无线传感器网络节点介绍

合集下载

无线传感器网络知识点归纳

无线传感器网络知识点归纳

一、无线传感器网络的概述1、无线传感器网络定义,无线传感器网络三要素,无线传感器网络的任务,无线传感器网络的体系构造示意图,组成局部〔P1-2〕定义:无线传感器网络〔wireless sensor network, WSN〕是由部署在监测区域内大量的本钱很低、微型传感器节点组成,通过无线通信方式形成的一种多跳自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖范围内感知对象的信息,并发送给观看者或者用户另一种定义:无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络掩盖地域内感知对象的监测信息,并报告给用户三要素:传感器,感知对象和观看者任务:利用传感器节点来监测节点四周的环境,收集相关的数据,然后通过无线收发装置承受多跳路由的方式将数据发送给会聚节点,再通过会聚节点将数据传送到用户端,从而到达对目标区域的监测体系构造示意图:组成局部:传感器节点、会聚节点、网关节点和基站2、无线传感器网络的特点〔P2-4〕(1)大规模性且具有自适应性(2)无中心和自组织(3)网络动态性强(4)以数据为中心的网络(5)应用相关性3、无线传感器网络节点的硬件组成构造〔P4-6〕无线传感器节点的硬件局部一般由传感器模块、处理器模块、无线通信模块和能量供给模块4 局部组成。

4、常见的无线传感器节点产品,几种Crossbow 公司的Mica 系列节点〔Mica2、Telosb〕的硬件组成〔P6〕5、无线传感器网络的协议栈体系构造〔P7〕1.各层协议的功能应用层:主要任务是猎取数据并进展初步处理,包括一系列基于监测任务的应用层软件传输层:负责数据流的传输掌握网络层:主要负责路由生成与路由选择数据链路层:负责数据成帧,帧检测,媒体访问和过失掌握物理层:实现信道的选择、无线信号的监测、信号的发送与接收等功能2.治理平台的功能(1)能量治理平台治理传感器节点如何使用能源。

无线传感器网络节点介绍

无线传感器网络节点介绍

基于系统集成技术的节点类型和特点在节点的功能设计和实现方面,目前常用的节点均为采用分立元器件的系统集成技术。

已出现的多种节点的设计和平台套件,在体系结构上有相似性,主要区别在于采用了不同的微处理器,如AVR系列和MSP430系列等;或者采用了不同的射频芯片或通信协议,比如采用自定义协议、802.11协议、ZigBee[1]协议、蓝牙协议以及UWB通信方式等。

典型的节点包括Berkeley Motes [2,3], Sensoria WINS[4], MIT µAMPs [5], Intel iMote [6], Intel XScale nodes [7], CSRIO研究室的CSRIO节点[8]、Tmote [9]、ShockFish公司的TinyNode[10]、耶鲁大学的XYZ节点[11] 、smart-its BTNodes[12]等。

国内也出现诸多研究开发平台套件,包括中科院计算所的EASI系列[13-14],中科院软件所、清华大学、中科大、哈工大、大连海事大学等单位也都已经开发出了节点平台支持网络研究和应用开发。

这些由不同公司以及研究机构研制的无线节点在硬件结构上基本相同,包括处理器单元、存储器单元、射频单元,扩展接口单元、传感器以及电源模块。

其中,核心部分为处理器模块以及射频通信模块。

处理器决定了节点的数据处理能力和运行速度等,射频通信模块决定了节点的工作频率和无线传输距离,它们的选型能在很大程度上影响节点的功能、整体能耗和工作寿命。

目前问世的传感节点(负责通过传感器采集数据的节点)大多使用如下几种处理器:ATMEL公司AVR系列的ATMega128L处理器,TI公司生产的MSP430系列处理器,而汇聚节点(负责会聚数据的节点)则采用了功能强大的ARM处理器、8051内核处理器、ML67Q500x系列或PXA270处理器。

这些处理器的性能综合比较见表1。

表1、无线传感器网络节点中采用的处理器性能比较在无线传感器网络中,广泛应用的底层通信方式包括使用ISM波段的普通射频通信、具有802.15.4协议和蓝牙通信协议的射频通信。

无线传感器网络知识点

无线传感器网络知识点

无线传感器网络知识点一、引言在当今科技飞速发展的时代,无线传感器网络(Wireless Sensor Network,WSN)正逐渐成为一个热门的研究领域,并在众多领域得到了广泛的应用。

从环境监测到工业控制,从医疗保健到智能家居,无线传感器网络的身影无处不在。

那么,什么是无线传感器网络?它由哪些部分组成?又有哪些关键技术和应用场景呢?接下来,让我们一起深入了解无线传感器网络的相关知识点。

二、无线传感器网络的定义和组成(一)定义无线传感器网络是由大量的、廉价的、具有感知能力、计算能力和通信能力的传感器节点通过自组织的方式构成的无线网络。

这些传感器节点能够实时监测、感知和采集网络覆盖区域内的各种环境或监测对象的信息,并将这些信息通过无线通信的方式传输给用户。

(二)组成1、传感器节点传感器节点是无线传感器网络的基本组成单元,它通常由传感器模块、处理器模块、无线通信模块和电源模块组成。

传感器模块负责感知监测对象的信息,处理器模块负责对感知到的数据进行处理和分析,无线通信模块负责与其他节点进行通信,电源模块则为节点提供能量。

2、汇聚节点汇聚节点也称为网关或基站,它的主要功能是接收传感器节点发送的数据,并将这些数据转发给用户或其他网络。

汇聚节点通常具有较强的处理能力和通信能力,能够与外部网络进行连接。

3、网络协议网络协议是无线传感器网络中节点之间进行通信和数据传输的规则和标准,它包括物理层协议、数据链路层协议、网络层协议、传输层协议和应用层协议等。

三、无线传感器网络的关键技术(一)传感器技术传感器是无线传感器网络的核心部件,它能够将被监测对象的物理量、化学量等转化为电信号。

目前,常用的传感器包括温度传感器、湿度传感器、压力传感器、光照传感器、声音传感器等。

随着微机电系统(MEMS)技术的发展,传感器的体积越来越小、功耗越来越低、成本越来越低,为无线传感器网络的广泛应用提供了可能。

(二)低功耗技术由于传感器节点通常采用电池供电,而且电池的能量有限,因此低功耗技术是无线传感器网络中的关键技术之一。

无线传感器网络节点介绍

无线传感器网络节点介绍

基于系统集成技术的节点类型和特点在节点的功能设计和实现方面,目前常用的节点均为采纳分立元器件的系统集成技术。

已消失的多种节点的设计和平台套件,在体系结构上有相像性,主要区分在于采纳了不同的微处理器,如AVR系列和MSP430系列等;或者采纳了不同的射频芯片或通信合同,比如采纳自定义合同、802. 11合同、Zig芯片1]合同、蓝牙合同以及UWB通信方式等。

