基本初等函数历年高考题共23页

合集下载

基本初等函数、函数与方程 专项练习-2023届高三数学二轮专题复习(含解析)

基本初等函数、函数与方程 专项练习-2023届高三数学二轮专题复习(含解析)

冲刺2023年高考二轮 基本初等函数、函数与方程(原卷+答案)1.函数y =log 2(4+3x -x 2)的一个单调增区间是( ) A .⎝ ⎛⎭⎪⎫-∞,32 B .⎣⎢⎡⎭⎪⎫32,+∞ C .⎝ ⎛⎭⎪⎫-1,32 D .⎣⎢⎡⎭⎪⎫32,4 2.已知函数f (x )=⎩⎨⎧ax 2-x -14,x ≤1log a x -1,x >1,是R 上的单调函数,则实数a 的取值范围为( )A .⎣⎢⎡⎭⎪⎫14,12B .⎣⎢⎡⎦⎥⎤14,12 C .⎝ ⎛⎦⎥⎤0,12 D .⎝ ⎛⎭⎪⎫12,1 3.若不等式x 2-log a x <0在⎝⎛⎭⎪⎫0,12 内恒成立,则a 的取值范围是( )A .116 ≤a <1B .116 <a <1 C .0<a ≤116 D .0<a <1164.若函数f (x )=x +ax -1在(0,2)上有两个不同的零点,则a 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-2,14B .⎝ ⎛⎭⎪⎫-2,14C .⎣⎢⎡⎦⎥⎤0,14D .⎝ ⎛⎭⎪⎫0,145.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝ ⎛⎭⎪⎫1+S N .它表示,在受噪音干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN 叫作信噪比.当信噪比比较大时,公式中真数里面的1可以忽略不计.按照香农公式,增加带宽,提高信号功率和降低噪声功率都可以提升信息传递速度,若在信噪比为1 000的基础上,将带宽W 增大到原来的2倍,信号功率S 增大到原来的10倍,噪声功率N 减小到原来的15 ,则信息传递速度C 大约增加了( )(参考数据:lg 2≈0.3) A .87% B .123% C .156% D .213%6.已知函数f (x )=⎩⎪⎨⎪⎧||log 2x ,x >0,-x 2-4x +4,x <0. 若函数g (x )=f (x )-m 有四个不同的零点x 1,x 2,x 3,x 4,则x 1x 2x 3x 4的取值范围是( )A .(0,4)B .(4,8)C .(0,8)D .(0,+∞)7.已知函数f (x )是定义在R 上的奇函数,满足f (x +2)=f (-x ),且当x ∈[0,1]时,f (x )=log 2(x +1),则函数y =f (x )-x 3的零点个数是( )A .2B .3C .4D .5 8.为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h )的函数关系为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12, (如图所示)实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.(1)k =________;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.9.函数f (x )=⎩⎪⎨⎪⎧x 3+2,x ≤0x -3+e x,x >0 的零点个数为________. 10.已知函数f (x )=⎩⎪⎨⎪⎧4x -1,x ≤1log 2x ,x >1 ,若1<f (a )≤2,则实数a 的取值范围为________.11.已知函数f (x )=⎩⎪⎨⎪⎧10x -2-102-x ,x ≤2||x -3-1,x >2,则不等式f (x )+f (x -1)<0的解集为________.12.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 恰有两个零点,则实数c 的取值范围是________.13.已知f (x )是定义在R 上的偶函数,f ′(x )是f (x )的导函数,当x ≥0时,f ′(x )-2x >0,且f (1)=3,则f (x )>x 2+2的解集是( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-∞,-1)∪(0,1)14.定义在R 上的偶函数f (x )满足f (2-x )=f (2+x ),且当x ∈[0,2]时,f (x )=⎩⎨⎧2x-1,0≤x ≤12sin π2x -1,1<x ≤2,若关于x 的方程m ln ||x =f (x )至少有8个实数解,则实数m 的取值范围是( )A .⎣⎢⎡⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎦⎥⎤0,1ln 5B .⎣⎢⎡⎦⎥⎤-1ln 6,1ln 5 C .⎝ ⎛⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎭⎪⎫0,1ln 5 D .⎝ ⎛⎭⎪⎫-1ln 6,1ln 5参考答案1.解析:函数y =log 2(4+3x -x 2)的定义域为(-1,4). 要求函数y =log 2(4+3x -x 2)的一个单调增区间, 只需求y =4+3x -x 2的增区间,只需x <32 . 所以-1<x <32 .所以函数y =log 2(4+3x -x 2)的一个单调增区间是⎝ ⎛⎭⎪⎫-1,32 .故选C.答案:C2.解析:当函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调递减函数,所以⎩⎪⎨⎪⎧0<a <112a ≥1a -54≥-1,解得14 ≤a ≤12 ,因为a >0且a ≠1,所以当x ≤1时,f (x )不可能是增函数, 所以函数f (x )在R 上不可能是增函数, 综上:实数a 的取值范围为⎣⎢⎡⎦⎥⎤14,12 ,故选B.答案:B3.解析:当a >1时,由x ∈⎝ ⎛⎭⎪⎫0,12 ,可得log a x <0,则-log a x >0,又由x 2>0,此时不等式x 2-log a x <0不成立,不合题意; 当0<a <1时,函数y =log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递减,此时函数y =-log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递增,又由y =x 2在⎝ ⎛⎭⎪⎫0,12 上单调递增,要使得不等式x 2-log a x <0在⎝ ⎛⎭⎪⎫0,12 内恒成立,可得⎝ ⎛⎭⎪⎫12 2-log a 12 ≤0,解得116 ≤a <1.故选A.答案:A4.解析:函数f (x )=x +ax -1在(0,2)上有两个不同的零点等价于方程x +ax -1=0在(0,2)上有两个不同的解,即a =-x 2+x 在(0,2)上有两个不同的解.此问题等价于y =a 与y =-x 2+x (0<x <2)有两个不同的交点.由下图可得0<a <14 .故选D. 答案:D5.解析:提升前的信息传递速度C =W log 2S N =W log 21 000=3W log 210=3Wlg 2≈10W ,提升后的信息传递速度C ′=2W log 210S 15N =2W log 250SN =2W log 250 000=2W ·4+lg 5lg 2 =2W ·5-lg 2lg 2 ≈94W 3 ,所以信息传递速度C 大约增加了C ′-CC =943W -10W 10W ≈2.13=213%.故选D.答案:D6.解析:函数g (x )有四个不同的零点等价于函数f (x )的图象与直线y =m 有四个不同的交点.画出f (x )的大致图象,如图所示.由图可知m ∈(4,8).不妨设x 1<x 2<x 3<x 4,则-4<x 1<-2<x 2<0,且x 1+x 2=-4.所以x 2=-x 1-4,所以x 1x 2=x 1(-x 1-4)=-(x 1+2)2+4∈(0,4),则0<x 3<1<x 4,因为||log 2x 3 =||log 2x 4 ,所以-log 2x 3=log 2x 4,所以log 2x -13 =log 2x 4,所以x 3·x 4=1,所以x 1·x 2·x 3·x 4=x 1·x 2∈(0,4).故选A. 答案:A7.解析:由f (x +2)=f (-x )可得f (x )关于x =1对称, 由函数f (x )是定义在R 上的奇函数,所以f (x +2)=f (-x )=-f (x )=-[-f (x -2)]=f (x -2), 所以f (x )的周期为4,求函数y =f (x )-x 3的零点问题即y =f (x )-x 3=0的解, 即函数y =f (x )和y =x 3的图象交点问题,根据f (x )的性质可得如图所示图形,结合y =x 3的图象,由图象可得共有3个交点,故共有3个零点,故选B. 答案:B8.解析:(1)由题图可知,当t =12 时,y =1,所以2k =1,所以k =2. (2)由(1)可知,y =⎩⎪⎨⎪⎧2t ,0<t <12,12t ,t ≥12,当t ≥12 时,y =12t ,令y <0.75,得t >23 ,所以在消毒后至少经过23 小时,即40分钟人方可进入房间.答案:(1)2 (2)409.解析:当x ≤0时,令x 3+2=0,解得x =3-2 ,3-2 <0,此时有1个零点;当x >0时, f (x )=x -3+e x ,显然f (x )单调递增,又f ⎝ ⎛⎭⎪⎫12 =-52 +e 12 <0,f (1)=-2+e>0,由零点存在定理知此时有1个零点;综上共有2个零点.答案:210.解析:若a ≤1,则f (a )=4a -1,故1<4a -1≤2,解得12 <a ≤log 43,故12 <a ≤log 43;若a >1,则f (a )=log 2a ,故1<log 2a ≤2,解得2<a ≤4; 综上:12 <a ≤log 43或2<a ≤4. 答案:⎝ ⎛⎦⎥⎤12,log 43 ∪(2,4]11.解析:①当x ≤2时,x -1≤1,∵f (x )=10x -2-102-x 在(-∞,2]上单调递增,∴f (x )≤f (2)=0,又f (x -1)≤f (1)<f (2)=0, ∴f (x )+f (x -1)<0恒成立;②当2<x ≤3时,1<x -1≤2,f (x )=||x -3 -1=2-x <0, 又f (x -1)≤f (2)=0,∴f (x )+f (x -1)<0恒成立;③当3<x ≤4时,2<x -1≤3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=3-x ;∴f (x )+f (x -1)=-1<0恒成立;④当x >4时,x -1>3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=x -5,∴f (x )+f (x -1)=2x -9<0,解得x <92 ,∴4<x <92 ; 综上所述:不等式f (x )+f (x -1)<0的解集为⎝ ⎛⎭⎪⎫-∞,92 .答案:⎝ ⎛⎭⎪⎫-∞,92 12.解析:因为a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.,所以f (x )=(x 2-2)⊗(x -1)=⎩⎨⎧x 2-2,-1≤x ≤2x -1,x <-1或x >2 ,由图可知,当-2<c ≤-1或1<c ≤2时,函数f (x )与y =c 的图象有两个公共点,∴c 的取值范围是(-2,-1]∪(1,2]. 答案:(-2,-1]∪(1,2] 13.解析:令g (x )=f (x )-x 2, 因为f (x )是定义在R 上的偶函数, 所以f (-x )=f (x ),则g (-x )=f (-x )-(-x )2=g (x ), 所以函数g (x )也是偶函数, g ′(x )=f ′(x )-2x ,因为当x ≥0时,f ′(x )-2x >0,所以当x ≥0时,g ′(x )=f ′(x )-2x ≥0, 所以函数g (x )在(0,+∞)上递增, 不等式f (x )>x 2+2即为不等式g (x )>2, 由f (1)=3,得g (1)=2, 所以g (x )>g (1),所以||x >1,解得x >1或x <-1,所以f (x )>x 2+2的解集是(-∞,-1)∪(1,+∞). 故选B. 答案:B14.解析:因为f (2-x )=f (2+x ),且f (x )为偶函数, 所以f (x -2)=f (x +2),即f (x )=f (x +4), 所以函数f (x )是以4为周期的周期函数,作出y=f(x),y=m ln x在同一坐标系的图象,如图,因为方程m ln ||x=f(x)至少有8个实数解,所以y=f(x),y=m ln |x|图象至少有8个交点,根据y=f(x),y=m ln |x|的图象都为偶函数可知,图象在y轴右侧至少有4个交点,由图可知,当m>0时,只需m ln 5≤1,即0<m≤1ln 5,当m<0时,只需m ln 6≥-1,即-1ln 6≤m<0,当m=0时,由图可知显然成立,综上可知,-1ln 6≤m≤1ln 5.故选B.答案:B。

高中数学基本初等函数练习题

高中数学基本初等函数练习题

(一)指数运算例1 计算:526743642++--- 例2 求值:238、12100-、31()4-、3416()81- 例3 用分数指数幂表示下列各式(其中各字母均为正数)(1)34a a ⋅;(2)a a a ;(2)3324()a b +;(二)指数函数的性质例1 下列函数是指数函数的是( )A .2y x =B .2x y =C .12x y += D .132x y +=⨯ 例2 函数22(0,1)x y a a a -=->≠ 且的图象恒过定点________________例3 比较下列各组数的大小(1)0.245()6-与145()6- (2)1()ππ-与1 (3)2(0.8)-与125()4- 例4 设a 是实数,2()()21x f x a x R =-∈+ (1)证明:不论a 为何实数,()f x 均为增函数;(2)试确定a 的值,使得()f x 为奇函数 例5 已知0a >,且1a ≠,11()12x f x a =--,则()f x 是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .函数的奇偶性与a 有关 例6 若函数221x x y aa =+-(01)a a >≠且在[1,1]x ∈-上的最大值为14,求a 的值.三、实战演练 1、化简:3322111143342(0,0)()a b ab a b a b a b ->>=_______________2、已知12102a -=,31032b =,则32410=a b +_______________ 3、函数2(33)x y a a a =-+是指数函数,则a 的值为4、函数()x b f x a -=的图像如图,其中a 、b 为常数,则下列结论正确的是( )A .B .C .D .5、比较大小:①0.70.8a =,0.90.8b =,0.81.2c =;②01, 2.50.4-,0.22-, 1.62.5; 7、已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数 (1)求a 、b 的值;(2)若对任意的,不等式恒成立,求k 的取值范围0,1<>b a 0,1>>b a 0,10><<b a 0,10<<<b a R t ∈0)2()2(22<-+-k t f t t f四、强化训练1、设a =b =c =,,a b c 的大小关系是_______________ 2、设137x =,则( ) A .21x -<<- B .32x -<<- C .10x -<< D .01x <<3、求函数的定义域和值域,并讨论函数的单调性、奇偶性4、已知定义在R 上的函数()22x xa f x =+,a 为常数 (1)如果()()f x f x =-,求a 的值;(2)当()f x 满足(1)时,用单调性定义讨论()f x 的单调性二、题型解析(一)对数计算例1 已知732log [log (log )]0x =,那么12x -=______________例2 计算:(1);(2);(3);(4)(二)对数运算例1 计算下列各式的值(1)1324lg 2493-(2(3) ; 例2 已知 , ,用,表示例3 若3484log 4log 8log log 16m ⋅⋅=,则m =______________例4 设3436x y ==,求21x y +的值四、强化训练1、已知2(3)4log 3233x f x =+,则的值等于例1 在(2)log (6)a x a -=-中,实数a 的取值范围是( )A .6a >或2a <B .26a <<C .23a <<或36a <<D .34a << 例2函数y = )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]3例3 若4log 15a<(01)a a >≠且,求实数a 的取值范围 2121x x y -=+9log27((2log20.4log 10.21log 35-2log 3a =3log 7b =a b 42log 568(2)(4)(8)(2)f f f f ++++例4 比较下列各组数中两个值的大小:(1),;(2),;(3),例5 求函数22log (56)y x x =-+的定义域、值域、单调区间例6 函数在上的最大值比最小值大,求的值;三、实战演练1、求下列函数的定义域(1)2(1)log (23)x y x x -=-++;(2)y =(01)a a >≠且2、已知log (31)a a -恒为正数,求a 的取值范围3、比较下列各题中两个数值的大小: ; ; ;4、设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a = 5、若log (2)a y ax =-在[0,1]上是减函数,则a 的取值范围是 ( )A .(0,1)B .(0,2)C .(1,2)D .(2,)+∞四、强化训练1、已知函数()f x 满足:4x ≥,则1()()2x f x =;当4x <时()(1)f x f x =+,则2(2log 3)f += A .124 B .112 C .18 D .382、设01a a >≠且,函数2lg(23)()x x f x a -+=有最大值,则不等式2log (57)0a x x -+>的解集为 .3、已知01a a >≠且,21(log )()1a a f x x a x=-- (1)求()f x ;(2)判断()f x 的奇偶性与单调性;(3)对于()f x ,当(1,1)x ∈-时,有2(1)(1)0f m f m -+-<,求m 的集合M4、若x 满足21422(log )14log 30x x -+≤,求2()log 2x f x =最大值和最小值2log 3.42log 8.50.3log 1.80.3log 2.7log 5.1a log 5.2a (0,1)a a >≠log a y x =[2,4]1a 22log 3log 3.5和0.30.2log 4log 0.7和0.70.7log 1.6log 1.8和23log 3log 2和。

