离心泵理论及特性曲线

合集下载

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。

离心泵的主要性能参数有流量、压头、效率、轴功率等。

它们之间的关系常用特性曲线来表示。

特性曲线是在一定转速下,用20℃清水在常压下实验测得的。

(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。

离心泵的流量与泵的结构、尺寸和转速有关。

2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。

压头的影响因素在前节已作过介绍。

3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。

反映能量损失大小的参数称为效率。

离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。

闭式叶轮的容积效率值在0.85~0.95。

(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。

这种损失可用水力效率ηh来反映。

额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。

(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。

机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。

离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。

通常,小泵效率为50~70%,而大型泵可达90%。

4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。

离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。

离心泵特性曲线

离心泵特性曲线

离心泵特性曲线
离心泵特性曲线是衡量离心泵性能总体效率的一种重要标准,从它可以了解离心泵的流量、压力、运行电流强度之间的关系。

根据离心泵的结构,可以区分水力性能和电气性能,他们各自的特性曲线不完全一样。

离心泵的水力特性曲线,正输出量随压力的变化构成,是衡量特定离心泵的水力效率的基本依据。

水力特性曲线表明离心泵在静态工作条件下,输出流量与压力之间的变化关系,且一般情况下压力越高,可输出流量越低。

另一方面,电气性能特性曲线,它表述的是当离心泵输出流量变化时,所需的电功率的变化。

电气性能特性曲线表明,一般情况下,当输出液体流量增加,电功率也会增加。

离心泵特性曲线提供了对离心泵功能表现的观察和分析,有帮助于检查污染排放,故障排除,优化设计及宣传技术,运行状态查看等,所以它对于查验离心泵性能非常重要和实用。

此外,离心泵特性曲线也常常被用来研究离心泵的可靠性以及未来配置的升级,如加入变频器,以节约能源。

离心泵理论及特性曲线

离心泵理论及特性曲线
2 h k Q 扩散器损失为 q q
所以摩擦损失和扩散器损失为
hmq hm hq kmQ 2 kqQ 2 k mq Q 2
式中 k mq ——摩擦和扩散损失系数。 2)冲击损失和涡流损失 冲击损失和涡流损失hq的大小与水泵运转时流量Q和 设计流量Qe之差的平方成正比,即
hg k g (Q Qe ) 2
1
Hl
1 (u 2 c 2u u1 c1u ) g
1u
1 H l u 2 c 2u g
2)理论扬程Hl与u2有关,而
u2 =
D 2 n
60
因此,增加转速n和加大叶轮直径D2,可以提高水泵的理论扬程。 3)流体所获得的理论扬程Hl与流体种类无关。对于不同流体,只 要叶轮进、出口处流体的速度三角形相同,都可以得到相同的Hl。
3)理论压头与理论流量的关系 ⑴ 前弯叶片, β2 > 90º,cotβ2<0, 故 Hl = A + BQl; 理论压 头随理论流量增加而增大,即Hl随着Ql的增加而增加,是一条上 升的直线。
⑵ 径向叶片, β2=90º cotβ2=0 B=0 故Hl=A; 理 论压头为定值不变,即Hl不随着Ql的增加而变化 ,是一条与横 坐标平行的直线。 ⑶ 后弯叶片 β2< 90º cotβ2> 0 B > 0 故 Hl = A - BQl; 理论压头与理论流量成反比,是一条下降的直线。
水泵工作时,叶轮传递给水的理论功率为
Pl = Ql H l
水泵的轴功率PZ可用叶轮入口间水流上的外力矩M和叶轮的角速度
之乘积来表示,即
PZ M
Ql
g (c 2 l 2 c1l1 )
根据动量矩定理可知:作用在叶轮上的外力矩等于每秒钟流经叶轮 出入口间水的动量矩的增量,即