典型的节点包括Berkeley Motes [2, 3], Sensoria WINS[4], MIT μAMPs [5], Intel iMote [6], Intel XScale nodes [7], CSRlo 讨论室的CSRIO 节点[8]、Tmote [9]、ShOCkFiSh 公司的 TinyNOde[10]、耶鲁高校的XYZ节点[∏]、SnIart-its BTNodes[12]等。

国内也消失诸多讨论开发平台套件,包括中科院计算所的EASl系列[13T4],中科院软件所、清华高校、中科大、哈工大、大连海事高校等单位也都已经开发出了节点平台支持网络讨论和应用开发。

这些由不同公司以及讨论机构研制的无线节点在硬件结构上基本相同,包括处理器单元、存储器单元、射频单元,扩展接口单元、传感器以及电源模块。

其中,核心部分为处理器模块以及射频通信模块。

处理器打算了节点的数据处理力量和运行速度等,射频通信模块打算了节点的工作频率和无线传输距离,它们的选型能在很大程度上影响节点的功能、整体能耗和工作寿命。

目前问世的传感节点(负责通过传感器采集数据的节点)大多使用如下几种处理器:AT理L公司AVR系列的ATMega128L处理器,Tl公司生产的MSP430系列处理器,而汇聚节点(负责会聚数据的节点)则采纳了功能强大的ARM处理器、 8051内核处理器、ML67Q500x系列或PXA270处理器。

这些处理器的性能综合比较见表Io 表1、无线传感器网络节点中采纳的处理器性能比较在无线传感器网络中,广泛应用的底层通信方式包括使用ISM波段的一般射频通信、具有802. 15.4合同和蓝牙通信合同的射频通信。

无线传感器网络

无线传感器网络

无线传感器网络无线传感器网络(Wireless Sensor Networks, WSN)是一种由众多装备了传感器和通信设备的节点组成的、可以进行数据采集、处理和传输的网络系统。

这些节点可以相互通信,共同完成特定的监测、控制或者数据传输任务。

无线传感器网络广泛应用于环境监测、医疗健康、物联网等领域。

一、无线传感器网络的组成无线传感器网络由多个节点组成,每个节点都有独立的处理能力、通信能力和传感能力。

节点之间通过无线通信进行数据的传递和交换。

每个节点可以采集周围环境的信息,并将数据传输给其他节点,或者通过无线信号传输给数据收集中心。

在无线传感器网络中,节点可以分为三个类型:传感器节点、中心节点和路由节点。

传感器节点用于收集环境信息,如温度、湿度、光照等。

中心节点负责数据的存储和处理,是整个网络的核心。

路由节点用于传输数据,将各个传感器节点采集到的数据传输给中心节点。

二、无线传感器网络的应用无线传感器网络在各个领域都有广泛的应用。

1. 环境监测无线传感器网络可以用于环境的监测和数据的采集。

通过部署传感器节点,可以实时监测空气质量、水质状况、土壤湿度等环境因素,并将数据传输给监测站点。

这对于环境保护和资源管理非常重要。

2. 健康医疗无线传感器网络可以应用于健康监测和医疗领域。

通过佩戴传感器设备,可以实时监测人体的生理参数,如心率、血压、体温等,并将数据传输给医生或者云平台,以便于监护和诊断。

3. 物联网无线传感器网络是物联网的基础技术之一。

通过无线传感器网络,不同的物体和设备可以相互连接和通信,实现信息的交换和共享。

无线传感器网络在智能家居、智能城市等方面有着重要的应用。

三、无线传感器网络的挑战与未来发展尽管无线传感器网络在各个领域都有广泛的应用,但也面临一些挑战。

1. 能源管理由于无线传感器网络中的节点通常是由电池供电,能源管理是一个重要的问题。

如何延长节点的寿命,提高能源利用效率是当前的研究重点之一。

无线传感器网络知识点

无线传感器网络知识点

1. 无线传感器网络(wireless sensor network, WSN )就是由部署在检测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,目的是协作地感知、采集和处理网络覆盖区域中感知的对象信息,并发送给观察者。

2. 构成WSN 的三要素:传感器、感知对象、观察者。

3. ADHOC 和WSN 的区别:(1)WSN(2)WSN (3)WSNAd hoc(4)WSN(5)WSN (6)WSN 以数据为中心。

4. WSN 的节点:传感模块、处理器模块、通信模块、电源模块 节点特点:电源能量有限、通信能力有限、计算和存储能力有限5. WSN 协议栈结构(1)能源管理平台:管理传感器节点如何使用能量;(2)移动管理平台:检测和注册传感器节点的移动,维护到汇聚点的路由,使得传感器节点能够跟踪它的邻居;(3)任务管理平台:在一个给定的区域内平衡和调度监测任务6. 传感器物理层作用:屏蔽物理设备和传输介质的差异目的:透明传输功能:提供传输通道;传输数据;其他特性:(1)机械特性(2)电气特性(3)功能特性(4)规程特性运用的技术:(1)介质和频段的选择(2)调制技术(3)扩频技术传输媒体:(1)建议采用ISM (工业、科学和医学)频段短距离的无线低功率通信最适合传感器网络(2)红外,不需要许可证,抗干扰要求收发双方在视线之内(3)光7.频率选择,载频发生,信号检测,调制,数据加密信号传播传播信号需要的最小发送功率和传输距离d的n次方成正比,2<= n < 4.为了减小传输距离,传感器网络采用多跳(multihop)通信方式8.MAC层协议:S-MAC协议、IEEE802.11 MAC协议9.MAC层有用功耗:(1)发送,接收数据(2)处理询问请求(3)转发询问和数据到邻居节点9.MAC层无用功耗:(1)信道的空闲侦听,“waiting for possible traffic”.(2)由于碰撞导致的重传,例如两个数据包同时到达同一节点(3)无意偷听:当节点接收到一个不属于他的数据包时(4)产生和处理控制数据包开销10.CSMA/CACSMA /CA载波侦听/冲突避免如何解决“隐匿终端问题11.S-MAC机制针对碰撞重传、串音、空闲侦听和控制消息等可能造成较多能耗的因素S-MAC 采用如下机制:(1)周期性侦听/睡眠的低占空比工作方式,控制结点尽可能处于睡眠状态来降低结点能量的消耗;(2)邻居结点通过协商的一致性睡眠调度机制形成虚拟簇,减少结点的空闲侦听时间;(3)通过流量自适应的侦听机制,减少消息在网络中的传输延迟;(4)采用带内信令来减少重传和避免侦听不必要的数据;通过消息分割和突发传递机制来减少控制消息的开销和消息的传递延迟。

