七年级数学上册第三章检测卷含答案
人教版七年级数学上第三章 一元一次方程 检测试试题(含答案)
第三章《一元一次方程》检测试题一、选择题(每小题3分,共36分)1.要使关于x 的方程3(x -2)+b=a(x -1)是一元一次方程,必须满足( ).A .a ≠0B .b ≠0C .a ≠3D .a ,b 为任意有理数2.如果在方程5(x -3)=8(x -3)的两边同除以x -3,则会得到5=8,我们知道5≠8. 由此可以猜测x 的值为( ).A .0B .1C .-3D .33.当x =4时,式子5(x +b )-10与bx +4的值相等,则b 的值为( ).A .-6B .6C .-7D .74.一个长方形的周长为40cm ,若将长减少8cm ,宽增加2cm ,长方形就变成了正方形,则正方形的边长为( ).A .5cmB .6cmC .7cmD .8cm5.在日历中,圈出一个数列上的相邻的3个数,并求出它们的和为:27,33,40,60,其中符合实际的数值有( ).A .1个B .2个C .3个D .4个6.建军回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同. 当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.则初期购得的原材料( ).A .40吨B .45吨C .50吨D .55吨7.若单项式2352m a b +-与523m n a b -的差仍是单项式,则2016()m n +的值是( ).A .1B .-1C .2D .48.某种牙膏出口处直径为5mm ,贝贝每次刷牙都挤出1cm 长的牙膏,这样一只牙膏可用36次,该品牌牙膏推出新包装,只是将出口处直径改为6mm ,贝贝还是按习惯每次挤出1cm 的牙膏,这样一只牙膏能用( ).A .22次B .23次C .24次D .25次9.已知关于x 的方程m x +2=2(m —x )的解满足|x -12|-1=0,则m 的值是( ). A .10或25 B .10或-25 C .-10或25 D .-10或-2510.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ).A .54盏B .55盏C .56盏D .57盏二、填空题(每小题3分,共18分)11.已知a=x +3,b=2-x ,当x=__________时,a 比2b 大11.12.已知 A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时. t 小时后两车相距50千米,则 t 的值是_________.13.某书中一道方程题为213x x +⊗=+,⊗处印刷时被墨盖住了,查看后面答案,这道题的解为 2.5x =-,那么⊗处的数字为_____________.14.“☆”表示一种新的运算符号,已知2☆3=2+3+4;7☆2=7+8;6☆4=6+7+8+9;……按照该运算法则,若n ☆8=68,则n 的值为__________.15.若代数式13(2)42x -的值比1(2)34x -的值大1,则x 的值为__________. 16.元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”请你回答:良马_________天可以追上驽马.17.王会计在记帐时发现现金少了153.9元,查帐后得知是一笔支出款的小数点看错了一位,王会计查出这笔看错了的支出款实际是__________元.18.在课外活动期间,小英、小丽和小华在操场上画出A 、B 两个区域,一起玩投沙包游戏.沙包落在A 区域所得分值与落在B 区域所得分值不同.当每人各投沙包四次时,其落点和四次总分如图所示.则小华的四次总分为___________.三、解答题(共66分)19.(7分)已知y =1是一元一次方程12()23m y y --=的解,求关于x 的方程m(x +4)=2(mx +3)的解.20.(7分)已知a 、b 、c 、d 为有理数,现规定一种新的运算:a b c d=ad bc -, 那么当()53132x x -⎛⎫- ⎪⎝⎭2371124=时,问x 的值是多少?21.(8分)张婶去布店买了28米的红布和黑布,其中红布每米3元,黑布每米5元,结账时售货员错把红布算作每米5元,黑布每米3元,结果收了张婶108元钱,是布店受了损失,还是张婶多付了钱?请说明你的理由.图1 图2 22.(8分)已知P=3xy -8x+1,Q=x -2xy -2,当x ≠0时,3P -2Q=7总成立,求y 的值.23.(8分)甲、乙两人共加工180个零件,甲每小时加工10个零件,乙每小时加工15个零件,请你按下列条件编一道应用题:①甲乙两人不能同时加工零件;②所列的方程为一元一次方程;③语言通顺、无误;④解答所编问题.24.(9分)小华写信给老家的叔叔,问候“八一”建军节. 折叠长方形信纸,装入标准信封时发现:若将信纸按如图1连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm ;若将信纸按如图2三等分折叠后,同样方法装入时,宽绰有1.4cm. 试求信纸的纸长与信封的口宽.25.(9分)为了迎接学校检查,要求限时40分钟整理好实验室,已知张老师独立整理实验室需要50分钟,而李老师独立整理实验室只需要30分钟. 为了完成任务,张老师独自整理了30分钟后,请求李老师帮助整理,问他们能在规定的时间内完成吗?试用方程的知识说明理由.26某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人. 如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?参考答案一选择题1.C .提示:原方程可转化为(3-a)x=6-a -b ,故当3-a ≠0时符合题意.2.D .提示:根据等式的性质2,当x -3=0时,则会得到5=8的错误.3.A .提示:根据题意,可列方程得5(4+b )-10= 4b +4,解得b =-6.4.C .提示:设正方形的边长为xcm ,则长方形的长为(x +8)cm ,宽为(x -2)cm. 根据题意,得2[(x +8)+(x -2)]=40.5.C .提示:在日历中,圈出一个数列上的相邻的3个数的和必是3的倍数,所以40不是.6.B .提示:设初期每天所耗费的原材料为x 吨,则初期购得的原材料为(6x +36)吨. 根据题意,得(6x +36)-10x=30,解得x=1.5. 所以6x +36=45(吨).7.A .提示:由题意得2m +3=5,m -2n=5,解得m=1,n=-2. 所以2016()m n +=2016(1)-=1.8.D .提示:设一只牙膏能用x 次. 根据题意得2256()1036()1022x ππ⨯⨯=⨯.解得x=25. 9.A .提示:由|x -12|-1=0,可得x -12=1或x -12=-1,所以x =32或x =-12. 然后再分别代入m x +2=2(m —x )中,即可求出m.10.B .提示:设更换的新型节能灯有x 台,由题意得(106-1)×36=70×(x -1),则x=55. 二填空题11.4.提示:根据题意得(x +3)-2(2-x)=11,解得x=4.12.2或2.5.提示:相向而行时有两种可能:(120+80)t=450-50或(120+80)t=450+50.13.135x =.提示:设⊗处的数字为m ,根据题意,得2 2.51 2.53m -=-. 14.5.提示:根据题意得n ☆8=n +(n +1)+(n +2)+……+(n +7)=8n +28,故8n +28=68.15.-4.提示:根据题意,得13(2)42x -=1(2)34x -+1,解得x=-4. 16.20.提示:设良马需要x 日才能追上驽马,由题意得240x=150(x +12),解得x=20. 17.17.1.提示:本题中“小数点看错了一位”是指将该数扩大了10倍. 设这笔看错了的支出款实际是x 元,则记帐时支出款记成了10x 元. 则有10x -x=153.9,解得x=17.1. 18.30分.提示:设沙包落在A 区域得x 分,落在B 区域得(34-3x )分. 根据题意,得2x +2(34-3x )=32. 解得x =9,则34-3x =7. 所以小华的四次总分为9+3×7=30(分). 三解答题19.解:将y=1代入方程中,可得12(1)23m --=,解得m=1. 将m=1代入m(x +4)=2(mx +3),得x +4=2(x +3),解得x=-2. 20.解:根据题意,得()113753243212x x ⎛⎫---= ⎪⎝⎭,解得2x =. 21.解:布店受了损失. 理由如下:设红布买了x 米,则黑布买了(28-x)米.根据题意,得5x +3(28-x)=108,解得x=12,则28-x=16.即红布买了12米,黑布买了16米,实际应付款12×3+16×5=116(元).由于116-108=8(元). 所以布店受了损失,少收了8元钱.22.解:由于P=3xy-8x+1,Q=x-2xy-2,所以3P-2Q=3(3xy-8x+1)-2(x-2xy-2)=13xy-26x+7.又因为3P-2Q=7,所以13xy-26x+7=7,即13xy-26x=0.因为x≠0,在等式两边同时除以13x,得y-2=0,解得y=2.23.解:(答案不唯一).甲、乙两人共加工180个零件,甲每小时加工10个零件,乙每小时加工15个零件. 甲先加工4小时,乙也加入一起加工,问两人合作几小时后可以完成任务?解:设甲、乙两人合作x小时后可以完成任务.根据题意,得10×4+(10+15)x=180,解得x=5.6答:两人合作5.6小时后可以完成任务.24.解:设信封的口宽为xcm. 根据题意,得4(x-3.8)=3(x-1.4),解得x=11.所以信封的纸长为4×(11-3.8)=28.8cm.答:信纸的纸长为28.8cm,信封的口宽为11cm.25.解:能在规定的时间内完成. 理由如下:设李老师加入后需要x分钟完成任务,则张老师共用了(30+x)分钟.根据题意,得3013050x x++=,解得x=7.5. 所以30+x=37.5.因为37.5分钟<40分钟,所以他们能在规定的时间内完成任务.26.解:由题意可知,七年级(1)班、(2)班的总人数多于50人,因为816不能整除10,所以两班的总人数为816÷8=102(人).设七年级(1)班有x人,七年级(2)班有(102-x)人,根据题意,得12x+10×(102-x)=1118,解得x=49,则102-x =53(人).答:七年级(1)班有49人,七年级(2)班有53人.(2)七年级(1)班节省的费用为(12-8)×49=196(元);七年级(2)班节省的费用为(10-8)×53=106(元).。
人教版七年级数学上册第三章达标检测卷附答案
人教版七年级数学上册第三章达标检测卷一、选择题(每题3分,共30分)1.下列四个式子中,是一元一次方程的是()A.1+2+3+4=10 B.2x-3 C.x-13=x2+1 D.x+3=y2.下列等式变形中,正确的是()A.若a=b,则a-3=3-b B.若xa=ya,则x=yC.若ac=bc,则a=b D.若ba=dc,则b=d3.方程-2x+3=7的解是()A.x=5 B.x=4 C.x=3.5 D.x=-2 4.下列方程的变形中,正确的是()A.将方程3x-5=x+1移项,得3x-x=1-5B.将方程-15x=5两边同除以-15,得x=-3C.将方程2(x-1)+4=x去括号,得2x-2+4=xD.将方程x3+y4=1去分母,得4x+3y=15.设P=2y-2,Q=2y+3,且3P-Q=1,则y的值是() A.0.4 B.2.5 C.-0.4 D.-2.56.若关于x的方程2x-m3=1的解为x=2,则m的值是()A.2.5 B.1 C.-1 D.3 7.已知方程7x+2=3x-6与关于x的方程x-1=k的解相同,则3k2-1的值为()A.18 B.20 C.26 D.-26 8.某项工程甲单独做5天完成,乙单独做10天完成.现在由甲先做2天,然后甲、乙合作完成此项工程.若设甲一共做了y天,则所列方程正确的是()A.y+25+y10=1 B.y5+y+210=1C.y5+y-210=1 D.y5+25+y-210=19.方程2x -■3-x -32=1中有一个数被墨水盖住了,看答案知道,这个方程的解是x =-1,那么被墨水盖住的数是( )A .27B .1C .-1311D .010.现有m 辆客车、n 个人.若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.据此列出下列四个等式:①40m +10=43m -1;②n +1040=n +143;③n -1040=n -143;④40m +10=43m+1.其中正确的是( )A .①②B .②④C .②③D .③④二、填空题(每题3分,共30分)11.已知(m -4)x |m |-3+2=0是关于x 的一元一次方程,则m 的值为________.12.已知x -2y +3=0,则-2x +4y +2 022的值为________.13.若-0.2a 3x +4b 3与12ab y 是同类项,则xy =________.14.已知y =3是关于y 的方程ay =-6的解,那么关于x 的方程4(x -a )=a-(x -6)的解是________.15.在解方程1-10x -16=2x +13的过程中,①去分母,得6-10x -1=2(2x+1);②去括号,得6-10x -1=4x +1;③移项,得-10x -4x =1-6+1;④合并同类项,得-14x =-4;⑤系数化为1,得x =72.其中开始出现错误的步骤是________.(填序号)16.如果规定“*”的意义为:a *b =a +2b 2(其中a ,b 为有理数),那么方程3*x=52的解是________.17.甲、乙两个足球队进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分.两队一共比赛了10场,甲队保持不败,得22分.甲队胜________场.18.某汽车以20米/秒的速度在公路上行驶,开向寂静的山谷,驾驶员按一下喇叭,5秒后听到回声,问按喇叭时,汽车离山谷多远?已知在空气中声音的传播速度约为340米/秒.设按喇叭时,汽车离山谷y 米,根据题意,可列方程为______________.19.在如图所示的运算流程中,若输出的数y=7,则输入的整数x=____________.20.如图,两根铁棒直立于桶底水平的木桶中,在木桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55 cm,此时木桶中水的深度是________.三、解答题(21题12分,22题8分,其余每题10分,共60分)21.解下列方程:(1)5y-3=2y+6;(2)2(x-2)-3(4x-1)=5(1-x);(3)7x-13-5x+12=2-3x+24;(4)2x0.3-1.6-3x0.6=31x+83.22.当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x-1=3x+1的解大3?23.下面是小红解方程2x+13-5x-16=1的过程:解:去分母,得2(2x+1)-5x-1=1.①去括号,得4x+2-5x-1=1.②移项,得4x-5x=1-2+1.③合并同类项,得-x=0.④系数化为1,得x=0.⑤上述解方程的过程中,是否有错误?答:________(填“有”或者“没有”);如果有错误,则开始出错的一步是________(填序号).如果上述解方程有错误,请你给出正确的过程.24.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,与一块正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形.问大正方形的面积是多少?25.某校召开运动会,七(1)班学生到超市分两次(第二次少于第一次)购买某种饮料共90瓶,用去205元,已知该种饮料价格如下:购买瓶数/瓶不超过30 30以上不超过50 50以上单价/元 3 2.5 2 求两次分别购买这种饮料多少瓶.26.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套及以上每套服装的价格60元50元40元如果两校分别单独购买服装,一共应付5 000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少人准备参加演出?(3)如果甲校有10名同学要去参加书法绘画比赛不能参加演出,请为两校设计一种最省钱的购买服装方案.答案一、1.C2.B3.D4.C5.B6.B 7.C8.C9.B10.D二、11.-412.2 02813.-314.x=-4 515.①16.x=117.618.2y-100=1 700点拨:由题意可知,5秒后,汽车前进的距离为5×20=100(米),声音传播的距离为5×340=1 700(米),根据等量关系可列方程为2y-100=1 700.19.27或28 20.20 cm三、21.解:(1)移项,得5y-2y=6+3.合并同类项,得3y=9.系数化为1,得y=3.(2)去括号,得2x-4-12x+3=5-5x,移项,得2x-12x+5x=5+4-3,合并同类项,得-5x=6,系数化为1,得x=-6 5.(3)去分母,得4(7x-1)-6(5x+1)=2×12-3(3x+2),去括号,得28x-4-30x-6=24-9x-6,移项,得28x-30x+9x=24+6+4-6,合并同类项,得7x=28,系数化为1,得x=4.(4)原方程可化为20x3-16-30x6=31x+83.去分母,得40x-(16-30x)=2(31x+8).去括号,得40x-16+30x=62x+16.移项,得40x+30x-62x=16+16.