高中数学【基本初等函数、函数的应用】专题练习

高中数学【基本初等函数、函数的应用】专题练习

高中数学【基本初等函数、函数的应用】专题练习1.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A.a <b <c B.b <a <c C.b <c <a D.c <a <b答案 A解析 ∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝ ⎛⎭⎪⎫log 53+log 5822-1log 58=⎝ ⎛⎭⎪⎫log 52422-1log 58<⎝ ⎛⎭⎪⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4log 88=4=4log 1313<5log 138, ∴log 85<log 138,∴log 53<log 85<log 138, 即a <b <c .故选A.2.若2x -2y <3-x -3-y ,则( ) A.ln(y -x +1)>0 B.ln(y -x +1)<0 C.ln|x -y |>0 D.ln|x -y |<0 答案 A解析 设函数f (x )=2x -3-x .因为函数y =2x 与y =-3-x 在R 上均单调递增, 所以f (x )在R 上单调递增.原已知条件等价于2x -3-x <2y -3-y ,即f (x )<f (y ),所以x <y ,即y -x >0,y -x +1>1,所以A 正确,B 不正确. 因为|x -y |与1的大小不能确定,所以C ,D 不正确.3.设a ∈R ,函数f (x )=⎩⎨⎧cos (2πx -2πa ),x <a ,x 2-2(a +1)x +a 2+5,x ≥a ,若f (x )在区间(0,+∞)内恰有6个零点,则a 的取值范围是( ) A.⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114 B.⎝ ⎛⎭⎪⎫74,2∪⎝ ⎛⎭⎪⎫52,114 C.⎝ ⎛⎦⎥⎤2,94∪⎣⎢⎡⎭⎪⎫114,3 D.⎝ ⎛⎭⎪⎫74,2∪⎣⎢⎡⎭⎪⎫114,3 答案 A解析 因为x 2-2(a +1)x +a 2+5=0最多有2个根, 所以c os (2πx -2πa )=0至少有4个根.由2πx -2πa =π2+k π,k ∈Z 可得x =k 2+14+a ,k ∈Z .由0<k 2+14+a <a 可得-2a -12<k <-12.①当x <a 时,当-5≤-2a -12<-4时,f (x )有4个零点,即74<a ≤94;当-6≤-2a -12<-5时,f (x )有5个零点, 即94<a ≤114;当-7≤-2a -12<-6时,f (x )有6个零点, 即114<a ≤134;②当x ≥a 时,f (x )=x 2-2(a +1)x +a 2+5, Δ=4(a +1)2-4(a 2+5)=8(a -2), 当a <2时,Δ<0,f (x )无零点;当a =2时,Δ=0,f (x )有1个零点x =3;当a >2时,令f (a )=a 2-2a (a +1)+a 2+5=-2a +5≥0,则2<a ≤52,此时f (x )有2个零点;所以当a >52时,f (x )有1个零点.综上,要使f (x )在区间(0,+∞)内恰有6个零点,则应满足⎩⎪⎨⎪⎧74<a ≤94,2<a ≤52或⎩⎪⎨⎪⎧94<a ≤114,a =2或a >52或⎩⎨⎧114<a ≤134,a <2.则可解得a 的取值范围是⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114.4.已知f (x )=|lg x |-kx -2,给出下列四个结论: (1)若k =0,则f (x )有两个零点; (2)∃k <0,使得f (x )有一个零点; (3)∃k <0,使得f (x )有三个零点; (4)∃k >0,使得f (x )有三个零点. 以上正确结论的序号是________. 答案 (1)(2)(4)解析 令f (x )=|lg x |-kx -2=0,可转化成两个函数y 1=|lg x |,y 2=kx +2的图象的交点个数问题. 对于(1),当k =0时,y 2=2与y 1=|lg x |的图象有两个交点,(1)正确; 对于(2),存在k <0,使y 2=kx +2与y 1=|lg x |的图象相切,(2)正确;对于(3),若k <0,则y 1=|lg x |与y 2=kx +2的图象最多有2个交点,(3)错误; 对于(4),当k >0时,过点(0,2)存在函数g (x )=lg x (x >1)图象的切线,此时共有两个交点,当直线斜率稍微小于相切时的斜率时,就会有3个交点,故(4)正确.1.指数式与对数式的七个运算公式 (1)a m ·a n =a m +n ; (2)(a m )n =a mn ;(3)log a (MN )=log a M +log a N ; (4)log a MN =log a M -log a N ;(5)log a M n =n log a M ; (6)a log a N =N ;(7)log a N =log b Nlog ba (注:a ,b >0且a ,b ≠1,M >0,N >0).2.指数函数与对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数. 3.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解. 4.应用函数模型解决实际问题的一般程序 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.热点一 基本初等函数的图象与性质 【例1】 (1)(多选)下列命题中正确的是( ) A.∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13xB.∀x ∈(0,1),log 12x >log 13xC.∀x ∈⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12x >x 12D.∃x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x >log 13x(2)已知函数f (x )=⎩⎨⎧log a x ,x >0,|x +2|,-3≤x ≤0(a >0且a ≠1),若函数f (x )的图象上有且仅有两个点关于y 轴对称,则a 的取值范围是( )A.(0,1)B.(1,3)C.(0,1)∪(3,+∞)D.(0,1)∪(1,3)答案 (1)ABC (2)D解析 (1)对于A ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫13x的图象,如图(1),由图可知,当x ∈(0,+∞)时,⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x,故A 正确;对于B ,分别作出y =log 12x ,y =log 13x 的图象,如图(2),由图可知,当x ∈(0,1)时,log 12x >log 13x ,故B 正确;对于C ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =x 12的图象,如图(3),由图可知,当x ∈⎝ ⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x >x 12,故C 正确;对于D ,当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫120=1,log 13x >log 1313=1,所以D 错误.故选ABC.(2)y =log a x 的图象关于y 轴对称的图象对应的函数为y =log a (-x ),函数f (x )的图象上有且仅有两个点关于y 轴对称,等价于y =log a (-x )与y =|x +2|,-3≤x ≤0的图象有且仅有一个交点.当0<a <1时,显然符合题意(图略).当a >1时,只需log a 3>1,∴1<a <3. 综上所述,a 的取值范围是(0,1)∪(1,3).探究提高 1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围. 2.基本初等函数的图象和性质是统一的,在解题中可相互转化. 【训练1】 (1)函数f (x )=x 2-1e x 的图象大致为( )(2)(多选)已知函数f (x )=log 2(1+4x )-x ,则下列说法正确的是( ) A.函数f (x )是偶函数 B.函数f (x )是奇函数C.函数f (x )在(-∞,0]上单调递增D.函数f (x )的值域为[1,+∞) 答案 (1)A (2)AD解析 (1)易知f (x )在定义域R 上为非奇非偶函数,B 不合题意. 当x <0且x →-∞时,f (x )>0,且f (x )→+∞,C 不合题意. 当x >0且x →+∞时,f (x )→0,知D 不合题意,只有A 满足.(2)因为f (x )的定义域为R ,且f (-x )=log 2⎝ ⎛⎭⎪⎫1+14x -(-x )=log 2⎝ ⎛⎭⎪⎫4x +14x +x =log 2(4x +1)-log 24x +x =log 2(1+4x )-2x +x =log 2(1+4x )-x =f (x ), 所以函数f (x )为偶函数,故A 正确,B 不正确;f ′(x )=4x ln 4(1+4x)ln 2-1=2×4x 4x +1-1=4x -14x +1, 则当x <0时,f ′(x )<0,函数f (x )单调递减,当x >0时,f ′(x )>0,函数f (x )单调递增,故C 不正确;由以上分析知,f (x )min =f (0)=1,所以函数f (x )的值域为[1,+∞),故D 正确.综上所述,选AD. 热点二 函数的零点与方程 考向1 确定函数零点个数【例2】 (1)设函数f (x )=2|x |+x 2-3,则函数y =f (x )的零点个数是( ) A.4 B.3 C.2D.1(2)已知函数f (x )=⎩⎨⎧e x ,x <0,4x 3-6x 2+1,x ≥0,其中e 为自然对数的底数,则函数g (x )=3[f (x )]2-10f (x )+3的零点个数为( ) A.4 B.5 C.6D.3答案 (1)C (2)A解析 (1)易知f (x )是偶函数,当x ≥0时,f (x )=2x +x 2-3,所以x ≥0时,f (x )在[0,+∞)上是增函数,且f (1)=0,所以x =1是函数y =f (x )在[0,+∞)上的唯一零点.根据奇偶性,知x =-1是y =f (x )在(-∞,0)内的零点, 因此y =f (x )有两个零点.(2)当x ≥0时,f (x )=4x 3-6x 2+1的导数为f ′(x )=12x 2-12x , 当0<x <1时,f (x )单调递减,x >1时,f (x )单调递增,可得f (x )在x =1处取得最小值,最小值为-1,且f (0)=1, 作出函数f (x )的图象,如图. g (x )=3[f (x )]2-10f (x )+3,可令g (x )=0,t =f (x ),可得3t 2-10t +3=0, 解得t =3或13.当t =13时,可得f (x )=13有三个实根,即g (x )有三个零点; 当t =3时,可得f (x )=3有一个实根,即g (x )有一个零点. 综上,g (x )共有四个零点.探究提高 判断函数零点个数的主要方法(1)解方程f (x )=0,直接求零点;(2)利用零点存在性定理;(3)数形结合法:对于给定的函数不能直接求解或画出图象,常会通过分解转化为两个能画出图象的函数,求其图象交点问题.【训练2】 (1)函数f (x )=2sin x -sin 2x 在[0,2π]的零点个数为( ) A.2 B.3 C.4D.5(2)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,则关于x 的方程为f (x )-log 8(x +2)=0在区间(-2,6)上根的个数为( ) A.1 B.2 C.3D.4答案 (1)B (2)C解析 (1)令f (x )=0,得2sin x -sin 2x =0, 即2sin x -2sin x cos x =0,∴2sin x (1-cos x )=0,∴sin x =0或cos x =1. 又x ∈[0,2π],∴由sin x =0得x =0,π或2π,由cos x =1得x =0或2π. 故函数f (x )的零点为0,π,2π,共3个. (2)对于任意的x ∈R ,都有f (2+x )=f (2-x ), ∴f (x +4)=f [2+(x +2)]=f [2-(x +2)]=f (-x )=f (x ), ∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,函数f (x )是定义在R 上的偶函数,且f (6)=f (-2)=1,则函数y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f (x )与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f (x )-log 8(x +2)=0在区间(-2,6)上有3个根. 考向2 根据函数的零点求参数的值或范围 【例3】 (1)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A.-12B.13C.12D.1(2)设a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b恰有3个零点,则( ) A.a <-1,b <0 B.a <-1,b >0 C.a >-1,b <0 D.a >-1,b >0答案 (1)C (2)C解析 (1)f (x )=(x -1)2+a (e x -1+e 1-x )-1, 令t =x -1,则g (t )=f (t +1)=t 2+a (e t +e -t )-1. ∵g (-t )=(-t )2+a (e -t +e t )-1=g (t ),且t ∈R , ∴函数g (t )为偶函数.∵f (x )有唯一零点,∴g (t )也有唯一零点. 又g (t )为偶函数,由偶函数的性质知g (0)=0, ∴2a -1=0,解得a =12.(2)由题意,令y =f (x )-ax -b =0,得b =f (x )-ax =⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0. 设y =b ,g (x )=⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0,则以上两个函数的图象恰有3个交点,根据选项进行讨论.①当a <-1时,1-a >0,可知在x ∈(-∞,0)上,g (x )单调递增,且g (x )<0; 由g ′(x )=x 2-(a +1)x =x [x -(a +1)](x ≥0),a +1<0, 可知在x ∈[0,+∞)上,g (x )单调递增,且g (x )≥0.此时直线y =b 与g (x )的图象只有1个交点,不符合题意,故排除A ,B. ②当a >-1,即a +1>0时.因为g ′(x )=x [x -(a +1)](x ≥0),所以当x ≥0时,由g ′(x )<0可得0<x <a +1,由g ′(x )>0可得x >a +1,所以当x ≥0时,g (x )在(0,a +1)上单调递减,g (x )在(a +1,+∞)上单调递增.如图,y =b 与y =g (x )(x ≥0)的图象至多有2个交点.当1-a >0,即-1<a <1时,由图象可得,若要y =g (x )与y =b 的图象有3个交点,必有b <0;当1-a =0时,y =g (x )与y =b 的图象可以有1个、2个或无数个交点,但不存在恰有3个交点的情况,不符合题意,舍去;当1-a <0,即a >1时,y =g (x )与y =b 的图象可以有1个或2个交点,但不存在恰有3个交点的情况,不符合题意,舍去. 综上,-1<a <1,b <0.故选C.探究提高 1.求解第(1)题关键是利用函数f (x )有唯一零点找到解题思路.借助换元法,构造函数g (t )=f (t +1)=t 2+a (e t +e -t )-1,利用函数的性质求解. 2.解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.【训练3】 设函数f (x )=e x (2x -1)-ax +a (a <1)有两个零点,则实数a 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭⎪⎫0,43e -0.5 C.(-∞,1) D.⎝ ⎛⎭⎪⎫-∞,43e -0.5 答案 A解析 依题设,f (x )=e x (2x -1)-ax +a 有两个零点,∴函数y =e x (2x -1)的图象与直线y =a (x -1)有两个交点. 令y ′=[e x (2x -1)]′=e x (2x +1)=0,得x =-12.