无线传感器网络节点定位技术

无线传感器网络节点定位技术

无线传感器网络节点定位技术定位即确定方位、确定某一事物在一定环境中的位置。

在无线传感器网络中的定位具有两层意义:其一是确定自己在系统中的位置;其二是系统确定其目标在系统中的位置。

在传感器网络的实际应用中,传感器节点的位置信息已经成为整个网络中必不可少的信息之一,很多应用场合一旦失去了节点的位置信息,整个网络就会变得毫无用处,因此传感器网络节点定位技术已经成了众多科学家研究的重要课题。

2.1基本概念描述在传感器网络中,为了实现定位的需要,随机播撒的节点主要有两种:信标节点(Beacon Node)和未知节点(Unknown Node)。

通常将已知自身位置的节点称为信标节点,信标节点可以通过携带GPS定位设备(或北斗卫星导航系统�zBeiDou(COMPASS)Navigation Satellite System�{、或预置其位置)等手段获得自身的精确位置,而其它节点称之为未知节点,在无线传感器网络中信标节点只占很少的比例。

未知节点以信标节点作为参考点,通过信标节点的位置信息来确定自身位置。

传感器网路的节点构成如图2-1所示。

UBUUUUUBUUUBUUUUUUBUUUUUU图2-1 无线传感器网络中信标节点和未知节点Figure 2-1Beaconnodes and unknown nodes of wireless sensor network在图2-1中,整个传感器网络由4个信标节点和数量众多的未知节点组成。

信标节点用B来表示,它在整个网络中占较少的比例。

未知节点用U来表示,未知节点通过周围的信标节点或已实现自身定位的未知节点通过一定的算法来实现自身定位。

下面是无线传感器网络中一些常用术语:(1) 邻居节点(Neighbor Nodes):无需经过其它节点能够直接与之进行通信的节点;(2) 跳数(Hop Count):两个要实现通信的节点之间信息转发所需要的最小跳段总数;(3) 连通度(Connectivity):一个节点拥有的邻居节点数目; (4) 跳段距离(Hop Distance):两个节点间隔之间最小跳段距离的总和;(5) 接收信号传播时间差(Time Difference of Arrival,TDOA):信号传输过程中,同时发出的两种不同频率的信号到达同一目的地时由于不同的传输速度所造成的时间差;(6) 接收信号传播时间(Time of Arrival,TOA):信号在两个不同节点之间传播所需要的时间;(7) 信号返回时间(Round-trip Time of Flight,RTOF):信号从一个节点传到另一个节点后又返回来的时间;(8) 到达角度(Angle of Arrival,AOA):节点自身轴线相对于其接收到的信号之间的角度;(9) 接收信号强度指示(Received Signa1 Strength Indicator,RSSI):无线信号到达传感器节点后的强弱值。

无线传感器网络的简介和应用领域

无线传感器网络的简介和应用领域

无线传感器网络的简介和应用领域无线传感器网络(Wireless Sensor Network,简称WSN)是由大量分布在空间中的无线传感器节点组成的网络系统。

每个节点都具备感知、处理、通信能力,并能自组织形成网络。

WSN的发展使得传感器节点能够实时地获取环境信息,并通过无线通信将数据传输到目标位置,从而实现对环境的监测和控制。

WSN的应用领域非常广泛,涵盖了农业、环境监测、智能交通、健康监护等多个领域。

在农业领域,WSN可以用于土壤湿度监测、气象数据采集等,帮助农民科学决策,提高农作物产量。

在环境监测方面,WSN可以用于水质监测、空气污染监测等,及时掌握环境状况,保护生态环境。

在智能交通中,WSN可以用于交通流量监测、道路状况监测等,提高交通效率,减少交通拥堵。

在健康监护方面,WSN可以用于老年人健康监测、病房环境监控等,提供及时的医疗服务。

除了以上应用领域,WSN还有许多其他的应用。

在工业自动化中,WSN可以用于设备状态监测、生产过程监控等,提高生产效率和质量。

在安全监控中,WSN可以用于入侵检测、火灾预警等,保障人员和财产的安全。

在灾害预警中,WSN可以用于地震预警、洪水预警等,为人们提供逃生和救援的时间。

在智能家居中,WSN可以用于智能家电控制、环境监测等,提供更加便捷和舒适的生活方式。

WSN的发展离不开技术的支持。

目前,WSN使用的通信技术主要有无线局域网(WLAN)、蓝牙(Bluetooth)、射频识别(RFID)等。

此外,WSN还涉及到传感器技术、数据处理技术、网络协议等方面的研究。

随着物联网和人工智能的发展,WSN的应用前景将更加广阔。

然而,WSN也面临一些挑战。

首先,能源问题是WSN的主要挑战之一。

由于传感器节点通常由电池供电,能源消耗是限制其使用寿命的重要因素。

其次,网络安全问题也是WSN需要解决的难题。

传感器节点通常部署在无人区域,容易受到攻击,因此需要采取相应的安全措施。

此外,WSN的数据处理和传输也需要考虑效率和可靠性等方面的问题。

无线传感器网络汇聚节点的设计与实现

无线传感器网络汇聚节点的设计与实现

无线传感器网络汇聚节点的设计与实现摘要:由于传统的传感器采用的是电缆形式,它不仅使系统成本增加,而且也产生了许多不同信号之间的干扰。

文章采用无线传感器网络(WSN)方法,大大减少了连接的规模,而且安装更容易,信号更稳定。

与传统传感器相比,无线传感器网络具有预防性维护方便、成本低、适合恶劣环境应用等优点。

文章对无线传感器网络中汇聚节点的重要性进行了分析和讨论,并给出了硬件平台和软件平台的详细设计。

在硬件平台上,设计了LPC2214处理器和CC2530模块的无线通信装置。

为了确保传感器节点的网络灵活性,ZigBee 作为无线通信协议。

通过μμC/OS-II实时操作系统提供设计软件系统。

该设计满足水槽节点的要求,并成功应用于大型油船温度监测系统关键词:无线传感器网络;ZigBee;sink节点;μc/OS-II;温度监测引言无线传感器网络的节点安装过程较为灵活,布线相对简单,通常情况下,通过电池等设备进行供电,对于远程设备可以实时监测,本文介绍了一种无线传感器网络汇聚节点的设计。

其采用ARM处理器和CC2530作为硬件平台,以Zigbee作为无线通信协议,μC/OS-II为操作系统,完成了汇聚节点应具备的功能,并成功运用于大型油船的温度监控系统。

