初一数学期中试卷及答案

合集下载

2023-2024学年北京西城区十三中初一(上)期中数学试题及答案

2023-2024学年北京西城区十三中初一(上)期中数学试题及答案

2023北京十三中初一(上)期中数 学考生须知1.本试卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷共2页,第Ⅱ卷共4页. 2.本试卷满分100分,考试时间100分钟.3.在试卷(包括第Ⅰ卷和第Ⅱ卷)密封线内准确填写学校、班级、姓名、学号. 4.考试结束,将试卷及答题纸一并交回监考老师.第Ⅰ卷一、选择题:(本大题共8小题,每小题2分,共16分)下面1-8题均有四个选项,其中符合题意的选项只有一个.1. 2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为( ) A. 80.1110⨯B. 71.110⨯C. 61110⨯D. 61.110⨯2. 下列说法中,正确的是( ) A. 2与2−互为倒数B. 2与12互为相反数C. 0的相反数是0D. 2的绝对值是2−3. 下列计算正确的是( ) A. 325a b ab += B. 22550ab a b −= C. 277a a a +=D. 32ab ba ab −+=4. 下列各组数中,相等的一组是( ) A. ()1−−与1−− B. 23−与()23−C. ()34−与34−D. 223与223⎛⎫ ⎪⎝⎭5. 某圆形零件的直径要求是500.2mm ±,下表是6个已生产出来的零件圆孔直径检测结果(以50mm 为标准则)则在这6个产品中合格的有( ).A. 2个B. 3个C. 4个D. 5个6. 下列说法中,不正确的是( ) A.3xy是整式 B. 2ab c −的系数是1−,次数是4 C. 2631x x −+的项是26x ,3x −,1D. 多项式22x y xy −是五次二项式7. 要使多项式()22222732x x x mx−+−+化简后不含x 的二次项,则m 等于( )A. 0B. 2−C. 6−D. 28. 如图,在一个大长方形中放入三个边长不等的小正方形①、②、③,若要求出两个阴影部分周长的差,只要知道下列哪个图形的面积( )A. 正方形①B. 正方形②C. 正方形③D. 大长方形第Ⅱ卷二、填空题(本大题共8个小题,每题2分,共16分)9. 写出一个比52−小的有理数________.10. 将多项式3x 2-1-6x 5-4x 3按字母x 的降幂排列为__________________. 11. 已知代数式6x ﹣12与4+2x 的值互为相反数,那么x 的值等于_____. 12. 如果3x =是关于x 的方程326m x −=的解,则m 的值是________. 13. 观察有理数a 、b 、c 在数轴上的位置并比较大小:()()c b a b −+______0.14. 若22350x x +−=,则代数式2469x x ++的值是________.15. 某服装店新上一款运动服,第一天销售了m 件,第二天的销售量是第一天的两倍少3件,第三天比第二天多销售5件,则第三天的销售量是______件.16. 如图①,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为4−,b ,5.某同学将刻度尺如图②放置,便刻度尺上的数字0对齐数轴上的点A ,发现点B 对齐刻度尺1.5cm 处,点C 对齐刻度尺4.5cm 处.(1)在图①的数轴上,AC =______个单位长; (2)求数轴上点B 所对应的数b 为______.三、计算题:(本大题共4小题,共39分,其中第17题18分,第18,20题各8分,第19题5分)17. 计算:(1)()()()()20357−++−−−+; (2) 2.4 3.7 4.6 5.7−−−+; (3)340.2575⎛⎫−+−⨯ ⎪⎝⎭; (4)()()21862⎛⎫−⨯−+− ⎪⎝⎭;(5)()1113612366⎛⎫−−+⨯− ⎪⎝⎭; (6)()411293⎛⎫−+−+−−− ⎪⎝⎭. 18. 化简:(1)2253482x x x x +++−−; (2)()()225214382a a a a+−−−+.19. 先化简,再求值2222233x y xy x y xy x y −−−+()(),其中25x =−,2y =. 20. 解方程:(1)()2237x x −=−; (2)12326x x −+−=1. 四、解答题(本大题共7个小题,共29分,其中第21题3分,第22,24,25,27题各4分,第23,26题各5分)21. 在数轴上表示出有理数: 3.5−,2,1.5,1−,并比较它们的大小,将它们按从小到大的顺序用“<”连接.22. 已知:212323A a ab a =+−−,21223B a ab =−++,当()2120a b +++=时,求()432A A B −−的值.23. a b ※是新规定的这样一种运算法则:22a b a ab =+※,例如()()22525255−=+⨯⨯−=※.(1)求23※的值;(2)若()22x x −=−+※,求x 的值.24. 已知A ,B ,C 三点在数轴上如图所示,它们表示的数分别是a ,b ,c ,且a b <.(1)填空:abc 0(填“>”、“<”或“=”);(2)化简:2a b a b b c −−++−25. 先阅读,再探究相关的问题:52−表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;52+可以看作()52−−,表示5与2−差的绝对值,也可理解为5与2−两数在数轴上所对应的两点之间的距离.(1)点A 的位置如图所示,点B 与点A 分别位于原点两侧且与原点距离相等,把点A 向左移动1.5个单位,得到点C ,则B ,C 两点间的距离是 ;(2)点D 和E 分别在数轴上表示数x 和1−,如果D ,E 两点之间的距离为3,那么x 为 ; (3)借助数轴思考,当x 为 时,4x +与2x −的值相等.26. 定义:若一个多项式的各项系数之和为7的整数倍,则称这个多项式为“7倍系数多项式”,称这个多项式的各项系数之和为“7倍系数和”.