合并同类项,得8x=32.系数化为1,得x=4.22.解:解方程2x-1=3x+1,得x=-2,由题意,得方程5m+3x=1+x的解是x=-2+3=1,把x=1代入5m+3x=1+x中,解得m=-1 5.23.解:有;①正确的过程如下:去分母,得2(2x+1)-(5x-1)=6.去括号,得4x+2-5x+1=6.移项,得4x-5x=6-2-1.合并同类项,得-x=3.系数化为1,得x=-3.24.解:设大正方形的边长为x厘米,由题图可得x-2-1=4+5-x,解得x=6,则6×6=36(平方厘米).所以大正方形的面积为36平方厘米.25.解:设第一次购买这种饮料x瓶,则第二次购买(90-x)瓶,①若第一次购买饮料50瓶以上,第二次购买饮料不超过30瓶,则2x+3(90-x)=205,解得x=65,得90-65=25(瓶).因为65>50,25<30,所以此情况成立.②若第一次购买饮料50瓶以上,第二次购买饮料30瓶以上不超过50瓶,则2x+2.5(90-x)=205,解得x=40.因为40<50,所以此情况不成立.③若第一次和第二次均购买饮料30瓶以上,但不超过50瓶,则2.5×90=225(元).因为两次购买饮料共用去205元,所以此情况也不成立.故第一次购买饮料65瓶,第二次购买饮料25瓶.26.解:(1)由题意得:5 000-92×40=1 320(元)答:甲、乙两校联合起来购买服装比各自购买服装共可以节省1 320元.(2)设甲校有x人准备参加演出,则乙校有(92-x)人准备参加演出.由题意,得50x+60(92-x)=5 000,解得x =52,则92-x =40.答:甲、乙两校分别有52人、40人准备参加演出.(3)因为甲校有10人不能参加演出,所以甲校有52-10=42(人)参加演出,所以两校参加演出的人数为42+40=82(人).若两校联合购买82套服装,则需要50×82=4 100(元),但如果两校联合购买91套服装,只需40×91=3 640(元),3 640<4 100,因此,最省钱的购买服装方案是两校联合购买91套服装(即比实际人数多购买9套).七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示( )A .支出800元B .收入800元C .支出200元D .收入200元2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为( )A .1.339×1012B .1.339×1011C .0.133 9×1013D .1.339×10143.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16 C .6 D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( ) A.23 B .2 C.103 D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( )A .0B .-1C .-2D .210.如果a +b +c =0,且|a |>|b |>|c |.则下列说法中可能成立的是( )A .b 为正数,c 为负数B .c 为正数,b 为负数C .c 为正数,a 为负数D .c 为负数,a 为负数二、填空题(每题3分,共15分)11.将代数式4a 2b +3ab 2-2b 3+a 3按a 的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m 2,则用科学记数法表示FAST 的反射面总面积约为____________m 2.(精确到万位)13.若|x +2|+(y -3)4=0,则x y =________.14.如果规定符号“*”的意义是a *b =ab a +b ,则[2*(-3)]*(-1)的值为________. 15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a 的式子表示)(第15题)三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分)16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝ ⎛⎭⎪⎫-12,3.(第16题)17.计算: (1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步 =5-4……第三步 =1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了; (3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:售出套数7 6 7 8 2售价(元) +5 +1 0 -2 -5则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2. 10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65. 15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414.17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17.(3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12. 18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9, 由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16 =-3+8+4×6 =-3+8+24 =29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元). 答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130. 23.解:(1)如图所示.(第23题) (2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下: 根据题意得CA =(4+4t )-(-2+t )=6+3t (cm), AB =(-2+t )-(-5-2t )=3+3t (cm), 所以CA -AB =(6+3t )-(3+3t )=3(cm), 所以CA -AB 的值不会随着t 的变化而改变.。
人教版七年级数学上册第三章测试题及答案
三、解答题(共66分)
19.(8分)解下列方程:
(1)2(10-0.5x)=-(1.5x+2);(2) -1= .
解:x=-44解:y=-11
20.(8分)已知关于x的方程 = x-3和3a=3(x+a)-2a的解相同,求a的值.
第三章 一元一次方程
得分________卷后分________评价___பைடு நூலகம்____
一、选择题(每小题3分,共30分)
1.若3x2m-5+7=1是关于x的一元一次方程,则m的值是(C)
A.1 B.2 C.3 D.4
2.下列方程中,解为x=-3的是(A)
A. x+1=0B.2x-1=8-xC.-3x=1D.x+ =0
(3 )方程2x+3m-2=0的解为x= ,
方程3x-5m+4=0的解为x= ,
则根据题意可得 + =0,解得m=2.
所以,这两个方程的解分别为-2和2.
24.(10分)2018年8月31日,第十三届全国人民代表大会常务委员会第五次会议通过《关于修改〈中华人民共和国个人所得税法〉的决定》,将个税免征额由3 500元提高到5000元,其中规定个人所得税纳税办法如下:
解:解方程 = x-3,得x=9,把x=9代入方程3a=3(x+a)-2a中,得3a=3(9+a)-2a,解得a=
21.(8分)小明解方程 +1= 时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a的值,并正确求出方程的解.
解:由题意可知,2(2x-1)+1=5(x+a),把x=4代入,得a=-1,将a=-1代入原方程,得 +1= ,去分母,得4x-2+10=5x-5,移项、合并同类项,得-x=-13,解得x=13
人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)
人教版七年级数学上册第三章《一元一次方程》单元测试一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知x=1是方程x−2k3=12−32x的解,则k的值是()A.−2B.2C.0D.−12. 某商品打七折后价格为a元,则原价为( )A.a元B.107a元 C.30%a元 D.710a元3. 在①2x+1;②1+7=15−8+1;③1−12x=x−1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个4. 若关于x的方程3x+(2a+1)=x−(3a+2)的解为x=0,则a的值等于( )A.15B.35C.−15D.−355. 将一根长为acm的铁丝首尾相接围成一个正方形,若要将它按如图所示的方式向外等距扩大1cm得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm6. 七年级(1)班有30人会下象棋或围棋,已知会下象棋的人数比会下围棋的人数多5人,两种棋都会下的有17人,问只会下围棋的有多少人?设只会下围棋的有x人,可得方程()A.x+(x−5)+17=30B.x+(x+5)+17=30C.x+(x−5)−17=30D.x+(x+5)−17=307. 如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.668. 解方程x3−x−12=1时,去分母后,正确的是( )A.3x−2(x−1)=1B.2x−3(x−1)=1C.3x−2(x−1)=6D.2x−3(x−1)=69. 运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b−cB.如果ac =bc,那么a=bC.如果a=b,那么ac =bcD.如果a2=3a,那么a=310. 已知x=2是方程5Xm+10=30的解,则m的值为( )A.2B.4C.6D.10二、填空题(本题共计 4 小题,每题 4 分,共计16分,)11. 当代数式2x−2与3+x的值相等时,x=________.12. 已知:(m−2)x−1=0是关于x的一元一次方程,则m________.13. 在等式5x−8=7−9x的两边同时________,得14x=15,这是根据________.14. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔的承包地去年甲种蔬菜有________亩.三、解答题(本题共计 5 小题,共计74分,)15.(20分) 解下列方程:(1)8(a+1)−2(3a−4)=13;(2)2x−13=2x+16−1;(3)y−y−12=2−y+25;(4)2x0.3+223=1.4−3x0.2.16.(12分) 列方程.(1)甲班有学生58人,乙班有学生46人,要使甲、乙两班的人数相等,应如何调动?(2)某推销员,卖出全部商品的2后,得到400元,卖出全部商品共得到多少元?517. (14分) “五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)18. (14分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?19.(14分) 某公园门票价格规定如下表:某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经计算,如果两个班都以班为单位购票,则一共应付1320元.问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少名学生?参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一元一次方程的解【解析】把x=1代入方程,即可得出一个关于k的一元一次方程,求出方程的解即可.【解答】把x=1代入方程x−2k3=12−32x得:1−2k3=12−32×1,解得:k=2,2.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设该商品原价为:x元,∵ 某商品打七折后价格为a元,∵ 0.7x=a,则x=107a(元),故选B.3.【答案】B方程的定义【解析】方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.【解答】(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15−8+1,是等式但不含未知数,所以不是方程.x=x−1,是含有未知数的等式,所以是方程.(3)1−12(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.4.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:∵ x=0是方程3x+(2a+1)=x−(3a+2)的解,∵ 2a+1=−(3a+2),,解得:a=−35故选D.5.【答案】B【考点】一元一次方程的应用——其他问题列代数式根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵ 原正方形的周长为acm,cm,∵ 原正方形的边长为a4∵ 将它按图的方式向外等距扩1cm,+2)cm,∵ 新正方形的边长为(a4+2)=(a+8)(cm),则新正方形的周长为4(a4因此需要增加的长度为a+8−a=8(cm).故选B.6.【答案】B【考点】由实际问题抽象出一元一次方程【解析】设只会下围棋的有x人,则只会下象棋的有(x+5)人,根据该班有30人会下象棋或围棋且两种棋都会下的有17人,即可得出关于x的一元一次方程,此题得解.【解答】设只会下围棋的有x人,则只会下象棋的有(x+5)人,依题意,得:x+(x+5)+17=30.7.【答案】B【考点】一元一次方程的应用——其他问题解一元一次方程【解析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=66,解得:x=22,故此选项错误;故选B.8.【答案】D【考点】解一元一次方程【解析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程x3−x−12=1,等式两边同时乘6得:2x−3(x−1)=6.故选D.9.【答案】B【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误.故选B.10.【答案】A【考点】解一元一次方程【解析】把X=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解得:m=2,故选A.二、填空题(本题共计 4 小题,每题 4 分,共计16分)11.【答案】5【考点】解一元一次方程【解析】此题暂无解析【解答】解:由已知得:2x−2=3+x,移项合并得:x=5,故答案为:5.12.【答案】m≠2【考点】一元一次方程的定义【解析】依据一元一次方程的定义可知m−2≠0,从而可求得m的取值范围.【解答】解:∵ (m−2)x−1=0是关于x的一元一次方程,∵ m−2=0.∵ m≠2.故答案为:m≠2.13.【答案】9x+8,等式的性质1【考点】等式的性质【解析】根据等式的基本性质即可解答.【解答】解:两边同时加上9x得:5x+9x−8=7,两边再同时加上8得:14x=5,故5x−8=7−9x两边同时加上9x+8,得到14x=15,根据是:等式的性质1.故答案是:9x+8,等式的性质1.14.【答案】6【考点】一元一次方程的应用——工程进度问题【解析】可设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,等量关系为:甲种蔬菜总获利+乙种蔬菜总获利=18000.【解答】解:设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,依题意得2000x+1500(10−x)=18000,解得x=6,答:甲种蔬菜种植了6亩.故答案为6.三、解答题(本题共计 5 小题,共计74分)15.【答案】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把a系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.16.【答案】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:25x=400.【考点】由实际问题抽象出一元一次方程【解析】(1)根据要使甲、乙两班的人数相等,表示出两班的人数即可得出等式;后,得到400元”,得出等式即可.(2)根据“卖出全部商品的25【解答】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:2x=400.517.【答案】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.【考点】由实际问题抽象出一元一次方程【解析】设该电器的成本价为x元,根据成本价×(1+30%)×80%=售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.18.【答案】长方形的长为10cm,宽为4cm.【考点】一元一次方程的应用——工程进度问题【解析】设长方形的长是xcm,根据正方形的边长相等即可列出方程求解.【解答】解:设长方形的长是xcm,则宽为(14−x)cm,根据题意得:x−2=(14−x)+4,解得:x=10,14−x=14−10=4.19.【解析】(1)根据题意得出两个班联合购票比分别购票的差值即可;(2)设(1)班有xx人,根据题意列出方程解答即可.【解答】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.【答案】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.。