当x ∈⎝ ⎛⎭⎪⎫-∞,-12时,y ′<0,故y =e x(2x -1)为减函数; 当x ∈⎝ ⎛⎭⎪⎫-12,+∞时,y ′>0,故y =e x (2x -1)为增函数,如图.设直线y =a (x -1)与y =e x (2x -1)相切于点P (x 0,y 0), ∴y 0=e x 0(2x 0-1). 则过点P (x 0,y 0)的切线为 y -e x 0(2x 0-1)=e x 0(2x 0+1)(x -x 0).将点(1,0)代入上式,得x 0=0或x 0=32(舍去). 此时,直线y =a (x -1)的斜率为1.故若直线y =a (x -1)与函数y =e x (2x -1)的图象有两个交点,应有0<a <1. 热点三 函数的实际应用【例4】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO ′为铅垂线(O ′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO ′的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO ′的距离b (米)之间满足关系式h 2=-1800b 3+6b .已知点B 到OO ′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?解(1)如图,设AA1,BB1,CD1,EF1都与MN垂直,A1,B1,D1,F1是相应垂足.由条件知,当O′B=40时,BB1=-1800×403+6×40=160,则AA1=160.由140O′A2=160,得O′A=80.所以AB=O′A+O′B=80+40=120(米).(2)以O为原点,OO′所在直线为y轴建立平面直角坐标系xOy(如图所示).设F(x,y2),x∈(0,40),则y2=-1800x3+6x,EF=160-y2=160+1800x3-6x.因为CE=80,所以O′C=80-x.设D(x-80,y1),则y1=140(80-x)2,所以CD =160-y 1=160-140(80-x )2=-140x 2+4x . 记桥墩CD 和EF 的总造价为f (x )万元, 则f (x )=k ⎝ ⎛⎭⎪⎫160+1800x 3-6x +32k ⎝ ⎛⎭⎪⎫-140x 2+4x=k ⎝ ⎛⎭⎪⎫1800x 3-380x 2+160(0<x <40). f ′(x )=k ⎝ ⎛⎭⎪⎫3800x 2-340x =3k 800x (x -20),令f ′(x )=0,得x =20或x =0(舍去). 列表如下:所以当x =20时,f (x )取得最小值. 答:(1)桥AB 的长度为120米;(2)当O ′E 为20米时,桥墩CD 与EF 的总造价最低.探究提高 1.解决函数的实际应用问题时,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去.2.对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.【训练4】 “一骑红尘妃子笑,无人知是荔枝来”描述了封建统治者的骄奢生活,同时也讲述了古代资源流通的不便利.如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e ax +b (a ,b 为常数),若该果蔬在6 ℃的保鲜时间为216小时,在24 ℃的保鲜时间为8小时,且该果蔬所需物流时间为3天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过( ) A.9 ℃ B.12 ℃ C.18 ℃ D.20 ℃答案 B解析 当x =6时,e 6a +b =216;当x =24时,e 24a +b =8, ∴e 6a +be 24a +b =2168=27,则e 6a =13. 若果蔬保鲜3天,则72=13×216=e 6a ·e 6a +b =e 12a +b , 故物流过程中果蔬的储藏温度最高不能超过12 ℃.一、选择题1.设a =log 2 0.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为( )A.a <b <cB.c <a <bC.b <c <aD.a <c <b答案 D解析 ∵log 20.3<log 21=0,∴a <0.∵log 120.4=-log 20.4=log 252>log 22=1,∴b >1.∵0<0.40.3<0.40=1,∴0<c <1, ∴a <c <b .2.已知函数f (x )是定义在R 上的偶函数,满足f (x +1)=-f (x ),当x ∈[0,1]时,f (x )=cos π2x ,则函数y =f (x )-|x |的零点个数是( ) A.2 B.3 C.4 D.5 答案 A解析 由f (x +1)=-f (x ),得f (x +2)=f (x ),知周期T =2. 令f (x )-|x |=0,得f (x )=|x |.作出函数y =f (x )与g (x )=|x |的图象如图所示.由图象知,函数y =f (x )-|x |有两个零点.3.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A.60 B.63 C.66 D.69答案 C 解析 ∵I (t )=K 1+e -0.23(t -53), ∴当I (t *)=0.95K 时,K1+e -0.23(t *-53)=0.95K ,则11+e -0.23(t *-53)=0.95⇒1+e -0.23(t *-53)=10.95⇒e -0.23(t *-53)=10.95-1⇒e0.23(t *-53)=19. ∴0.23(t *-53)=ln 19,∴t *=ln 190.23+53≈30.23+53≈66.4.已知函数f (x )=[x ]([x ]表示不超过实数x 的最大整数),若函数g (x )=e x -1e x -2的零点为x 0,则g [f (x 0)]等于( ) A.1e -e -2B.-2C.e -1e -2 D.e 2-1e 2-2答案 B解析 因为g (x )=e x -1e x -2, 所以g ′(x )=e x +1e x >0在R 上恒成立, 即函数g (x )=e x -1e x -2在R 上单调递增.又g(0)=e0-1e0-2=-2<0,g(1)=e1-1e1-2>0,所以g(x)在(0,1)上必然存在零点,即x0∈(0,1),因此f(x0)=[x0]=0,所以g[f(x0)]=g(0)=-2.5.(多选)若0<c<1,a>b>1,则()A.log a c>log b cB.ab c>ba cC.a log b c>b log a cD.a(b-c)>b(a-c) 答案AB解析对于A,因为0<c<1,a>b>1,所以log c a<log c b<0,所以log a alog a c<log b blog b c<0,即1 log a c<1log b c<0,所以0>log a c>log b c,故A正确;对于B,因为0<c<1,所以-1<c-1<0,所以当x>1时,函数y=x c-1单调递减,所以b c-1>a c-1,又ab>0,所以由不等式的基本性质得ab c>ba c,故B正确;对于C,由A知log b c<log a c<0,又a>b>1,所以a log b c<b log b c,b log b c<b log a c,所以a log b c<b log a c,故C不正确;对于D,因为0<c<1,a>b>1,所以ac>bc,所以-ac<-bc,所以ab-ac<ab-bc,即a(b-c)<b(a-c),故D不正确.综上所述,选AB.6.(多选)已知f(x)是定义在R上的奇函数,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=x,则关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是()A.g(x)为偶函数B.g (x )在(1,2)上单调递增C.g (x )在[2 016,2 020]上恰有三个零点D.g (x )的最大值为2 答案 AD解析 易知函数g (x )的定义域为R ,且g (-x )=|f (-x )|+f (|-x |)=|-f (x )|+f (|x |)=|f (x )|+f (|x |)=g (x ), 所以g (x )为偶函数,故A 正确;因为f (1+x )=f (1-x ),所以f (x )的图象关于直线x =1对称,又f (x )是奇函数,当0≤x ≤1时,f (x )=x ,所以f (x )是周期为4的函数,其部分图象如图所示,所以当x ≥0时,g (x )=⎩⎪⎨⎪⎧2f (x ),x ∈[4k ,2+4k ],0,x ∈(2+4k ,4+4k ],k ∈N ,当x ∈(1,2)时,g (x )=2f (x ),g (x )单调递减,故B 错误;g (x )在[2 016,2 020]上零点的个数等价于g (x )在[0,4]上零点的个数,而g (x )在[0,4]上有无数个零点,故C 错误;当x ≥0时,易知g (x )的最大值为2,由偶函数图象的对称性可知,当x <0时,g (x )的最大值也为2,所以g (x )在整个定义域上的最大值为2,故D 正确. 综上可知,选AD. 二、填空题7.已知λ∈R ,函数f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ.若函数f (x )恰有2个零点,则λ的取值范围是________. 答案 (1,3]∪(4,+∞)解析 令f (x )=0,当x ≥λ时,x =4.当x <λ时,x 2-4x +3=0,则x =1或x =3.若函数f (x )恰有2个零点,结合图1与图2知,1<λ≤3或λ>4.8.为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25 mg/m 3时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (单位:mg/m 3)与经过的时间t (单位:min)之间的函数关系为y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t10-a,t ≥10(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是________.答案 9:30解析 由题图可得函数图象过点(10,1), 代入函数的解析式,可得⎝ ⎛⎭⎪⎫121-a=1,解得a =1,所以y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t 10-1,t ≥10. 设从喷洒药物开始经过t min 顾客方可进入商场,易知t >10, 则⎝ ⎛⎭⎪⎫12t10-1≤0.25,解得t ≥30,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.9.已知a ,b ,c 为正实数,且ln a =a -1,b ln b =1,c e c =1,则a ,b ,c 的大小关系是________. 答案 c <a <b解析 ln a =a -1,ln b =1b ,e c =1c .依次作出y =e x ,y =ln x ,y =x -1,y =1x 这四个函数的图象,如下图所示.由图象可知0<c <1,a =1,b >1,∴c <a <b . 三、解答题10.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求实数m 的取值范围. 解 (1)函数f (x )的图象如图所示.(2)因为f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,在(1,+∞)上是增函数,由0<a <b 且f (a )=f (b ),得0<a <1<b , 且1a -1=1-1b ,所以1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 故实数m 的取值范围为(0,1).11.随着中国经济的快速发展,节能减耗刻不容缓.某市环保部门为了提高对所辖水域生态环境的巡查效率,引进了一种新型生态环保探测器,该探测器消耗能量由公式E n =M v n T 给出,其中M 是质量(常数),v 是设定速度(单位:km/h),T 是行进时间(单位:h),n 为参数.某次巡查为逆水行进,水流速度为4 km/h ,行进路程为100 km.(逆水行进中,实际速度=设定速度-水流速度,顺水行进中,实际速度=设定速度+水流速度)(1)求T 关于v 的函数关系式,并指出v 的取值范围;(2)①当参数n =2时,求探测器最低消耗能量;②当参数n =3时,试确定使该探测器消耗的能量最低的设定速度.解 (1)由题意得,探测器实际速度为100T =v -4,则T =100v -4(v >4). (2)①当参数n =2时,E 2=100·M ·v 2v -4=100M ⎣⎢⎡⎦⎥⎤v -4+16v -4+8 ≥100M ⎣⎢⎡⎦⎥⎤2(v -4)·16v -4+8 =1 600M ⎝ ⎛⎭⎪⎫当且仅当v -4=16v -4,即v =8时取等号. 因此,当参数n =2时,该探测器最低消耗能量为1 600M .②当参数n =3时,E 3=100·M ·v 3v -4(v >4). 令f (v )=v 3v -4(v >4),则f ′(v )=2v 2(v -6)(v -4)2, 当4<v <6时,f ′(v )<0,f (v )单调递减,当v >6时,f ′(v )>0,f (v )单调递增.故当设定速度为6 km/h 时,该探测器消耗的能量最低.12.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天答案 B解析 由R 0=1+rT ,R 0=3.28,T =6,得r =R 0-1T =3.28-16=0.38.由题意,累计感染病例数增加1倍,则I (t 2)=2I (t 1),即e0.38t 2=2e0.38t 1,所以e0.38(t 2-t 1)=2,即0.38(t 2-t 1)=ln 2,∴t 2-t 1=ln 20.38≈0.690.38≈1.8. 13.(多选)方程e x +x -2=0的根为x 1,ln x +x -2=0的根为x 2,则( ) A.x 1x 2>12 B.x 1ln x 2+x 2ln x 1<0 C.e x 1+e x 2<2eD.x 1x 2<e 2 答案 BD解析 令f (x )=e x +x -2,g (x )=ln x +x -2,作出函数y =-x +2,y =e x ,y =ln x 的图象,其中y =e x 与y =ln x 互为反函数,其图象关于直线y =x 对称,如图,则A (x 1,e x 1),B (x 2,ln x 2).设直线y =x 与y =-x +2的交点为C ,则C (1,1),且A ,B 关于点C 对称,∴e x 1=x 2,x 1+x 2=2.∵f (0)=-1<0,f ⎝ ⎛⎭⎪⎫12=e -32>0,g (1)=-1<0,g (2)=ln 2>0, ∴0<x 1<12<1<x 2<2,∴x 1x 2<12,故A 错误; ∵x 1ln x 2+x 2ln x 1<0等价于ln x 1x 1+ln x 2x 2<0,易知h (x )=ln x x 在(0,e)上单调递增, ∴h (x 1)<h ⎝ ⎛⎭⎪⎫12=-2ln 2,h (x 2)<h (2)=12ln 2, ∴h (x 1)+h (x 2)<-32ln 2<0,即ln x 1x 1+ln x 2x 2<0,故B 正确; ∵x 1+x 2=2且x 1≠x 2,∴e x 1+e x 2>2e x 1+x 2=2e ,故C 错误;∵e x 1=x 2,∴x 1x 2=x 1e x 1.易知φ(x )=x e x 在⎝ ⎛⎭⎪⎫0,12上单调递增, ∴φ(x 1)<φ⎝ ⎛⎭⎪⎫12, 即x 1e x 1<e 2,即x 1x 2<e 2,故D 正确. 故选BD.14.记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”;(2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值.(1)证明 函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎨⎧x =x 2+2x -2,1=2x +2,此方程组无解, 因此,f (x )与g (x )不存在“S 点”.(2)解 函数f (x )=ax 2-1,g (x )=ln x ,则f ′(x )=2ax ,g ′(x )=1x .设x 0为f (x )与g (x )的“S 点”, 由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得 ⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎨⎧ax 20-1=ln x 0,2ax 20=1, (*) 得ln x 0=-12,即x 0=e -12,则a =12⎝ ⎛⎭⎪⎫e -122=e 2. 当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”.因此,a 的值为e 2.。