例如:多项式208x y +的系数和为2082874+==⨯,所以多项式208x y +是“7倍系数多项式”,它的“7倍系数和”为28. 请根据这个定义解答下列问题:(1)在下列多项式中,属于“7倍系数多项式”的是 ;(在横线上填写序号) ①229x x −;②35a b +;③219423x x y xy −+−.(2)若多项式4mx ny −是关于x 、y 的“7倍系数多项式”(其中m ,n 均为整数),则多项式23mx ny +也是关于x 、y 的“7倍系数多项式”吗?若是,请说明理由;若不是,请举出反例.27. 如图,设A 是由n ×n 个有理数组成的n 行n 列的数表,其中a ij (i ,j =1,2,3,…,n )表示位于第i 行第j 列的数,且a ij 取值为1或﹣1.对于数表A 给出如下定义:记x i 为数表A 的第i 行各数之积,y j 为数表A 的第j 列各数之积.令S =(x 1+x 2+…+x n )+(y 1+y 2+…+y n ),将S 称为数表A 的“积和”.(3)当n=10时,直接写出数表A的“积和”S的所有可能的取值.参考答案第Ⅰ卷一、选择题:(本大题共8小题,每小题2分,共16分)下面1-8题均有四个选项,其中符合题意的选项只有一个.1. 【答案】B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:数据11000000用科学记数法表示应为71.110⨯. 故选:B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,正确确定a 的值以及n 的值是解决问题的关键.2. 【答案】C【分析】根据相反数定义,倒数定义,绝对值定义对各选项进行一一判断即可. 【详解】解:A. 2与2−互为相反数,故选项A 不正确 B. 2与12互为倒数,故选项B 不正确;C. 0的相反数是0,故选项C 正确;D. 2的绝对值是2,故选项D 不正确. 故选C .【点睛】本题考查相反数定义,倒数定义,绝对值定义,掌握相关定义是解题关键. 3. 【答案】D【分析】根据合并同类项法则计算并判断.【详解】A 、3a 与2b 不是同类项,不能合并,故该项不符合题意; B 、5ab 2与5a 2b 不是同类项,不能合并,故该项不符合题意; C 、7a+a=8a ,故该项不符合题意; D 、32ab ba ab −+=,故该项符合题意; 故选:D .【点睛】此题考查合并同类项,掌握同类项的判断方法是解题的关键. 4. 【答案】C【分析】根据有理数的乘方的定义,绝对值的性质对各选项分别计算,然后利用排除法求解. 【详解】解:A 、-|-1|=-1,-(-1)=1,-(-1)≠-|-1|,故本选项错误; B 、(-3)2=9,-32=-9,9≠-9,故本选项错误; C 、(-4)3=-64,-43=-64,(-4)3=-43,故本选项正确;D 、22433=,22439⎛⎫= ⎪⎝⎭,4439≠,故本选项错误.故选:C .【点睛】本题考查了绝对值、有理数的乘方.解题的关键是掌握有理数的乘方运算法则,要注意-43与(-4)3的区别. 5. 【答案】C【分析】某圆形零件的直径要求是50±0.2mm ,即可得49.850.2mm mm ~都合格,一一进行判断即可.【详解】500.2mm ±,即49.850.2mm mm ~都合格,0.2mm ±内都可合格, ∴有4个.【点睛】本题主要考查有理数正负数在生活中的实际运用,正确理解正负数的性质是本题的解题关键. 6. 【答案】D【分析】本题考查了整式,根据根据整式的定义,A ;可判断单项式的系数、次数,可判断B ;根据多项式的项,可判断C ;根据多项式次数和项,可判断D . 【详解】解:A 、3xy是整式,故A 正确,不符合题意; B 、2ab c −的系数是1−,次数是4,故B 正确,不符合题意; C 、2631x x −+的项是26x ,3x −,1,故C 正确,不符合题意; D 、多项式22x y xy −是三次二项式, 故D 不正确,符合题意; 故选:D . 7. 【答案】C【分析】去括号合并同类项后,令x 的二次项的系数等于0求解即可. 【详解】解:()22222732x x x mx−+−+=22221464x x x mx −−++=()26+614m x x −−,∵化简后不含x 的二次项, ∴6+m =0, ∴m =-6, 故选C .【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中代数式的取值与哪一项无关的意思,与哪一项无关,就是合并同类项后令其系数等于0,由此建立方程求解. 8. 【答案】B【分析】如图,设三个正方形①②③的边长依次为a ,b ,c ,重叠的小长方形的长和宽分别为x ,y ,表示出阴影部分的周长差即可求解.【详解】如图,设三个正方形①②③的边长依次为a,b,c,重叠的小长方形的长和宽分别为x,y,∴阴影部分的周长差为2(a+b-x-c)+2(b+c-y)-2(b-x)-2(a-y)=2a+2b-2x-2c+2b+2c-2y -2b+2x-2a+2y=2b故只要知道下列图形②的边长或面积即可求解,故选B.【点睛】此题主要考查整式的加减、列代数式、去括号,解题的关键是根据图形的特点列出代数式求解.第Ⅱ卷二、填空题(本大题共8个小题,每题2分,共16分)9. 【答案】3−(答案不唯一)【分析】本题考查了有理数的大小比较,根据“两个负数比较大小,绝对值大的数反而小”的法则,即可得到答案.【详解】解:532−>−,532∴−<−,故答案为:3−.10. 【答案】-6x5-4x3+3x2-1【分析】根据多项式的降幂排列的定义,可知多项式的5次项为-6x5,3次项为--4x3,2次项为3x2,常数项为-1.故其降幂排列为-6x5-4x3+3x2-1.【详解】多项式3x2-1-6x5-4x3按字母x的降幂排列为:-6x5-4x3+3x2-1.故答案为-6x5-4x3+3x2-1.【点睛】此题考查多项式,解题关键在于掌握多项式每项的幂.11. 【答案】1【详解】解:根据题意得:6x﹣12+4+2x=0,移项合并得:8x=8,解得:x=1,故答案为112. 