1 无线传感器网络汇聚节点介绍无线传感器网络一般通过三个部分组合而成,分别是传感器节点、汇聚节点以及远程客户端三级网络系统,对特定环境的物理量进行检测和感知是通过传感节点完成的,通过把这些物理量转化成电量,以供整个系统进行判断和处理。

汇聚节点在整个网络中有两部分作用,其一是对传感器节点传输过来的数据进行处理,其二是把远程控制中心的命令发送到每一个传感器节点。

所以,汇聚节点同时和远程终端以及传感器节点进行通信。

2 汇聚节点的总体设计2.1 硬件平台的设计根据汇聚节点的工作特性,硬件平台选用LPC2214芯片作为中央处理器,其采用ARM7TDMI-S为内核,是ARM体系中的一款高端芯片。

无线传感器网络简介

无线传感器网络简介
传输层与应用层
混合网络结构
平面网络结构
01
分级网络结构
02
03
Mesh网络结构
04
2、1无线传感网络拓扑结构
2、2无线传感器网络覆盖问题
覆盖问题是无线传感器网络配置首先面临的基本问题,因为传感器节点可能任意分布在配置区域,它反映了一个无线传感网络某区域被鉴测和跟踪的状况
三、无线传感器网络关键技术
动态电压调度(dynamic voltage scheduling,简称DVS)
4无线传感器网络QOS保证技术
5无线传感器网络数据融合技术
6无线传感器网络安全机制
7无线传感器网络定位技术
8无线传感器网络同步管理机制
四、无线传感器网络硬件平台
传感器节点
01.
汇聚节点
01.
管理平台
01.
4、1硬件结构
泛洪协议
SPIN协议
主要完成两大功能:一是选择适合的优化路径,一是沿着选定的路径正确转发数据
3.2无线传感器网络路由协议
动态功率管理(dynamic power management,简称DPM)
01
动态电压调度(dynamic voltage scheduling,简称DVS)
02
3.3无线传感器能量管理机制
传感器节点
无线传感器网络微型节点由数据采集单元、数据处理单元、数据传输单元和电源管理单元4部分组成
汇聚节点
当节点作为汇聚节点时,其主要功能就足连接传感器网络与外部网络(如Internet),将传感器节点采集到的数据通过互联网或卫星发送给用户。
管理平台
管理平台对整个网络进行检测、管理,它通常为运行有网络管理软件的PC机或者手持终端设备

无线传感器网络节点设计综述

无线传感器网络节点设计综述
少。
的、由多学科高度交 叉的新 兴前沿研究热
点 。 无 线 传 感 器 网 络 包 括 传 感 器 节 点 ( o e 、汇聚节 点 (ik n d ) nd ) Sn o e、外部 网
络和用 户界面。大量 传感器节点随机部署 在感 知区域 ,通 过 自组织 方式构成 网络 , 传感器节点将采集到的数据沿着其他传感 器 节 点逐 跳 进 行 传 输 ,经过 多 跳 路 由后 到 汇聚节点 , 由汇聚节点通过 外部网络把 再 数据传送到处理 中心进行集中处理 。
D I 0 3 6 / . s .0 1 8 7 . 0 0 2 . 5 O :1 .9 9 j i n 1 0 - 9 2 2 1 . 3 0 0 s
基金项 目 :河 南省科 技攻 关项 目 :1 2 2 0 0 1 3 0 1 1 1 3
无线传感器 网络 节 点设计综述
1 无线 传感 器 网络 节点概 述
自然 界 的 给 予 。自然 界 可 利 用的 能量 有 太 :阳 能 、 电磁 能 、 动 能 及 核 能 等 。因此 , 振 采 一: 源自I l I I矗 运
I , I’ pp1 ‘n 种
一 I : 一一
目 - I
在 2. 4G H Z频 段 ,传 输 速率 可达 l Mb s O p ;缺 点是传输 距离 只有 1 m 左 O 右 ,多用于 家庭 个人无线 局域 网。 8 2. 0 lb因为功耗 高而 应用不 多。激光功耗比 1 用 电 磁 波 低 ,更 安 全 , 但 是 只 能 直 线 传
是 理 想 的选 择 。这 2 种芯 片 各有所 长 , TRl 0 功耗低一些 , 00 CC10 灵敏 度高一 00
些 ,传输距离 更远 。还有一类无线芯 片本

1.WSN节点介绍

1.WSN节点介绍

2/37
硬件平台架构概述
图1-传感器节点 传感器节点
2012-5-3
3/37
硬件平台架构概述数Βιβλιοθήκη 采集模块数据及信号处理模块
无线射频模块
微处理器 传感器 ADC 基带处理 存储器 射频 模块
电源模块
图3-节点硬件结构示意图 节点硬件结构示意图
2012-5-3
4/37
硬件平台架构概述
CCA MAC计时器 计时器 64K 8K 时钟 Flash RAM 管理 存储仲裁 休眠 控制 128bit FIFO FIFO(OUT) ( ) FIFO(IN) ( ) AES加解密模块 加解密模块 物理层 成帧/拆帧单元 成帧 拆帧单元 收/发 发 射频电路 转换单元 管理接口 CRC LQI CSMA/CA 符号相关器 控制 RSSI 控制单元 电源管理 DDS
图14-节点板细节说明 节点板细节说明
2012-5-3 10/37
平台核心—无线节点 平台核心 无线节点WSN Nodes 无线节点
单端50欧姆 天线 收发WSN节点之间通信的 节点之间通信的2.4GHz无 单端 欧姆RF天线:收发 欧姆 天线: 节点之间通信的 无 线信号; 线信号; 微带巴伦线: 模式下, 微带巴伦线:CC2430TX模式下,将两个差分 引脚输出 模式下 将两个差分RF引脚输出 结合为一个单端50欧姆 信号; 欧姆RF信号 模式下, 结合为一个单端 欧姆 信号;CC2430RX模式下,将单 模式下 欧姆天线信号拆分为两个差分信号; 端50欧姆天线信号拆分为两个差分信号; 欧姆天线信号拆分为两个差分信号 CC2430芯片:节点板核心,IEEE 802.15.4/ZigBee SOC; 芯片:节点板核心, 芯片 ; 32M晶振:系统主时钟晶振; 晶振:系统主时钟晶振; 晶振 32.768K晶振:系统RTC时钟晶振; 晶振:系统 时钟晶振; 晶振 时钟晶振