人教版七年级上册数学第三章检测试卷(附答案)
人教版七年级上册数学第三章检测试卷(附答案)一、单选题(共5题;共10分)1.若与kx-1=15的解相同则k的值为().A. 2B. 8C. -2D. 62.已知a=b,则下列等式不成立的是()A. a﹣=b﹣B. 5﹣a=5﹣bC. ﹣4a﹣1=﹣1﹣4bD. +2= ﹣23.下列说法正确的是()A. 半圆是弧,弧也是半圆B. 三点确定一个圆C. 平分弦的直径垂直于弦D. 直径是同一圆中最长的弦4.七年级男生入住的一楼有x间,如果每间住6人,恰好空出一间;如果每间住5人就有4人没有房间住,则一楼共有()间.A. .7B. .8C. .9D. 105.李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为x,那么可得方程()A. 2000(1+x)=2120B. 2000(1+x%)=2120C. 2000(1+x•80%)=2120D. 2000(1+x•20%)=2120二、填空题(共2题;共2分)6.“*”是规定的一种运算法则:a*b=a2-b2,则(-3)*4=________.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c >0;④2c<3b;⑤b2>4ac;其中正确的结论有________.(填序号)三、计算题(共3题;共25分)8.解方程:(1)10 - x = 3x - 2 (2) = 1 - .9.解方程:4x﹣3(5﹣x)=6;10.(1);(2).四、综合题(共2题;共30分)11.(2011•梧州)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?12.某中学对七年级学生数学学期成绩的评价规定如下:学期评价得分由期末测试成绩(满分100分)和期中测试成绩(满分100分)两部分组成,其中期末测试成绩占70%,期中测试成绩占30%,当学期评价得分大于或等于85分时,该生数学学期成绩评价为优秀.(1)小明的期末测试成绩和期中成绩两项得分之和为170分,学期评价得分为87分,则小明期末测试成绩和期中测试成绩各得多少分?(2)某同学期末测试成绩为75分,他的综合评价得分有可能达到优秀吗?为什么?(3)如果一个同学学期评价得分要达到优秀,他的期末测试成绩至少要多少分(结果保留整数)?答案一、单选题1. B2.D3.D4. D5.C二、填空题6.-77. ③④⑤三、计算题8. (1)解:10 - x = 3x - 2移项,得10+2=3x+x,合并同类项,得4x=12,系数化为1 ,得x=3;(2)解:方程两边都乘以21 ,得3(x-3)=21-7(2-5x),去括号,得3x-9=21-14+35x ,移项合并同类项,得32x=-16,系数化为1 ,得x=-.9.解:4x﹣3(5﹣x)=6,4x﹣15+3x=6,7x=21,x=310.(1)解:,,(2)解:.,四、综合题11. (1)解:设今年甲型号手机每台售价为x元,由题意得,.解得x=1500.经检验x=1500是方程的解,且符合题意.故今年甲型号手机每台售价为1500元.(2)解:设购进甲型号手机m台,由题意得,17600≤1000m+800(20﹣m)≤18400,8≤m≤12.因为m只能取整数,所以m取8、9、10、11、12,共有5种进货方案.(3)解:设总获利W元,购进甲型号手机m台,则W=(1500﹣1000)m+(1400﹣800﹣a)(20﹣m),W=(a﹣100)m+12000﹣20a.所以当a=100时,(2)中所有的方案获利相同.12.(1)解:设小明同学期末测试成绩为x分,期中测试成绩为y分,由题意,得,解得.答:小明同学期末测试成绩为90分,期中测试成绩为80分.(2)解:不可能.由题意可得:85-75×70%=32.5,32.5÷30% >100,故不可能.(3)解:设他的期中测试成绩为满分,即100分,则学期评价得分期中部分为100×30%=30.设期末测试成绩为a分,根据题意,可得30+70%a≥85,解得a≥78.6答:他的期末测试成绩应该至少为79分.。
人教版七年级上册数学第三章测试题(附答案)
人教版七年级上册数学第三章测试题(附答案)人教版七年级上册数学第三章测试题(附答案)一、单选题(共12题;共36分)1.若关于x的方程2x+3=5x-1的解是x=2,则3x+2的值是()A。
4.B。
5.C。
1.D。
22.XXX在做解方程作业时,不小心将方程中的一个常数看不清楚,被污染的方程是:3x+2=2x+。
求。
XXX翻看书后答案,此方程的解是x=。
很快补好了这个常数,并迅速地完成了作业,同学们,你们能补出这个常数吗?它应是() A。
1.B。
2.C。
3.D。
43.若关于x的方程6x+3a=22和方程3x+5=11的解相同,那么a的值为()A。
2.B。
4.C。
10.D。
34.元旦前夕,某商店购进某种特色商品100件,按进价每件加价30%作为定价,可是总卖不出去,后来每件按定价降价20%,以每件104元出售,终于在元旦前全部售出,则这批商品在销售过程中的盈亏情况是()A。
亏40元。
B。
赚400元。
C。
亏400元。
D。
不亏不赚5.下列结论中正确的是()A。
在等式3a-b=3b+5的两边都除以3,可得等式a-2=b+5 B。
如果2=-x,那么x=-2C。
在等式5=0.1x的两边都除以0.1,可得等式x=50D。
在等式7x=5x+3的两边都减去x-3,可得等式6x-3=4x+66.方程2x+a=1的解是x=-1/2,则a的值是()A。
-2.B。
2.C。
0.D。
-17.某车间有28名工人生产螺丝与螺母,每人每天生产螺丝12个或螺母18个,现有x名工人生产螺丝,恰好每天生产的螺丝和螺母按2:1配套,为求x,列方程为()A。
12x=18(28-x)。
B。
2×12x=18(28-x)C。
2×18x=12(28-x)。
D。
12x=2×18(28-x)8.一张方桌由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌的桌面,那么桌腿用木料1个或制作桌腿条,现有10立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?设用x立方米,根据题意,得()A。
最新人教版数学七年级上册第三章《一元一次方程》质量评估测试卷及答案
第三章质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)下列方程中是一元一次方程的是( )A .2x +y =3B .3x -1=0C.1x -2=4 D .x 2-4x =12.(3分)方程2x +1=3的解是( )A .x =-1B .x =1C .x =2D .x =-23.(3分)如果a =b ,那么下列式子不一定成立的是( )A .a +c =b +cB .a 2=b 2C .ac =bcD .a -c =c -b4.(3分)已知||m -2+()n -12=0,则关于x 的方程2m +x =n 的解是( )A .x =-4B .x =-3C .x =-2D .x =-15.(3分)关于x 的方程6x -5m =2的解是x =m ,则m 的值是( )A .2B .-2C.211D .-2116.(3分)在解方程2x +13-5x -32=1时,去分母正确的是( )A .2(2x +1)-3(5x -3)=6B .2x +1-5x -3=6C .2(2x +1)-3(5x -3)=1D .2x +1-3(5x -3)=67.(3分)下列式子变形正确的是( )A .如果a =b ,那么a +c =b -cB .如果a =b ,那么a 3=b3C .如果a3=6,那么a =2D .如果a -b +c =0,那么a =b +c8.(3分)若x =-3是关于x 的一元一次方程2x +m +5=0的解,则m 的值为( )A .-1B .0C .1D .119.(3分)若(m -2)x |m |-1=5是关于x 的一元一次方程,则m 的值为( )A .2B .-2C .2或-2D .110.(3分)超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,下列方程正确的是( ) A .0.8x -10=90 B .0.08x -10=90 C .90-0.8x =10D .x -0.8x -10=9011.(3分)阳光中学七(2)班篮球队参加比赛,胜一场得2分,负一场得1分,该队共赛了12场,共得20分,该队胜了多少场?设该队胜了x场,下列方程正确的是()A.2(12-x)+x=20 B.2(12+x)+x=20C.2x+(12-x)=20 D.2x+(12+x)=2012.(3分)若规定:[a]表示小于a的最大整数,例如:[5]=4,[-6.7]=-7,则方程3[-π]-2x=5的解是()A.x=7 B.x=-7 C.x=-172D.x=172二、填空题(共6小题,总分18分)13.(3分)写出一个解是-6的一元一次方程:_____________.14.(3分)当x=___________时,x-1与3-4x互为相反数.15.(3分)30天中,小张长跑路程累计达到45 km,小李长跑路程累计达到x km(x >45),平均每天小李比小张多跑___________k m.16.(3分)规定一种运算“*”,a*b=a-2b,则方程x*3=2*3的解为_________.17.(3分)一项工程,甲单独完成需要20天,乙单独完成需要25天,由甲先做2天,余下的部分甲、乙一起做,余下的部分还要做______天才能完成.18.(3分)公路一侧原有路灯106盏,相邻两盏灯的距离为36米,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54米,则需要节能灯______盏.(两端都安装)三、解答题(共8小题,总分66分)19.(16分)解方程.(1)2x+3=x+5; (2)0.5x-0.7=6.5-1.3x;(3)8x=-2(x+4); (4)3y-14-1=5y-7620.(6分)已知关于x 的方程(m +3)x |m +4|+18=0是一元一次方程,试求: (1)m 的值;(2)2(3m +2)-3(4m -1)的值.21.(6分)将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ac bd ,定义⎪⎪⎪⎪⎪⎪a c bd =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪3 21-x x +1=6,求x 的值.22.(6分)如图,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).(第22题)(1)用a 、b 表示阴影部分的面积;(2)当a =2,b =4时,计算阴影部分的面积.23.(6分)在某次羽毛球团体赛中,羽毛球协会组织一些会员到现场观看.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2 700元.请问该协会购买了这两种门票各多少张?24.(8分)某校七年级A班有x人,B班比A班人数的2倍少10人,如果从B 班调出8人到A班.(1)用代数式表示两个班共有多少人;(2)用代数式表示调动后B班人数比A班人数多几人;(3)x等于多少时,调动后两班人数一样多?25.(8分)小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(第25题)(1)用含x的式子表示厨房的面积和卧室的面积.(2)此经济适用房的总面积为多少平方米?(3)已知厨房面积比卫生间面积多2m2,且铺1 m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?26.(10分)根据下面的两种移动电话计费方式表,回答下列问题:(1)月通话时间为150分时,按两种移动电话计费方式各需要交费多少元?300分呢?(2)会出现两种移动电话计费方式收费一样的情况吗?请你说明怎样选择会省钱.答案一、1.B 2.B 3.D 4.B 5.A 6.A 7.B 8.C9.B 10.A 11.C 12.C二、13.x +6=0(答案不唯一)14.23 15.⎝ ⎛⎭⎪⎫x 30-3216.x =2 17.10 18.71 三、19.解:(1)移项,得2x -x =5-3,合并同类项,得x =2.(2)移项,得0.5x +1.3x =6.5+0.7, 合并同类项,得1.8x =7.2, 系数化为1,得x =4. (3)去括号,得8x =-2x -8, 移项、合并同类项,得10x =-8, 系数化为1,得x =-45.(4)去分母,得3(3y -1)-12=2(5y -7), 去括号,得9y -3-12=10y -14, 移项、合并同类项,得-y =1, 系数化为1,得y =-1.20.解:(1)由题意,得|m +4|=1且m +3≠0,解得m =-5.(2)当m =-5时,2(3m +2)-3(4m -1)=2×(-15+2)-3×(-20-1) =-26+63=37.21.解:根据题意中的运算规则,将⎪⎪⎪⎪⎪⎪3 21-x x +1=6 转化为一元一次方程为:3(x +1)-2(1-x )=6,整理可得5x =5, 系数化为1,得x =1.22.解:(1)S 阴影=12a (a +b )+12b 2=12a 2+12ab +12b 2;(2)当a =2,b =4时,原式=12×22+12×2×4+12×42=2+4+8=14.23.解:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,由题意,得300x+400(8-x)=2 700,解得x=5,8-x=3.答:每张300元的门票买了5张,每张400元的门票买了3张.24.解:(1)因为七年级A班有x人,B班比A班人数的2倍少10人,所以B 班有(2x-10)人.x+2x-10=3x-10.因此,两个班共有(3x-10)人.(2)调动后A班人数为(x+8)人,B班人数为2x-10-8=2x-18(人),(2x-18)-(x+8)=x-26.因此,调动后B班人数比A班人数多(x-26)人.(3)令x+8=2x-18,解得x=26.因此,x等于26时,调动后两班人数一样多.25.解:(1)厨房的面积:(6-3)x=3x(m2),卧室的面积:3(2+x)=6+3x(m2).(2)6×2x+(3x+6)+3x+2x=20x+6(m2).(3)由题意得:3x-2x=2,解得x=2,80×(20×2+6)=3 680(元),答:铺地砖的总费用为3 680元.26.解:(1)150×0.3+50=95(元);150×0.5+10=85(元);300×0.3+50=140(元);300×0.5+10=160(元);(2)会出现两种移动电话计费方式收费一样的情况.设通话时间为t分时收费一样,则50+0.3t=10+0.5t,解得t=200,所以通话时间为200分时两种移动电话计费方式收费一样.当通话时间小于200分时,选择方式二省钱,当通话时间大于200分时,选择方式一省钱,当通话时间等于200分时,两种计费方式收费一样.。
七年级数学上册第三章达标检测卷(含答案)