【答案】4【分析】本题考查了方程的解以及解一元一次方程,根据方程的解的定义,将3x=代入关于x的方程326m x −=,得到关于m 的一元一次方程,求解即可得到答案.【详解】解:3x =是关于x 的方程326m x −=的解,3236m ∴−⨯=,解得:4m =, 故答案为:4. 13. 【答案】<【分析】根据数轴判断出()c b −和()a b +的正负,即可得出答案. 【详解】解:由题意可知:0a b c <<<,b a c <<, 所以0c b −>,0a b +<. 所以()()0c b a b −+<. 故答案为:<.【点睛】本题考查了数轴,掌握数轴上数的排列特点和有理数的运算法则是解题的关键. 14. 【答案】19【分析】此题主要考查了求代数式的值,首先由已知得2235x x +=,再将2469x x ++转化为22(23)9x x ++,然后整体代入即可.【详解】解:22350x x +−=, 2235x x ∴+=,222(23)925991946x x x x ∴=++=⨯+=++.故答案为:1915. 【答案】()22m +##()22m +【分析】第一天销售了m 件,再根据“第二天的销售量是第一天的两倍少3件”,“第三天比第二天多销售5件”列出代数式,即可求解.【详解】∵第一天销售了m 件,第二天的销售量是第一天的两倍少3件,第三天比第二天多销售5件 即第二题的销售量是()23m −件,第三天的销售量是()235m −+件, ∴第三天的销售量是()22m +件. 故答案为:()22m +.【点睛】本题考查了列代数式,理解题意是解题的关键. 16. 【答案】 ①. 9 ②. 1−【分析】(1)根据两点之间的距离即可得出答案;(2)先求出1个单位长度是多少厘米,再求1.5cm 是几个单位长度,根据有理数的加法即可得出答案. 【详解】解:()549−−=(个), ∴9AC =个单位长,故答案为:9;(2)()4.590.5cm ÷=, 1.50.53÷=(个), 431b =−+=−,∴数轴上点B 所对应的数b 为1−, 故答案为:1−.【点睛】本题考查数轴,数轴上两点间的距离,有理数的加减运算.掌握如果数轴上两点A ,B 表示的数为a ,b ,那么A ,B 之间的距离是a b −是解题的关键.三、计算题:(本大题共4小题,共39分,其中第17题18分,第18,20题各8分,第19题5分)17. 【答案】(1)19− (2)5− (3)83140−(4)40 (5)2− (6)1123− 【分析】本题考查了含乘方的有理数混合运算以及加法运算律和乘法运算律,熟练掌握相关运算法则是解题关键.(1)根据有理数加减混合运算法则计算即可;(2)根据有理数加减混合运算法则,结合加法运算律计算即可; (3)根据有理数混合运算法则,先计算乘法,再计算加减法即可; (4)根据有理数混合运算法则,先计算乘法和乘方,再计算加法即可; (5)根据有理数加减混合运算法则,结合乘法运算律计算即可; (6)先计算乘方和绝对值,再根据有理数加减混合运算法则计算即可. 【小问1详解】解:()()()()20357−++−−−+ 20357=−++−19=−;【小问2详解】解: 2.4 3.7 4.6 5.7−−−+()()2.4 4.6 5.7 3.7=−++− 72=−+=5−;【小问3详解】 解:340.2575⎛⎫−+−⨯ ⎪⎝⎭ 112435=−− 83140=−; 【小问4详解】 解:()()21862⎛⎫−⨯−+− ⎪⎝⎭436=+40=;【小问5详解】 解:()1113612366⎛⎫−−+⨯− ⎪⎝⎭ ()()()11136363612366⎛⎫=−⨯−−⨯−+⨯− ⎪⎝⎭316=+−2=−;【小问6详解】解:()411293⎛⎫−+−+−−− ⎪⎝⎭ 11293=−−−− 1123=−. 18. 【答案】(1)2351x x −++(2)233413a a −+−【分析】本题考查了整式的加减混合运算,掌握相关运算法则是解题关键(1)根据整式的加减运算法则化简即可;(2)先去括号,再整式的加减运算法则化简即可.【小问1详解】解:22253482351x x x x x x +++−−=−++;【小问2详解】解:()()225214382a a a a +−−−+2252112328a a a a =+−−+−233413a a =−+−.19. 【答案】5xy ,4−【分析】应用整式的加减化简求值的计算方法进行计算即可得出答案.【详解】∵2222233x y xy x y xy x y −−−+()()2222439x y xy x y xy x y =−−++5xy = ∴当25x =−,2y =时,255245xy ⎛⎫=⨯−⨯=− ⎪⎝⎭∴2222233x y xy x y xy x y −−−+()()化简后是5xy 当25x =−,2y =时,222223354x y xy x y xy x y xy −−−+==−()() 【点睛】本题主要考查了整式的加减和化简求值,熟练掌握整式的加减和化简求值的方法进行求解是解决本题的关键.20. 【答案】(1)3x =(2)12x =【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次方程;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【小问1详解】解:()2237x x −=−,去括号,得:2437x x −=−,移项,得:2374x x −=−+,合并同类项,得:3x −=−,系数化为1:3x =;【小问2详解】12326x x −+−=1, 去分母,得:()()31236x x −−+=,去括号,得:33236x x −−−=,移项,得:32633x x −=++,合并同类项,得:12x =.【点睛】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.四、解答题(本大题共7个小题,共29分,其中第21题3分,第22,24,25,27题各4分,第23,26题各5分)21. 【答案】见解析; 3.51 1.52−<−<<【分析】本题考查了用数轴上的点表示有理数以及利用数轴比较有理数的大小,先画出数轴,再将这4个数在数轴上表示出来,最后根据“数轴上的点所对应的数从左往右依次增大”将这4个数按从小到大的顺序排列即可.