离心泵的参数和特性曲线

离心泵的参数和特性曲线
液体物理性质对特性曲线的影响 : 生产厂所提供的特性曲线是以清水作为工作介质测 定的,当输送其它液体时,要考虑液体密度和粘度 的影响。 密度与轴功率的关系,可用下式计算: N1=N2· r1/r2 式中:N1\N2---分别为输送介质和常温清水时的轴 功率。 r1、r2---分别为输送介质和常温清水的密度。 从计算的结果可以得到这样的结论:离心泵的体积 流量及压头与液体密度无关。即当液体密度增加时, 轴功率也随之增加当,液体的密度减轻时,轴功率 也就随之而下降。
综上所述,可以看出,在输送粘性液体 时,泵的特性会发生较大的变化。因此, 对于粘度过大的油,由于其流动性很差, 不宜使用离心泵输送,一般粘度大于650 厘沲时,应选用往复泵或齿轮泵等。
离心泵的转速对特性曲线影响
离心泵的转速对特性曲线的影响: 当液体粘度不大,泵的效率不变时,泵 的流量、压头、轴功率与转速可近似用 比例定律计算,即 :
机泵的基本参数
汽蚀余量NPSH :汽蚀余量是指在泵吸入口处单 位重量液体所具有的超过汽化压力的富余能量。 单位用 米 标注。汽蚀余量又叫净正吸头,是表示 汽蚀性能的主要参数 。 泵在工作时液体在叶轮的进口处因一定真空压力 下会产生汽体,汽化的气泡在液体质点的撞击运 动下,对叶轮等金属表面产生剥蚀,从而破坏叶 轮等金属,此时真空压力叫汽化压力。 吸程即为必需汽蚀余量Δh:即泵允许吸液体的真 空度,亦即泵允许的安装高度,单位用 米。 吸程=标准大气压(10.33米)-汽蚀余量-安全量 (0.5米) 1个标准大气压能压10.33米水柱
机泵的基本参数
扬程H :扬程是泵所抽送的单位重量液体从泵进口 处(泵进口法兰)到泵出口处(泵出口法兰)能量 的增值。也就是一牛顿液体通过泵获得的有效能量。 其单位是N· m/N=m,即泵抽送液体的液柱高度,习 惯简称为 米。 H = ( P2 - P1 ) /ρ 泵的压力用P表示,单位为Mpa(兆帕) P2:出口压力 P1:进口压力 转速n :转速是泵轴单位时间的转数,用符号n表 示,单位是 r/minຫໍສະໝຸດ 液体物理性质对特性曲线影响

水泵特性曲线.

水泵特性曲线.

第/弋节离心泵的特性曲线离心泵的特性曲线定义-、理论特性曲线的定性分实测特性曲线的讨论离心泵的特性曲线定义当转速n为常量时,列出H、N、n以及Hs等随渝量变化的函数关系,即:H = f (Q) N = F (Q)Hs =屮(Q) n=<P (Q)我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。

叶轮中通过的水量可用下式表示:Q T = FzCzr也即: n - T^2r- 式中Q T ----- 泵理论流量(nP/s );F2——叶轮的出口面积(in2),C N —叶轮出口处水流绝对速度的径向(m/s ) C一、理论特性曲线的定性分析1、理论扬程特性曲线的定性分析J 胪 由叫=将 Czu = U2 ■ C2rCtgp2 代入, 可得:Hy = KU2・ C2rCtgp2) s Q 图1-22 速度三角形"Cu=Ceosa = u - C,etgf3 Cj=Csma所以:H T = ILa (U2 - * Ctgp2)式中卩2、F2均为常数。

当水泵转速一定时,U2也为常数。

HT = A - B Q T是一个直线方程。

其斜率是用卩2来反映的p2> 90-B^,H T = A + B QT后弯式,上倾直线,扬程随流量的增加而减小。

02= 9()2时,径向式,是一条水平直线,扬程不随理论流量的变化。

p2< 90:时,H T = A-BQ T前弯式,是一条下倾直线,理论扬程随理论流量的增加而增加。

二、实测特性曲线的讨论7040302010J oz1、每一个Q都对应于一定的H, N n Hs2. Q-H曲线是一条不规则的下倾曲线(1)设计工况点。

最高效率点,水泵在该点工作效率最高。

(2)水泵高效工作段。

是水泵效率较高的工作范围,最髙效率点10%左右范围内作为水泵的高效工作段,选泵时,应使设计流量和扬程落在高效段内。

3、Q—N曲线N随着Q的增大而增大,闭闸启动:水泵启动前,压水管路闸阀是全闭的,待电动机运转正常后,压力表读数达到预定数值时,再逐步打开闸阀,使水泵工作正常运行。

水泵特性曲线

水泵特性曲线
中任意一点A的各项纵坐标值,可归纳如下:
每 或1者k扬说g程水,(通当过H水A水泵)泵的表后流示其量:能为当量Q水的A时泵增,流值水量为泵为H能QA,时够, 供给每1kg水的能量为HA。
功率(NA)表示:当水泵的流量为QA 时,泵轴上所消耗的功率(kW)。
效率(ηA)表示:当水泵的流量为QA 时,水泵的有效功率占其轴功率的百分数 (%)。
所以: HT =
u2 g
(u2 -
QT F2
ctgβ2 )
式中β2 、F2 均为常数。当水泵转速一定时, u2也
为常数。
故:
HT = A – B QT
是一个直线方程。其斜率是用β2来反映的
β2> 90º时,HT = A + B QT
后弯式,上倾直线,扬程随流量的增加而减小。
β2= 90º时,径向式,是一条水平直线,扬程不
5、被输送液体的重力密度和粘度等对特性曲线的影 响。所输送的液体粘度愈大,泵内的能量损失愈 大,水泵的扬程和流量都要减小,效率要下降, 而轴功率增大。因此,如果被输送液体的粘度与 试验条件不符时, 则Q-H,Q-N,Q- η , Q-Hs要进行换算后才能使用,不能直接套用。
综上所述,从能量的传递角度来看,对 于水泵特性曲线
N随着Q的增大而增大,
闭闸启动:水泵启动前,压水管路闸阀是 全闭的,待电动机运转正常后,压力表读 数达到预定数值时,再逐步打开闸阀,使 水泵工作正常运行。
Q—N曲线,指的是水或某种特定液体时 的轴功率与流量之间的关系,抽升的液
体容重不同时,要换算
4、Q—Hs曲线 该曲线上各点的纵坐标,表示水泵在相应流量 下工作时,水泵做允许的最大限度的吸上真空高 度值。不表示水泵在某点(Q,H)点工作的实际 吸水真空值。实际的Hs必须小于Q—Hs曲线上的 相应值。