基本初等函数习题

基本初等函数习题

基本初等函数习题1.已知关于的不等式的解集;且函数的定义域为,则的范围为()A. B. C. D.2.已知,,,设,若,则的取值范围是()A. ,B. ,C. ,D. ,3.已知函数(其中)的图像如下图所示,则函数的图像大致是()A. B.C. D.4.设,,,则()A. B. C. D.5.设,,,则、、的大小关系是()A. B. C. D.6.已知,则的大小关系为()A. B. C. D.7.设a=()0.2,b=1.30.7,c=(),则a,b,c的大小关系是()A.a>c>b B.b>a>c C.c>a>b D.a>b>c8 )A .b a c <<B .a b c <<C .b c a <<D .c a b <<9.已知函数()931x x f x m m =-⋅++对()0 x ∈+∞,的图象恒在x 轴上方,则m 的取值范围是( ) B.2m <10 )A.c a b <<B.c b a <<C.a c b <<D.a b c <<11 )A .b c a <<B .a b c <<C .c a b <<D .a c b <<12.若函数xxa a x f --=)()10(≠>a a 且在R 上是增函数,那么)1(log )(+=x x g a 的大致图象是( )13.函数()()1log 2830,1a y x a a =+->≠且的图象恒过定点A ,若点A 的横坐标为0x ,函数024x x y a -=+的图象恒过定点B ,则B 点的坐标为( )A .()27,3--B .()27,5-C .()3,5-D .()2,5-14.已知定义在R 上的函数(m 为实数)为偶函数,记,则,,a b c 的大小关系为( )A.a b c <<B.a c b <<C.c a b <<D.c b a <<15.设函数1()421x x f x +=-+-,2()lg(41)g x ax x =-+,若对任意1x R ∈,都存在2x R ∈,使12()()f x g x =,则实数a 的取值范围为( )A .(0,4]B .(,4]-∞C .(4,0]-D .[4,)+∞16,当x a =时,()f x 取得最小值b ,则函数)A .B .C .D .17.若实数a 满足,()()()20.5log log 21f a f a f +≤,则实数a 的取值范围是( ) A ()2,⎫+∞⎪⎭B [)2,⎤+∞⎥⎦C18.则关于x 的不等式()()314f x f x ++>的解集为( )A .()0,+∞ D .(),0-∞19.设0.33a =,5log 3b =,cos2c =,则( )A .a b c <<B .c a b <<C .c b a <<D .b c a <<20.已知0,0a b >>,且1ab =,则函数()xf x a =与函数()log b g x x =-的图像可能是( )21.若函数()()01xxf x a kaa a -=+>≠且上既是奇函数,又是增函数,则()()log a g x x k =+的图象是( )22(a R ∈),2(l n (l o g 5))5f =,则5(ln(log 2))f =( )A .5-B .1-C .3D .423.已知函数(3),2()log (1)3,2x a a x f x x x ⎧-≤=⎨-+>⎩是定义域上的单调增函数,则a 的取值范围是( )AC24.已知lg3a =,,lg 0.3c =,这三个数的大小关系为( )A .b a c <<B .a b c <<C .c a b <<D .c b a <<25,若()0f f m <⎡⎤⎣⎦,则实数m 的取值范围为( ) ]()1,12,2⎛⎤-+∞ ⎥⎝⎦ B.]()211,1,log 32⎛⎤--⎥⎝⎦]()10,1,2⎛⎤+∞ ⎥⎝⎦D.(](]()2,31,01,log 3-∞--26时,恒有x a xlog 4<,则a 的取值范围是()27.设均为正数,且,,.则( )A. B.C. D. 28.已知,,,则( )A. B . C. D.,则log a y 等于( ) ,其中1a >,则 ) A .1 B .2 C .3 D .4c b a ,,a a 21log 2=b b21log 21=⎪⎭⎫ ⎝⎛c c2log 21=⎪⎭⎫⎝⎛b a c <<a b c <<c b a <<c a b <<2log 3a =12log 3b =123c -=c b a >>c a b >>a b c >>a c b >>31,则a ,b ,c 的大小关系是( )A .c b a >>B .c a b >>C .a b c >>D .b c a >> 32.若在区间(-∞,1]上递减,则a 的取值范围为( ) A. [1,2)B. [1,2]C. [1,+∞)D. [2,+∞)33,则使幂函数a y x =为奇函数且在(0,)+∞上单调递增的a 值的个数为( ) A .0 B .1 C .2 D .334.已知函数 满足 ,且当 时, ,则 =( ) A.B.C.D.35.二次函数 与 , 在它们的一个交点处切线互相垂直,则的最小值为__________.36.当(,1]x ∈-∞,不等式恒成立,则实数a 的取值范围为________. 37.已知指数函数()y f x =,对数函数()y g x =和幂函数()y h x =的图形都如果()1f x ()()234g x h x ===,那么38.函数)3(log )(ax x f a -=在区间)6,2(上递增,则实数a 的取值范围是 . 39.已知函数3)2016(,1log ln )(2=++=f x b x a x f ,则x 的方程()f x k =有三个不同的实根,则实数k 的取值范围41.[2014·北京西城模拟]已知函数f(x)c >0.那么f(x)的零点是________;若f(x)c 的取值范围是________.42.设函数()()621log ,4,4x x f x f x x +≥⎧⎪=⎨<⎪⎩,则()()34f f +=_____________. 43.计算下来各式: (1)化简:a ••;(2)求值:log 535+2log 0.5﹣log 5﹣log 514+5.44.已知函数24()log (23)f x ax x =++.(1)已知(1)1f =,求()f x 单调递增区间;(2)是否存在实数a ,使()f x 的最小值为0?若存在,求出a 的值;若不存在,说明理由. 45.已知函数()()2lg 1f x x =+和()()lg 2g x x t =+(t 为常数). (1)求函数()f x 的定义域;(2)若[]0,1x ∈时,()g x 有意义,求实数t 的取值范围;(3)若存在[]0,1x ∈,使得()()f x g x ≤成立,求实数t 的取值范围.46.已知幂函数21()(22)m f x m m x +=-++为偶函数.(1)求()f x 的解析式;(2)若函数()2(1)1y f x a x =--+在区间(2,3)上为单调函数,求实数a 的取值范围. 47.已知函数()f x 是定义域为R 的单调减函数,且是奇函数,当0>x 时,(1)求()f x 的解析式;(2)解关于t 的不等式22(2)(25)0f t t f t -+-<48.已知()()()⎩⎨⎧-≥+-<=1211x x x x f ,()()()⎩⎨⎧>-≤-=1112x x x x g ,()()()x g x f x h ⋅= (1)求函数()x h 的解析式,并求它的单调递增区间; (2)若()t x h =有四个不相等的实数根,求t 的取值范围。

压轴题09 基本初等函数、函数与方程(原卷版)--2023年高考数学压轴题专项训练(全国通用)

压轴题09 基本初等函数、函数与方程(原卷版)--2023年高考数学压轴题专项训练(全国通用)

压轴题09基本初等函数、函数与方程题型/考向一:基本初等函数的图像与性质题型/考向二:函数的零点题型/考向三:函数模型及其应用○热○点○题○型一基本初等函数的图像与性质1.指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,其图象关于y =x 对称,它们的图象和性质分0<a <1,a >1两种情况,着重关注两个函数图象的异同.2.幂函数y =x α的图象和性质,主要掌握α=1,2,3,12,-1五种情况.一、单选题1.若125()3a -=,121log 5b =,3log 7c =,则a ,b ,c 的大小关系为()A .a b c>>B .b c a >>C .c a b>>D .c b a>>2.已知函数()2121x f x =-+,则()A .()f x 是偶函数且是增函数B .()f x 是偶函数且是减函数C .()f x 是奇函数且是增函数D .()fx 是奇函数且是减函数3.下列函数中,既是偶函数又是区间(0,)+∞上的增函数的是()A .y =B .21y x =C .lg y x=D .332x xy --=4.已知函数()2,0,1,0,2x x x f x x ⎧≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩若()()6f a f a <-,则实数a 的取值范围是()A .()3,-+∞B .(),3-∞-C .()3,+∞D .(),3-∞5.函数()2eln 2x f x x=的图象大致是()A .B .C .D .6.指数函数x y a =的图象如图所示,则2y ax x =+图象顶点横坐标的取值范围是()A .1,2⎛⎫-∞- ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,2⎛⎫⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭7.已知实数1a ≠,函数()4,0,2,0,x a x x f x x -⎧≥=⎨<⎩若(1)(1)f a f a -=-,则a 的值为()A .12B .12-C .14D .14-8.函数()()()ln 1ln 1f x x x x =+--⎡⎤⎣⎦的部分图象大致是()A .B .C .D .二、填空题9.已知函数()2()e e x x f x x -=-⋅,若实数m 满足))2(1)f f m f -≤,则实数m的取值范围是____________.10.已知函数()|ln(1)||ln(1)|f x x x =--+,则函数()f x 的最小值为___________.11.已知,,1x y a ∈>R ,若2x y a a a +=,且x y +的最大值为103,则函数()()212log 2f x x ax a =-++的最小值为______12.幂函数y=xa ,当a 取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=xa ,y=xb 的图象三等分,即有BM =MN =NA ,那么ab =______.○热○点○题○型二函数的零点判断函数零点个数的方法:(1)利用零点存在定理判断.(2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f (x )的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.一、单选题1.函数()243xf x x =+-的零点所在的区间是()A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭2.已知函数()2cos 1f x a x x =--有且只有1个零点,则实数a 的值是()A .0B .1C .2D .33.已知()0,2πθ∈,若函数()()2sin cos sin 2f x x x x θ=-+在π0,4⎛⎫⎪⎝⎭上无零点,则θ的值可能为()A .π6B .π4C .11π12D .6π54.若函数22,0()1,0x x f x x x -⎧≤=⎨+>⎩,则函数()()2g x f x =-的零点的个数是()A .1B .2C .3D .45.已知函数()2ln 1212x x x f x mx mx x +>⎧⎪=⎨-+≤⎪⎩,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是()A .71,4⎛⎤⎥⎝⎦B .(]1,2C .41,3⎛⎤ ⎥⎝⎦D .[]1,36.()f x 是定义在R 上的奇函数,当[]1,1x ∈-时,()f x x =,()()11f x f x +=-,令()()lg g x f x x =-,则函数()g x 的零点个数为()A .4B .5C .6D .77.已知函数()41,0141,02x x x f x x ⎧+-≤⎪=⎨⎛⎫->⎪ ⎪⎝⎭⎩,关于x 的方程()()()22110f x t f x t +-+-=有6个不等实数根,则实数t 的取值范围是()A.7,5⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭B.7,5⎡⎫⎛⎫-∞-+∞⎪⎢ ⎪⎪⎝⎭⎣⎭C .7,52⎛-- ⎝⎦D .7,522⎛⎛⎫-- ⎪ ⎪⎝⎭⎝⎭8.已知()f x 是定义域为{}0x x ≠的偶函数且2ln 1()(0)ex f x x x =->,则函数()f x 零点个数是()A .6B .5C .4D .3二、多选题9.已知偶函数()f x 满足()()()126f x f x f -+=,()11e f -=+,且当[)0,6x ∈时,()e 1x f x a -=+,则下列说法正确的有()A .2e a =B .()f x 在[]18,24上为增函数C .()320231ef -=-D .()f x 在[]2023,0-上共有169个零点10.定义在R 上的偶函数()f x 满足()()22f x f x -=+,且当[]0,2x ∈时,()2e 1,01,44,1 2.x x f x x x x ⎧-≤≤=⎨-+<≤⎩若关于x 的不等式()m x f x ≤的整数解有且仅有9个,则实数m的取值可以是()A .e 16-B .e 17-C .e 18-D .e 19-三、填空题11.已知函数()131,0ln ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若函数()()()2221g x f x af x a =-+-⎡⎤⎣⎦恰有4个不同的零点,则a 的取值范围是__________.12.已知函数11,02()2(2),28x x f x f x x ⎧--≤≤=⎨-<≤⎩,若方程()f x kx =恰好有四个实根,则实数k 的取值范围是___.○热○点○题○型三函数模型及其应用应用函数模型解决实际问题的一般程序和解题关键:(1)一般程序:――→读题文字语言⇒――→建模数学语言⇒――→求解数学应用⇒――→反馈检验作答(2)解题关键:解答这类问题的关键是确切地写出相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.一、单选题1.垃圾分类,一般是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而变成公共资源的一系列活动的总称.已知某种垃圾的分解率ν与时间t (月)满足函数关系式t v a b =⋅(其中a ,b 为非零常数).若经过6个月,这种垃圾的分解率为5%,经过12个月,这种垃圾的分解率为10%,那么这种垃圾完全分解(分解率为100%)至少需要经过()(参考数据lg 20.3≈)A .20个月B .40个月C .28个月D .32个月2.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速(单位:m /s )可以表示为31log 2100Qv =,其中Q 表示鲑鱼的耗氧量的单位数.当一条鲑鱼以3ln2m /s ln3的速度游动时,其耗氧量是静止时耗氧量的倍数为()A .83B .8C .32D .643.0C 表示生物体内碳14的初始质量,经过t 年后碳14剩余质量01()2th C t C ⎛⎫= ⎪⎝⎭(0t >,h 为碳14半衰期).现测得一古墓内某生物体内碳14含量为00.4C ,据此推算该生物是距今约多少年前的生物(参考数据lg 20.301≈).正确选项是()A .1.36hB .1.34hC .1.32hD .1.30h4.2023年1月底,由马斯克、彼得泰尔等人创立的人工智能研究公司openAI 发布的名为“ChatGTP ”的人工智能聊天程序进入中国,迅速以其极高的智能化水平引起国内关注.深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的,在神经网络优化中,指数衰减的学习率模型为0G G L L D=,其中L 表示每一轮优化时使用的学习率,0L 表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,0G 表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为0.4,则学习率衰减到0.2以下(不含0.2)所需的训练迭代轮数至少为()(参考数据:1g20.3010≈)A .72B .74C .76D .785.血氧饱和度是呼吸循环的重要生理参数.人体的血氧饱和度正常范围是95%~100%,当血氧饱和度低于90%时,需要吸氧治疗,在环境模拟实验室的某段时间内,可以用指数模型:0()e KtS t S =描述血氧饱和度()S t 随给氧时间t (单位:时)的变化规律,其中0S 为初始血氧饱和度,K 为参数.已知060%S =,给氧1小时后,血氧饱和度为80%.若使得血氧饱和度达到90%,则至少还需要给氧时间(单位:时)为()(精确到0.1,参考数据:ln 2069ln 3110≈≈.,.)A .0.3B .0.5C .0.7D .0.96.某企业为了响应并落实国家污水减排政策,加装了污水过滤排放设备,在过滤过程中,污染物含量M (单位:mg /L )与时间t (单位:h )之间的关系为0e ktM M -=(其中0,M k 是正常数).已知在处理过程中,该设备每小时可以清理池中残留污染物10%,则过滤一半的污染物需要的时间最接近()(参考数据:lg20.30≈,lg30.48≈)A .6小时B .8小时C .10小时D .12小时7.著名物理学家牛顿在17世纪提出了牛顿冷却定律,描述温度高于周围环境的物体向周围媒质传递热量逐渐冷却时所遵循的规律.统计学家发现网络热搜度也遵循这样的规律,即随着时间的推移,热搜度会逐渐降低.假设事件的初始热搜度为()000N N >,经过t (天)时间之后的热搜度变为()0etN t N α-=,其中α为冷却系数.若设某事件的冷却系数0.3α=,则该事件的热搜度降到初始的50%以下需要的天数t 至少为().(ln 20.693≈,t 取整数)A .7B .6C .4D .38.针对“台独”分裂势力和外部势力勾结的情况,为捍卫国家主权和领土完整,维护中华民族整体利益和两岸同胞切身利益,解放军组织多种战机巡航台湾.已知海面上的大气压强是760mmHg ,大气压强P (单位:mmHg )和高度h (单位:m )之间的关系为760e hk P -=(e为自然对数的底数,k 是常数),根据实验知500m 高空处的大气压强是700mmHg ,则当歼20战机巡航高度为1000m ,歼16D 战机的巡航高度为1500m 时,歼20战机所受的大气压强是歼16D 战机所受的大气压强的()倍.A .0.67B .0.92C .1.09D .1.5二、多选题9.如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =,关于下列说法正确的是()A .浮萍每月的增长率为3B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积超过280m D .若浮萍蔓延到2224m 2m 8m 、、所经过的时间分别是123t t t 、、,则2132t t t =+10.泊松分布适合于描述单位时间(或空间)内随机事件发生的次数.如某一服务设施在一定时间内到达的人数,显微镜下单位分区内的细菌分布数等等.其概率函数为()e !kP X k k λλλ-==,参数λ是单位时间(或单位面积)内随机事件的平均发生次数.现采用某种紫外线照射大肠杆菌,大肠杆菌的基因组平均产生3个嘧啶二体.设大肠杆菌的基因组产生的嘧啶二体个数为Y ,()P Y k =表示经该种紫外线照射后产生k 个嘧啶二体的概率.已知Y 服从泊松分布,记为()Y Pois λ~,当产生的嘧啶二体个数不小于1时,大肠杆菌就会死亡,下列说法正确的有()(参考数据:3e 0.049-=⋅⋅⋅,恒等式0e !inxi x i ==∑)A .大肠杆菌a 经该种紫外线照射后,存活的概率约为5%B .设()()f k P Y k λ==,则,(1)()0,()f k f k k λ∀∈+->∈N NC .如果()X pois λ~,那么(!)X E X λ=,X 的标准差σλ=D .大肠杆菌a 经该种紫外线照射后,其基因组产生的嘧啶二体个数的数学期望为311.(多选)甲同学家到乙同学家的途中有一座公园,甲同学家到公园的距离与乙同学家到公园的距离都是2km.如图所示表示甲同学从家出发到乙同学家经过的路程y (km)与时间x (min)的关系,下列结论正确的是()A.甲同学从家出发到乙同学家走了60minB.甲从家到公园的时间是30minC.甲从家到公园的速度比从公园到乙同学家的速度快D.当0≤x≤30时,y与x的关系式为y=1 15 x12.尽管目前人类还无法准确预报地震,但科学家经过研究,已经对地震有所了解,例如,地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lg E=4.8+1.5M,则下列说法正确的是()A.地震释放的能量为1015.3焦耳时,地震里氏震级约为七级B.八级地震释放的能量约为七级地震释放的能量的6.3倍C.八级地震释放的能量约为六级地震释放的能量的1000倍D.记地震里氏震级为n(n=1,2,···,9,10),地震释放的能量为an,则数列{an}是等比数列。