【详解】解:在数轴上表示各数如图所示:由数轴可知, 3.51 1.52−<−<<.22. 【答案】11【分析】本题考查了整式的加减运算、非负数的性质,代数式求值.先根据整式的加减运算法则化简,再利用偶次方和绝对值的非负性,求出a 、b 的值,最后代入计算即可.熟练掌握相关运算法则是解题关键. 【详解】解:212323A a ab a =+−−,21223B a ab =−++, ()4223A B A A B −=−+∴221122322323a ab a a ab ⎛⎫+−−+−++ ⎪⎝⎭= 2214232233a ab a a ab =+−−−++ 421ab a =−+,()2120a b +++=,10a ∴+=,20b +=,1a ∴=−,2b =−,∴原式()()()41221182111=⨯−⨯−−⨯−+=++=.23. 【答案】(1)16 (2)65x = 【分析】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解,(1)利用题中的新定义化简原式,计算即可得到结果;(2)利用题中的新定义化简已知等式,求出方程的解即可得到x 的值.【小问1详解】解:根据题中新定义得:2※23222341216=+⨯⨯=+=;【小问2详解】根据题意:2(2)2(2)2x x −+⨯−⨯=−+,整理得:442x x −=−+,解得:65x =. 24. 【答案】(1)<(2)32a b c −−+【分析】(1)根据数轴上的点所在位置判断a 、b 、c 的正负号,再确定abc 、a b +正负号;(2)先确定a b −,a b +以及b c −的正负号,再根据绝对值的性质去绝对值符号即可.【小问1详解】解:根据数轴上A 、B 、C 三点的位置,可知0a b c <<<,且||||||c b a >>,<0abc ∴,故答案为:<【小问2详解】由题意可知,0a b −<,0a b +>,0b c −<,||2||||a b a b b c ∴−−++−2()b a a b c b =−−++−22b a a b c b =−−−+−32a b c =−−+.【点睛】本题考查了数轴、绝对值、有理数的及其运算等知识与方法,解题的关键是确定a 、b 、c 的正负号及有关算式的正负号.25. 【答案】(1)3.5 (2)2或4−(3)1−【分析】(1)根据数先在数轴上描出点,再根据点得出两点间的距离;(2)根据数轴上两点间的距离公式,可得到x 的值两个;(3)根据到两点距离相等的点是这两个点的中点,可得答案;【小问1详解】解:如图,B 点表示的数 2.5−,C 点表示的数1,BC 的距离是1( 2.5) 3.5−−=;故答案为: 3.5【小问2详解】数轴上表示x 和1−的两点D 和E 之间的距离表示为:|(1)||1|x x −−=+,如果D ,E 两点之间的距离为3,即|1|3x +=,13x +=或13x +=−,那么x 为4−或2;故答案为: 2或4−【小问3详解】|4|x +与|2|x −的值相等,42x x 此种情况等式不成立,或4(2)x x +=−−,=1x −,如图:1−到4−距离和1−到2的距离相等1x ∴=−时,|4|x +与|2|x −的值相等;故答案为:1−【点睛】本题考查了数轴,绝对值,相反数,解题的关键是掌握数轴知识,绝对值的定义,相反数的定义. 26.【答案】(1)①③ (2)是,理由见详解【分析】本题考查了多项式的新定义,(1)分别算一下这三个多项式各系数之和是否为7的整数陪,即可求出答案;(2)根据题意可知,4m n −是7的整数倍,推出47n m z =−,根据要求推一下23m n +是否是7的整数倍即可.【小问1详解】解:(1)①因为[2(9)]71+−÷=−,1−是整式,所以这个多项式是“7倍系数多项式”; ②因为8(35)77+÷=,87不是整数,所以这个多项式不是“7倍系数多项式”; ③因为(19423)72−+−÷=,2是整数,所以这个多项式不是“7倍系数多项式;故答案选:①③;【小问2详解】是,理由如下:多项式4mx ny −是关于x ,y 的“7倍系数多项式”,4m n ∴−是7的整数倍,设47(m n z z −=为整数,且0)z ≠,则47n m z =−,多项式23mx ny +的系数之和为:23m n +,2323(47)1421m n m m z m z ∴+=+−=−,(1421)723m z m z −÷=−,1421z ∴−为7的倍数,即23m n +为7的倍数,∴当多项式4mx ny −是关于x ,y 的“7倍系数多项式”,多项式23mx ny +也是关于x ,y 的“7倍系数多项式”.27. 【答案】(1)0;(2)不存在,理由见解析;(3)﹣20,﹣16,﹣12,﹣8,﹣4,0,4,8,12,16,20【分析】(1)由题意分别求出x1=1,x2=-1,x3=1,x4=1,y1=-1,y2=-1,y3=1,y4=-1;(2)假设存在,一个3×3的数表A,使得该数表的“积和”S=0,由题意可知x1、x2、x3、y1、y2、y3中只能有3个1或3个-1,再由这些数的乘积t2=x1x2x3y1y2y3=-1,与t2≥0矛盾,即可说明不存在;(3)n=10时,每行10个1,9个1,8个1,…,1个1,0个1,这11中情况分别求出S即可.【详解】(1)由题意可知,x1=1,x2=﹣1,x3=1,x4=1,y1=﹣1,y2=﹣1,y3=1,y4=﹣1,∴S=2+(﹣2)=0;(2)假设存在,一个3×3的数表A,使得该数表的“积和”S=0,则S=(x1+x2+x3)+(y1+y2+y3)=0,∵x1、x2、x3、y1、y2、y3的值只能去1或﹣1,∴x1、x2、x3、y1、y2、y3中只能有3个1或3个﹣1,∴设3×3的数表A中9个数的乘积为t,则t=x1x2x3=y1y2y3,∴t2=x1x2x3y1y2y3=﹣1,这与t2≥0矛盾,故假设不成立,∴不存在一个3×3的数表A,使得该数表的“积和”S=0;(3)n=10时,S的可能取值﹣20,﹣16,﹣12,﹣8,﹣4,0,4,8,12,16,20.【点睛】本题考查数字的规律;理解题意,能够根据1和-1的个数是决定S的值的关键.。