泵—离心泵的性能曲线

泵—离心泵的性能曲线
4. NPSHr-Q曲线
NPSHr-Q曲线是检查泵工作时是否发生汽蚀的依据,应全面考虑泵的安装高度、
入口阻力损失等,防止泵发生汽蚀现象。
例2-2:用清水测定一台离心泵的主要性能参数。实验中测得流量为10m3/h,泵出口 处压力表的读数为0.17MPa(表压),入口处真空表的读数为-0.021Mpa,轴功率为 1.07KW,电动机的转速为2900r/min,真空表测压点与压力表测压点的垂直距离为 0.2m。试计算此在实验点下的扬程和效率。
见图2-35所示,M、D、C点都是离心泵的工作点。
图2-35 泵的工作点
二、工作点的类型
离心泵的性能曲线有平坦、陡降和驼峰三种,显然, 对于平坦和陡降性质的性能曲线,交点只有一个,该点 称为稳定工作点(M)。
对于驼峰性质的性能曲线,交点有两个(D、C), 但只有一个是稳定工作点(C),另一个工作点称为不稳 定工作点(D),泵只能在稳定工作点下工作。
图2-38 改变转速的调节
2. 特点
① 用这种方法调节流量,没有附加能量损失,所以是一种最经济的调节方法。
3. 驼峰H-Q曲线
具有这种性能的泵在运行中容易出现不稳定工况, 一般应在下降曲线部分操作。
图2-26 三种形状的H-Q曲线
四、离心泵性能曲线的应用
到目前为止,离心泵的性能曲线,还不能用理论计算方法精确确定,只能通过实验 获得。 离心泵的性能曲线,一般由泵的制造厂家提供,供使用部门选泵和操作时参考。
管路性能曲线
在石油化工生产中,泵和管路一起组成了一个输送系统。 能否保证泵在管路系统装置中处于最高效率点下运转,不仅取决于离心泵的性能特 性曲线,还与离心泵所在的管路特性曲线有关。
一、 管路性能曲线
所谓管路性能曲线是指使一定液体流过管路时,需 要从外界给予单位重量液体的能头HC(m)与管路液体 流量Q(m3/h)之间的关系曲线。

离心泵特性曲线

离心泵特性曲线

式中:S——管路阻力损失
当V>1.2m/s
S 0.001735 li
d
5.3 j
当v<1.2m/s
S
0.00148
li
d
5.3 j
(1
0.681d
2 j
0.3
/ Q)
lj
1.2 管路系统特性曲线及方程表达式
P35图2-29
H
Q--∑h
K
hk
Hst
0
Qk
Q
物理意义:曲线上任一点K的纵坐标H表示水泵输 送流量Q所需提供的静扬程,以及为此而消耗于 管路中的水力损失hf ,即
第六节 离心泵特性曲线
—扬程、功率、效率随水流量变化规律 —曲线表示方法:试验性能曲线、相对性能 曲线、综合性能曲线(型谱图)通用性能曲 线(轴流泵)、全面性能曲线等 —汽蚀曲线
第六节 离心泵特性曲线
复习:扬程表达式
HT
u2C2u u1C1u g
H
h
HT 1 P
HT
u
2 2
u12
2g
w12 w22 2g

小知识:对于低比转速离心泵需要进行无过载设计
3.7 气蚀曲线反映相应流量下水泵允许的最大吸上真 空高度,并非运行时的实际真空值
3.8 水泵抽吸其他液体时应根据该液体的密度(功率) 及粘度(扬程)进行换算
作业:
第六节习题:P108 习题5、6(第五版)
第七节 离心泵定速运行工况
讨论额定转速下离心泵的运行参 数随流量的变化
(3)对泄漏与回流的修正:容积损失→ 曲线4 (4)对机械磨损的修正:机械损失对扬程无影响,对功率 有影响 (轴承、填料轴封、圆盘摩擦损失)