七年级数学第三章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列各式中,代数式的个数是( )①12; ②a +38; ③ab =ba ; ④1x +y; ⑤2a -1; ⑥a ; ⑦12(a 2-b 2); ⑧5n +2.A .5B .6C .7D .82.单项式-π3a 2b 的系数和次数分别是( ) A .π3,3 B .-π3,3 C .-13,4 D .13,4 3.下列各组是同类项的是( )A .xy 2与-12x 2y B .3x 2y 与-4x 2yz C .a 3与b 3 D .-2a 3b 与12ba 3 4.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( ) A .a =0,b =3 B .a =1,b =3 C .a =2,b =3 D .a =2,b =15.下列去括号正确的是( )A .a -(2b -3c)=a -2b -3cB .x 3-(3x 2+2x -1)=x 3-3x 2-2x -1C .2y 2+(-2y +1)=2y 2-2y +1D .-(2x -y)-(-x 2+y 2)=-2x +y +x 2+y 26.某校组织若干师生到活动基地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车,则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A .200-60xB .140-15xC .200-15xD .140-60x7.如图,阴影部分的面积是( )(第7题)A .112xyB .132xy C .6xy D .3xy 8.已知-x +3y =5,则代数式5(x -3y)2-8(x -3y)-5的值为( )A .80B .-170C .160D .609.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确答案是( )A .2xy -5yz +xzB .3xy -8yz -xzC .yz +5xzD .3xy -8yz +xz10.如图,小明用棋子摆放图形来研究数的规律.图①中棋子围成三角形,其颗数分别为3,6,9,….类似地,图②中棋子围成正方形,其颗数分别为4,8,12,….下列选项中既能围成三角形又能围成正方形的棋子颗数是( )(第10题)A .2 010B .2 012C .2 014D .2 016二、填空题(每题3分,共24分)11.用代数式表示“比a 的平方的一半小1的数”是____________.12.已知15 m x n 和-29m 2n 是同类项,则|2-4x|+|4x -1|的值为________. 13.已知有理数a ,b 在数轴上对应的点的位置如图所示,化简|a +b|-|b -a|的结果为________.(第13题)14.三角形三边的长分别为(2x +1) cm ,(x 2-2) cm 和(x 2-2x +1) cm ,则这个三角形的周长是________.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于________.16.已知a 2-4ab =1,3ab +b 2=2,则整式3a 2+4b 2的值是________.17.随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的优惠措施是每分降低a 元后,再下调25%;乙公司推出的优惠措施是每分下调25%,再降低a 元.若甲、乙两公司原来每分的收费标准相同,则推出优惠措施后收费较便宜的是________公司.18.有一个正六面体骰子,放在桌面上,将骰子按如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2 017次后,骰子朝下一面的点数是________.(第18题)三、解答题(19,21,22题每题10分,其余每题12分,共66分)19.先去括号,再合并同类项.(1)2a -(5a -3b)+(4a -b); (2)3(m 2n +mn)-4(mn -2m 2n)+mn.20.先化简,再求值:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1),其中a =-23;(2)⎝⎛⎭⎫32x 2-5xy +y 2-⎣⎡⎦⎤-3xy +2⎝⎛⎭⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.。
人教版七年级数学上册《第三章一元一次方程》单元检测卷-带答案
人教版七年级数学上册《第三章一元一次方程》单元检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.若1x =是方程21ax x +=的解,则a 的值是( )A .-1B .1C .2D .—122.下列变形中,不正确的是( )A .若x y =,则33x y +=+B .若22x y -=-,则x y =C .若x y m m =,则x y =D .若x y =,则x y m m= 3.已知方程()12m x +=是关于x 的一元一次方程,则m 的取值范围是( )A .1m ≠-B .0m ≠C .1m ≠D .1m >-4.下列各式中,是方程的是( )A .321-=B .5y -C .32m >D .5x =5.一元一次方程2231x x -=-的解为( )A .=1x -B .1x =C .2x =D .3x = 6.解一元一次方程11(1)123x x +=-时,去分母正确的是( )A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=- 7.已知关于x 的方程38132ax x x --=-有负整数解,则所有满足条件的整数a 的值之和为( ) A .11- B .26- C .28- D .30-8.若关于x 的一元一次方程1322022x x b +=+的解为3x =-,则关于y 的一元一次方程1(1)32(1)2022y y b ++=++的解为( ) A .1y = B .=2y - C .=3y - D .4y =-9.甲在乙后12千米处,甲的速度为7千米/小时,乙的速度为5千米/小时,现两人同向同时出发,那么甲从出发到刚好追上乙所需要时间是( )A .5小时B .1小时C .6小时D .2.4小时10.如图,长方形ABCD 中,AB =8cm ,AD =6cm ,P ,Q 两动点同时出发,分别沿着长方形的边长运动,P 点从B 点出发,顺时针旋转一圈,到达B 点后停止运动,Q 点的运动路线为B →C →D ,P ,Q 点的运动速度分别为2cm/秒,1cm/秒,当一个动点到达终点时,另一个动点也同时停止运动.设两动点运动的时间为t 秒,要使△BDP 和△ACQ 的面积相等,满足条件的t 值的个数为( )A .2B .3C .4D .5二、填空题11.若代数式2m 与3m -的值相等,则m = .12.某种水果,经过加工包装后出售,单价可能提高20%,但重量会减少10%,现有未加工的这种水果30千克,加工包装后可以比不加工多卖12元,加工包装后单价可提高 元.13.已知方程21(2)60n m x +++=是关于x 的一元一次方程,若此方程的解为正整数,且m 为整数,则22m = .14.已知a ,b 为定值,且无论k 为何值,关于x 的方程2132-+=-kx a x bk 的解总是x =2,则ab = .四、解答题15.解方程:(1)1426x x =-(2)2(1)78x x +-=-(3)42(1)5x x x -=-+ (4)5121136x x +--= 16.列方程解应用题.某家具厂有60名工人,加工某种有一个桌面和四条桌腿的桌子,工人每天每人可以加工3个桌面或6个桌腿.分配多少工人加工桌面,多少工人加工桌腿,才能使每天生产的桌面和桌腿配套?17.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段以达到节水的目的,该市自来水收费的价目表如下:(消费按月份结算,3m 表示立方米) 价目表每月用水量价格 不超过36m2元3/m 超出36m 不超出310m 的部分4元3/m 超出310m 的部分 6元3/m(1)某户居民1月份和2月份的用水量分别为35m 和38m ,则应收水费分别是________元和________元.(2)若该户居民3月份用水量为3m a (其中610a <≤),则应收水费多少元?(用含a 的式子表示,并化简).(3)若该户居民4月份交水费40元,求该户居民4月用水多少3m ?18.利用一元一次方程解应用题:某学校刚完成一批结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名一级技工去铺4个宿舍,结果还剩212m 地面未铺瓷砖;同样时间内6名二级技工铺4个宿舍刚好完成,已知每名一级技工比二级技工一天多铺22m 瓷砖.(1)求每个宿舍需要铺瓷砖的地板面积.(2)现该学校有26个宿舍的地板和274m 的走廊需要铺瓷砖,该工程队一开始有4名一级技工来铺瓷砖,施工3天后,学校根据实际情况要求还要2天必须完成剩余的任务,决定加入6名二级技工一起工作并提高所有技工的工作效率.若每名一级技工每天多铺瓷砖面积与每名二级技工每天多铺瓷砖面积的比为23:,问每名二级技工每天需要铺多少平方米瓷砖才能按时完成任务?参考答案1.A2.D3.A4.D5.A6.D7.D8.D9.C10.C11.112.613.18或32或50或12814.4-15.(1)12x =- (2)2x =(3)3x = (4)38x = 16.有20名工人加工桌面,40名工人加工桌腿 17.(1)10,20(2)应收水费()412a -元(3)该户居民4月用水123m .18.(1)152m(2)162m。
人教版七年级数学上册 第三章 综合素质测评卷及答案
人教版七年级数学上册 第三章 综合素质测评卷及答案(时间:120分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.根据“x 的3倍与5的和比x 的13多2”可列方程( A )A .3x +5=x 3+2B .3x +5=x 3-2C .3(x +5)=x 3-2D .3(x +5)=x 3+2 2.已知x =1是关于x 的方程x +2a =-1的解,则a 的值是( A )A .-1B .0C .1D .23.下列等式的变形中,正确的有( B )①由5x =3,得x =53; ②由a =b ,得-a =-b ;③由-x -3=0,得-x =3; ④由m =n ,得n m =1.A .1个B .2个C .3个D .4个4.在解方程x -13+x =3x +12时,方程两边乘6,去分母后,正确的是( B )A .2x -1+6x =3(3x +1)B .2(x -1)+6x =3(3x +1)C .2(x -1)+x =3(3x +1)D .(x -1)+x =3(3x +1)5.书架上,第一层书的数量是第二层数的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层的一半多3本.设第二层原有x 本书,则可列方程( D )A .2x =12x +3B .2x =12(x +8)+3C .2x -8=12x +3D .2x -8=12(x +8)+3 6.a ,b ,c ,m 都是有理数,且a +2b +3c =m ,a +b +2c =m ,那么b 与c 的关系是( A )A .互为相反数B .互为倒数C .相等D .无法确定7.若式子3x +12比2x -23小1,则x 的值为( C )A.135 B .-513 C .-135 D.5138.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( A )A .x =-5B .x =-3C .x =-1D .x =59.已知关于x 的方程x -4-ax 6=x +43-1的解是正整数,则符合条件的所有整数a 的积是( D )A .12B .36C .-4D .-1210.图①为一正面白色、反面灰色的长方形纸片,今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( C )A.2314B.3638 C .42 D .44二、填空题(本大题共8小题,每小题3分,共24分)11.若2a -3与-3a -8的值相等,则a 2 019的值为 -1 .12.若关于x 的方程6x +3=0与关于y 的方程3y +m =1的解互为倒数,则m 的值为 7 .13.如图所示是一个数值计算程序,在某次计算时输入一个数x 后,输出的结果为38,那么是输入的数x 的值是 27 . 输入x →×5→-21→÷3→输出14.一艘船从甲码头到乙码头顺流行驶,用了2 h ,从乙码头返回甲码头逆流行驶,用了2.5 h ,已知水流的速度是3 km/h ,则船在静水中的速度是 27 km/h15.已知|x +3|+(x +2y -1)2=0,则2x -y =__-8__.16.若干本书分给若干学生,每人5本缺2本,每人4本余3本,则共有__5__个同学.17.甲、乙二人在400 m 环形跑道上练习长跑,同时从同一起点出发,甲的速度是6 m/s ,乙的速度是 4 m/s ,乙跑__2__圈后,甲可超过乙1圈.18.一列方程如下排列:x 4+x -12的解是x =2;x 6+x -22=1的解是x =3;x 8+x -32=1的解是x =4;…根据观察得到的规律,写出解是x =7的方程是 x 14+x -62=1 .三、解答题(本大题共7小题,共66分)19.(8分)解方程:(1)2(3y -1)-3(2-4y )=9y +10;解:6y -2-6+12y =9y +10,18y -9y =10+8,y =2.(2)3y +14=2-2y -13.解:3(3y +1)=24-4(2y -1),9y +3=24-8y +4,9y +8y =24+4-3,17y =25,y =2517.20.(8分)已知当x =-3时,代数式2x 2+(2t -1)x -5t +1的值是0,求当x =3时,该代数式的值.解:由题意可知,当x =-3时,2x 2+(2t -1)x -5t +1=2×(-3)2-3(2t -1)-5t +1=0,解得t =2.即代数式为2x 2+3x -9.当x =3时,代数式2x 2+3x -9=2×32+3×3-9=18.21.(8分)a 为何值时,方程3(5x -6)=3-20x 的解也是方程a -103x =2a +10x 的解?解:解方程3(5x -6)=3-20x ,得x =35. 将x =35代入a -103x =2a +10x , 得a -103×35=2a +10×35, 解得a =-8.22.(10分)有一些依次标有3,6,9,12,…的卡片,小明拿了3张卡片,他们的数码相邻,且数码之和为117.(1)小明拿到了哪3张卡片?(2)你能拿到数码相邻的4张卡片,使其数码之和是179吗?若能,请指出这4张卡片中数码最大的卡片;若不能,请说明理由.解:(1)设中间的卡片为x,根据题意,得(x-3)+x+(x+3)=117,解得x=39.故小明拿的卡片为36,39,42;(2)不能,理由:设这四张卡片为x-3,x,x+3,x+6,根据题意,得(x-3)+x+(x+3)+(x+6)=179.解得x=1734,不合题意,故不能拿出相邻的4张卡片使其和为179.23.(10分)情景:试根据图中的信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元;(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.解:有这种可能.设小红买了x根跳绳,则25×0.8·x=25(x-2)-5,解得x=11.所以小红买了11根跳绳.24.(10分)如图,点A,B在数轴上表示的数分别为-12和8,两只小蚂蚁M,N分别从A,B同时出发,相向而行,M的速度为2个单位长度/秒,N的速度为3个单位长度/秒.(1)运动几秒时,两只蚂蚁在点P相遇?点P在数轴上表示的数是多少?(2)若运动t秒时,两只蚂蚁的距离为10个单位长度,求出t的值.解:(1)设运动x秒时,两只蚂蚁在点P相遇,根据题意,得2x +3x=8-(-12),解得x=4.8-3×4=-4,所以运动4秒时,两只蚂蚁在点P相遇,点P在数轴上表示的数为-4.(2)运动t秒时,蚂蚁M向右移动了2t个单位长度,蚂蚁N向左移动了3t个单位长度.若在相遇之前距离为10个单位长度,则有2t +3t+10=20,解得t=2;若在相遇之后距离为10个单位长度,则有2t+3t-10=20,解得t=6.综上所述,t的值为2或6.25.(12分)为庆祝“六一”儿童节,某市中小学统一组织文艺会演,甲、乙两所学校共92名学生(其中甲校学生多于乙校学生,且甲校学生不够90名)准备统一购买服装参加演出,下面是某服装厂给出的演出服装价格表:如果两所学校单独购买服装,一共应付5 000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少元钱?(2)甲、乙两校各有多少名学生准备参加演出?(3)如果甲校有10名学生被调去参加书法绘画比赛不能参加演出,请你为两校设计一种最省钱的购买服装方案.解:(1)5 000-92×40=1 320(元).答:甲、乙两校联合起来购买服装比各自购买服装共可以节省1 320元.(2)设甲校有x名学生准备参加演出,则乙校有(92-x)名学生准备参加演出.根据题意得50x+60(92-x)=5 000,解得x=52.所以92-x=92-52=40(名).答:甲校有52名学生准备参加演出,乙校有40名学生准备参加演出.(3)因为甲校有10名学生不能参加演出,所以甲校有42名学生参加演出.①若两校联合购买服装,则需要(42+40)×50=4 100(元).②若两校各自购买服装,则需要(42+40)×60=4 920(元).③若两校联合购买91套服装,则需要40×91=3 640(元).综上所述,最省钱的购买服装方案是两校联合购买91套服装.。
人教版七年级数学上册第三章测试卷(附答案解析)