七年级数学期中试卷及答案【含答案】

七年级数学期中试卷及答案【含答案】

七年级数学期中试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长为10cm,腰长为13cm,那么这个三角形的周长是?A. 32cmB. 36cmC. 42cmD. 46cm3. 一个数加上6后,再除以3,结果是5,这个数是?A. 11B. 13C. 15D. 174. 一个长方体的长、宽、高分别是10cm、6cm、4cm,那么这个长方体的体积是?A. 240cm³B. 480cm³C. 720cm³D. 960cm³5. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 圆二、判断题1. 任何两个奇数相加的和都是偶数。

()2. 一个数的平方和它的立方一定相等。

()3. 一个等边三角形的三个角都是60度。

()4. 两个负数相乘的结果是正数。

()5. 一个数的倒数乘以它自己等于1。

()三、填空题1. 2的平方根是______。

2. 一个等腰三角形的两个底角相等,如果一个底角是50度,那么另一个底角是______度。

3. 1千克等于______克。

4. 一个圆的半径是5cm,那么这个圆的面积是______cm²。

5. 一个数的因数是它自己,那么这个数是______。

四、简答题1. 请简述勾股定理的内容。

2. 请解释等差数列的定义。

3. 请解释比例的基本性质。

4. 请简述分数的基本性质。

5. 请解释正方形的性质。

五、应用题1. 一个长方体的长、宽、高分别是12cm、8cm、6cm,求它的体积。

2. 一个等腰三角形的底边长是10cm,腰长是13cm,求这个三角形的面积。

3. 一个数加上7后,再乘以3,结果是60,求这个数。

4. 一个数的2倍加上4等于18,求这个数。

5. 一个数的3/4等于15,求这个数。

六、分析题1. 小明有10个苹果,他吃了一半,然后又吃了一个,请问小明还剩下几个苹果?2. 一个长方体的长、宽、高分别是10cm、6cm、4cm,如果长、宽、高都增加2cm,那么新长方体的体积是多少?七、实践操作题1. 请画出一个正方形,并标出它的对角线。