离心泵特性曲线测定实验

离心泵特性曲线测定实验
实验准备。 启动泵。 调节流量。 读取数据。 要求:测定6-8组数据,最大和最小流量一定要进行测
定。 思考:管路特性曲线如何测定?
五、数据记录和处理
液体温度: 液体密度: 泵进出口高0.18m
仪表常数K:77.902次/L 电机频率: 电机效率:60%
qV
360f0m3 100K0
/h
离心泵特性曲线测定实验
ቤተ መጻሕፍቲ ባይዱ
一、实验目的
1)熟悉离心泵的结构、特性和操作,掌握其工作原 理,了解常用的测压仪表。
2)掌握离心泵特性曲线的测定方法,测定离心泵在 一定转速下的特性曲线。
3)掌握用作图法处理实验数据的方法。
二、基本原理
离心泵的主要性能参数:
泵的流量、压头、轴功率、效率和气蚀余量。 离心泵的特性曲线:
Hp2gp116 0h0u2 22gu12
轴功 N电 率机 N 电 功 电率 机 电 效
HV q10% 0gHVq10% 0
10N 2
N
qV m3/s
要求: 数据记录在表格里,表头标明符号与单位。数
据表格手写。 数据处理要有一组计算示例。 在坐标纸上绘图,或利用相关软件绘图。注明
坐标轴名称,要有数据点。 对实验结果进行讨论分析。
离心泵的H、η 、 P都与离心泵的qV有关
H~ qV 、η~ qV 、 P~ qV
注意:特性曲线随转速而变。 各种型号的离心泵都有本身独自的特性曲线,
但形状基本相似,具有共同的特点 。
1)H~ qV曲线:表示泵的压头与流量的关系,离心泵的压头 普遍是随流量的增大而下降(流量很小时可能有例外)。 2)P~ qV曲线:表示泵的轴功率与流量的关系,离心泵的轴 功率随流量的增加而上升,流量为零时轴功率最小。

解析离心泵的特性曲线(图文)

解析离心泵的特性曲线(图文)

图文解析离心泵的特性曲线一、离心泵的特性曲线定义当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(Hs)等随流量(Q)变化的函数关系,即:H = f(Q);N = F(Q);Hs = Ψ(Q);η= φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。

离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H一Q、N —Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。

严格意义上讲,每一台水泵都有特定的特性曲线。

在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。

在生产实践中,水泵的运行工况点是通过管路的特性曲线与水泵的特性曲线确定的(M工况点,见下图)。

在选择和使用泵时,使水泵在高效区运行,以保证运转的经济和安全。

二、影响离心泵特性曲线的因素离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。

1、叶轮出口直径对性能曲线的影响在叶轮其它几何形状相同的情况下,如果改变叶轮的出口直径,则离心泵的特性曲线平行移动,见下图。

根据这一特性,水泵制造厂和使用单位可以采用车削离心泵叶轮外径的方法改变一台泵的性能范围,以使泵的性能更适合实际运行需要。

例如,某厂的一台离心式循环泵,其运行压力偏高,为降低压力,将叶轮外径由270mm车削到250mm后,在流量相同的情况下,压力下降,给水泵的电机电流减小,满足了运行的要求。

2、转速与性能曲线的关系同一台离心泵输送同一种液体,泵的各项性能参数与转速之间的关系式为:Q1/Q2 = n1/n2H1/H2 = (n1/n2)2Nl/N2 = (n1/n2)2三、理论特性曲线的定性分析1、理论扬程特性曲线的定性分析由HT =中,将C2u = u2 - C2rctgβ2 代入,可得:HT =(u2 - C2rctgβ2)叶轮中通过的水量可用此式表示:QT = F2C2r,也即:C2r =式中QT:泵理论流量(m3/s);F2:叶轮的出口面积(m2);C2r:叶轮出口处水流绝对速度的径向(m/s)。

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线

二、离心泵的性能参数与特性曲线1.离心泵的主要性能参数(1)离心泵的流量(送液能力)——单位时间内泵排到管路系统中的液体体积。

符号:v q ,单位:m ³/h 或m ³/s 。

其大小主要取决于泵的结构、尺寸和转速等。

(2)离心泵的扬程(泵的压头) ——泵对单位重量(1N )的液体所提供的有效能量。

符号:H ,单位:m 液柱。

扬程的确定: 实验测定:如图所示泵出、入口截面间垂直距离为0h 泵吸入口处真空表的读数真p 泵出口处压力表的读数表P在此两截面1与2间列柏努利方程得损H gp g u Z H g p g u Z +++=+++ρρ2222121122式中损H 为两截面间管路中的压头损失,由于两表所在截面间的管路很短,因而损H 值很小,可忽略不计。

故上式可简化为guu gp p h H gu u g p p p p h H 222122021220-+++=-+--++=ρρ真表真大大表)()(讨论:①泵的扬程等于泵出口的总压头减去泵入口的总压头;② d 1↓, u 1↑,H 功↓,一般d 1> d 2 ; ③当d 1 = d 2 时, gp p h H ρ真表++=0例:用清水测定某离心泵的主要特性。