基本初等函数练习题与答案

基本初等函数练习题与答案

5.
1
3x 3x 3x 3x 3, x 1 1 3x
6.

x
|
x

1

,y
|
y

0,
且y

1
2x
1
0,
x

1

y

1
8 2 x 1

0, 且y
1

2
2
7. 奇函数 f (x) x2 lg(x x2 1) x2 lg(x x2 1) f (x)
84 411
212 222
212 (1 210 )
3. 2 原式 log2 5 2 log2 51 log2 5 2 log2 5 2
4. 0 (x 2)2 ( y 1)2 0, x 2且y 1, logx ( yx ) log2 (12 ) 0
4.若函数
f
(x)
1
m ax 1
是奇函数,则 m
为__________。
5.求值:
2
27 3

2log2 3
log2
1 8

2 lg(
3
5
3
5 ) __________。
三、解答题
1.解方程:(1) log4 (3 x) log0.25 (3 x) log4 (1 x) log0.25 (2x 1)

log a
(1
1 a
)

log a
(1

a)

log a
(1

1 a
)
③ a1a

必修1第二章_基本初等函数练习题

必修1第二章_基本初等函数练习题

必修1第二章_基本初等函数练习题§2.1.1 指数与指数幂的运算(1)1. 44(3)-的值是( ).A. 3B. -3C. ±3D. 81 2. 625的4次方根是( ).A. 5B. -5C. ±5D. 25 3. 化简22()b -是( ).A. b -B. bC. b ±D. 1b4. 化简66()a b -= .5. 计算:33(5)-= ;243 . 做一做1. 计算:(1)510a ; (2) 397.2. 计算34a a -⨯和3(8)a +-,它们之间有什么关系? 你能得到什么结论?3. 对比()nnnab a b =与()n nna a bb=,你能把后者归入前者吗?§2.1.1 指数与指数幂的运算(2)1. 若0a >,且,m n 为整数,则下列各式中正确的是( ).A. mmnn a a a ÷= B. m n mn a a a ⋅=C. ()nm m n a a += D. 01n n a a -÷=2. 化简3225的结果是( ).A. 5B. 15C. 25D. 125 3. 计算()1222--⎡⎤-⎢⎥⎣⎦的结果是( ).A .2B .2- C.22D .22-4. 化简2327-= .5. 若102,104mn==,则3210m n-= .做一做1. 化简下列各式: (1)3236()49; (2)233aba b ab.2. 计算:34333324381224a abb a a ab a⎛⎫-÷- ⎪ ⎪++⎝⎭. §2.1.1 指数与指数幂的运算(练习)1. 329的值为( ).A. 3B. 33C. 3D. 729 2.354aa a(a >0)的值是( ).A. 1B. aC. 15aD. 1710a3. 下列各式中成立的是( ).A .1777()nn m m= B .4312(3)3-=-C .33344()x y x y +=+ D .3393=4. 化简3225()4-= .5. 化简2115113366221()(3)()3a b a b a b -÷= .做一做1. 已知32x a b --=+, 求42362x a x a ---+的值.2. 探究:()2n n n n a a a +=时, 实数a 和整数n 所应满足的条件.§2.1.2 指数函数及其性质(1)1. 函数2(33)xy a a a =-+是指数函数,则a 的值为( ). A. 1 B. 2 C. 1或2 D. 任意值 2. 函数f (x )=21x a -+ (a >0,a ≠1)的图象恒过定点( ).A. (0,1) B. (0,2) C. (2,1) D. (2,2) 3. 指数函数①()x f x m =,②()x g x n =满足不等式 01m n <<<,则它们的图象是().4. 比较大小:23( 2.5)- 45( 2.5)-.5. 函数1()19x y =-的定义域为 .做一做 1. 求函数y =1151xx --的定义域2. 探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域?§2.1.2 指数函数及其性质(2)1. 如果函数y =a x (a >0,a ≠1)的图象与函数y =b x(b >0,b ≠1)的图象关于y 轴对称,则有( ). A. a >b B. a <bC. ab =1D. a 与b 无确定关系2. 函数f (x )=3-x-1的定义域、值域分别是( ). A. R , R B. R ,(0,)+∞ C. R ,(1,)-+∞ D.以上都不对3. 设a 、b 均为大于零且不等于1的常数,则下列说法错误的是( ).A. y =a x 的图象与y =a -x 的图象关于y 轴对称B. 函数f (x )=a 1-x (a >1)在R 上递减C. 若a2>a21-,则a >1 D. 若2x >1,则1x >4. 比较下列各组数的大小:122()5- 320.4-();0.7633()0.753-().5. 在同一坐标系下,函数y =a x , y =b x , y =c x , y =d x 的图象如右图,则a 、b 、c 、d 、1之间从小到大的顺序是 . 做一做1. 已知函数f (x )=a -221x+(a ∈R),求证:对任何a R∈, f (x )为增函数.2. 求函数2121xxy -=+的定义域和值域,并讨论函数的单调性、奇偶性.§2.2.1 对数与对数运算(1)1. 若2log 3x =,则x =( ). A. 4 B. 6 C. 8 D. 92. (1)log (1)n n n n +-++= ( ).A. 1B. -1C. 2D. -23. 对数式2lo g (5)a a b --=中,实数a 的取值范围是( ).A .(,5)-∞B .(2,5)C .(2,)+∞D . (2,3)(3,5) 4. 计算:21log(322)++= .5. 若log (21)1x +=-,则x =________,若2l og 8y =,则y =___________.做一做1. 将下列指数式化成对数式,对数式化成指数式. (1)53243=; (2)51232-=; (3)430a=(4)1() 1.032m=; (5)12log 164=-;(6)2log 1287=; (7)3log 27a =. 2. 计算:(1)9log 27; (2)3log 243; (3)43log 81;(3)(23)log (23)+-; (4)345log 625.§§2.2.1 对数与对数运算(2)1. 下列等式成立的是( ) A .222log (35)log 3log 5÷=- B .222log (10)2log (10)-=- C .222log (35)log 3log 5+= D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ). A .x =a +3b -c B .35ab x c=C .35ab x c=D .x =a +b 3-c 33. 若()2lg 2lg lg y x x y -=+,那么( ).A .y x =B .2y x =C .3y x =D .4y x = 4. 计算:(1)99log 3log 27+= ; (2)2121log log 22+=.5. 计算:315lg lg523+=.做一做 1. 计算: (1)lg27lg 83lg 10lg 1.2+-;(2)2lg 2lg 2lg 5lg 5+⋅+.2. 设a 、b 、c 为正数,且346a b c ==,求证:1112c a b-=.§2.2.1 对数与对数运算(3)1. 25log ()5a -(a ≠0)化简得结果是( ). A .-aB .a 2C .|a |D .a2. 若 log 7[log 3(log 2x )]=0,则12x =( ). A. 3 B. 23 C. 22 D. 32 3. 已知35a b m ==,且112a b +=,则m 之值为( ).A .15B .15C .±15D .2254. 若3a =2,则log 38-2log 36用a 表示为 .5. 已知lg 20.3010=,lg1.07180.0301=,则lg 2.5= ;1102= .做一做 1. 化简: (1)222lg 5lg 8lg 5lg 20(lg 2)3+++;(2)()()24525log 5+log 0.2log 2+log 0.5. 2. 若()()lg lg 2lg 2lg lg x y x y x y -++=++,求x y的值.§2.2.2 对数函数及其性质(1)1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是().2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞ C. [)2,+∞ D. [)3,+∞3. 不等式的41log 2x >解集是().A. (2,)+∞B. (0,2) B. 1(,)2+∞ D. 1(0,)24. 比大小: (1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8.5. 函数(-1)log (3-)x y x =的定义域是 . 做一做1. 已知下列不等式,比较正数m 、n 的大小: (1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1)2. 求下列函数的定义域: (1)2log (35)y x =-;(2)0.5log 43y x =-.§2.2.2 对数函数及其性质(2)1. 函数0.5log y x =的反函数是( ).A.0.5log y x =-B. 2log y x =C. 2x y =D. 1()2x y =2. 函数2x y =的反函数的单调性是( ). A. 在R 上单调递增 B. 在R 上单调递减C. 在(0,)+∞上单调递增D. 在(0,)+∞上单调递减 3. 函数2(0)y x x =<的反函数是( ). A. (0)y x x =±> B. (0)y x x =>C. (0)y x x =->D. y x =±4. 函数x y a =的反函数的图象过点(9,2),则a 的值为 .5. 右图是函数1log a y x =,2log a y x =3log a y x=,4log a y x =的图象,则底数之间的关系为 .做一做1. 现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg 30.477,lg 20.301==). 2. 探究:求(0)ax b y ac cx d +=≠+的反函数,并求出两个函数的定义域与值域,通过对定义域与值域的比较,你能得出一些什么结论? §2.2 对数函数(练习) 1. 下列函数与y x =有相同图象的一个函数是( ) A. 2y x= B. 2xy x=C. log (01)a xy aa a =>≠且 D. log xa y a =2. 函数12log (32)y x =-的定义域是( ). A. [1,)+∞ B. 2(,)3+∞ C. 2[,1]3D. 2(,1]33. 若(ln )34f x x =+,则()f x 的表达式为( ) A. 3ln x B. 3ln 4x + C. 3x e D. 34x e +4.函数2()lg (8)f x x =+的定义域为 ,值域为 .5. 将20.3,2log 0.5,0.5log 1.5由小到大排列的顺序是 . 做一做1. 若定义在区间(1,0)-内的函数2()lo g (1)a f x x =+满足()0f x >,则实数a 的取值范围.2. 已知函数211()log 1x f x x x+=--,求函数()f x 的定义域,并讨论它的奇偶性和单调性.§2.3 幂函数1. 若幂函数()f x x α=在(0,)+∞上是增函数,则( ).A .α>0 B .α<0 C .α=0 D .不能确定2. 函数43y x =的图象是().A. B. C. D.3. 若11221.1,0.9a b -==,那么下列不等式成立的是( ).A .a <l<bB .1<a <bC .b <l<aD .1<b <a4. 比大小:(1)11221.3_____1.5;(2)225.1______5.09--.5. 已知幂函数()y f x =的图象过点(2,2),则它的解析式为 . 做一做1. 已知幂函数f (x )=13222pp x -++(p ∈Z )在(0,)+∞上是增函数,且在其定义域内是偶函数,求p 的值,并写出相应的函数f (x ). 2. 在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R 与管道半径r 的四次方成正比. (1)写出函数解析式;(2)若气体在半径为3cm 的管道中,流量速率为400cm 3/s ,求该气体通过半径为r 的管道时,其流量速率R 的表达式;(3)已知(2)中的气体通过的管道半径为5cm ,计算该气体的流量速率. 第二章 基本初等函数复习 1. 函数2322x x y --+=的单调递增区间为( ).A. 3(,)2-∞ B. 3(,)2+∞ C. 3(,)2-∞- D. 3(,)2-+∞2. 设2(log )2(0)xf x x =>,则(3)f 的值是( ).A. 128B. 256C. 512D. 8 3. 函数22log (1)y x x =++的奇偶性为( ).A .奇函数而非偶函数B .偶函数而非奇函数C .非奇非偶函数D .既奇且偶函数4. 函数2y x -=在区间1[,2]2上的最大值是 .5. 若函数12(lo g )x y a =为减函数,则a 的取值范围是 .做一做1. 按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,设本利和为y 元,存期为x ,写出本利和y 随存期x 变化的函数解析式. 如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少(精确到1元)? 2. 某公司经过市场调查,某种商品在最初上市的几个月内销路很好,几乎能将所生产的产品全部销售出去. 为了追求最大的利润,该公司计划从当月开始,每月让产品生产量递增,且10个月后设法将该商品的生产量翻两番,求平均每月生产量的增长率.课堂练习 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( ) A .41B .21C .2D .42.下列函数是幂函数的是( )A、22y x = B 、3y x x =+ C 、3xy = D 、12y x = 3.计算331log 12log 22-=( )A. 3B. 23C.21 D.34.在区间),0(+∞上不是增函数的是( ) A.2xy = B x y log2=C.xy 2=D.122++=x x y5.方程lg lg(3)1x x +-=的解为 ( ) A 、5或-2 B 、5 C 、-2 D 、无解 6.函数)1(log )(++=x a x f a x在]1,0[上的最大值与最小值之和为a ,则a 的值为 ( )A. 41B. 21C. 2D. 47函数22()log (2)x f x x =-的定义域是 .8.若lg2=a ,lg3=b ,则log 512=_____.9.已知函数)]91(f [f ,)0x (20)(x x log )x (f x3则,,⎩⎨⎧≤>=的值为10.函数(2)x y a =-在定义域内是减函数,则a 的取值范围是 11.计算:4160.2503432162322428200549-⨯+--⨯--()()()()12.设函数421()log 1x x f x x x -⎧<=⎨>⎩, 求满足()f x =41的x 的值. 13.已知()2x f x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.14.画出函数|13|-=x y 的图象,并利用图象回答:k 为何值时,方程|3x -1|=k 无解?有一解?有两解?15.已知定义域为R 的函数12()22xx b f x +-+=+是奇函数。