初一数学上册期中考试试卷及答案

初一数学上册期中考试试卷及答案

初一数学上册期中考试试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个表达式的结果为负数?A. 2 + 3B. -2 - 3C. 2 × 3D. -2 × 3答案:B3. 哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A4. 如果a = 5,b = 3,那么a + b的值是多少?A. 2B. 8C. 10D. 15答案:B5. 哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 不规则四边形答案:D6. 下列哪个选项是质数?A. 4B. 6C. 7D. 8答案:C7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 哪个选项表示的是不等式?A. 3 + 4 = 7B. 2 × 5 = 10C. 9 > 3D. 6 = 6答案:C10. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。

答案:4或-412. 如果一个数除以3余1,这个数可能是______。

答案:413. 一个数的立方是-8,这个数是______。

答案:-214. 一个数的倒数是1/3,这个数是______。

答案:315. 一个数的绝对值是它本身,这个数是非负数,包括______。

答案:0和正数16. 如果一个三角形的两边长分别是3和4,那么第三边的长度应该在______范围内。

答案:1和7之间17. 一个数的平方根是2,这个数是______。

答案:418. 如果一个数的相反数是它本身,这个数是______。

2023-2024学年河北省石家庄市栾城区初一第一学期期中数学试卷及参考答案

2023-2024学年河北省石家庄市栾城区初一第一学期期中数学试卷及参考答案

2023—2024学年度第一学期石家庄市栾城区期中教学质量检测七年级数学一.选择题(本大题共12个小题,每小题2分,共24分,把每小题的正确选项填涂在答题纸上)1.如果气温升高时气温变化记作2+℃,那么气温下降4℃时气温变化记作( ) A .4+℃B .4−℃C .6+℃D .6−℃2.计算(1)5−−的结果是( ) A .4−B .4C .6−D .53.2023的相反数为( ) A .2023−B .2023C .12023−D .120234.下列绘制的数轴正确的是( ) A . B . C .D .5.单项式223x y−的系数和次数分别是( )A .2−,3B .-2,2C .23−,3 D .23−,2 6.下列各式中,计算正确的是( ) A .( 5.8)( 5.8)11.6−−−=− B .2144164−÷⨯=− C .322(3)72−⨯−=D .22(5)4(5)(3)45⎡⎤−+⨯−⨯−=⎣⎦7.计算2( 1.8)−的结果是( ) A .32.4B .32.4−C .3.24D .32.48.下列说法错误的是( ) A .直线l 经过点AB .点C 在线段上C .射线与线段有公共点D .直线a ,b 相交于点A9.某服装店新开张,第一天销售服装m 件,第二天比第一天少销售8件,第三天的销售量是第二天的2倍多3件,则这三天的销售量一共为( ) A .(421)m +件B .(421)m −件C .(331)m +件D .(331)m −件10.如图,用量角器度量AOB ∠和AOC ∠的度数下列说法中,正确的是( )A .110AOB ∠=︒B .AOB AOC ∠=∠ C .90AOB AOC ︒∠+∠=D .180AOB AOC ︒∠+∠=11.当1x =时,代数式37ax bx ++的值为4,则当1x =−时,代数式37ax bx ++的值为( ) A .4B .4−C .10D .1112.观察下列一组数:23−,45,67−,89,1011−,…,它们是按一定规律排列的,那么这一组数的第n 个数是( )A .221n n + B .2(1)21n n n −− C .2(1)21nn n −+ D .12n n ++ 二、填空题(本大题共8个小题,每小题3分,共24分,将正确答案填写在答题纸上)13.中国古代的算筹计数法可追溯到公元前5世纪.摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横……这样纵横依次交纵式表示752−,表示2369,则表示________.14.单项式3ax y −与46b x y 是同类项,则a b +=________.15.已知a 、b 互为相反数,c 、d 互为倒数,则代数式2()3a b cd +−的值为________. 16.如图,点O 在直线AB 上,581728AOC '''∠=︒.则BOC ∠的度数是________.17.图中几何体的截面(图中阴影部分)依次是________、________、________、________.18.121536︒'"=________°.(将度分秒转化成度)19.如图,在75⨯方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是点________.20.