实验装置如附图所示。

当调节出口阀使管路流量为25m 3/h 时,泵出口处压力表读数为0.28MPa (表压),泵入口处真空表读数为0.025MPa ,测得泵的轴功率为3.35kW ,电机转速为2900转/分,真空表与压力表测压截面的垂直距离为0.5m 。

试求该泵在此流量下泵的压头H 、有效功率有p 和总效率η。

(3量。

符号:有p ,单位:W 或kW 。

有效功率为: Hg q p v ρ=有泵的轴功率——指泵轴所需的功率即电动机传给泵轴的功率。

符号:轴p ,单位:W 或kW , 则轴p 为: ηρgH q p v 功轴=(4)离心泵的效率 ——有效功率和泵的轴功率之比。

离心泵的特性曲线及其应用

离心泵的特性曲线及其应用

离心泵的特性曲线及其应用
离心泵一般都有扬程曲线(Q-H)、效率曲线(Q-η)、功率曲线(Q-Pa)、汽蚀曲线(Q-NPSHr)。

不过液下泵没有汽蚀曲线(Q-NPSHr)。

离心泵的特性曲线如下图所示:
(泵性能曲线图)
泵的运行工况是泵的扬程曲线与装置曲线的交点。

所以说,泵的运行工况不只取决于泵的扬程曲线,同时也与装置曲线有关。

泵运行工况的调节
1、改变装置曲线来改变泵的运行工况点,如下图所示:
(改变装置曲线调节泵的运行工况)
可通过改变装置阻力改变装置曲线的形状。

上图中,假定开始泵在工况点2运行,当关小出口阀门时,装置曲线由2变为1,泵的运行工况点相应由工况点2变为1,泵的流量减少,扬程增加;当加大出口阀门开度时,装置曲线由2变为3,泵的运行工况点相应由工况点2变为3,泵的流量增加、扬程降低。

2、改变扬程曲线来改变泵的运行工况点,如下图所示:
(改变扬程曲线调节泵的运行工况)
不同的泵有不同的扬程曲线,同一台泵可通过改变叶轮直径、改变转速等方法来改变泵的扬程曲线。

上图中,假定泵的叶轮直径为D1时对应泵性能曲线1、运行工况点1;当叶轮直径切削至D2和D3时,其性能曲线变为2、3,工况点也变为2、3,对应流量减少,扬程降低。

当降低泵的转速时,情况类似。

3、同时改变装置曲线和扬程曲线改变泵的运行工况点。

当采用上面一种方法不足以满足使用要求时,可以同时改变装置曲线和扬程曲线来调节泵的运行工况点,以到达理想的运行工况点。

离心泵理论及特性曲线课件

离心泵理论及特性曲线课件

离心泵的分类
根据输送液体的性质,离心泵可 分为清水泵、杂质泵、耐腐蚀泵 等。
根据输送液体的流量和扬程,离 心泵可分为大流量泵和小流量泵 、高扬程泵和低扬程泵等。
根据结构形式,离心泵可分为单 级泵、多级泵、立式泵、卧式泵 等。
根据输送液体的温度,离心泵可 分为冷油泵和热油泵。
Part
02
离心泵的理论基础
离心泵的性能参数
流量
表示单位时间内通过离心泵的液 体体积或质量,是衡量泵输送能 力的重要参数。
功率
表示离心泵所消耗的功率,与泵 的扬程、流量和效率有关。
扬程
表示离心泵对单位重量液体所做 的功,是衡量泵提升能力的重要 参数。
转速
表示离心泵叶轮的旋转速度,影 响泵的性能和流量。
离心泵的能量损失
机械损失
THANKS
感谢您的观看
在工业领域中,离心泵的特性曲线可以帮助我们了解泵的 性能,选择合适的泵型,以及优化泵的运行参数,从而提 高生产效率和降低能耗。
离心泵在农业领域的应用
离心泵在农业领域主要用于灌溉、排 水和喷灌等。通过离心泵的输送,可 以将水源输送到农田进行灌溉,或者 将农田中的积水排出。
在农业领域中,离心泵的特性曲线可 以帮助我们了解泵的扬程、流量和功 率等性能参数,从而选择合适的泵型 和匹配电机,提高灌溉和排水的效果 。
可能是由于润滑不良或轴承损坏 引起的,应检查润滑油是否充足 、轴承是否损坏,并采取相应措
施。
密封泄漏
可能是由于密封件磨损或安装不 当引起的,应检查密封件是否损 坏或安装正确,并采取相应措施

振动过大
可能是由于机械不平衡、安装不 牢固或轴承损坏引起的,应检查 泵的安装情况、轴承是否损坏,

离心泵的特性曲线

离心泵的特性曲线

离心泵的特性曲线
离心泵是用于液体输送的工程设备,其具有流量、扬程、能量损耗等特性曲线。

离心泵的特性曲线,也叫性能曲线,是表示离心泵在不同工作条件下所取得的性能测试结果,其中包括流量曲线、扬程曲线、能量损失曲线等,可以根据这些曲线考查离心泵的性能情况。