无线传感器网络技术的原理与应用场景

无线传感器网络技术的原理与应用场景

无线传感器网络技术的原理与应用场景无线传感器网络(Wireless Sensor Networks,WSN)是一种由大量分布在空间中的无线传感器节点组成的网络。

它的主要特点是无线传感器节点具备感知环境信息并实时传输数据的能力。

本文将介绍无线传感器网络技术的原理和一些常见的应用场景。

一、无线传感器网络技术的原理无线传感器网络技术主要依靠传感器节点感知环境信息,并通过无线通信传输数据。

其原理主要包括以下几个方面:1. 传感器节点:无线传感器网络由大量的传感器节点组成,这些节点通常包括处理器、传感器、电池和无线收发器等组件。

传感器节点通过感知器件感知并采集环境信息,然后将采集到的数据通过无线通信模块发送到基站或其他节点。

2. 网络拓扑结构:传感器节点之间的通信通常采用无线自组织的结构,构成了一个自组织、去中心化的网络。

常见的网络拓扑结构包括星型结构、树型结构和网状结构等。

3. 无线通信技术:无线传感器网络的通信主要依靠无线技术实现。

传感器节点之间可以通过无线信道进行通信,常用的通信技术包括无线局域网(WiFi)、低功耗蓝牙(Bluetooth Low Energy)和Zigbee等。

4. 数据处理与传输:传感器节点采集到的数据通常需要进行处理和压缩后再传输,以减少能耗和网络传输开销。

一般会采用数据融合和数据压缩等技术来实现对数据的处理和传输。

二、无线传感器网络的应用场景无线传感器网络技术具有广泛的应用前景,以下是一些常见的应用场景:1. 环境监测:无线传感器网络可以被广泛应用于环境监测领域,如气象监测、水质监测、土壤监测等。

通过布置在不同位置的传感器节点,可以实时监测和采集环境参数,如温度、湿度、气压等,为环境监测提供数据支持。

2. 智能交通:无线传感器网络可以应用于智能交通系统中,实现交通流量监测、车辆跟踪和道路安全等功能。

通过在道路上部署传感器节点,可以收集车辆的信息,实时监测道路的交通状况,并进行交通调度和预警。

无线传感器网络节点定位技术综述

无线传感器网络节点定位技术综述

无线传感器网络节点定位技术综述无线传感器网络是由一组分布在不同位置的小型传感器节点组成的自组织网络。

这些节点可以感知和采集环境信息,并将这些信息发送到中心控制节点或其他通信节点。

无线传感器网络具有广泛的应用,例如环境监测、军事侦察、智能交通等领域。

然而,节点的位置信息对于许多应用来说是至关重要的。

因此,在无线传感器网络中节点定位技术是一项重要的研究方向。

本文将综述节点定位技术的研究现状和发展趋势。

一、节点定位技术的分类节点定位技术可以分为基于距离测量的位置估计和基于角度测量的位置估计两种。

基于距离测量的定位技术是通过测量节点之间的距离来确定节点的位置,其中包括基于信号强度测量残余能量、到达时间或方位角度以及基于时间差测量等技术。

基于角度测量的定位技术是通过测量节点之间的相对角度来确定节点的位置,其中包括时序优先搜索和方向确定等技术。

1. 环境监测在环境监测中,节点位置信息对于实时监测和预测自然灾害,如洪水、地震、火灾等具有重要意义。

基于高精度的节点定位技术,可以提高环境监测系统的数据传输和分析能力。

2. 军事侦察在军事应用中,节点定位技术可以提供战场敌方和基地内部的位置信息。

从而改善军事情报信息的获取和处理。

同时,它也可以为部队的导航和作战提供基础定位支持。

3. 智能交通在智能交通领域中,节点定位技术可以用于车辆和行人定位,从而提高交通系统的效率和安全性。

例如,为自动驾驶车辆提供信息,定位交通拥堵的区域,优化路线等。

目前,节点定位技术面临着很多的挑战和难点,如基站位置不确定性、节点间的建模和配准、时延和多路径效应等。

为了解决这些问题,研究人员正在开展许多的实验研究,提出新的节点定位算法和优化方案。

1. 基于信号可靠性的节点定位技术在无线传感器网络中,信号强度和路径损耗表明了节点之间的距离或位置关系。

以此为基础,研究人员提出了一种基于信号可靠性的节点定位技术,该技术能够减小信号的变异性,并提高定位的准确度。

无线传感器网络知识点归纳

无线传感器网络知识点归纳

无线传感器网络知识点归纳无线传感器网络(Wireless Sensor Networks,WSN)是由大量分布在特定区域内的低成本、低功耗、无线通信能力的节点(传感器)组成的网络系统。

WSN的应用领域广泛,包括环境监测、智能交通、农业监测、军事侦察等。

下面对WSN的知识点进行归纳。

1.WSN的组成:WSN由一系列节点组成,每个节点都包含一个传感器、一个处理器和一个无线通信模块。

节点通过无线通信模块相互通信、传输数据。

2.WSN的特点:-低成本:WSN中的节点通常采用低成本的硬件组件制造,因此整体成本相对较低。

-低功耗:节点通常使用电池供电,因此需要设计低功耗的算法和协议,以延长节点的寿命。

-自组织:WSN中的节点自主组织形成网络,无需人工干预。

-多跳传输:WSN中的节点通常通过多跳传输方式将数据从源节点传输到目标节点。

-分布式处理:WSN中的数据处理通常在节点内部进行,而不是集中在一个中心节点。

-时空相关性:WSN中的传感器收集的数据通常具有时空相关性,需要考虑这种相关性进行数据处理和分析。

3.WSN的网络拓扑结构:-平面型:节点以平面方式分布在区域内,每个节点通过无线通信模块与邻近的节点通信。

-区域型:节点按区域方式分布在区域内,节点之间通信距离较远,需要通过多跳传输方式进行通信。

-蜂窝型:节点按照蜂窝状分布在区域内,每个节点与邻近的六个节点进行通信。

-网格型:节点按照网格状分布在区域内,节点之间通信距离相等,通信距离较近。

4.WSN的数据传输:-单播传输:节点将数据传输给特定的目标节点。

-广播传输:节点将数据传输给整个网络的所有节点。

-多播传输:节点将数据传输给特定的一组节点。

5.WSN的路由协议:-平面型路由协议:适用于平面型网络拓扑结构,例如基于连通性的GAF协议。

-分层路由协议:将网络分为多层,每层通过不同的协议进行路由,例如LEACH协议。

-基于位置的路由协议:节点根据位置信息进行路由,例如GPSR协议。

物联网中的无线传感器网络技术综述

物联网中的无线传感器网络技术综述

物联网中的无线传感器网络技术综述无线传感器网络技术(Wireless Sensor Network, WSN)是物联网技术的重要组成部分之一,旨在将传感器和网络技术结合,实现小型节点的低成本、低功耗和高度智能化。