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成的,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形,,按此规律摆下去,第n 个图案有________个三角形(用含n 的式子表示).三、解答题:(本大题共5个小题,共52分)21.计算(共10分)已知下列各有理数: 2.5−,3,4−,12−,32(1)在数轴上标出这些数表示的点:(2)用“<”号把这些数连接起来:________; (3)请将以上各数填到相应的横线上: 正有理数:________;负有理数:________. 22.计算(共10分)某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,如表是实际购书情况:(1)直接写出a =________,b =________; (2)根据记录的数据可知4个班实际购书共本;(3)书店给出一种优惠方案:一次购买达到15本,其中2本书免费.若每本书售价为30元,求这4个班团体购书的最低费用. 23.(共10分)读句子画图:如图A 、B 、C 、D 在同一平面内(1)过点A 、D 画直线; (2)画射线CD ; (3)连结AB ;(4)连接AC 和BD 相交于点E ;(5)连结BC 并延长BC 到F ,使CF BC =. 24.(本题满分10分). 已知如图所示.(1)写出表示阴影部分面积的代数式;(两个四边形均为正方形) (2)求4cm a =,6cm b =时,阴影部分的面积. 25.(本题满分12分)已知120AOB ∠=︒,40COD ∠=︒,OE 平分AOC ∠,OF 平分BOD ∠.(1)如图1,当OB ,OC 重合时,求AOE BOF ∠−∠的值;(2)如图2,当COD ∠从图1所示的位置开始绕点O 以每秒2°的速度顺时针旋转t 秒(010t <<).在旋转过程中,AOE BOF ∠−∠的值是否会因t 的变化而变化?若不变化,请求出该定值;若变化,请说明理由; (3)在(2)的条件下,求当COD ∠旋转多少秒时,12COF ∠=︒.2023—2024学年度第一学期石家庄市栾城区期中考试七年级数学答案一.选择题(本大题共12个小题,每小题2分,共24分,把每小题的正确选项填涂在答题纸上)1-5 BCABC6-10 DCBBD 11 C12 C二、填空题(本大题共8个小题,每小题3分,共24分,将正确答案填写在答题纸上)13.7416−14.715.3−16.1214232︒'''.17.圆形,三角形,六边形,圆形.18.12.2619.M20.31n+三、解答题:(本大题共5个小题,共52分)21.解(1)数轴上表示各点如下:………………………….5分(2)用“<”号把这些数连接起来:134 2.5322−<−<<<,…………………..8分(3)正有理数有:3,32;负有理数有:4−, 2.5−,12−……………….10分22.解(1)∵由于4班实际购入22本,且实际购买数量与计划购买数量的差值为8−,即可得计划购书量为30本,∴一班实际购入301545a=+=本,二班实际购入数量与计划购入数量的差值32302b=−=本,故答案依次为:45,2.……………….4分(2)4个班一共购入数量为:45322322122+++=本,故答案为:122………………..6分(3)∵1221582÷=,……………7分∴如果每次购买15本,则可以购买8次,且最后还剩2本书需单独购买,……………8分∴最低总花费为:30(152)83023180⨯−⨯+⨯=元.……………………10分23.解(1)如图,直线AD即为所求;…………………2分(2)如图,射线CD即为所求;…………………4分(3)如图,线段AB 即为所求;…………………6分 (4)如图,点E 即为所求;…………………8分 (5)如图,线段CF 即为所求.…………………10分 24.解:(1)CDB BGF ECGF S S S S =−+△△正阴.........................2分2211()22a b b a b =+−⨯+…………………4分 ()2212a b ab =+−; 答:阴影部分面积为()2212a b ab +−;…………………..6分(2)当4cm a =,6cm b =时,()2212S a b ab =+−阴()22146462=⨯+−⨯……………………8分 ()214cm =,答:阴影部分的面积为214cm .…………………..10分 25.(1)解:因为OE 平分AOC ∠,OF 平分BOD ∠,所以1602AOE AOC ∠=∠=︒,11402022BOF BOD ∠=∠=⨯︒=︒.…………..2分所以602040AOE BOF ∠−∠=︒−︒=︒;…………………4分(2)解:AOE BOF ∠−∠的值是定值.…………………..5分根据题意,得:2BOC t ∠=︒,则21202AOC AOB t t ∠=∠+︒=︒+︒,2402BOD COD t t ∠=∠+︒=︒+︒.………………………7分因为OE 平分AOC ∠,OF 平分BOD ∠,所以1602AOE AOC t ∠=∠=︒+︒,1202BOF BOD t ∠=∠=︒+︒,……………..8分所以40AOE BOF ∠−∠=︒;…………………9分(3)解:根据题意,得()212BOF t ∠=+︒,…………………10分 所以21220t t +=+,………………….11分 解得8t =,所以当COD ∠旋转8s 时,12COF ∠=︒.………………………….12分。