1、流量曲线
流量曲线是离心泵性能曲线中最重要的一个曲线,它用抽水机的转速和流量的实验曲线做出来的,它表示离心泵在不同转速下输出的流量值。

流量曲线一般分为正端曲线和反比曲线。

正端曲线的表示,用抽水机的转速从低到高度和流量交点所构成的曲线,也说明着当抽水机转速提高1倍时,流量提高2倍。

反比曲线表示,流量与转速反比,当转速提高1倍时,流量减少1/2倍。

2、扬程曲线
扬程曲线表示离心泵在不同转速下所取得的扬程大小,即在1个固定的转速前提下,流量的增长会导致扬程的减小以及提高转速会带来扬程的增加。

从实际上来说,扬程曲线用于分析泵在不同转速下发出的压力,以及在设计离心泵的参数时的参照依据。

3、轴功率曲线
轴功率曲线是表示离心泵在不同情况下,轴承受的力和其产生的功率的相对大小的曲线,它可以用来检验泵的叶轮设计是否合理,以及它的效率,也可以用来加以改善泵的效率和能耗等。

4、能量损失曲线
能量损失曲线是表示泵在不同转速和扬程的情况下,其产生的能量损失的曲线。

能量损失曲线越平滑,表明扬程和流量在不同工况时的能量损失变化越不大,也就是泵的效率更高。

能量损失曲线可以用来预测离心泵的能耗情况,从而提高泵的性能。

第六节离心泵的特性曲线

第六节离心泵的特性曲线
轴流泵与离心泵相反。
三、流量效率曲线
效率曲线为从最高点向两侧下降的变化趋势。
四、流量与允许吸上真空度曲线 离心泵流量与允许吸上真空度曲线是一条下降的曲线。 而离心泵流量与汽蚀余量(HSV或Δh)曲线是一条上升的
曲线。
离心泵的试验性能曲线
离心泵的试验性能曲线:在一定的转速下测定水泵扬程、轴功率、效 率与流量之间的关系,并绘出完整的性能曲线。
一、流量和扬程曲线 结论: Q~H曲线是下降的曲线,即随流量Q的增大,
扬程H逐渐减少。相应与效率最高值的点的参数,即水泵 铭牌上所列的各数据。水泵的高效段(不低于最高效率 点10%左右)
二、流量与轴功率曲线
离心泵的轴功率随流量增加而逐渐增加,曲线有上升的 特点。
当流量为零时(闸阀关闭),轴功率最小。因此,为便 于离心泵的启动和防止动力机超载,启动时,应将出水 管路上的闸阀关闭,启动后,再将闸阀逐渐打开,即水 泵的闭阀启动。
水泵样本或产品目录中除了以性能曲线表示水泵的性能外,还以表 格的形式给出水泵的性能。
12SH-6型泵性能表
水泵 型号
流量Q
m3/h L/s
扬程 H(m)
转速 n
(r/min)
功率 P (KW)
轴 配套 功率 功率
效率 (%)
允许 吸上 真空 度(m)
叶轮 直径 D(mm)
重量 (kg)
12SH-6 590 164 792 220 936 260
IS型单级单吸泵的综合性能图
BA 型泵的综合性能图
98
213

74
5.4
90 1450 250 300 77.5 4.5
82
279
75
3.5
540 847

离心泵的特性曲线知识介绍

离心泵的特性曲线知识介绍

离心泵的特性曲线知识介绍一、离心泵的特性曲线定义离心泵的扬程(H)、功率(P)、效率(η)与流量(qv)之间的关系曲线称为特性曲线。

其数值通常是指额定转数和标准状况(大气压101.325kPa,20℃清水)下的数值,可用实验测得。

二、下图为某型号离心水泵在转速n=2900r/min下用20℃清水测得的特性曲线,效率某型号离心水泵在转速n=2900r/min下用20℃清水测得的特性曲线,离心泵的特性曲线有3条,分别表示如下:(1)H-qv曲线表示H与qv的关系,通常H随qv的增大而减小。

不同型号的离心泵,H-qv曲线的形状有所不同。

有的离心泵)H-qv曲线较平坦,其特点是流量变化较大而压头变化不大;而有的泵H-qv 曲线陡降,当流量变动很小时扬程变化很大,适用于扬程变化大而流量变化小的情况。

(2)P-qv曲线表示P与qv 的关系,P随qv的增大而增大。

显然,当qv=0 时,P最小。

因此,启动离心泵时,应关闭出口阀,使电动机的启动电流减至最小,以保护电动机。

待转动正常后再开启出口阀,调节到所需的流量。

(3)η-qv曲线表示与qv的关系,开始η随qv的增大而增大,达到最大值后,又随qv的增大而下降。

曲线上最高效率点即为泵的设计工况点,在该点所对应的扬程和流量下操作最为经济。

实际生产中,泵不可能正好在设计工况点下运转,所以各种离心泵都规定一个高效区,一般取最高效率以下7%范围内为高效区。

工程上也将离心泵最高效率点定为额定点,与该点对应的流量称为额定流量。

三、离心泵的转速对特性曲线的影响离心泵的特性曲线是在一定转速n下测定的,当n改变时,泵的流量qv、扬程H及功率P也相应改变。

对同一型号泵、同一种液体,在效率η不变的条件下,扬程(H)、功率(P)、流量(qv)随n的变化关系如下式所示:qv2/qv1=n2/n1H2/H1=(n1/n2)2P2/P1=(n1/n2)3上式称为比例定律表达式。