基本初等函数历年高考题1答案

基本初等函数历年高考题1答案

基本初等函数历年高考题1答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2基本初等函数11.若函数()y f x =是函数1xy a a a =>≠(0,且)的反函数,且(2)1f =,则()f x =A .x 2logB .x 21C.x 21log D .22-x 2.为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有点 ( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度3.设3.02131)21(,3log ,2log ===c b a ,则( )A a<b<cB a<c<bC b<c<aD b<a<c 4.函数)(21R x y x ∈=+的反函数是A. )0(log 12>+=x x yB. )1)(1(log 2>-=x x yC. )0(log 12>+-=x x yD. )1)(1(log 2->+=x x y 5.设32log ,log log a b c π===A. a b c >>B. a c b >>C. b a c >>D. b c a >>6. 2log 的值为( ) A . B C .12- D . 1237.设函数()y f x =在(,)-∞+∞内有定义,对于给定的正数K ,定义函数(),(),(),().K f x f x K f x K f x K ≤⎧=⎨>⎩取函数()2xf x -=。

当K =12时,函数()K f x 的单调递增区间为 ( ) A .(,0)-∞ B .(0,)+∞ C .(,1)-∞- D .(1,)+∞ 8.下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x 的是( ) A .()f x =1xB. ()f x =2(1)x - C .()f x =x e D.()ln(1)f x x =+9.已知函数()f x 满足:x ≥4,则()f x =1()2x ;当x <4时()f x =(1)f x +,则2(2log 3)f +=( ) A.124 B.112 C.18 D.3810.函数)(21R x y x ∈=+的反函数是A. )0(log 12>+=x x yB.)1)(1(log 2>-=x x yC.)0(log 12>+-=x x yD.)1)(1(log 2->+=x x y11.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅⋅⋅的值为( ) A.1n B.11n + C. 1nn + D.1 12.已知函数()f x 的反函数为()()10g x x =+2lgx >,则=+)1()1(g f (A )0 (B )1 (C )2 (D )413.若2log a <0,1()2b >1,则( )A .a >1,b >0B .a >1,b <0 C. 0<a <1, b >0 D. 0<a <1, b <014.已知函数22log (2)()24(22a x x f x x x x x +≥⎧⎪==⎨-<⎪-⎩当时在点处当时)连续,则常数a 的值是 ( )4A.2 B.3 C.4 D.515.若函数()f x 的零点与()422x g x x =+-的零点之差的绝对值不超过0.25, 则()f x 可以是 ( )A. ()41f x x =-B. ()2(1)f x x =-C. ()1x f x e =-D. ()12f x In x ⎛⎫=- ⎪⎝⎭二、填空题16.已知集合{}2log 2,(,)A x x B a =≤=-∞,若A B ⊆则实数a 的取值范围是(,)c +∞,其中c = .17.若函数f(x)=a x -x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 . 18.记3()log (1)f x x =+的反函数为1()y f x -=,则方程1()8f x -=的解x = .19.函数2()f x =的定义域为 .三、解答题20.已知函数()),0(2R a x xax x f ∈≠+= (1)判断函数()x f 的奇偶性;(2)若()x f 在区间[)+∞,2是增函数,求实数a 的取值范围。

高考一轮复习 基本初等函数 知识点+例题+练习

高考一轮复习 基本初等函数 知识点+例题+练习

1.指数幂的概念(1)根式如果一个数的n次方等于a(n>1且n∈N*),那么这个数叫做a的n次实数方根.也就是,若x n=a,则x叫做______________,其中n>1且n∈N*.式子na叫做________,这里n叫做____________,a叫做____________.(2)根式的性质①当n为奇数时,正数的n次实数方根是一个正数,负数的n次实数方根是一个负数,这时,a的n次实数方根用符号________表示.②当n为偶数时,正数的n次实数方根有两个,它们互为相反数,这时,正数a的正的n次实数方根用符号______表示,负的n次实数方根用符号________表示.正负两个n次实数方根可以合写成________(a>0).③(na)n=____.④当n为偶数时,na n=|a|=⎩⎪⎨⎪⎧a,a≥0,-a,a<0.⑤当n为奇数时,na n=____.⑥负数没有偶次方根.⑦零的任何次方根都是零.2.有理指数幂(1)分数指数幂的表示①正数的正分数指数幂是mna=________(a>0,m,n∈N*,n>1).②正数的负分数指数幂是mna-=____________=____________(a>0,m,n∈N*,n>1).③0的正分数指数幂是____,0的负分数指数幂无意义.(2)有理指数幂的运算性质①a s a t=________(a>0,s,t∈Q).②(a s)t=_______(a>0,s,t∈Q).③(ab)t=_______(a>0,b>0,t∈Q).3.指数函数的图象与性质a >10<a<1图象定义域值域性质(1)过定点________(2)当x>0时,______;当x<0时,________(2)当x>0时,________;当x<0时,______(3)在(-∞,+∞)上是______(3)在(-∞,+∞)上是______自我检测1.下列结论中正确的有________(填序号).①当a<0时,322()a=a3;②na n=|a|;③函数y=12(2)x -(3x-7)0的定义域是(2,+∞);④若100a=5,10b=2,则2a+b=1.2.函数y=(a2-3a+3)a x是指数函数,则a=________.3.如图所示的曲线C1,C2,C3,C4分别是函数y=a x,y=b x,y=c x,y=d x的图象,则a,b,c,d的大小关系为____________.4.若a>1,b>0,且a b+a-b=22,则a b-a-b的值为________.5.函数f(x)=a x-b的图象如图,其中a、b为常数,则下列结论正确的是________(填序号).①a>1,b<0;②a>1,b>0;③0<a<1,b>0;④0<a<1,b<0.探究点一 有理指数幂的化简与求值例1 已知a ,b 是方程9x 2-82x +9=0的两根,且a <b ,求:(1)a -1+b -1(ab )-1; 733338152a a a a --.变式迁移1 3322114443()a b ab ba b a(a 、b >0)的结果为____________.探究点二 指数函数的图象及其应用例2 已知函数y =(13)|x +1|.(1)作出函数的图象(简图); (2)由图象指出其单调区间;(3)由图象指出当x 取什么值时有最值,并求出最值.变式迁移2 若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围为________.探究点三 指数函数的性质及应用例3 如果函数y =a 2x +2a x -1(a >0且a ≠1)在区间[-1,1]上的最大值是14,求a 的值.变式迁移3 已知函数f (x )=(12x -1+12)x 3.(1)求f (x )的定义域; (2)证明:f (-x )=f (x ); (3)证明:f (x )>0.分类讨论思想例 已知f (x )=a a 2-1(a x -a -x )(a >0且a ≠1).(1)判断f (x )的奇偶性; (2)讨论f (x )的单调性;(3)当x ∈[-1,1]时f (x )≥b 恒成立,求b 的取值范围.一、填空题1.已知a =133()4-,b =143()4-,c =343()2-,则a 、b 、c 的大小关系为______________.2.函数y =|2x -1|在区间(k -1,k +1)内不单调,则k 的取值范围为________.3.已知集合M ={-1,1},N ={x ∈Z |12<2x +1<4},则M ∩N =________.4.定义运算a b =⎩⎪⎨⎪⎧a (a ≤b ),b (a >b ),则函数f (x )=12x 的值域为________.5.若关于x 的方程|a x -1|=2a (a >0,a ≠1)有两个不等实根,则a 的取值范围为________.6.函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x , x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围为________.7.设函数f (x )=x (e x +a e -x ),x ∈R 是偶函数,则实数a =________. 8.若函数f (x )=a x -1(a >0且a ≠1)的定义域和值域都是[0,2],则实数a 的值为________.二、解答题9.已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.10.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的定义域为[0,1]. (1)求a 的值.(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.11.函数y =1+2x +4x a 在x ∈(-∞,1]上y >0恒成立,求a 的取值范围.。

专题06基本初等函数二(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

专题06基本初等函数二(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题06基本初等函数第二缉1.【2019年重庆预赛】函数f (x )=(√1+x +√1−x −3)(√1−x 2+1)的最小值为m ,最大值为M ,则M m=________.【答案】3−√22【解析】设t =√1+x +√1−x ,则t ≥0且t 2=2+2√1−x 2,∴t ∈[√2,2]. f (x )=(t −3)·t 22,令g (t )=12t 2(t −3),t ∈[√2,2].令g ′(t )=0得t =2,g(√2)=√2−3,g (2)=−2, ∴M =g (t )max =√2−3,m =g (t )min =−2,∴Mm =3−√22.2.【2019年重庆预赛】设f(x)是定义在(0,+∞)上的单调函数,对任意x >0有f(x)>−4x ,f(f(x)+4x )=3,则f(8)=. 【答案】72【解析】由题意存在x 0>0使f(x 0)=3。

又因f(x)是(0,+∞)上的单调函数,这样的x 0>0是唯一的,再由f(f(x 0)+4x 0)=3得x 0=f(x 0)+4x 0=3+4x 0解得x 0=4或x 0=−1(舍)。