此类网络能够通过自组织方式自发地建立一个联合网络,旨在使物联网的应用更加深入、细致和准确。

本文将综述无线传感器网络技术在物联网中的应用,以及技术特点和发展趋势,为读者全面介绍无线传感器网络技术。

一、无线传感器网络技术概念及原理1.1 无线传感器网络简介传感器是物联网中非常重要的一种设备。

随着物联网技术的不断发展,传感器的应用范围越来越广泛,从工业生产到生活设备及各行各业中几乎无所不在。

然而,由于成本和能耗的限制,传感器的单体能力存在着极大的局限性。

为此,无线传感器网络技术横空出世,这项技术为传感器节点提供了一种联合使用的方式。

通过无线传感器网络技术,传感器节点在网络中进行数据交互和协作,从而实现远程监测和控制等多种应用。

1.2 无线传感器网络原理无线传感器节点由传感器、处理器、通信模块和电源组成。

在传感器网络中,节点彼此组合形成一个联机网络,节点之间之间通过无线方式进行数据交换。

无线传感器网络是典型的分布式系统,每个节点都可以与周围节点通信,通过传输能量和传输信息来完成网络应用。

在无线传感器网络中,传感器节点通过不断的自适应和自学习,定期地收集和分析周围环境的参数,形成一个感知环境的虚拟网络,从而为物联网应用提供有力支撑。

二、无线传感器网络技术的应用领域2.1 工业领域工业领域是典型的无线传感器网络应用领域之一。

在制造业中,无线传感器节点可以扮演重要角色,通过在生产过程中采集和分析数据,改善生产过程,提高生产效率,节省资源成本,加强产品质量控制等,其应用价值非常显著。

例如:在制造过程中,精确定位和测量配套设备的运行状态就可以由传感器节点来完成。

2.2 环境领域环境领域是另一个重要的无线传感器网络应用领域。

无线传感器网络

无线传感器网络

无线传感器网络无线传感器网络(Wireless Sensor Networks,简称WSN)指采用无线通信技术将大量分布式的无线传感器节点进行网络互联,并通过节点之间的协同工作实现对环境信息的采集、处理、传输和应用的一种网络系统。

它具有低成本、低功耗、分布式、自组织等特点,在环境监测、智能交通、物流管理等领域有着广泛的应用前景。

一、无线传感器网络的概念与组成无线传感器网络是由大量的无线传感器节点组成的分布式网络系统。

每个节点都具有感知环境、处理数据和进行通信的能力,可以通过无线通信方式与其他节点进行数据交换和协同工作。

节点之间通过无线信道进行数据传输,形成了一个覆盖范围广、布局灵活的网络。

无线传感器网络的组成主要包括以下几个要素:1. 无线传感器节点:每个节点包含感知器、处理器、无线通信模块和电源等组件。

它们能够感知环境中的各种物理量,如温度、湿度、压力等,并将采集到的数据进行处理和传输。

2. 网络拓扑结构:是指无线传感器节点之间的连接方式。

常见的拓扑结构有星型、多跳、分簇等,不同的拓扑结构适用于不同的应用场景和需求。

3. 路由协议:用于节点之间的数据传输和通信,实现节点之间的协作和信息交换。

常见的路由协议有LEACH、TBRPF等,选择合适的路由协议对于网络性能和能耗有着重要的影响。

4. 数据处理与存储:无线传感器网络中的节点通常会对采集到的数据进行处理和存储,以便后续分析和应用。

节点可以通过数据压缩、聚合等方式减少数据的传输量,并采用存储技术将数据保存在本地或云端。

二、无线传感器网络的应用领域无线传感器网络在许多领域都有着广泛的应用,下面列举了一些典型的应用领域:1. 环境监测:无线传感器网络可以用于实时监测环境中的温度、湿度、气体浓度等参数,对环境变化进行监测和预警。

这在农业、气象、能源等领域都有着重要的应用价值。

2. 智能交通:无线传感器网络可以用于交通状况的实时监测和智能调度,提高交通效率和安全性。

无线传感器网络技术介绍

无线传感器网络技术介绍

无线传感器网络技术介绍无线传感器网络技术(Wireless Sensor Networks,简称WSN)指由大量的无线传感器节点组成的、能够进行自组织和协作、实时监测和感知物理世界的网络系统。

WSN结构简单、性价比高、易于布置和维护,经常被应用于农业、环境监测、智能交通等领域。

本文将深入探讨WSN的技术概念、组成方式、应用领域以及未来发展趋势等方面。

1. WSN的技术概念WSN由大量的传感器节点、中继节点、边缘节点和数据中心组成。

传感器节点负责采集周围环境的物理信息,尤其是温度、湿度、光照、压力、声音、动作等变量,并将采集到的信息通过无线信道传输到区域中心节点或中继节点。

中继节点则负责汇聚来自不同传感器节点的信息,转换格式并传输到数据中心。

边缘节点是用于通信和传输的节点,用于实现与其他网络系统的集成。

数据中心可将采集到的信息进行处理、分析、存储和展示等各种操作。

2. WSN的组成方式WSN的组成方式一般采用分布式结构,即将大量的传感器节点分散在所需要监测的区域中,由各自的节点进行数据采集、处理和传输,再将数据传输到中继节点或数据中心。

这种分布式结构使得WSN能够在独立工作、自主调整、自组织和自适应的情况下完成实时监测任务。

3. WSN的应用领域3.1 农业领域WSN在农业领域的应用主要是为了提高农作物的产量和质量,例如用于土壤水分、温度、光照强度、二氧化碳浓度等的测量和监测。

以土壤水分监测为例,WSN可以通过多个节点对农田中的土壤湿度进行密集监测,从而为农民实时掌握作物的水分状况提供数据支持。

此外,WSN还可以用于相应的农业气象观测,同时也可以监测到土壤中的营养含量和金属成分等信息。

3.2 环境监测领域WSN在环境监测领域的应用比较广泛,例如用于空气质量、噪声污染、水质信号的监测等。

由于相关技术的成熟,WSN方案可以很轻易地被部署在污染程度高的地区,例如化工厂、污水处理厂和垃圾处理厂等。

同时,WSN节点还可以用于地下水位监测以及评估森林火灾风险等方面的应用。

无线传感器网络(WSN)技术

无线传感器网络(WSN)技术

无线传感器网络(WSN)技术无线传感器网络(Wireless Sensor Network,简称WSN)是由大量分布式传感器节点组成的自组织、具备自动感知、处理、通信和控制功能的无线网络系统。