当泵的转速变化小于20%时,效率基本不变。

离心泵特性曲线

离心泵特性曲线

离心泵特性曲线压头、流量、功率和效率是离心泵的主要性能参数。

这些参数之间的关系,可通过实验测定。

离心泵生产部门将其产品的基本性能参数用曲线表示出来,这些曲线称为离心泵的特性曲线(characteristic curves)。

以供使用部门选泵和操作时参考。

特性曲线是在固定的转速下测出的,只适用于该转速,故特性曲线图上都注明转速n的数值,图2-6为国产 4B20型离心泵在n=2900r/min 时特性曲线。

图上绘有三种曲线,即1.H-Q曲线H-Q曲线表示泵的流量Q和压头H的关系。

离心泵的压头在较大流量范围内是随流量增大而减小的。

不同型号的离心泵,H-Q曲线的形状有所不同。

如有的曲线较平坦,适用于压头变化不大而流量变化较大的场合;有的曲线比较陡峭,适用于压头变化范围大而不允许流量变化太大的场合。

2.N-Q曲线N-Q曲线表示泵的流量Q和轴功率N的关系,N随Q的增大而增大。

显然,当Q=0时,泵轴消耗的功率最小。

因此,启动离心泵时,为了减小启动功率,应将出口阀关闭。

3.η-Q曲线η-Q曲线表示泵的流量Q和效率η的关系。

开始η随Q的增大而增大,达到最大值后,又随Q的增大而下降。

该曲线最大值相当于效率最高点。

泵在该点所对应的压头和流量下操作,其效率最高。

所以该点为离心泵的设计点。

选泵时,总是希望泵在最高效率工作,因为在此条件下操作最为经济合理。

但实际上泵往往不可能正好在该条件下运转,因此,一般只能规定一个工作范围,称为泵的高效率区,如图2-6波折线所示。

高效率区的效率应不低于最高效率的92%左右。

泵在铭牌上所标明的都是最高效率下的流量,压头和功率。

离心泵产品目录和说明书上还常常注明最高效率区的流量、压头和功率的范围等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水泵吸水口处单位重量的水超出水的汽化压力的富 余能量,叫做水泵的汽蚀余量。
离心式水泵的工作理论及特性曲线
一、离心式水泵理论压头及特征曲线 1. 水在叶轮中的运动分析
2. 离心式水泵的理论压头方程式 由于水流经叶轮时情况非常复杂,为了便于分析,先作如下 假设: 1)水在叶轮内的流动为稳定流动,即速度图不随时间变化; 2)水是不可压缩的,即密度ρ为一常数; 3)水泵在工作时没有任何能量损失,即原动机传递给水泵轴 的功率完全用于增加流经叶轮水的能量; 4)叶轮叶片数目无限多且为无限薄。这样水流的相对运动方 向恰好与叶片相切;叶片的厚度不影响叶轮的流量;在叶轮同一 半径处的流速相等、压力相同。 在上述条件下求出的压头,叫做离心式水泵的理论压头。
B
u2 gS2
cot2

4.离心式水泵的理论压头线
离心式水泵的叶轮的叶片型式有三种,即前弯式、后弯式和
径向叶片。
在几何尺寸、转速以及流体进入叶片运动情况相同的条件下, 三种叶片的工作状态分析如下:
1)理论压头的关系 根据离心式水泵欧拉方程分析可知,前弯叶片c2u > u2,后弯 叶片c2u<u2 ,径向叶片c2u =u2。所以前弯叶片产生的理论 压头最高,后弯叶片产生的理论压头最低,径向叶片居中。
离心式水泵的工作参数
1、 流量 水泵在单位时间内所排出水的体积,称为水泵的流量,用符号Q表示,
单位m3/s , m3/h。 2、扬程 单位重量的水通过水泵后所获得的能量,称为水泵的扬程,用符号H表示, 单位为m。
1). 吸水扬程(吸水高度) 泵轴线到吸水井水面之间的垂直高度,称为吸水扬程,用符号HX 表示,单位为m。
水泵工作时,叶轮传递给水的理论功率为
Pl = Ql Hl
水泵的轴功率PZ可用叶轮入口间水流上的外力矩M和叶轮的角速度
之乘积来表示,即
PZ M
根据动量矩定理可知:作用在叶轮上的外力矩等于每秒钟流经叶轮 出入口间水的动量矩的增量,即
Mm2lc 2m1l1 cQ gl (c2l2c1l1)