人教版七年级数学上册第三章测试卷第三章 一元一次方程一、选择题(每小题3分,共30分)分) 1.下列方程是一元一次方程的是(下列方程是一元一次方程的是( )A.x -2=3 B.1+5=6 C.x 2+x =1 D.x -3y =0 2.方程2x +3=7的解是(的解是( )A.x =5 B.x =4 C.x =3.5 D.x =2 3.下列等式变形正确的是(下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =y aC.若a =b ,则ac =bcD.若b a =d c,则b =d4.把方程3x +2x -13=3-x +12去分母正确的是(去分母正确的是( ) A.18x +2(2x -1)=18-3(x +1)B.3x +(2x -1)=3-(x +1)C.18x +(2x -1)=18-(x +1)D.3x +2(2x -1)=3-3(x +1)5.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是(是一元一次方程,则这个方程的解是( )A.-5 B.-3 C.-1 D.5 6.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为(吨到乙煤场,则可列方程为( )A.518=2(106+x )B.518-x =2×2×106 106 C.518-x =2(106+x )D.518+x =2(106-x )7.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是(,请问这个被污染的常数是( )A.1 B.2 C.3 D.4 8.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为(现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A.562.5元B.875元C.550元D.750元9.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是(后两车相遇,则乙的速度是( )A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,灰相间的长方形纸片,灰相间的长方形纸片,如图②所示如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为(,则图①纸片的面积为( )A.2314B.3638C.42 D.44 二、填空题(每小题3分,共24分)分)11.方程3x -3=0的解是的解是 . 12.若-x n +1与2x 2n -1是同类项,则n = . 13.已知多项式9a +20与4a -10的差等于5,则a 的值为的值为 . 14.若方程x +2m =8与方程2x -13=x +16的解相同,则m = . 15.在有理数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =-2a +3b ,如:1⊕5=-2×2×11+3×3×55=13,则方程x ⊕4=0的解为的解为 . 16.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有那么该班有 名学生. 17.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是元,那么这款大衣每件的标价是 元. 18.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是倍,则它的体积是 cm 3. 三、解答题(共66分)分)19.(15分)解下列方程:分)解下列方程:(1)4x -3(12-x )=6x -2(8-x );(2)2x -13-2x -34=1;(3)12x +2èæøö54x +1=8+x . 20.(8分)已知3+a 2与-13(2a -1)-1互为相反数,求a 的值. 21.(9分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?甲、乙两种票各买了多少张?22.(10分)分)如图是一根可伸缩的鱼竿,如图是一根可伸缩的鱼竿,如图是一根可伸缩的鱼竿,鱼竿是用鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图①所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm. (1)请直接写出第5节套管的长度;节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm ,求x 的值. 套以上 购买服装的套数1套至45套46套至90套91套以上每套服装的价格60元50元40元从大到小依次是 ,,;从大到小依次是11.x =1 12.2 13.-5 14.72 15.x =6 16.30 17.1500 18.1000 19.解:(1)x =-20.(5分)(2)x =72.(10分) (3)x =3.(15分) 20.解:由题意,得3+a 2+ëéûù-13(2a -1)-1=0,(4分)解得a =5.(8分) 21.解:设甲种票买了x 张,则乙种票买了(35-x )张,(2分)依题意有24x +18(35-x )=750,(6分)解得x =20.则35-x =15.(8分) 答:甲种票买了20张,乙种票买了15张.(9分) 22.解:(1)第5节套管的长度为50-4×4×(5(5-1)=34(cm).(2分) (2)第10节套管的长度为50-4×4×(10(10-1)=14(cm),(4分)因为每相邻两节套管间重叠的长度为x cm ,根据题意得(50+46+42+…+14)-9x =311,(7分)即320-9x =311,解得x =1.(9分) 答:每相邻两节套管间重叠的长度为1cm.(10分) 23.解:(1)由题意,得5020-92×92×4040=1340(元).(4分) 答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(5分) (2)设甲班有x 名同学准备参加演出(依题意46<x <90),则乙班有(92-x )名.依题意得50x +60(92-x )=5020,解得x =50,92-x =42(名).(11分) 答:甲班有50名同学,乙班有42名同学.(12分) 24.解:(1)x +8 x +7 x +1(3分) (2)由题意,得x +x +1+x +7+x +8=416,解得x =100.(7分) (3)不能,(8分)因为当4x +16=622,解得x =15112,不为整数.(12分) 。
七年级上册《数学》第三章测试卷(含答案)
七年级上册《数学》第三章测试卷(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题4分,共32分.下列各题给出的四个选项中,只有一项符合题意)1.若2(a+3)的值与4互为相反数,则a 的值为( ) A.1B.-72C.-5D.122.下列说法错误的是( ) A.如果ax=bx,那么a=b B.如果a=b,那么a c 2+1=bc 2+1C.如果a=b,那么ac-d=bc-dD.如果x=3,那么x 2=3x 3.下列方程变形正确的是( ) A.方程3x-2=2x+1,移项,得3x-2x=-1+2 B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1 C.方程23t=32,未知数系数化为1,得t=1D.方程x-10.2−x 0.5=1化成3x=64.“六一”国际儿童节期间,某商店将单价标为130元的书包按8折出售可获利30%,该书包每个的进价是( ) A.65元 B.80元 C.100元 D.104元5.方程2x+32-x=9x-53+1去分母得( )A.3(2x+3)-x=2(9x-5)+6B.3(2x+3)-6x=2(9x-5)+1C.3(2x+3)-x=2(9x-5)+1D.3(2x+3)-6x=2(9x-5)+66.如图①,天平呈平衡状态,其中左侧盘中有一袋玻璃球,右侧盘中也有一袋玻璃球,还有2个各20 g的砝码.现将左侧袋中一颗玻璃球移至右侧盘,并拿走右侧盘中的1个砝码,天平仍呈平衡状态,如图②.则移动的玻璃球的质量为()A.10 gB.15 gC.20 gD.25 g7.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a,b,c对应密文a+1,2b+4,3c+9.例如明文1,2,3对应密文2,8,18.如果接收方收到密文7,18,15,那么解密得到的明文为()A.4,5,6B.6,7,2C.7,2,6D.2,6,78.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x-45=7x-3B.5x+45=7x+3C.x+455=x+37D.x-455=x-37二、填空题(本大题共4小题,每小题4分,共16分)9.已知x=2是关于x的方程ax-5x-6=0的解,则a=.10.对于有理数a,b,c,d,现规定一种新的运算|a bc d|=ad-bc.则满足等式|x2x+1321|=1的x的值为.11.当m=时,单项式15x2m-1y2与-8x m+3y2是同类项.12.某赛季中国职业篮球联赛第11轮前四名球队积分榜如下:(1)若一个队胜m 场,则该队的总积分为 ;(2)某队的胜场总积分能否等于它的负场总积分?你的观点是: . 三、解答题(本大题共5小题,共52分) 13.(16分)解下列方程: (1)2x-13−10x-16=2x+14-1;(2)x 0.7−0.17-0.2x 0.03=1.14.(8分)当m 为何值时,式子2m-5m-13的值与式子7-m 2的值的和等于5?15.(8分)一架飞机在两个城市之间飞行,风速为24千米/时,顺风飞行要2小时50分,逆风飞行要3小时,求飞机在静风中的速度.16.(10分)(2020·四川泸州中考)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?17.(10分)某市为促进节约用水,提高用水效率,建设节水型城市,将自来水划分为“家居用水”和“非家居用水”.根据新规定,“家居用水”用水量不超过6 t,按每吨1.2元收费;如果超过6 t,那么未超过部分仍按每吨1.2元收费,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?七年级上册《数学》第三章测试卷答案一、选择题1.C2.A3.D4.B设该书包每个的进价为x元,根据题意列方程,得130×80%-x=30%x,解得x=80.5.D6.A7.B由题意,得a+1=7,2b+4=18,3c+9=15,解得a=6,b=7,c=2.8.B二、填空题9.810.-10根据题意,得x2−2(x+1)3=1,解得x=-10.11.4根据同类项的定义,相同字母的指数相同,得2m-1=m+3,解得m=4.12.(1)m+11(2)不能(1)胜一场得分:2211=2(分),负一场得分:21-10×2=1(分).若一个队胜m场,则总积分为2m+(11-m)=2m+11-m=m+11.(2)设一个队胜了x场,则负了(11-x)场.若这个队的胜场总积分等于负场总积分,则有方程2x-(11-x)=0,解得x=113.其中x(胜场)的值必须是整数,故x=113不符合实际,由此可以判定没有哪个队的胜场总积分等于负场总积分.三、解答题13.解:(1)去分母,得4(2x-1)-2(10x-1)=3(2x+1)-12.去括号,得8x-4-20x+2=6x+3-12.移项、合并同类项,得-18x=-7.系数化为1,得x=718.(2)原方程可转化为10x 7−17-20x 3=1.去分母,得30x-7(17-20x)=21. 去括号,得30x-119+140x=21. 移项、合并同类项,得170x=140. 系数化为1,得x=1417.14.解:根据题意,得2m-5m-13+7-m 2=5.解这个方程,得m=-7.因此当m=-7时,式子2m-5m-13的值与式子7-m 2的值的和等于5.15.解 设飞机在静风中的速度为x 千米/时,则 (x+24)×256=(x-24)×3,解得x=840.答:飞机在静风中的速度是840千米/时.16.解:(1)设甲种奖品购买了x 件,乙种奖品购买了(30-x)件,根据题意,得30x+20(30-x)=800,解得x=20,则30-x=10. 答:甲种奖品购买了20件,乙种奖品购买了10件.(2)设甲种奖品购买了x 件,乙种奖品购买了(30-x)件,设购买两种奖品的总费用为w 元,根据题意,得30-x ≤3x,解得x ≥7.5,w=30x+20(30-x)=10x+600.∵10>0,∴w 随x 的增大而增大,∴x=8时,w 有最小值,为w=10×8+600=680. 答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.17.解:设该用户5月份用水x t,根据题意,得1.4x=6×1.2+2(x-6). 解这个方程,得x=8. 所以8×1.4=11.2(元).答:该用户5月份应交水费11.2元.。
人教版数学七年级上册第三章《一元一次方程》检测题(含答案)
人教版数学七年级上册第三章《一元一次方程》检测题一、选择题(每题3分,共30分)1.下列等式变形正确的是( )(A )如果s=12ab,那么b=2s a; (B )如果12x=6,那么x=3; (C )如果x-3=y-3,那么x-y=0; (D )如果mx=my,那么x=y2.下列各式中,不属于方程的是 ( )(A ))2(32+-+x x (B )0)24(13=--+x x (C ) 2413+=-x x(D ) 7=x3.下列解方程去分母正确的是( )(A )由1132x x --=,得2x-1=3-3x ; (B )由232124x x ---=-,得2(x-2)-3x-2=-4 (C )由131236y y y y +-=--,得3y+3=2y-3y+1-6y ;(D )由44153x y +-=,得12x-1=5y+20 4.要使代数式5t+41与5(t-41)的值互为相反数,t 是( ) (A )0 (B )203 (C )201 (D )101 5.下列变形符合等式性质的是 ( )(A )如果732=-x ,那么372-=x (B ) 如果123+=-x x ,那么213-=-x x(C )如果52=-x ,那么25+=x(D ) 如果131=-x ,那么3-=x 6.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( )(A )106元;(B )105元;(C )118元;(D )108元.7.小丽在解关于x 的方程-x+5a=13时,误将-x 看作x ,得到方程的解为x=-2,则原方程的解为( )(A ) x=-3 (B )x=0 (C )x=1 (D )x=28.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,第一台盈利20%,另一台亏本20%,则本次出售中,商场( )(A )不赚不赔 (B )赚160元 (C )赚80元 (D )赔80元9.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是 ( )A .20x ·13%=2340B .20x=2340×13%C .20x(1-13%)=2340D .13%·x=234010.小赵去商店买练习本,回来后问同学们:“店主动告诉我,如果多买一些就给我们八折优惠,我就买了20本,结果便宜了1.6元,你猜原来每本的价格是多少?”(A )0.4 元 (B )0.5元 (C )0.6元 (D )0.7元二、耐心填一填(每题3分,共30分)11.x=3和x=-6中,________是方程x-3(x+2)=6的解.12.若x=-3是方程3(x-a)=7的解,则a=________.13.若代数式213k --的值是1,则k=_________. 14. 以x=2为根的一元一次方程是____________________(写出满足条件的一个方程即可).15.在一次猜迷抢答赛上,每人有30道的答题,答对1小题加20分,答错1题扣10分,小明共得了120分,则小明答对 道题?答错 道题? 16.若关于x 的一元一次方程23132x k x k ---=的解是1x =-,则k 的值是 .17.小新问妈妈的生日是几号?妈妈指着某月日历回答:我生日这一天的上、下、左、右四个日期数之和恰好是80,则小新妈妈的生日是 号18.在等式“2×( )-3×( )=15”的括号中分别填入一个数,使这两个数是互为相反数19.五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了 折优惠.20.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.试问这个月的石油价格相对上个月的增长率是 .三、用心解一解(共60分)21. (本题8分)解下列方程:(1)70%x+(30-x)×55%=30×65%; (2)511241263x x x +--=+;22.(本题6分)小明在解方程时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222x x x +=-⊗,怎么办呢?这时小李走过来看了一下说,这个方程的解与方程3x+5=0的解是一样的,你能帮小明补出这个常数吗?请写出你的思考过程.23.(本题8分)为开展“喜迎建党90华诞”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢笔每支4.8元,他们要购买这两种笔共40支.如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支?24.(本题8分)2019年某市高档住房的房产税起征价格税率表: 征收价格(1)小明家在市主城九区购买了一套建筑面积为148平方米的新建商品住房,已知成交建筑面积均价分别为16500元/平方米,求这套高档住房应缴房产税多少元;(2)小芳家在市主城九区购买了一套建筑面积为188平方米的新建商品住房,已知小芳家向税务部门缴了37600元的房产税,问这套新建商品住房成交建筑面积均价为多少?25.(本题10分)在“家电下乡”活动中,对彩电、冰箱(含冰柜)、洗衣机三大类家电给予产品销售价格13%的财政资金直补。
人教版七年级数学上册《第三章代数式》单元检测卷及答案