所以f(x)=4−4x,f(8)=4−48=72。

3.【2019年北京预赛】函数f (x )满足f (1)=1,且f (n )=f (n −1)+1n (n−1),其中n ≥2,n ∈N +,那么f (2019)=. 【答案】40372019.【解析】因为f(n)−f(n −1)=1n(n−1)=1n−1−1n ,所以 f(2)−f(1)=1−12, f(3)−f(2)=12−13,f(4)−f(3)=13−14,⋯⋯f(2018)−f(2017)=12017−12018,f(2019)−f(2018)=12018−12019,将以上各式等号两边分别相加得f(2019)−f(1)=1−12019,进而有 f(2019)=2−12019=120182019.4.【2019年福建预赛】函数f(x)=√2x −x 2+x 的值域为 .【答案】[0,√2+1]【解析】解法一:f(x)=√1−(x −1)2+x .设x −1=sinα (−π2≤α≤π2),则f(x)=cosα+(1+sinα)=√2sin (α+π4)+1.由−π2≤α≤π2,得−π4≤α+π4≤3π4, −√22≤sin (α+π4)≤1.∴f (x )值域为[0,√2+1]. 解法二:f ′(x)=√2+1=√21 (0<x <2).∵ 0<x <1+√22时,f ′(x)>0;1+√22<x <2时,f ′(x)<0.∴f (x )在区间[0,1+√22]上为增函数,在区间[1+√22,2]上为减函数. ∴f (x )值域为[0,√2+1].5.【2019年福建预赛】已知f(x)=x 3+ax 2+bx +2的图象关于点(2,0)对称,则f (1)=.【答案】4【解析】解法一:由f (x )的图象关于点(2,0)对称,知:f(x +2)=(x +2)3+a(x +2)2+b(x +2)+2=x 3+(a +6)x 2+(b +4a +12)x +4a +2b +10为奇函数.∴{a +6=04a +2b +10=0,{a =−6b =7∴ f(1)=1+a +b +2=1−6+7+2=4. 解法二:由f (x )的图象关于点(2,0)对称,知 对任意x ∈R ,f (2+x )+f (2-x )=0于是,对任意x ∈R ,(2+x)3+a(2+x)2+b(2+x)+2+(2−x)3+a(2−x)2+b(2−x)+2=0. 即(2a +12)x 2+(8a +2b +20)=0恒成立. ∴{2a +12=08a +4b +20=0,{a =−6b =7.∴ f(1)=1+a +b +2=1−6+7+2=4.解法三:依题意,有f (x )=(x -2)3+m (x -2). 利用f (0)=-8-2m =2,得m =-5.于是,f (x )=(x -2)3-5(x -2),f (1)=-1-(-5)=4.6.【2019年福建预赛】已知f(x)=x 5−10x 3+ax 2+bx +c ,若方程f (x )=0的根均为实数,m 为这5个实根中最大的根,则m 的最大值为 .【答案】4【解析】设f (x )=0的5个实根为x 1≤x 2≤x 3≤x 4≤m ,则由韦达定理,得m +x 1+x 2+x 3+x 4=0. m (x 1+x 2+x 3+x 4)+(x 1x 2+x 1x 3+x 1x 4+x 2x 3+x 2x 4+x 3x 4)=−10. 于是,x 1x 2+x 1x 3+x 1x 4+x 2x 3+x 2x 4+x 3x 4=−10+m 2.∴ x 12+x 22+x 32+x 42=(x 1+x 2+x 3+x 4)2−2(x 1x 2+x 1x 3+x 1x 4+x 2x 3+x 2x 4+x 3x 4)=m 2−2(−10+m 2)=20−m 2.另一方面,由柯西不等式,知(x 1+x 2+x 3+x 4)2≤4(x 12+x 22+x 32+x 42)于是,m 2≤4(20−m 2),m 2≤16,m ≤4.又对f(x)=(x −4)(x +1)4=x 5−10x 3−20x 2−15x −4,方程f (x )=0的根均为实数,且5个实根中最大的根m =4. ∴m 的最大值为4.7.【2019年广西预赛】已知xyz +y +z =12,则log 4x +log 2y +log 2z 的最大值为 .【答案】3【解析】log 4x +log 2y +log 2z =log 2x 2+log 2y +log 2z =log 2(xyz⋅y⋅z)2⩽log 2(xyz+y+z 3)32=3.当xyz=y=z=4取到等号.8.【2019年贵州预赛】已知方程x 5−x 2+5=0的五个根分别为x 1,x 2,x 3,x 4,x 5,f(x)=x 2+1.则∏s i=1f (x i )=.【答案】37【解析】设g(x)=x 5−x 2+5,则g(x)=∏(x −x k )5k=1,又f(x)=x 2+1=(x-i)(x+i),所以∏5i=1f (x k )=∏(x k −i )5i=1⋅∏(x k +i )5i=1=g(i)⋅g(−i)=(i 5−i 2+5)⋅[(−i)5−(−i)2+5]=(6+i)(6−i)=37.9.【2019年吉林预赛】已知函数f(x)=-x 2+x+m+2,若关于x 的不等式f(x)≥|x|的解集中有且仅有1个整数,则实数m 的取值范围为.【答案】[-2,-1)【解析】f(x)≥|x|⇔2−|x|≥x 2−x −m . 令g(x)=2−|x|,h(x)=x 2−x −m . 在同一直角坐标系内作出两个函数的图象, 由图象可知,整数解为x=0,故{f(0)≥0−0−m f(1)<1−1−m.解得−2≤m <−1.10.【2019年吉林预赛】已知函数f(x)=a +x −b x 的零点x 0∈(n,n +1)(n ∈Z),其中常数a 、b 满足条件2019a =2020, 2020b =2019,则n 的值为 .【答案】-1【解析】因为2019°=2020,2020b =2019,所以1<a<2,0<b<1,故函数f(x)在R 上为増函数,又f(0)=a −1>0, f(−1)=a −1−1b <a −1−1<0,故由零点定理可知,函数f(x)在区间(1,0)有唯ー的零点,则n 的值是-1. 11.【2019高中数学联赛A 卷(第01试)】已知正实数a 满足a a =(9a)8a ,则log a (3a)的值为.【答案】916【解析】由条件知9a =a 18,故3a =√9a ⋅a =a 916,所以log a (3a)=916.12.【2018年山西预赛】函数y =√1−x 22+x的值域为________.【答案】[0,√33] 【解析】由条件知x ∈[−1,1]. 令x =cosα(α∈[0,π]).则 y =sinα2+cosα(y ≥0),⇒2y =sinα−ycosα=√1+y 2sin (α+θ)≤√1+y 2, ⇒1+y 2≥4y 2⇒y 2≤13, 因为y ≥0,所以,y ∈[0,√33]. 13.【2018年福建预赛】函数f(x)=[log 3(13√x)]⋅[log √3(3x 2)]的最小值为________. 【答案】−258【解析】设log 3x =t ,则log 3(13√x)=−1+12t ,log √3(3x 2)=32log √3=2(1+2t).∴f(x)=g(t)=(−1+12t)⋅2(1+2t)=2t 2−3t −2=2(t −34)2−258.∴当t =34,log 3x =34,x =334时,f (x )取最小值−258.14.【2018年福建预赛】若函数f (x )=x 2-2ax +a 2-4在区间[a -2,a 2](a >0)上的值域为[-4,0],则实数a 的取值范围为________. 【答案】[1,2] 【解析】∵f (x )=x 2-2ax +a 2-4=(x -a )2-4,f (a )=-4,f (a -2)=0,f (x )在区间[a -2,a 2]上的值域为[-4,0],f (x )的图像为开口向上的拋物线.∴{a −2≤a ≤a 2a ≥a−2+a 22 ,解得-1≤a ≤0或1≤a ≤2.结合a >0,得1≤a ≤2. ∴a 的取值范围为[1,2].15.【2018年江苏预赛】设g(n)=∑(k,n)nk=1,期中n ∈N *,(k,n)表示k 与n 的最大公约数,则g(100)的值为________. 【答案】520 【解析】如果(m,n)=1,则g(mn)=g(m)g(n),所以g(100)=g(4)g(25). 又g(4)=1+2+1+4=8.g(25)=5×4+25+(25−5)=65, 所以g(100)=8×65=520. 故答案为:52016.【2018年贵州预赛】牛得亨先生、他的妹妹、他的儿子,还有他的女儿都是网球选手,这四人中有以下情况:①最佳选手的孪生同胞与最差选手性别不同;②最佳选手与最差选手年龄相同.则这四人中最佳选手是_______.【答案】牛得亨先生的女儿 【解析】由题意知,最佳选手和最佳选手的孪生同抱年龄相同;由②,最佳选手和最差选手的年龄相同;由①,最佳选手的孪生同胞和最差选手不是间一个人.因此,四个人中有三个人的年龄相同.由于牛得亨先生的年龄肯定大于他的儿子和女儿,从而年龄相同的三个人必定是牛得亨先生的儿子、女儿和妹妹.由此,牛得亨先生的儿子和女儿必定是①中所指的孪生同胞.因此,牛得亨先生的儿子或女儿是最佳选手,而牛得亨先生的妹妹是最差选手.由①,最佳选手的孪生同胞一定是牛得亨先生的儿子,而最佳选手无疑是牛得亨先生的女儿. 故答案为:牛得亨先生的女儿17.【2018年贵州预赛】函数z =√2x 2−2x +1+√2x 2−10x +13的最小值是______. 【答案】√10 【解析】因为z =√2x 2−2x +1+√2x 2−10x +13=√(x −0)2+(x −1)2+√(x −2)2+(x −3)2此即为直线y =x 上的点(x ,y )到点(0,1)与到点(2,3)的距离之和,根据镜像原理,z 的最小值应为点(1,0)到点(2,3)的距离√10. 故答案为:√1018.【2018年贵州预赛】若方程a x >x (a >0,a ≠1)有两个不等实根,则实数a 的取值范围是_______. 【答案】1<a <e 1e 【解析】由a x >x 知x >0,故x ⋅lna −lnx =0⇒lna =lnx x,令f(x)=lnx x(x >0),则f ′(x)=1−lnx x 2.当x ∈(0,e)时,f ′(x)>0;当x ∈(e ,+∞)时,f ′(x)<0.所以f(x)在(0,e )上递增,在(e ,+∞)上递减.故0<lna <f(e)=1e,即1<a <e 1e . 故答案为:1<a <e 1e19.【2018年浙江预赛】已知a 为正实数,且f(x)=1a −1a x +1是奇函数,则f(x)的值域为________.【答案】(−12,12) 【解析】由f(x)为奇函数可知1a −1a x +1=−1a +1a −x +1,解得a = 2,即f(x)=12−12x +1, 由此得f(x)的值域为(−12,12).20.【2018年北京预赛】已知实数a,b,c,d 满足5a =4,4b =3,3c =2,2d =5,则(abcd )2018=________. 【答案】1 【解析】化5a =4,4b =3,3c =2,2d =5为对数,有a =log 54=ln4ln5,b =ln3ln4,c =ln2ln3,d =ln5ln2,所以(abcd )2018=(ln4ln5×ln3ln4×ln2ln3×ln5ln2)2018=12018=1.21.【2018年北京预赛】已知函数f (x )满足f (x +1x )=x 2+1x 2,那么f (x )的值域为_______.【答案】[2,+∞) 【解析】设函数y =f (x )满足f (t +1t )=t 2+1t 2,{x =t +1t (|x |≥2)y =t 2+1t 2(y ≥2),y =t 2+1t 2=(t +1t)2−2=x 2−2.所以所求函数是f (x )=x 2−2(|x |≥2),其图像如图,易知f (x )=x 2−2(|x |≥2)的值域是[2,+∞).22.【2018年湖南预赛】函数f(x)=√4−x 2+ln(2x −1)的定义城为_________. 【答案】[−2,12)【解析】由{4−x 2≥02x −1>0得-2≤x <12,所以函数f(x)=√4−x 2+ln(2x −1)的定义城为[−2,12). 故答案为[−2,12)23.【2018年湖南预赛】已知函数f(x)对任意的实数满足:f(x +6)=f(x),且当−3≤x <−1时,f(x)=−(x +2)2,当−1≤x <3时,f(x)=x ,则y =f(x)象与y =lg |1x |的图象的交点个数为___________。

高考数学基本初等函数经典题型

高考数学基本初等函数经典题型
16.
(1) ;(2)奇函数.
【分析】
(1)根据分母不能为零,由 求解.
(2)直接利用函数奇偶性的定义判断.
【详解】(1)因为函数
所以 ,即 ,
解得 ,
所以函数 的定义域是 ;
(2)由(1)知定义域关于原点对称,
又 ,
所以函数 是奇函数.
17.
(1)-1、4为 的不动点;(2) ;(3) .
【分析】
h(0)=f(0)+f(1)=1+ ,h(2)=f(2)+f(﹣1)= + ,若h(0)=h(2),则a=1,故③是假命题;
∵g(x)=f(x)﹣1是奇函数,∴F(x)=|f(x)﹣1|是偶函数,
当x>0时,F(x)=|f(x)﹣1|=1﹣ 在(0,+∞)上是增函数,故F(x)>F(0)=0,故函数有唯一一个零点0,故④是真命题.
解得: 或
所以 、 为 的不动点.
(2)因为 恒有两个不动点
即 恒有两个不等实根
整理为: 恒成立
即对于任意 , 恒成立
令 ,则
,解得:
(3)

【点睛】本题考查函数问题中新定义问题,关键是能够充分理解不动点的定义,从而构造方程.在求解参数范围过程中,要根据不同的函数模型,利用二次函数、对号函数求解对应模型的最值,对于学生转化与化归的思想要求较高.
对于B选项,函数定义域为 , ,故函数不是奇函数,故B选项错误;
对于C选项,函数定义域为 , ,故函数是奇函数,但函数在 和 上单调递增,在定义域内不具有单调性,故C选项错误;
对于D选项,函数的定义域为 ,定义域不关于原点对称,故不具有奇偶性,故D选项错误.
故选:A.
6.
(1) ;(1)1.

基本初等函数(高考数学专题)

基本初等函数(高考数学专题)

基本初等函数一、指数函数1、指数与指数幂的运算 (1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n次方根用符号表示;当n 是偶数时,正数a 的正的n次方根用符号表示,负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.②式子这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n为奇数时,a =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mnaa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈()(0,0,)r r r ab a b a b r R =>>∈2、指数函数及其性质(4)指数函数1、化简下列各式(其中各字母均为正数):(1);)(65312121132ba ba b a ⋅⋅⋅⋅--2、已知实数a 、b满足等式b a )31()21(=0<b <a;②a <b<0;③0<a <b;④b <a <0;⑤a=b. ( )A.1个B.2个C.3个D.43、求下列函数的单调递增区间:y=262--x x .二、对数函数 1、对数与对数运算 (1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即l o geN (其中 2.71828e =…). (4)对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a aMM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且2、对数函数及其性质(5)对数函数1、计算:(1))32(log 32-+(2)21lg 4932-34lg8+lg 245.变式训练1:化简求值.(1)log 2487+log 212-21log 242-1;(2)(lg2)2+lg2·lg50+lg25;(3)(log 32+log 92)·(log 43+log 83).2、比较下列各组数的大小.(1)log 332与log 556;2)log 1.10.7与log 1.20.7;(3)已知log 1b <log 1a <log 1c,比较2b ,2a ,2c 的大小关系.变式训练2:已知0<a <1,b >1,ab >1,则log a bb bba1log ,log,1的大小关系是 ( )A.log a bb bba1log log1<<B.bb b b aa1log 1log log<< C.b b b a ba1log 1log log << D.b b b a a b log 1log 1log <<三、幂函数 (1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qp y x =是奇函数,若p 为奇数q 为偶数时,则qp y x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.1、写出下列函数的定义域,并指出它们的奇偶性:(1)3y x=(2)12y x=(3)2y x-=(4)22y x x-=+(5)1122y x x-=+(6)1124()3()f x x x=+-变式训练1:讨论下列函数的定义域、值域,奇偶性与单调性:(1)5y x=(2)43y x-=(3)54y x=(4)35y x-=(5)12y x-=2、比较大小:(1)1122 1.5,1.7(2)33 (1.2),(1.25) --(3)112 5.25,5.26,5.26---(4)30.53 0.5,3,log0.53、已知幂函数223m my x--=(m Z∈)的图象与x轴、y轴都无交点,且关于原点对称,求m的值.变式训练2:证明幂函数12()f x x=在[0,)+∞上是增函数.分析:直接根据函数单调性的定义来证明.答案: 指数:1、解:原式=.100653121612131656131212131=⋅=⋅=⋅-+-+--b a baba ba b a2、B3、令u=x 2-x-6,则y=2u ,u=x 2-x-6的对称轴是x=21,在区间[21,+∞)上u=x 2-x-6是增函数.y=2uy=262--x x 在区间[21,+∞)上是增函数故函数y=262--x x 的单调递增区间是[21,+∞)对数: 1、(1)设)32(log 32-+=x,(2+3)x =2-3=321+=(2+3)-1,∴x=-1.(2)原式=21(lg32-lg49)-34lg821+21lg245=21 (5lg2-2lg7)-34×2lg 23+21(2lg7+lg5)=25lg2-lg7-2lg2+lg7+21lg5=21lg2+21lg5=21lg(2×5)= 21lg10=21.变式训练1: (1)原式=log 2487+log 212-log 242-log 22=log 2.232log 221log 242481272322-===⨯⨯⨯-(2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.(3)原式=(.452lg 63lg 5·3lg 22lg 3)2lg 33lg 2lg 23lg (·)3lg 22lg 3lg 2lg ==++2、(1)∵log 332<log 31=0,log 556>log 51=0,∴log 332<log 556.(2)方法一 ∵0<0.7<1,1.1< 1.2,0>2.1log 1.1log 7.00.7>,∴2.1log 11.1log 17.07.0<,即由换底公式可得log 1.10.7<log 1.20.7.方法二 作出y=log1.1x 与y=log 1.2x 的图象.如图所示两图象与x=0.7相交可知log 1.10.7<log 1.20.7.(3)∵y=x 21log 为减函数,且c a b 212121log log log<<,∴b >a >c,而y=2x 是增函数,∴2b >2a >2c .变式训练2:C 幂函数:1、(1)此函数的定义域为R ,33()()()f x x x f x -=-=-=- ∴此函数为奇函数.(2)12y x ==[0,)+∞ 此函数的定义域不关于原点对称 ∴此函数为非奇非偶函数. (3)221y x x-==∴此函数的定义域为(,0)(0,)-∞⋃+∞ 2211()()()f x f x x x-===-∴此函数为偶函数 (4)22221y x x x x-=+=+∴此函数的定义域为(,0)(0,)-∞⋃+∞ 222211()()()()f x x x f x x x -=-+=+=- ∴此函数为偶函数(5)1122y x x-=+=[0,)+∞ 此函数的定义域不关于原点对称∴此函数为非奇非偶函数(6)1124()3()f x x x =+-=0x x ≥⎧∴⎨-≥⎩ 0x ∴=∴此函数的定义域为{0} ∴此函数既是奇函数又是偶函数变式训练1、分析:要求幂函数的定义域和值域,可先将分数指数式化为根式. 解:(1)定义域R ,值域R ,奇函数,在R 上单调递增.(2)定义域(,0)(0,)-∞⋃+∞,值域(0,)+∞,偶函数,在(,0)-∞上单调递增, 在(0,)+∞ 上单调递减.(3)定义域[0,)+∞,值域[0,)+∞,偶函数,非奇非偶函数,在[0,)+∞上单调递增.(4)定义域(,0)(0,)-∞⋃+∞,值域(,0)(0,)-∞⋃+∞,奇函数,在(,0)-∞上单调递减,在(0,)+∞上单调递减.(5)定义域(0,)+∞,值域(0,)+∞,非奇非偶函数,在(0,)+∞上单调递减. 2、(1)∵12y x =在[0,)+∞上是增函数,1.5 1.7<,∴11221.5 1.7< (2)∵3y x =在R 上是增函数, 1.2 1.25->-,∴33( 1.2)( 1.25)->- (3)∵1y x -=在(0,)+∞上是减函数,5.25 5.26<,∴115.25 5.26-->;∵ 5.26x y =是增函数,12->-,∴125.26 5.26-->;综上,1125.25 5.26 5.26--->> (4)∵300.51<<,0.531>,3log 0.50<,∴30.53log 0.50.53<<3、分析:幂函数图象与x 轴、y 轴都无交点,则指数小于或等于零;图象关于原点对称,则函数为奇函数.结合m Z ∈,便可逐步确定m 的值. 解:∵幂函数223m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,∴2230m m --≤,∴13m -≤≤;∵m Z ∈,∴2(23)m m Z --∈,又函数图象关于原点对称,∴223m m --是奇数,∴0m =或2m =.变式训练2:证明:设120x x ≤<则11221212()()f x f x x x -=-==12x x <120x x ∴-<0>12()()0f x f x ∴-< 即12()()f x f x <∴此函数在[0,)+∞上是增函数。