其特点是智能化、自组织、自适应和自愈合等,可以应用于环境监测、智能交通、灾害预警等领域,是物联网技术的重要组成部分。

一、WSN技术的概念与特点1、WSN技术的概念WSN技术是指将大量的分布式传感器节点组成的自组织、具备自动感知、处理、通信和控制功能的无线网络系统。

WSN 中的每个节点都具备感知环境信息和自我组织的能力,通过互相通信完成数据收集和处理,以实现对环境的全面感知和有效控制。

2、WSN技术的特点(1)智能化:WSN中的节点都具备感知和处理环境信息的能力,通过自适应和自我组织的算法实现智能化的数据处理和控制。

(2)自组织:WSN的节点通过互相通信、相互协作,自组织形成一种分布式网络结构,实现自我管理和自我调节的能力。

(3)自适应:WSN通过自适应算法实现网络拓扑结构的自动调整,保证网络稳定性和可靠性。

(4)自愈合:WSN中的节点可以根据网络拓扑结构的变化自我调整,保证网络的稳定性和可靠性。

二、WSN技术的应用场景WSN技术可以应用于如下领域:1、智能交通系统WSN可以应用于智能交通系统中,通过无线传感器节点对车辆、路况等进行监测和控制,实现智能化的交通管理和调度。

2、环境监测WSN可以应用于环境监测中,通过无线传感器节点对环境因素进行感知和数据采集,掌握环境变化情况,及时预警并采取相应措施。

3、智能医疗系统WSN可以应用于智能医疗系统中,通过无线传感器节点对病人体征进行实时监测和记录,实现智能化的医疗管理和控制。

4、灾害预警WSN可以应用于灾害预警中,通过无线传感器节点对地震、火灾等灾害进行实时监测和预警,及时采取措施,减轻灾害损失。

三、WSN技术的实现方法和算法1、WSN技术的实现方法WSN技术的实现方法包括节点硬件设计、节点软件设计和网络协议设计三个方面。

无线传感器网络的基本组成与工作原理

无线传感器网络的基本组成与工作原理

无线传感器网络的基本组成与工作原理无线传感器网络(Wireless Sensor Network, WSN)是由大量分布在空间中的无线传感器节点组成的网络系统。

每个传感器节点都具备感知、处理、通信和能量供应等功能,能够实时收集、处理和传输环境中的各种信息。

本文将介绍无线传感器网络的基本组成与工作原理。

一、无线传感器网络的基本组成1. 传感器节点:传感器节点是无线传感器网络的基本单元,通常由感知模块、处理模块、通信模块和能量供应模块组成。

感知模块负责收集环境中的各种信息,如温度、湿度、压力等;处理模块对收集到的信息进行处理和分析;通信模块负责与其他节点进行通信;能量供应模块为节点提供能量。

2. 网络拓扑结构:无线传感器网络通常采用分布式的拓扑结构,常见的拓扑结构有星型、网状和混合型。

星型拓扑结构中,所有的传感器节点都与一个中心节点相连;网状拓扑结构中,传感器节点之间可以直接通信;混合型拓扑结构则是星型和网状拓扑的结合。

3. 网络协议:无线传感器网络需要一套有效的协议来管理和控制节点之间的通信。

常见的网络协议有路由协议、传感器数据聚集协议和能量管理协议等。

路由协议用于确定数据传输的路径;传感器数据聚集协议用于将传感器节点收集到的数据进行聚集和压缩;能量管理协议用于管理和优化节点的能量消耗。

二、无线传感器网络的工作原理1. 节点部署与初始化:首先,需要根据实际需求和应用场景,合理地部署传感器节点。

节点部署完成后,需要对节点进行初始化配置,包括网络参数、感知参数和通信参数等。

2. 数据采集与处理:传感器节点根据预设的感知参数,实时采集环境中的各种信息。

采集到的数据经过处理模块进行处理和分析,提取有用的信息。

3. 数据传输与通信:节点通过通信模块与其他节点进行通信。

节点之间可以通过直接通信或多跳通信的方式进行数据传输。

通过路由协议,节点可以确定数据传输的路径,将采集到的数据传输到指定的目的地。

4. 数据聚集与压缩:传感器节点采集到的数据可以通过传感器数据聚集协议进行聚集和压缩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于系统集成技术的节点类型和特点
在节点的功能设计和实现方面,目前常用的节点均为采用分立元器件的系统集成技术。

已出现的多种节点的设计和平台套件,在体系结构上有相似性,主要区别在于采用了不同的微处理器,如AVR系列和MSP430系列等;或者采用了不同的射频芯片或通信协议,比如采用自定义协议、802.11协议、ZigBee[1]协议、蓝牙协议以及UWB通信方式等。

典型的节点包括Berkeley Motes [2,3], Sensoria WINS[4], MIT µAMPs [5], Intel iMote [6], Intel XScale nodes [7], CSRIO研究室的CSRIO节点[8]、Tmote [9]、ShockFish公司的TinyNode[10]、耶鲁大学的XYZ节点[11] 、smart-its BTNodes[12]等。

国内也出现诸多研究开发平台套件,包括中科院计算所的EASI系列[13-14],中科院软件所、清华大学、中科大、哈工大、大连海事大学等单位也都已经开发出了节点平台支持网络研究和应用开发。

这些由不同公司以及研究机构研制的无线节点在硬件结构上基本相同,包括处理器单元、存储器单元、射频单元,扩展接口单元、传感器以及电源模块。

其中,核心部分为处理器模块以及射频通信模块。

处理器决定了节点的数据处理能力和运行速度等,射频通信模块决定了节点的工作频率和无线传输距离,它们的选型能在很大程度上影响节点的功能、整体能耗和工作寿命。

目前问世的传感节点(负责通过传感器采集数据的节点)大多使用如下几种处理器:ATMEL公司AVR系列的ATMega128L处理器,TI公司生产的MSP430系列处理器,而汇聚节点(负责会聚数据的节点)则采用了功能强大的ARM处理器、8051内核处理器、ML67Q500x系列或PXA270处理器。

这些处理器的性能综合比较见表1。

表1、无线传感器网络节点中采用的处理器性能比较
在无线传感器网络中,广泛应用的底层通信方式包括使用ISM波段的普通射频通信、具有802.15.4协议和蓝牙通信协议的射频通信。

使用普通ISM频段的无线传感器网络节点根据在不同的国家和地区对于ISM波段频率的定义不同,一般将通信频率设置为433MHz或者868/915MHz。

在硬件的设计中,所采用的芯片包括Chipcon公司的CC1000,Nordic公司的nrf903,Semtech公司的XE1205。

还有部分无线传感器网络节点使用了带有802.15.4/ZigBee协议的通信芯片,具有这样协议的芯片包括Chipcon公司的CC2420,RFWave公司的RFW102芯片组。