人教版七年级数学上册《第三章代数式》单元检测卷及答案(时间:45分钟满分:100分)一、选择题(每小题5分,共40分)1.下列各式中,符合代数式书写规则的是( )xyA.x×5B.72ab D.m-1÷nC.2142.用代数式表示“a的3倍与b的差的平方”,正确的是( )A.3a-b2B.3(a-b)2C.(3a-b)2D.(a-3b)23.一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩为( )A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)4.有长为L的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t,则所围成的园子的面积为( ))t B.(L-t)tA.(L-t2C.(L-t)t D.(L-2t)t25.下面各选项中的两个量成正比例关系的是( )A.全班的人数一定,出勤人数与缺勤人数B.三角形的面积一定,它的底与高C.已知xy=1,y与xD.已知xy=3,y与x6.若2m-n-4=0,则-2m+n-9的值是( )A.-13B.-5C.5D.137.某超市把一种商品按成本价a元提高60%标价,然后再以7折优惠卖出,则这种商品的售价比成本多( )A.20%B.16%C.15%D.12%8.如图所示的图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑧个图形中实心圆点的个数为( )A.22B.23C.25D.26二、填空题(每小题4分,共16分)9.如果|a+3|+(b-2)2=0,那么代数式(a+b)2 025的值是 .10.对有理数a,b,规定运算如下:a※b=1a +1b,则-2.5※2= .11.如果A×B=4.5,那么A和B成比例关系;如果x÷y=3.5,那么x和y成比例关系;如果m∶1.2=1.5∶n,那么m和n成比例关系.12.找出下列数的排列规律,填上适当的数:13,29,427, .三、解答题(共44分)13.(7分)一个圆柱的底面积与高的关系如下表.底面积/cm2 4 5 6 8 10 …高/cm 15 12 10 7.5 6 …(1)这个圆柱的体积是多少?(2)如果用S表示圆柱的底面积,h表示圆柱的高,S与h成什么比例关系?你能写出这个关系式吗?(3)如果圆柱的底面积是20 cm2,那么圆柱的高是多少?14.(9分)某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+25,-15,-22,+24,-21,+14,-12.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存100 t水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元,出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费(用含a,b的代数式表示)?15.(8分)1号探测气球从海拔2 m处出发,以每秒0.8 m的速度上升.与此同时,2号探测气球从海拔10 m处出发,以每秒 0.3 m 的速度上升,设气球出发的时间为x s.(1)请用含x的代数式表示:1号探测气球与2号探测气球的海拔高度;(2)求出发多长时间1号探测气球与2号探测气球的海拔高度相同.16.(10分)甲、乙两家网购平台以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲平台规定:凡超过1 000元的电器,超出部分的金额打8折;乙平台规定:凡超过500元的电器,超出部分的金额按90%收取,两家平台均免费送货并赠送运费险,若某顾客购买电器的价格是x元,请回答下列问题:(1)当x=800时,该顾客应选择在哪家平台下单比较划算?(2)当x>2 000时,分别用代数式表示在两家平台购买电器所需支付的费用.(3)当x=3 500时,该顾客应该选择哪家平台下单比较划算?请说明理由.17.(10分)高速公路旁有三个物品代收点A,B,C,它们之间的距离如图所示.现要在高速公路旁修建一个货仓,把代收点A,B,C的货全部运到货仓,代收点A每天有50 t货物,代收点B每天有10 t货物,代收点C每天有60 t货物,从A到C方向每吨每千米运费1.5元,从C到A方向每吨每千米运费1元.问货仓应修建在何处才能使运费最低,最低运费是多少?参考答案一、选择题(每小题5分,共40分)1.下列各式中,符合代数式书写规则的是(B)xyA.x×5B.72C.21ab D.m-1÷n42.用代数式表示“a的3倍与b的差的平方”,正确的是(C)A.3a-b2B.3(a-b)2C.(3a-b)2D.(a-3b)23.一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩为(D)A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)4.有长为L的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t,则所围成的园子的面积为(D))t B.(L-t)tA.(L-t2-t)t D.(L-2t)tC.(L25.下面各选项中的两个量成正比例关系的是(D)A.全班的人数一定,出勤人数与缺勤人数B.三角形的面积一定,它的底与高C.已知xy=1,y与x=3,y与xD.已知xy6.若2m-n-4=0,则-2m+n-9的值是(A)A.-13B.-5C.5D.137.某超市把一种商品按成本价a元提高60%标价,然后再以7折优惠卖出,则这种商品的售价比成本多(D)A.20%B.16%C.15%D.12%8.如图所示的图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑧个图形中实心圆点的个数为(D)A.22B.23C.25D.26二、填空题(每小题4分,共16分)9.如果|a+3|+(b-2)2=0,那么代数式(a+b)2 025的值是-1 .10.对有理数a,b,规定运算如下:a※b=1a +1b,则-2.5※2= 110.11.如果A×B=4.5,那么A和B成反比例关系;如果x÷y=3.5,那么x和y成正比例关系;如果m∶1.2=1.5∶n,那么m和n成反比例关系.12.找出下列数的排列规律,填上适当的数:13,29,427, 881.三、解答题(共44分)13.(7分)一个圆柱的底面积与高的关系如下表.底面积/cm2 4 5 6 8 10 …高/cm 15 12 10 7.5 6 …(1)这个圆柱的体积是多少?(2)如果用S表示圆柱的底面积,h表示圆柱的高,S与h成什么比例关系?你能写出这个关系式吗?(3)如果圆柱的底面积是20 cm2,那么圆柱的高是多少?解:(1)4×15=60(cm3).答:这个圆柱的体积是60 cm3.(2)如果用S表示圆柱的底面积,h表示圆柱的高,因为“圆柱的底面积×高=圆柱的体积”,体积一定,也就是积一定,所以S与h成反比例关系,sh=60.(3)60÷20=3(cm).答:如果圆柱的底面积是20 cm2,那么圆柱的高是3 cm.14.(9分)某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+25,-15,-22,+24,-21,+14,-12.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存100 t水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元,出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费(用含a,b的代数式表示)?解:(1)因为+25-15-22+24-21+14-12=-7所以经过这7天,仓库里的水泥减少了,减少了7 t.(2)因为100-(-7)=100+7=107(t)所以那么7天前,仓库里存有水泥107 t.(3)依题意,得进库的装卸费为[(+25)+(+24)+(+14)]a=63a出库的装卸费为(|-15|+|-22|+|-21|+|-12|)b=70b所以这7天要付(63a+70b)元装卸费.15.(8分)1号探测气球从海拔2 m处出发,以每秒0.8 m的速度上升.与此同时,2号探测气球从海拔10 m处出发,以每秒 0.3 m 的速度上升,设气球出发的时间为x s.(1)请用含x的代数式表示:1号探测气球与2号探测气球的海拔高度;(2)求出发多长时间1号探测气球与2号探测气球的海拔高度相同.解:(1)根据题意,1号探测气球的海拔高度为(0.8x+2)m;2号探测气球的海拔高度为(0.3x+10)m.(2)依题意有0.8x+2=0.3x+10解得x=16.故出发16 s 1号探测气球与2号探测气球的海拔高度相同.16.(10分)甲、乙两家网购平台以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲平台规定:凡超过1 000元的电器,超出部分的金额打8折;乙平台规定:凡超过500元的电器,超出部分的金额按90%收取,两家平台均免费送货并赠送运费险,若某顾客购买电器的价格是x元,请回答下列问题:(1)当x=800时,该顾客应选择在哪家平台下单比较划算?(2)当x>2 000时,分别用代数式表示在两家平台购买电器所需支付的费用.(3)当x=3 500时,该顾客应该选择哪家平台下单比较划算?请说明理由.解:(1)顾客购买电器的价格是x=800元时,甲购物平台没有优惠,需要付费800元,乙购物平台有优惠,需要付费500+90%×(800-500)=770(元)所以顾客应选择在乙购物平台下单比较划算.(2)选择甲购物平台下单比较划算.理由如下:顾客购买电器的价格是x>2 000元时,甲购物平台需要付费1 000+80%(x-1 000)=(0.8x+200)(元)乙购物平台需要付费500+90%(x-500)=(0.9x+50)(元).(3)当x=3 500时,甲购物平台需要付费0.8×3 500+200=3 000(元)乙购物平台需要付费0.9×3 500+50=3 200(元)因为3 000<3 200所以该顾客应该选择甲购物平台下单比较划算.17.(10分)高速公路旁有三个物品代收点A,B,C,它们之间的距离如图所示.现要在高速公路旁修建一个货仓,把代收点A,B,C的货全部运到货仓,代收点A每天有50 t货物,代收点B每天有10 t货物,代收点C每天有60 t货物,从A到C方向每吨每千米运费1.5元,从C到A方向每吨每千米运费1元.问货仓应修建在何处才能使运费最低,最低运费是多少?解:①货仓P在A,B之间时,距离点A有x km,则距离点B有(50-x)km,距离点C 有(130-x)km.运费为50x×1.5+10×(50-x)×1+60×(130-x)×1=(5x+8 300)元.由题意,得0≤x≤50所以x=0时,运费最低,为8 300元.②货仓P在B,C之间时,距离点C有y km,则距离点B有(80-y)km,距离点A有(130-y)km.运费为60y×1+10×(80-y)×1.5+50×(130-y)×1.5=(-30y+ 10 950)元.由题意,得0≤y≤80所以当y=80时,运费最低,为8 550元.因为8 300<8 550所以货仓P在A,B之间,距离点A有 0 km,即在A处时,运费最低,为8 300元. 答:货仓在点A处时,运费最低,为 8 300元.自我诊断知识分类题号总分评价1,2,3,4,5,7,8代数式11,12,13,14求代数式的值6,9,10,15,16,17。
七年级上学期数学第三章测试卷(含答案)
(1)15︒65︒东(5)B A O北西南七年级数学第三章测试卷(时间:90分钟 总分:150分)一、填空题:(每空1.5分,共45分)1.82°32′5″+______=180°.2.如图1,线段AD 上有两点B 、C,图中共有______条线段.(2)CBA O E D 4321(3)CBA O ED(4)C BAO ED3.一个角是它补角的一半,则这个角的余角是_________.4.线段AB=5cm,C 是直线AB 上的一点,BC=8cm,则AC=________.5.如图2,直线AB 、CD 相交于点O,OE 平分∠COD,则∠BOD 的余角______, ∠COE 的补角是_______,∠AOC 的补角是______________________.6.如图3,直线AB 、CD 相交于点O,∠AOE=90°,从给出的A 、B 、C 三个答案中选择适当答案填空.(1)∠1与∠2的关系是( ) (2)∠3与∠4的关系是( ) (3)∠3与∠2的关系是( )(4)∠2与∠4的关系是( )A.互为补角B.互为余角C.即不互补又不互余7.如图4,∠AOD=90°,∠COE=90°,则图中相等的锐角有_____对.8.如图5所示,射线OA 表示_____________方向,射线OB 表示______________方向. 9.四条直线两两相交时,交点个数最多有_______个.10.如果一个角是30°,用10倍的望远镜观察,这个角应是_______°.11.38°41′的角的余角等于________,123°59′的角的补角等于________.12.如果∠1的补角是∠2,且∠1>∠2,那么∠2的余角是________(用含∠1 的式子表示). 13.如果∠α与∠β互补,且∠α:∠β=5:4,那么,∠α=_______,∠β=_________. 14.根据下列多面体的平面展开图,填写多面体的名称.(1)__________,(2)__________,(3)_________.15.指出图(1)、 图(2) 、图(3)是左边几何体从哪个方向看到的图形。
人教版七年级上册数学第三章测试卷(附答案)
人教版七年级上册数学第三章测试卷(附答案)人教版七年级上册数学第三章测试卷(附答案)一、单选题(共12题;共36分)1.如果$x=0$是关于$x$的方程$3x-2m=4$的解,则$m$值为()A。
$2$ B。
$-2$ C。
$4$ D。
$-2$2.若$x=-3$是方程$2(x-m)=6$的解,则$m$的值是()A。
$6$ B。
$-6$ C。
$12$ D。
$-2$3.下列方程的变形中正确的是()A.由$x+5=6x-7$得$x-6x=7-5$B.由$-2(x-1)=3$得$-2x-2=3$C.由$2x=-1$得$x=-\frac{1}{2}$D.由$3x+5=12$得$x=2$4.某商品涨价$20\%$后欲恢复原价,则必须下降的百分数约为()A。
$17\%$ B。
$18\%$ C。
$19\%$ D。
$20\%$5.下列等式的变形中,不正确的是()A.若$x=y$,则$x+5=y+5$B.若$(a\neq 0)$,则$\frac{x}{a}=\frac{y}{a}$C.若$-3x=-3y$,则$x=y$D.若$mx=my$,则$x=y$6.解方程,去分母正确的是()A。
$2-(x-1)=1$ B。
$2-3(x-1)=6$ C。
$2-3(x-1)=1$ D。
$3-2(x-1)=6$7.包装厂有$42$名工人,每人平均每天可以生产圆形铁片$120$片或长方形铁片$80$片.为了每天生产的产品刚好制成一个个密封的圆桶,应该分配多少名工人生产圆形铁片,多少名工人生产长方形铁片?设应分配$x$名工人生产长方形铁片,$(42-x)$名工人生产圆形铁片,则下列所列方程正确的是()A。
$120x=2\times 80(42-x)$ B。
$80x=120(42-x)$C。
$2\times 80x=120(42-x)$ D。
$3\times 80x=2\times120(42-x)$8.有一种足球是由$32$块黑白相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形.设白皮有$x$块,则黑皮有$(32-x)$块,要求出黑皮、白皮的块数,列出的方程是()A。
人教版 七年级数学上册 第三章检测题(含答案)