基本初等函数高考题

基本初等函数高考题

基本初等函数1.若函数()y f x =是函数1xy a a a =>≠(0,且)的反函数,且(2)1f =,则()f x =( )A .x 2logB .x 21C .x 21log D .22-x答案 A解析 函数1xy a a a =>≠(0,且)的反函数是()log a f x x =,又(2)1f =,即log 21a =,所以,2a =,故2()log f x x =,选A. 2.为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有 [点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度答案 C 3.设3.02131)21(,3log ,2log ===c b a ,则 ( );A a<b<cB a<c<bC b<c<aD b<a<c答案 B解析 由已知结合对数函数图像和指数函数图像得到10,0<<<c a ,而13log 2>=b ,因此选B 。

4.函数)(21R x y x ∈=+的反函数是A. )0(log 12>+=x x yB. )1)(1(log 2>-=x x y#C. )0(log 12>+-=x x yD. )1)(1(log 2->+=x x y答案 C 解析 由y x y x y x 221log 1log 12+-=⇒=+⇒=+,又因原函数的值域是0>y ,∴其反函数是)0(log 12>+-=x x y5.设323log ,log log a b c π===(A. a b c >>B. a c b >>C. b a c >>D. b c a >>答案 A解析322log 2log log b c <<>2233log log 2log 3log a b a b c π<=<∴>∴>>.6.2log 的值为A .BC .12- D . 12、答案 D解析 由1222211log log 2log 222===,易知D 正确.8.下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x 的是 A .()f x =1xB. ()f x =2(1)x - C .()f x =xeD.()ln(1)f x x =+、答案 A解析 依题意可得函数应在(0,)x ∈+∞上单调递减,故由选项可得A 正确。

人教B版高中数学必修一第三章《基本初等函数I》讲解与例题+综合测试(7份).docx

人教B版高中数学必修一第三章《基本初等函数I》讲解与例题+综合测试(7份).docx

3.4函数的应用(II)QJy I (.Hl / H?S li IJHi E \ J I \ L \1.函数模型所谓数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表述一种数学结构.数学模型剔除了事物中一切与研究目标无木质联系的各种属性,在纯粹状态下研究数量关系和空间形式,函数就是重要的数学模型,用函数解决方程问题,使求解变得容易进行,这是数学模型间的相互转换在发挥作用.而用函数解决实际问题,则体现了数学模型是联系数学与现实世界的桥梁.本节涉及的函数模型有:⑴指数函数模型:y=G//+c(b>0, bHl, aHO),当b>\, d>0时,其增长特点是随着自变量的增大,函数值增大的速度越来越快,常形象地称为指数爆炸.(2)对数函数模型:y=mlog(l x+n(m^O f a>0, aHl),当aAl,加>0时,其增长的特点是随着自变量的增大,函数值增大的速度越来越慢.(3)帚函数模型:y=a-x n+b(a^O),其中最常见的是二次函数模型y=ax2+bx~\~c(a0), 当d>0时,其特点是随着自变量的增大,函数值先减小,后増大.在以上几种函数模型的选择与建立时,要注意函数图彖的直观运用,分析图象特点,分析变量x的范围,同时还要与实际问题结合,如取整等.【例1 — 1】据报道,全球变暖使北冰洋冬季冰雪覆盖面积在最近50年内减少了5%,如果按此速度,设2012年的冬季冰雪覆盖面积为加,从2012年起,经过兀年后,北冰洋冬季冰雪覆盖面积),与x的函数关系式是()A. ^=0.9550 -mB. >,=(l-O.O55O)-mC. y=0.9550_x-/?zD. y=(l-O.O55O_v)-/n解析:设每年的冰雪覆盖面积减少率为d.・・・50年内覆盖面积减少了5%,1・・・(1—a)5°=l—5%,解得0=1 — 0.9550.1 △・••从2012年起,经过x年后,冰雪覆盖面积尸加1一(1一0.95巧F二加095込答案:A【例1一2】某公司为应对金融危机的影响,拟投资100万元,有两种投资可供选择:一种是年利率1%,按单利计算,5年后收回本金和利息;另一种是年利率3%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元)分析:这是一个单利和复利所获得收益多少的比较问题.可先按单利和复利讣算5年后的本利和分别是多少,再通过比较作答.解:本金100万元,年利率1%,按单利计算,5年后的本利和是100X(l + l%X5) = 105(万元).本金100万元,年利率3%,按每年复利一次计算,5年后的本利和是100X(1 + 3%『a 115.93(万元).由此可见按年利率3%每年复利一次投资要比按年利率1%单利投资更有利,5年后多得利息约10.93万元.谈重点利息的计算利息分单利和复利两种.单利是只有木金牛息,利息不再牛息,而复利是把前一期的本利 和作为本金再牛息,两种情况要注意区分.我国现行定期储蓄中的自动转存业务类似复利计•息的储蓄,如某人存入本金。

必修一基本初等函数223

必修一基本初等函数223
第6页/共28页
6.互为反函数的两个函数的图象关于直线__________对称.
例如:y=2x与y=log2x的图象关于直线________对称.在同一直角坐标
系中,函数y=2x与y=log2x以及函数y=( )x与y=
的图象如下.
1 2
6.y=x y=x
第7页/共28页
7.在闭区间[m,n](m>0)上,讨论函数f(x)=logax (a>0且a≠1)值域. ①若a>1,则f(x)=logax的值域是:____________; ②若0<a<1,则f(x)=logax的值域是:____________. 8.函数y=logaf(x)在定义域上的单调性由y=logat与t=f(x)的单调性确定, 规律是:“____________”. (1)当0<a<1时,y=logat在定义域上是减函数. ①若t=f(x)是定义域上的减函数,则y=logaf(x)是定义域上的增函数; ②若t=f(x)是定义域上的增函数,则y=logaf(x)是定义域上的减函数.
的定义域是( ) B.(1,2) D.(-∞,2)
解析:x-1>0 2-x>0
⇒1<x<2.
答案:B
第23页/共28页
2.已知函数 f(x)=l3oxg2xxx≤>00 ,则 ff14的值是(
)
A.9
1 B.9
C.-9
D.-19
解析:ff14=flog241
=f(-2)=3-2=19.
答案:B
第24页/共28页
2.(1)(0,+∞) (2)R (3)(1,0) (4)①(0,+∞) 增 ②(0,+∞) 减 (5) ①y>0 y<0 ②y<0 y>0
第5页/共28页
3.y=logax与y=ax互为________图象关于________对称.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本初等函数I1.(2009年广东卷文)若函数()y f x =是函数1xy a a a =>≠(0,且)的反函数,且(2)1f =,则()f x =( ) A .x 2log B .x 21C .x 21log D .22-x 答案 A解析 函数1xy a a a =>≠(0,且)的反函数是()log a f x x =,又(2)1f =,即log 21a =,所以,2a =,故2()log f x x =,选A. 2.(2009北京文)为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有 点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度答案 C解析 本题主要考查函数图象的平移变换. 属于基础知识、基本运算的考查.3.(2009天津卷文)设3.02131)21(,3log ,2log ===c b a ,则( )A a<b<cB a<c<bC b<c<aD b<a<c 答案 B解析 由已知结合对数函数图像和指数函数图像得到10,0<<<c a ,而13log 2>=b ,因此选B 。

【考点定位】本试题考查了对数函数和指数函数的性质运用,考查了基本的运算能4.(2009四川卷文)函数)(21R x y x ∈=+的反函数是A. )0(log 12>+=x x yB. )1)(1(log 2>-=x x yC. )0(log 12>+-=x x yD. )1)(1(log 2->+=x x y 答案 C解析 由y x y x y x 221log 1log 12+-=⇒=+⇒=+,又因原函数的值域是0>y ,∴其反函数是)0(log 12>+-=x x y5.(2009全国卷Ⅱ理)设32log ,log log a b c π=== A. a b c >> B. a c b >> C. b a c >> D. b c a >>答案 A解析 322log log log b c <<>Q6.(2009湖南卷文)2logA .B .12- D . 12答案 D解析 由1222211log log 2log 222===,易知D 正确.7.(2009湖南卷文)设函数()y f x =在(,)-∞+∞内有定义,对于给定的正数K ,定义函数 (),(),(),().K f x f x K f x K f x K ≤⎧=⎨>⎩取函数()2x f x -=。

当K =12时,函数()K f x 的单调递增区间为( )A .(,0)-∞B .(0,)+∞C .(,1)-∞-D .(1,)+∞ 答案 C 解析函数1()2()2xx f x -==,作图易知1()2f x K ≤=⇒(,1][1,)x ∈-∞-+∞U , 故在(,1)-∞-上是单调递增的,选C.8.(2009福建卷理)下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x 的是A .()f x =1xB. ()f x =2(1)x - C .()f x =x eD.()ln(1)f x x =+答案 A解析 依题意可得函数应在(0,)x ∈+∞上单调递减,故由选项可得A 正确。

9. (2009辽宁卷文)已知函数()f x 满足:x ≥4,则()f x =1()2x ;当x <4时()f x =(1)f x +,则2(2log 3)f +=A.124 B.112C.18D.38答案 A解析 ∵3<2+log 23<4,所以f(2+log 23)=f(3+log 23)且3+log 23>4∴2(2log 3)f +=f(3+log 23)10.(2009四川卷文)函数)(21R x y x ∈=+的反函数是A. )0(log 12>+=x x yB.)1)(1(log 2>-=x x yC.)0(log 12>+-=x x yD.)1)(1(log 2->+=x x y 答案 C解析 由y x y x y x 221log 1log 12+-=⇒=+⇒=+,又因原函数的值域是0>y ,∴其反函数是)0(log 12>+-=x x y11.(2009陕西卷文)设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅⋅⋅L 的值为 A.1n B.11n + C. 1n n + D.1 答案 B解析 对1*'()(1)n n y x n N y n x +=∈=+求导得,令1x =得在点(1,1)处的切线的斜率1k n =+,在点(1,1)处的切线方程为1(1)(1)(1)n n y k x n x -=-=+-,不妨设0y =,1n n n x +=则1212311 (23411)n n n x x x n n n -⋅⋅⋅=⨯⨯⨯⨯⨯=++L , 故选 B.12.(2009全国卷Ⅰ文)已知函数()f x 的反函数为()()10g x x =+2lgx >,则=+)1()1(g f(A )0 (B )1 (C )2 (D )4 答案 C解析 由题令1lg 21=+x 得1=x ,即1)1(=f ,又1)1(=g ,所以2)1()1(=+g f ,故选择C 。

13.(2009湖南卷理)若2log a <0,1()2b >1,则( )A .a >1,b >0B .a >1,b <0 C. 0<a <1, b >0 D. 0<a <1, b <0 答案 D解析 由2log 0a <得0,a <<由1()12b >得0b <,所以选D 项。

14.(2009四川卷理)已知函数22log (2)()24(22a x x f x x x x x +≥⎧⎪==⎨-<⎪-⎩当时在点处当时)连续,则常数a的值是( )A.2 B.3 C.4 D.5【考点定位】本小题考查函数的连续性,考查分段函数,基础题。

答案 B解析 由题得3222log 2=⇒+=+a a ,故选择B 。

解析2:本题考查分段函数的连续性.由22224lim ()limlim(2)42x x x x f x x x →→→-==+=-,22(2)log 1f a a =+=+,由函数的连续性在一点处的连续性的定义知2(2)lim ()4x f f x →==,可得3a =.故选B .15.(2009福建卷文)若函数()f x 的零点与()422x g x x =+-的零点之差的绝对值不超过0.25, 则()f x 可以是A. ()41f x x =-B. ()2(1)f x x =-C. ()1x f x e =-D. ()12f x In x ⎛⎫=- ⎪⎝⎭答案 A解析 ()41f x x =-的零点为x=41,()2(1)f x x =-的零点为x=1, ()1x f x e =-的零点为x=0, ()12f x In x ⎛⎫=- ⎪⎝⎭的零点为x=23.现在我们来估算()422x g x x =+-的零点,因 为g(0)= -1,g(21)=1,所以g(x)的零点x ∈(0, 21),又函数()f x 的零点与()422x g x x =+-的零点之差的绝对值不超过0.25,只有()41f x x =-的零点适合,故选A 。

二、填空题16.(2009江苏卷)已知集合{}2log 2,(,)A x x B a =≤=-∞,若A B ⊆则实数a 的取值范围是(,)c +∞,其中c = . 解析 考查集合的子集的概念及利用对数的性质解不等式。

由2log 2x ≤得04x <≤,(0,4]A =;由A B ⊆知4a >,所以c =4。

17.(2009山东卷理)若函数f(x)=a x -x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 . 答案 }1|{>a a解析 设函数(0,x y a a =>且1}a ≠和函数y x a =+,则函数f(x)=a x -x-a(a>0且a ≠1)有两个零点, 就是函数(0,x y a a =>且1}a ≠与函数y x a =+有两个交点,由图象可知当10<<a 时两函数只有一个交点,不符合,当1>a 时,因为函数(1)x y a a =>的图象过点(0,1),而直线y x a =+所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是1>a【命题立意】:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象进行解答.18.(2009重庆卷文)记3()log (1)f x x =+的反函数为1()y f x -=,则方程1()8f x -=的解x = .答案 2解法 1 由3()log (1)y f x x ==+,得13y x -=,即1()31f x x -=-,于是由318x -=,解得2x =解法2因为1()8f x -=,所以3(8)log (81)2x f ==+=2005—2008年高考题一、选择题1.(2008年山东文科卷)已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<<B .101b a -<<<C .101b a -<<<-D .1101a b --<<<答案 A解析 本小题主要考查正确利用对数函数的图象来比较大小。

由图易得1,a >101;a -∴<<取特殊点01log 0,a x y b =⇒-<=<2. (07山东)设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为( )A.1,3B.-1,1C.-1,3D.-1,1,3x答案 A3.(2006年安徽卷)函数1()x y e x R +=∈的反函数是( )A .1ln (0)y x x =+>B .1ln (0)y x x =->C .1ln (0)y x x =-->D .1ln (0)y x x =-+> 答案 D解析 由1x y e +=得:x+1=lny ,即x=-1+lny,所以1ln (0)y x x =-+>为所求,故选D 。

相关文档
最新文档