还有部分节点采用了Bluetooth协议进行通信,具有Bluetooth协议的芯片组包括Ericsson公司生产的ROK 101 007等。

上述这些射频芯片的性能比较以及代表性节点的性能比较见表2和表3。

表2、无线传感器网络节点中采用的射频模块综合比较
表3、无线传感器网络节点综合比较
由表3可以看出,各公司生产的不同无线传感器网络节点根据所选用的核心处理器与射频通信芯片以及扩展功能的不同,分别具有不同的特点。

采用MSP430单片机具有的超低功耗特点,如Tmote;采用了超强处理器的节点更加擅长处理大数据量,适用于高速通信、环境复杂、需要强大数据处理能力的场合,如imote 2及XYZ节点; 使用ATMega128L芯片处理器则在性能和功耗之间较为平衡,处理速度较快,而功耗又相对较低,是一种折中的方案。

在射频方面,采用2.4GHz无线通信频率的节点包括使用了802.15.4/ZigBee通信协议以及Bluetooth通信协议,这两种方式将MAC层以下的通信协议固化在模块中,不需要进一步进行开发,步骤简化,更具兼容性,如Mica z、Tmote、Imote2及XYZ以及BTNodes节点,采用其它射频芯片的节点由于其通信频率比较低,因此在通信距离上较有优势,还可开发满足需要的MAC协议。

尽管已经出现了以上诸多类型的节点,但这些节点基本上还都是实验系统,是支持研究和二次开发的平台,尚没有实现系列化和标准化的工业级设计,距离
真正的实际应用需要,在技术成熟度上和功能上都尚有很大的差距,成本也比较高。

支持系统异构性的节点目前为数不多,CrossBow公司生产SPB400 stargate 网关节点使用了PXA255处理器,操作系统采用了Linux;而传感节点则采用mica 系列,使用TinyOS操作系统。

该网关节点具有强大的数据处理功能,并有多种接口,包括串行口、USB、以太网以及JTAG接口等,和mica节点插接使用实现射频通信。

目前为了支持异构网络(包括网络中采用不同的或混合的无线通信方式)而需要的具有更强系统异构性的节点不多见,Intel Xcale是一个例子,在使用了PXA250 XScale处理器的网关上增加802.11通信方式,使得网关节点间具有较强的通信能力,网络中其他传感节点使用非802.11协议(如802.15.4/ZigBee)的方式进行无线通信,以支持分层的异构网络应用。

目前,对异构网络的研究大多数是针于异构网络通信协议以及算法,以及Mesh网络的体系结构等,尚缺乏足够多样化的实际节点系统平台作为支持。

因此,支持系统异构性的、系列化的无线传感器网络节点正是当前急需启动的研究内容。

基于集成片上系统技术的节点类型和特点
集成片上系统是向下一代节点发展的必然趋势,它在物理设计上进行改进来减少节点的体积、成本和功耗,是从根本上解决低成本和高可靠性的技术手段。

下一代节点的典型代表有U.C. Berkeley的Smart Dust[15]以及PicoRadio[16],CSEM的WiseNET[17],芬兰坦佩雷技术大学的Multi-Radio WSN Platform[18]等,它们均采用了SOC技术,在一个芯片上集成了CPU、自定义逻辑模块、甚至射频模块和传感器模块,用这样的芯片辅以较少的外设来实现传感器节点。

目前此类节点的开发,一般先在FPGA开发平台上进行,验证完成后再转为ASIC量产。

由于能够自行选择和设计逻辑模块,此类平台的开发灵活性有了很大的提高,在FPGA验证完成的情况下,配上先进的工艺来设计ASIC芯片,可以大幅度的减少节点的功耗、体积和成本并且提高可靠性。

不过此类节点的开发比较复杂,目前多为各个实验室自行开发各自的平台。

不过随着SOC技术的发展和IP(Intellectual Property)模块的普及,此类节点的开发会越来越容易。

Smart Dust是1999年U.C. Berkeley在美国国防部委托下开发出的一套无线传感器网络节点,采用光通信方式。

同时,它采用了MEMS技术,融合了硅微加工、光刻铸造成型(LIGA)和精密机械加工等多种微加工技术,使得它的长度在
5mm之内。

Smart Dust采用了SOC的方式,在一个芯片中集成了传感器、处理器、光通信装置等器件,成功地达到了减小体积,降低功耗的目的。

PicoRadio研究组属于Berkeley的无线研究中心。

为了研发采用SOC技术的无线传感器网络节点PicoNode,2002年它们设计了PicoRadio Test Bed这一研发平台,它由处理器板、电源板、通信板和传感器板四个板块叠加而成。

其中处理器板采用了ARM 1100的CPU和Xilinx XC4020XLA的FPGA作为处理器,通信板采用蓝牙作为通信方式。

在开发中,应用层和高层次的网络协议用软件的方式通过CPU来实现,而低层次的网络协议以及蓝牙芯片的控制则通过硬件编程的方式用FPGA来实现。

由于PicoRadio Test Bed只是一个测试平台,还没有实现真正意义上的SoC,因此PicoRadio Test Bed体积和功耗还难以让人满意。

其研究还表明,在运行同样MAC协议的相同工艺下不同平台在功耗方面有较大差异,以ASIC为最低。

因此,只要将PicoRadio Test Bed转化为ASIC芯片,则它的功耗和体积都可望大大下降。

WiseNET是瑞士CMES开发的一套无线传感器网络节点芯片,WiseNET采用SOC技术,专门为无线传感器网络而设计。

在一块芯片上集成了射频模块、MAC 协议、采用Cool-RISC结构的微控制器、电源模块、ADC模块以及SPI、I2C的接口,用户只需外接电池、传感器和天线即可将它制作成节点。

从功能、体积和功耗上它都比用通用的CPU设计出的传感器节点有较大的改进。

如果说前三种节点体现的是SOC节点在体积和功耗上的优势,Tampere University of Technology(坦佩雷技术大学芬兰)的Multi-Radio WSN Platform 则体现出了SOC节点在硬件灵活性上的优势。

与往常的节点不同,Multi-Radio WSN Platform采用了四个射频模块,用频分的方式在4个频段上同时进行数据收发,可达到较高的数据传输速率。

采用的是Altera Cyclone EP1C20的FPGA,并使用了Nios II CPU软核作为片上的处理器,同时它在FPGA 上实现了四个射频芯片的接口模块,比建立一个射频控制模块来协调四个射频芯片的工作。

目前在国内开展面向下一代网络节点SOC的工作有中科院计算所的EASISOC[19],并已经完成了一款具有简单功能的节点FPGA验证,目前正在开展高端SOC节点的设计验证工作。

相关文档
最新文档