3.1 从算式到方程一、选择题(本大题共12道小题)1. 充若关于x的一元一次方程2x a-2+m=4的解为x=1,则a+m的值为() A.9 B.8 C.5 D.42. 下列方程是一元一次方程的是()(多选)A.1xy=B.225 x+=C.0x=D.13ax+=E.235x+=F.2π 6.28R=3. 下列方程为一元一次方程的是()A.x+2y=3B.y=5C.x2=2xD.+y=24. 下列说法不正确的是()A.等式两边都加上一个数或一个等式,所得结果仍是等式.B.等式两边都乘以一个数,所得结果仍是等式.C.等式两边都除以一个数,所得结果仍是等式.D.一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式.5. 把方程x=1变形为x=2,其方法是()A.等式两边同时乘B.等式两边同时除以C.等式两边同时减D.等式两边同时加6. 若关于x的方程(m-2)-x=3是一元一次方程,则m的值为 ()A.3B.2C.1D.2或17. 如图所示,两个天平都保持平衡,则与两个球体质量相等的正方体的个数为()A.5B.4C.3D.28. 下列方程的变形中,正确的是()A.由2-x=3得x=3-2B.由2x=3x+4得-4=3x-2xC.由3x=2得x=D.由x=0得x=39. 学校把一些图书分给某班学生阅读,若每人分4本,则剩余30本;若每人分5本,则还缺15本.设这个班有学生x人,根据题意可列方程为()A.4x-30=5x+15B.4x+30=5x-15C.4x-30=5x-15D.4x+30=5x+1510. 若2x=-,则8x的值为()A.-4B.-2C.-D.411. [2019·武汉期末]下列说法错误的是()A.若a=b,则ac=bcB.若ac=bc,则a=bC.若=,则a=bD.若a=b,则=12. 已知方程7x-1=6x,则根据等式的性质,下列变形正确的有()①-1=7x+6x;②x-=3x;③7x-6x-1=0;④7x+6x=1.A.1个B.2个C.3个D.4个二、填空题(本大题共6道小题)13. 下列方程中,解是x =5的是________.(填序号)① x +2015=2020;②x +63=3;③x +1=2(8-x );④x 2-x 3=56.14. 根据等式的性质填空.(1)4a b =-,则 a b =+;(2)359x -=,则39x =+ ;(3)683x y =+,则x = ;(4)122x y =+,则x = .15. 在1y =、2y =、3y =中,是方程104y y =-的解.16. 已知关于x 的方程3x-2m=4的解是x=m ,则m 的值是 .17. (1)填写下表:x 0 4 5x -3 7 6+2x12(2)根据上表直接写出方程5x -3=6+2x 的解为________.18. 在等式3a-5=2a+6的两边同时减去一个多项式可以得到等式a=11,那么这个多项式是 .三、解答题(本大题共3道小题)19. 说明下列等式变形的依据: (1)由a=b ,得a+3=b+3; (2)由a-1=b+1,得a=b+4.20. 一件衬衫先按成本加价60元标价,再以8折出售,仍可获利24元,这件衬衫的成本是多少钱?设衬衫的成本为x 元. (1)填写下表:(用含x 的式子表示)成本(元)标价(元)售价(元)x ________________(2)根据相等关系列出方程.21. 先阅读下面一段文字,然后解答问题.已知:方程x-=2-的解是x=2或x=-;方程x-=3-的解是x=3或x=-;方程x-=4-的解是x=4或x=-;方程x-=5-的解是x=5或x=-.问题:观察上述方程及方程的解,猜想出方程x-=10的解,并进行检验.人教版七年级数学 3.1 从算式到方程课时训练-答案一、选择题(本大题共12道小题)1. 【答案】C[解析] 因为关于x的一元一次方程2x a-2+m=4的解为x=1,所以a-2=1,2+m=4,解得a=3,m=2.所以a+m=3+2=5.故选C.2. 【答案】C和F【解析】对于判定一个方程是不是一元一次方程,如果不是整式方程则不是一元一次方程,若是整式方程,则需要化简后再判断是否满足一元一次方程的概念.3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】D[解析] 由题意得:①|m-2|=1且m-2-1≠0,解得m=1.②m-2=0,解得m=2.综上可得,m=1或m=2.故选D.7. 【答案】A[解析] 由右图可知,两个正方体与两根小棒质量相等,由等式的性质可知一个正方体与一根小棒质量相等,由于两个球体与五根小棒质量相等,所以两个球体的质量与五个正方体的质量相等.8. 【答案】B9. 【答案】B[解析] 图书的数量=4本×人数+30本=5本×人数-15本,由题意,得4x+30=5x-15. 故选B .10. 【答案】B[解析] 8x 是2x 的4倍,因此由2x=-左右两边同时乘4可得8x=-×4=-2.11. 【答案】B12. 【答案】B二、填空题(本大题共6道小题)13. 【答案】①③④14. 【答案】(1)4;(2)5;(3)836y +;(4)24y +. 【解析】(1)4a b =+,在等式两端同时加上b ; (2)395x =+,在等式两端同时加上5;(3)836y +,在等式的两端同时乘以16;(4)24y +,在等式的两端同时乘以2.15. 【答案】2y =16. 【答案】4[解析] 把x=m 代入关于x 的方程,得3m-2m=4,解得m=4.17. 【答案】(1)填表如下:x 0 2 3 45x-3 -3 7 12 176+2x 6 10 12 14(2)x=318. 【答案】2a-5三、解答题(本大题共3道小题)19. 【答案】解:(1)由a=b,得a+3=b+3的依据是等式的性质1,在等式两边加3,结果仍相等.(2)由a-1=b+1,得a=b+4的依据是先根据等式的性质1,在等式两边加1,得a-1+1=b+1+1,即a=b+2,再根据等式的性质2,在等式两边乘2,得2×a=2×b+2×2,即a=b+4.20. 【答案】解:(1)x+6080%(x+60)(2)根据题意,可得80%(x+60)-x=24.21. 【答案】解:猜想:方程x-=10的解是x=11或x=-.检验:当x=11时,左边=11-=10=右边;当x=-时,左边=-+11=10=右边,所以x=11和x=-都是方程x-=10的解.3.2解一元一次方程合并同类项及移项一.选择题1.方程x+2=3的解是()A.3 B.﹣3 C.1 D.﹣12.下列变形属于移项的是()A.由=1,得x=5 B.由﹣7x=2,得x=﹣C.由﹣5x﹣2=0,得﹣2=5x D.由﹣3+2x=9,得2x﹣3=93.解方程4(2x+3)=8(1﹣x)﹣5(x﹣2)时,去括号正确的是()A.8x+12=8﹣x﹣5x+10 B.8x+3=8﹣8x﹣5x+10C.8x+12=﹣8x﹣5x﹣10 D.8x+12=8﹣8x﹣5x+104.下列解方程错误的是()A.由7x=6x﹣1得7x﹣6x=﹣1 B.由5x=10得x=2C.由3x=6﹣x得3x+x=6 D.由x=9得x=﹣35.方程11x+1=5(2x+1)的解是()A.0 B.﹣6 C.4 D.66.小明解方程﹣1去分母时,方程右边的﹣1忘记乘6,因而求出的解为x=﹣2,那么原方程正确的解为()A.x=5 B.x=﹣7 C.x=﹣13 D.x=17.下列各方程,变形不正确的是()A.去分母化为2(x﹣3)﹣5(x+4)=10B.2(x﹣3)﹣5(x+4)=10去括号为:2x﹣3﹣5x+20=10C.2x﹣3﹣5x+20=10移项得:2x﹣5x=10﹣20+3D.2x﹣5x=10﹣20+3合并同类项得:﹣3x=﹣78.方程的解是()A.x=﹣B.x=C.x=﹣D.x=9.下列解方程过程中变形正确的是()A.由3x﹣2=2x+1,移项得3x+2x=2+1B.由﹣=﹣1,去分母得2(x﹣2)﹣3x﹣2=﹣4C.由2﹣3(x﹣1)=4,去括号得2﹣3x+3=4D.由2x+3﹣x=5,合并同类项得3x+3=5.10.x+2x+3x+4x+5x+…+97x+98x+99x+100x=5050,x的解是()A.0 B.1 C.﹣1 D.10二.填空题11.将方程4(2x﹣5)=3(x﹣3)﹣1变形为8x﹣20=3x﹣9﹣1的变形步骤是.12.当x=时,的值是1.13.对于数x,规定(x n)′=nx n﹣1(n是大于1的正整数),若(x2)′=﹣2,则x=.14.当x=时,代数式﹣2的值是﹣1.15.a,b互为相反数,c,d互为倒数,则关于x的方程(a+b)x2+3cd(x﹣1)﹣2x=0的解为x=.三.解答题16.解方程(1)4x+7.5=13;(2)x﹣0.6x=5.17.解方程(1)2.5m+10m﹣15=6m﹣21.5;(2)+y=3+8y.18.解比例:(1)3:18=5:x;(2)x:0.25=3.6:0.1;(3)x:10=:;(4)=.19.定义新运算“⊕”如下:当a≥b时,a⊕b=ab+b;当a<b时,a⊕b=ab ﹣a.解方程(2x﹣1)⊕(x+2)=0.参考答案与试题解析一.选择题1.【解答】解:方程x+2=3,解得:x=1,故选:C.2.【解答】解:A、由=1,系数化为1,得到x=5,不合题意;B、由﹣7x=2,系数化为1,得到x=﹣,不合题意;C、由﹣5x﹣2=0,移项得:﹣2=5x,符合题意;D、由﹣3+2x=9,得2x﹣3=9,不合题意.故选:C.3.【解答】解:方程去括号得:8x+12=8﹣8x﹣5x+10,故选:D.4.【解答】解:A、由7x=6x﹣1得7x﹣6x=﹣1,正确;B、由5x=10得x=2,正确;C、由3x=6﹣x得3x+x=6,正确;D、由x=9得x=27,错误,故选:D.5.【解答】解:11x+1=5(2x+1)11x+1=10x+511x﹣10x=5﹣1x=4,故选:C.6.【解答】解:﹣1去分母时,方程右边的﹣1忘记乘6,则所得的方程是2(2x﹣1)=3(x+a)﹣1,把x=﹣2代入方程得2(﹣4﹣1)=3(﹣2+a)﹣1,解得:a=﹣1.把a=﹣1代入方程,得.去分母,得2(2x﹣1)=3(x﹣1)﹣6,去括号,得4x﹣2=3x﹣3﹣6,移项,得4x﹣3x=﹣3﹣6+2,合并同类项,得x=﹣7.故选:B.7.【解答】解:A、﹣=1去分母化为:2(x﹣3)﹣5(x+4)=10,正确;B、2(x﹣3)﹣5(x+4)=10去括号为:2x﹣6﹣5x﹣20=10,错误;C、2x﹣3﹣5x+20=10移项得:2x﹣5x=10﹣20+3,正确;D、2x﹣5x=10﹣20+3合并同类项得:﹣3x=﹣7,正确,故选:B.8.【解答】解:方程整理得:﹣x=,去分母得:4(50x+200)﹣12x=3(3x+12),去括号得:200x+800﹣12x=9x+36,移项合并得:179x=﹣764,系数化为1得:x=﹣.故选:A.9.【解答】解:A、由3x﹣2=2x+1,移项得3x﹣2x=2+1,错误;B、由﹣=﹣1,去分母得2(x﹣2)﹣(3x﹣2)=﹣4,错误;C、由2﹣3(x﹣1)=4,去括号得2﹣3x+3=4,正确;D、由2x+3﹣x=5,合并同类项得x+3=5,错误.故选:C.10.【解答】解:x+2x+3x+4x+5x+…+97x+98x+99x+100x=5050 合并同类项得5050x=5050,系数化为1,得x=1.故选:B.二.填空题(共5小题)11.【解答】解:将方程4(2x﹣5)=3(x﹣3)﹣1变形为8x﹣20=3x﹣9﹣1的变形步骤是去括号,故答案为:去括号12.【解答】解:根据题意得:=1,去分母得:2x﹣1=2,解得:x=.故答案为:13.【解答】解:∵(x n)′=nx n﹣1(n是大于1的正整数),∴(x2)′=2x=﹣2,解得x=﹣1.故答案为:﹣1.14.【解答】解:根据题意得:﹣2=﹣1.去分母得;4x﹣5﹣6=﹣3移项得:4x=﹣3+5+6合并同类项得:4x=8,系数化为1得:x=2.所以当x=2时,代数式﹣2的值是﹣1.15.【解答】解:根据题意得:a+b=0,cd=1,代入方程得:3(x﹣1)﹣2x=0,去括号得:3x﹣3﹣2x=0,解得:x=3,故答案为:3三.解答题(共4小题)16.【解答】解:(1)4x+7.5=13,移项,得4x=13﹣7.5,合并同类项,得4x=5.5,系数化为1,得x=1.375;(2)x﹣0.6x=5,合并同类项,得0.4x=5,系数化为1,得x=.17.【解答】解:(1)2.5m+10m﹣15=6m﹣21.5,移项得:2.5m+10m﹣6m=﹣21.5+15,合并同类项得:6.5m=﹣6.5,系数化为1得:m=﹣1;(2),移项得:,合并同类项得:﹣2.5y=,系数化为1得:y=﹣.18.【解答】解:(1)3:18=5:x,3x=18×5,x=30;(2)x:0.25=3.6:0.1,0.1x=0.25×3.6,x=9;(3)x:10=:,,x=;(4)=,4.8x=4×3.6,x=3.19.【解答】解:当2x﹣1≥x+2即x≥3时,(2x﹣1)⊕(x+2)=(2x﹣1)(x+2)+x+2=0,解得:x=0或x=﹣2,∵x≥3,∴x=0或x=﹣2均舍去;2x﹣1≤x+2即x≤3时,(2x﹣1)⊕(x+2)=(2x﹣1)(x+2)﹣(2x﹣1)=0,解得:x=﹣1或x=.3.3解一元一次方程(二)——去括号与去分母1.解方程4(x-2)=2(x+3),去括号,得 .移项,得 .合并同类项,得 .系数化为1,得 .2.将方程2x-3(4-2x)=5去括号,正确的是( )A.2x-12-6x=5B.2x-12-2x=5C.2x-12+6x=5D.2x-3+6x=53.方程2(x-3)+5=9的解是( )A.x=4B.x=5C.x=6D.x=74.解下列方程:(1)2(x-1)+1=0; (2)2x+5=3(x-1).5.解方程:2(3-4x)=1-3(2x-1).解:去括号,得6-4x=1-6x-1.(第一步)移项,得-4x+6x=1-1-6.(第二步)合并同类项,得2x=-6.(第三步)系数化为1,得x=-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.6.下列是四个同学解方程2(x-2)-3(4x-1)=9的去括号的过程,其中正确的是( )A.2x-4-12x+3=9B.2x-4-12x-3=9C.2x-4-12x+1=9D.2x-2-12x+1=97.若5m +4与-(m -2)的值互为相反数,则m 的值为( )A.-1B.1C.-12D.-328.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为( )A.-1B.1C.12D.-129.解下列方程:(1)4(3x -2)-(2x +3)=-1;(2)4(y +4)=3-5(7-2y);(3)12x +2(54x +1)=8+x.10.若方程3(2x -2)=2-3x 的解与关于x 的方程6-2k =2(x +3)的解相同,求k 的值.第2课时利用去括号解一元一次方程的实际问题1.下面是两位同学的对话,根据对话内容,可求出这位同学的年龄是( )A.11岁B.12岁C.13岁D.14岁2.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元.问甲、乙两种奖品各购买了多少件?(1)若设甲种奖品购买了x件,请完成下面的表格;件数单价金额甲种奖品x件每件40元40x元乙种奖品件每件30元元(2)列出一元一次方程,解决问题.3.丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品.因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?4.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?5.一架飞机在两城市之间飞行,风速为24 km/h,顺风飞行需要2 h 50 min,逆风飞行需要3 h.求无风时飞机的飞行速度和两城之间的航程.6.食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克.已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少瓶?第3课时 利用去分母解一元一次方程1.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =15-3(x -1) B.x =1-(3x -1)C.5x =1-3(x -1)D.5x =3-3(x -1)2.下列等式变形正确的是( )A.若-3x =5,则x =-35B.若x 3+x -12=1,则2x +3(x -1)=1 C.若5x -6=2x +8,则5x +2x =8+6D.若3(x +1)-2x =1,则3x +3-2x =13.要将方程2t -53+3-2t 5=3的分母去掉,在方程的两边最好是乘 . 4.依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.( ) 去分母,得3(3x +5)=2(2x -1).( )去括号,得9x +15=4x -2.( )( ),得9x -4x =-15-2.( )合并同类项,得5x =-17.( ),得x =-175.( ) 5.解下列方程:(1)x +12=3+x -64; (2)x -32-4x +15=1.6.某项工程甲单独做4天完成,乙单独做6天完成,已知甲先做1天,然后甲、乙合作完成此项工程.若设甲一共做了x 天,则所列方程为( )A.x 4+x +16=1B.x 4+x -16=1 C.x +14+x 6=1 D.x 4+14+x -16=1 7.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =1-3(x -1) B.x =1-(3x -1)C.5x =15-3(x -1)D.5x =3-3(x -1)9.某书上有一道解方程的题:1+□x 3+1=x ,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =-2,那么□处应该是数字( )A.7B.5C.2D.-210.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( )A.x +12050-x 50+6=3B.x 50-x 50+6=3 C.x 50-x +12050+6=3 D.x +12050+6-x 50=3 11.若规定a*b =a +2b 2(其中a ,b 为有理数),则方程3*x =52的解是x = . 12.解下列方程:(1)x -13-x +26=4-x 2; (2)2x +13-5x -16=1;(3)2x +14-1=x -10x +112; (4)x 0.7-0.17-0.2x 0.03=1.13.某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A ,C 两地相距10千米(C 地在A 地上游),船在静水中的速度为7.5千米/时.求A ,B 两地间的距离.14.解关于x 的方程a -x +73=2(5-x),小刚去分母时忘记了将右边乘3,其他步骤都是正确的,巧合的是他求得的结果仍然是原方程的解,即小刚将求得的结果代入原方程后,左边与右边竟然也相等!你能求出使这种巧合成立的a 的值吗?参考答案:3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程1.解方程4(x -2)=2(x +3),去括号,得4x -8=2x +6.移项,得4x -2x =6+8.合并同类项,得2x =14.系数化为1,得x =7.2.C3.B4.(1)2(x -1)+1=0; 解:去括号,得2x -2+1=0. 移项、合并同类项,得2x =1. 系数化为1,得x =12.(2)2x +5=3(x -1). 解:2x +5=3x -3, 2x -3x =-3-5, -x =-8, x =8.5.解:第一步错误.正确的解答过程如下: 去括号,得6-8x =1-6x +3. 移项,得-8x +6x =1+3-6. 合并同类项,得-2x =-2. 系数化为1,得x =1. 6.A7.D8.B9.(1)4(3x -2)-(2x +3)=-1; 解:去括号,得12x -8-2x -3=-1. 移项,得12x -2x =8+3-1. 合并同类项,得10x =10. 系数化为1,得x =1.(2)4(y +4)=3-5(7-2y);解:去括号,得4y +16=3-35+10y. 移项、合并同类项,得-6y =-48. 