,)是公差为的等差数列,所以,所以,所以,所以,所以,故,所以,因为,所以由题意只需:,故.【点睛】本题主要考查数列的应用,熟记等差数列的通项公式即可,属于常考题型.。

相关文档
最新文档