Hl g 1(u2c2co2su1c1co1s)
⑴ 前弯叶片, β2 > 90º,cotβ2<0, 故 Hl = A + BQl; 理论压 头随理论流量增加而增大,即Hl随着Ql的增加而增加,是一条上 升的直线。
⑵ 径向叶片, β2=90º cotβ2=0 B=0 故Hl=A; 理 论压头为定值不变,即Hl不随着Ql的增加而变化 ,是一条与横 坐标平行的直线。
水泵实际传递给水的功率,即水泵的有效功率(输出
功率)PX
px
QH
1000
4、效率: 水泵的有效功率与轴功率之比,叫做水泵的效率,用符号
表示。
QH
1000PZ
5、转速 水泵轴每分钟的转速,叫做水泵的转速。
6、允许吸上真空度或汽蚀余量 在保证水泵不发生汽蚀的情况下,水泵吸水口处所
允许的真空度,叫做水泵的允许吸上真空度。用符号Hs 表示。
2)理论扬程Hl与u2有关,而
u2
=
D2 60
n
因此,增加转速n和加大叶轮直径D2,可以提高水泵的理论扬程。
3)流体所获得的理论扬程Hl与流体种类无关。对于不同流体,只 要叶轮进、出口处流体的速度三角形相同,都可以得到相同的Hl。
3. 离心式通风机理论压头与理论流量的关系式
Hl ABQl
式中 A u 2 2 g
2)叶轮流道与效率的关系 就叶轮流道阻力而言,后弯叶片因流道长,断面变化的扩散 角小,流动结构变化缓慢,所以流动能量损失最小,效率最高。 相反前弯叶的流道短而宽,断面变化的扩散角大,流动结构变 化剧烈,流动阻力较大,流动损失也大,效率是三种叶片中最 低的;径向叶片的叶轮效率居中。
3)理论压头与理论流量的关系
水流经水泵过流部件时的能量损失(水力损失)主要有下列两 种:
即为离心式水泵的理论压头方程式,又称为欧拉公式。
于是
Hl g 1(u2c2u u1c1u)
由此方程式可以看出:
1)水从叶轮中所获得的能量,仅与水在叶轮进口及出口处的运
动速度有关,与水在流道中的流动过程无关。如果水在叶轮进口
时没有扭曲,即 =1 900 c 1 u =0,这时公式可改写为:
Hl
1 g u2c2u
2)排水扬程(排水高度) 泵轴线到排水管出口处之间的垂直高度,称为排水扬程。 3)实际扬程(测地高度) 从吸水井水面到排水管出口中心线间的垂直高度,称为实际扬程。 4) 总扬程 总扬程H为实际扬程、损失扬程和在水在管路中以速度v流动时所需的(速
度水头)扬程之和,称为水泵的总扬程
3、功率 水泵在单位时间内所做的功的大小叫做水泵的功。 1) 水泵的轴功率 电动机传给水泵轴的功率,即水泵的轴功率(输入功率) 2) 水泵的有效功率
升高
理论功率随理论流量变 化情况
急剧增大


不变 逐渐增大
降低
开始增大逐渐 趋缓
综上分析,在实践中通常使用后弯叶片叶轮,β2一般在20o~2 5o之间,叶片数一般为5~7片。
离心式水泵的实际压头及特性曲线
1. 有限多叶片的影响
Hl / KHl
式中 K——环流系数, 一般K=0.6~0.9。
2.能量损失的影响
⑶ 后弯叶片 β2< 90º cotβ2> 0 B > 0 故 Hl = A - BQl; 理论压头与理论流量成反比,是一条下降的直线。
三种不同叶型叶片工作特性分析比较结果见下表
不同叶型叶片工作特性的比较
比较项目 理论总压头
前弯 大
叶片型式 径向 中
后弯 小
静力压头/总压头



叶பைடு நூலகம்阻力损失

理论总压头随理论流量 变化情况
离心泵理论 及特性曲线
离心式水泵的分类
1. 按叶轮数目分 1)单级水泵 泵轴上仅装有-个叶轮 2)多级水泵 泵轴上装有几个叶轮 2. 按水泵吸水方式分 1)单吸水泵 叶轮上仅有-个进水口 2)双吸水泵 叶轮两侧各有-个进水口 3. 按泵壳的结构分 1)螺壳式水泵 2)分段式水泵 垂直泵轴心线的平面上有泵壳接缝 3)中开式水泵 在通过泵轴心线的水平面上有泵壳接缝 4. 按泵轴的位置分 1)卧式水泵 泵轴呈水平位置 2)立式水泵 泵轴呈垂直位置 5. 按比转数分 1)低比转数水泵 比转数nS=4O~80 2)中比转数水泵 比转数nS=8O~150 3)高比转数水泵 比转数nS=150~300
相关文档
最新文档