系数化为1,得y =8. (3)12x +2(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x.移项、合并同类项,得2x =6. 系数化为1,得x =3.10.解:由3(2x -2)=2-3x ,解得x =89.把x =89代入方程6-2k =2(x +3),得6-2k =2×(89+3).解得k =-89.第2课时 利用去括号解一元一次方程的实际问题1.C2.(2)解:根据题意,得 40x +30(20-x)=650. 解得x =5. 则20-x =15.答:购买甲种奖品5件,乙种奖品15件. 3.解:设装运香菇的汽车需x 辆.根据题意,得 1.5x +2(6-x)=10.解得x =4. 所以6-x =2.答:装运香菇、茶叶的汽车分别需要4辆和2辆.4.解:设七年级收到的征文有x 篇,则八年级收到的征文有(118-x)篇,依题意,得 (x +2)×2=118-x ,解得x =38. 答:七年级收到的征文有38篇.5.解:设无风时飞机的飞行速度为x km/h ,则顺风时飞行的速度为(x +24) km/h ,逆风飞行的速度为(x -24) km/h.根据题意,得 176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h ,两城之间的航程为2 448 km. 6.解:设A 饮料生产了x 瓶,则B 饮料生产了(100-x)瓶.根据题意,得 2x +3(100-x)=270.解得x =30. 则100-x =70.答:A 饮料生产了30瓶,B 饮料生产了70瓶.第3课时 利用去分母解一元一次方程1.A2.D3. 15.4.解:原方程可变形为3x +52=2x -13.(分数的基本性质)去分母,得3(3x +5)=2(2x -1).(等式的性质2) 去括号,得9x +15=4x -2.(去括号法则) (移项),得9x -4x =-15-2.(等式的性质1) 合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的性质2)5.(1)x +12=3+x -64;解:2(x +1)=12+(x -6). 2x +2=12+x -6.2x +2=x +6. x =4.(2)x -32-4x +15=1.解:去分母,得5x -15-8x -2=10, 移项合并,得-3x =27, 解得x =-9. 6.B7.解:设应先安排x 人工作, 根据题意,得4x 40+8(x +2)40=1.化简可得:x 10+x +25=1,即x +2(x +2)=10. 解得x =2.答:应先安排2人工作. 8.C 9.B 10.C 11. 1.12.(1)x -13-x +26=4-x2;解:去分母,得2(x -1)-(x +2)=3(4-x). 去括号,得2x -2-x -2=12-3x. 移项,得2x -x +3x =2+2+12. 合并同类项,得4x =16. 系数化为1,得x =4. (2)2x +13-5x -16=1;解:去分母,得2(2x +1)-(5x -1)=6. 去括号,得4x +2-5x +1=6. 移项、合并同类项,得-x =3. 系数化为1,得x =-3.(3)2x +14-1=x -10x +112;解:去分母,得6x +3-12=12x -10x -1, 移项合并,得4x =8, 解得x =2.(4)x 0.7-0.17-0.2x 0.03=1. 解:原方程可化为10x 7-17-20x 3=1.去分母,得30x -7(17-20x)=21. 去括号,得30x -119+140x =21. 移项、合并同类项,得170x =140. 系数化为1,得x =1417.13.解:设A ,B 两地间的距离为x 千米,依题意,得 x 7.5+2.5+x +107.5-2.5=4,解得x =203.答:A ,B 两地间的距离为203千米.14.解:因为去分母时忘了将右边乘3,所以a -x +73=2(5-x)化为3a -x -7=10-2x ,解得x =17-3a.因为将求得的结果代入原方程,左边与右边相等, 所以把x =17-3a 代入a -x +73=2(5-x),得 a -17-3a +73=2[5-(17-3a)],整理,得4a =16. 解得a =4,故a 的值为4.3.4实际问题与一元一次方程一.选择题1.小明和小刚从相距25.2千米的两地同时相向而行,小明每小时走4千米,3小时后两人相遇,设小刚的速度为x 千米/时,列方程得( )A .4325.2x +=B .3425.2x ⨯+=C .3(4)25.2x +=D .3(4)25.2x -=2.某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( )A.0.92aB.1.12aC.1.12aD.0.81a3.某商店以每件120元的价格卖出两双鞋,其中一件盈利20%,另一件亏损20%,那么商店卖出这两双鞋总的是( ) A .盈利10元 B .亏损10元 C .亏损16元 D .不赚不亏 4.初一(一)班举行了一次集邮展览,如果将展出的邮票分给每位同学,平均每人分3张还多余24张,平均每人分4张还差26张,这个班共展出邮票的张数是( )A.164B.178C.168D.174 5.有m 辆客车及n 个人.若每辆客车乘40人,则还有10人不能上车. 若每辆客车乘43人,则还有1人不能上车.下列所列方程:①4010431m m +=- ② 1014043n n --=③4010431m m +=+ ④1014043n n ++=其中正确的是 ( ) A.①②③ B. ②③④ C. ③④ D.②③ 6.某商品连续两次降价,其售价由原来的a 元降到了b 元.设平均每次降价的百分率为x ,则列出方程正确的是( )A .21()a x b +=B . 21()b x a += C .21()a x b -= D . 21()b x a -=7.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的.若设甲一共做了x 天,则所列方程为()A.B.C.D.8.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为()。
七年级上册数学第三章测试卷【含答案】
七年级上册数学第三章测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. $\frac{4}{6}$B. $\frac{5}{7}$C. $\frac{6}{8}$D. $\frac{7}{9}$5. 一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 36厘米B. 26厘米C. 46厘米D. 42厘米二、判断题(每题1分,共5分)6. 任何两个偶数相加的和都是偶数。
()7. 一个正方形的对角线把它分成两个相等的直角三角形。
()8. 任何一个合数都可以分解为几个质数的乘积。
()9. 如果两个角是对顶角,那么这两个角一定相等。
()10. 在三角形中,最长边所对的角一定是直角。
()三、填空题(每题1分,共5分)11. 一个数的因数是______和______。
12. 一个长方体的表面积是______。
13. 等边三角形的每个内角是______度。
14. 如果一个数是6的倍数,那么这个数最小可能是______。
15. 1千米等于______米。
四、简答题(每题2分,共10分)16. 请简述质数和合数的区别。
17. 什么是等腰三角形?它有什么特点?18. 请解释长方体的体积是如何计算的。
19. 什么是比例?请给出一个比例的例子。
20. 请解释什么是平行线,并给出一个例子。
五、应用题(每题2分,共10分)21. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。
22. 一个等边三角形的周长是24厘米,求这个三角形的边长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章检测卷
时间:120分钟 满分:120分
一、选择题(每小题3分,共30分)
1.在圆的面积公式S =πr 2中,常量为( ) A .S B .π C .r D .S 和r
2.用总长50m 的篱笆围成长方形场地,长方形的面积S (m 2)与一边长l (m)之间的关系式为S =l (25-l ),那么下列说法正确的是( )
A .l 是常量,S 是变量
B .25是常量,S 与l 是变量,l 是因变量
C .25是常量,S 与l 是变量,S 是因变量
D .以上说法都不对
3.如果圆珠笔有12支,总售价为18元,用y (元)表示圆珠笔的总售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是( )
A .y =12x
B .y =18x
C .y =23x
D .y =3
2
x
4.如图是护士统计一位病人的体温变化图,这位病人在16时的体温约是( )
A .37.8℃
B .38℃
C .38.7℃
D .39.1℃
5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d
A.b =d 2 B .b =2d C .b =d
2
D .b =d +25
6.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v 和行驶时间t 之间的关系用图象表示,其图象可能是( )
7.某梯形上底长、下底长分别是x,y,高是6,面积是24,则y与x之间的关系式是() A.y=-x+8 B.y=-x+4
C.y=x-8 D.y=x-4
8.如图是某港口一天24小时的水深情况变化图象,其中点A处表示的是4时水深16米,点B处表示的是20时水深16米.某船在港口航行时,其水深至少要有16米,该船在港口装卸货物的时间需8小时,另外进港停靠和离港共需4小时.若此船要在进港的当天返航,则该船必须在一天中()
A.4时至8时内进港B.4时至12时内进港
C.8时至12时内进港D.8时至20时内进港
第8题图第9题图
9.星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分钟)的关系图象.根据图象信息,下列说法正确的是()
A.小王去时的速度大于回家的速度
B.小王在朋友家停留了10分钟
C.小王去时花的时间少于回家时所花的时间
D.小王去时走下坡路,回家时走上坡路
10.如图,在正方形ABCD中,AB=2,E是AB的中点,动点P从点B开始,沿着边BC,CD匀速运动到点D.设点P运动的时间为x,EP=y,那么能表示y与x关系的图象大致是()
二、填空题(每小题3分,共24分)
11.大家知道,冰层越厚,所承受的压力越大,其中自变量是__________,因变量是________________.
12.如图是某市某天的气温T(℃)随时间t(时)变化的图象,则由图象可知,该天最高气温与最低气温之差为________℃.
第12题图
13.某复印店用电脑编辑并打印一张文稿收费2元,再每复印一张收费0.3元,则总收
费y(元)与同样文稿的数量x(张)之间的关系式是______________.
14.1~6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y(克)和月龄x(月)
则6个月大的婴儿的体重约为________.
15.如图所示的图象反映的过程是:小明从家去书店看书,又去学校取封信后马上回家,其中x表示时间,y表示小明离开家的距离,则小明从学校回家的平均速度为________千米/时.
第15题图
16.某地区截止到2017年栽有果树2400棵,计划今后每年栽果树300棵,x年后,总共栽有果树y棵,则y与x之间的关系式为______________;当x=2时,y的值为________.17
则每排的座位数m与排数n的关系式为____________.
18.如图是小明从学校到家里行进的路程s(米)与时间t(分钟)的关系图象.观察图象得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快.其中正确的有__________(填序号).
三、解答题(共66分)
19.(8分)下表记录的是某橘农去年橘子的销售额(元)随橘子销量(千克)变化的有关数
(1)
(2)当销量是5千克时,销售额是多少?
(3)估计当销量是50千克时,销售额是多少?
20.(8分)在如图所示的三个图象中,有两个图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学
校;
情境b:小芳从家出发,走了一段路程后,为了赶时间以更快的速度前进.
(1)情境a,b所对应的图象分别是________,________(填序号);
(2)请你为剩下的图象写出一个适合的情境.
21.(8分)如图,圆柱的高是4cm,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.
(1)在这个变化过程中,自变量是________,因变量是________;
(2)圆柱的体积V与底面半径r的关系式是____________;
(3)当圆柱的底面半径由2变化到8时,圆柱的体积由________cm3变化到________cm3.
22.(8分)心理学家发现学生对概念的接受能力y与提出概念所用的时间x(分)之间有如下关系:(其中0≤x≤30)
(1)当提出概念所用的时间是10分钟时,学生的接受能力是多少?
(2)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;
(3)从表中可知,时间x在什么范围内,学生的接受能力逐步增强?时间x在什么范围内,
学生的接受能力逐步降低?
23.(10分)温度的变化是人们在生活中经常谈论的话题,请你根据图象(如图)回答下列问题:
(1)上午9时的温度是多少?这一天的最高温度是多少?
(2)这一天的温差是多少?从最低温度到最高温度经过了多长时间?
(3)在什么时间范围内温度在下降?图中的A点表示的是什么?
24.(12分)圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:
(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少?
(2)圣诞老人在超市逗留了多长时间?
(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?
25.(12分)某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(时)的关系如图所示.
(1)根据图象填空:
①甲、乙中,________先完成一天的生产任务;在生产过程中,________因机器故障停止生产________小时;
②当甲、乙所生产的零件个数相等时,求t的值;
(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.
参考答案与解析
1.B 2.C 3.D 4.C 5.C
6.B7.A8.A9.B10.C
11.冰层的厚度冰层所承受的压力
12.12 13.y =0.3x +1.7 14.8200克 15.6
16.y =2400+300x 3000 17.m =3n +35 18.①②④
19.解:(1)表中反映了橘子的销量与销售额之间的关系,橘子的销量是自变量,销售额是因变量.(4分)
(2)当销量是5千克时,销售额是10元.(6分) (3)当销量是50千克时,销售额是100元.(8分) 20.解:(1)图③ 图①(4分)
(2)答案不唯一,如:小芳离开家不久,休息了一会儿,又走回了家.(8分) 21.解:(1)半径r 体积V (2分) (2)V =4πr 2(5分) (3)16π 256π(8分)
22.解:(1)当x =10时,y =59,所以时间是10分钟时,学生的接受能力是59.(2分) (2)当x =13时,y 的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强.(4分)
(3)由表中数据可知当2<x <13时,y 值逐渐增大,学生的接受能力逐步增强;当13<x <20时,y 值逐渐减小,学生的接受能力逐步降低.(8分)
23.解:(1)利用图象得出上午9时的温度是27℃,这一天的最高温度是37℃.(3分) (2)这一天的温差是37-23=14(℃),从最低温度到最高温度经过了15-3=12(小时).(6分)
(3)温度下降的时间范围为0时至3时及15时至24时,图中的A 点表示的是21点时的气温.(10分)
24.解:(1)由图象可知去超市用了10分钟,从超市返回用了20分钟,家到超市的距离是4千米,(2分)故圣诞老人去超市的速度是4÷10=2
5(千米/分),从超市返回的速度是4÷20
=1
5
(千米/分).(4分) (2)在超市逗留的时间是40-10=30(分钟).(7分)
(3)去超市的过程中2÷25=5(分钟),返回的过程中2÷1
5=10(分钟),40+10=50(分钟).故
圣诞老人在8:05和8:50时离家2千米.(12分)
25.解:(1)①甲 甲 3 (3分)
②由图象可知甲、乙所生产的零件个数相等时有两个时刻.第一个时刻为t =3时,(5分)设第二个时刻为t =x 时,则此时甲生产零件10+40-10
7-5(x -5)=15x -65(个),乙生产零
件4+40-48-2(x -2)=6x -8(个),则15x -65=6x -8,解得x =193.综上可知,当t =3和193时,
甲、乙所生产的零件个数相等.(9分)
(2)甲在5~7时的生产速度最快,(10分)∵40-10
7-5=15(个),∴他在这段时间内每小时
生产零件15个.(12分)。