七年级期中考试数学试卷及答案

七年级期中考试数学试卷及答案

ACDB中考试 数学试卷一、选择题(3×10=30)1.在下图中, ∠1,∠2是对顶角的图形是( )2.下列图中,哪个可以通过左边图形平移得到( )3.如图, 不能推出a ∥b 的条件是.. )A.∠1=∠3 B 、∠2=∠4C.∠2=∠3 D 、∠2+∠3=1800 4.下列语句不是命题的是( )A. 明天有可能下雨B.同位角相等C.∠A 是锐角D. 中国是世界上人口最多的国家 5.下列长度的三条线段能组成三角形的是( )A、1, 2, 3 B、1, 7, 6 C、2, 3, 6 D.6, 8, 106.点C在轴的下方, 轴的右侧, 距离轴3个单位长度, 距离轴5个单位长度, 则点C的坐标为( ) A、(-3, 5) B、(3, -5) C、(5, -3) D、(-5, 3)7.一辆汽车在笔直的公路上行使, 两次拐弯后, 仍在原来的方向上平行前进, 那么两次拐弯的角度是( )A.第一次右拐50°, 第二次左拐130°B.第一次左拐50°, 第二次右拐50°C.第一次左拐50°, 第二次左拐130°D.第一次右拐50°, 第二次右拐50°8.如图,能表示点到直线(或线段)距离的线段有.. ) A. 2条 B.3条 C.4条 D.5条9.如图两条非平行的直线AB ,CD 被第三条直线EF.截,交点为PQ ,那么这条直线将所在平面分成..)A. 5个部分B.6个部分C.7个部分D. 8个部分 10.以下叙述正确的有. )①对顶角相等 ②同位角相等 ③两直角相等 ④邻补角相等⑤有且只有一条直线垂直于已知直线 ⑥三角形的中线把原三角形分 成面积相等的两个三角形A 2121B 21C 21D4 3 21 c b a 第3题A、2个 B、3个 C、4个 D、5个 二、填空题(3×10=30)11.如图直线AB、CD、EF相交于点O, ∠AOC的邻补角......________.若∠AOC=500,则∠COB.....0 12.剧院里5排2号可以用(5,2)表示,则7排4号..... 表示.13.两条平行线被第三条直线所截.如果同旁内角之比为1:3,则这两个角分别为________和________.14.两个角的两边互相平行, 其中一个角30°, 则是另一个角的度数....... 15.已知, xy ﹤0, 则点P在坐标平面的位置是第________象限 16.若直线a ⊥b,a ∥c,则c___b.17.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为___________cm 18.点A距离每个坐标轴都是4个单位长度, 则点A的坐标为__________.19.如图, 天地广告公司为某商品设计的商品图案, 图中阴影部分是彩色, 若每个小长方形的面积都是1, 则彩色的面积为 。

初一数学上册期中考试试卷及答案

初一数学上册期中考试试卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 下列哪个是等边三角形的特点?A. 有两个角相等B. 有三条边相等C. 有一个角是直角D. 所有角都小于90度3. 下列哪个是负数?A. 5B. 0C. 3D. 84. 下列哪个是最小的合数?A. 4B. 6C. 8D. 95. 下列哪个是平行四边形的性质?A. 对角线互相垂直B. 对角线互相平分C. 对边平行且相等D. 所有角都是直角二、判断题(每题1分,共5分)1. 0是最小的自然数。

()2. 等腰三角形的两个底角相等。

()3. 1是质数。

()4. 平行四边形的对角线互相平分。

()5. 两个负数相乘的结果是正数。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 3的平方是______。

3. 1千米等于______米。

4. 等边三角形的每个角都是______度。

5. 5的立方是______。

四、简答题(每题2分,共10分)1. 解释什么是质数。

2. 简述平行四边形的性质。

3. 解释负数和正数的区别。

4. 什么是等腰三角形?5. 解释乘法的分配律。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 一个数加上它的5倍等于30,求这个数。

3. 一个等边三角形的周长是18厘米,求它的边长。

4. 一个数减去7等于10,求这个数。

5. 一个数的平方是64,求这个数。

六、分析题(每题5分,共10分)1. 小明有5个苹果,他吃掉了2个,然后又得到了3个,现在小明有多少个苹果?2. 一个长方形的长是15厘米,宽是10厘米,如果长方形的长增加5厘米,宽减少2厘米,求新长方形的面积。

七、实践操作题(每题5分,共10分)1. 画出一个等边三角形,并标出它的三个角。

2. 画出一个长方形,并标出它的长和宽。

八、专业设计题(每题2分,共10分)1. 设计一个实验,验证物体在水平面上受到的摩擦力与物体重量之间的关系。

2023至2024学年第一学期期中学业质量检测七年级数学试题参考答案及评分标准

2023至2024学年第一学期期中学业质量检测七年级数学试题参考答案及评分标准

[]61671761192611=+−=−×−−=−×−−=)(2023至2024学年第一学期期中学业质量检测七年级数学参考答案及评分标准 一、选择题:(本大题共12个小题,每小题4分,共48分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C C C D D C A C B CB二、填空题:(本大题共6个小题,每小题4分,共24分.)13.> 14.线动成面 15.9 16.-25 17.4 18. 380三、解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)解:原式 ············································2分 ························································4分20.(本题4分)解:原式 ····················································2分 ····································································4分21.(本题4分)解:原式 ······························1分·······························2分······························3分·······················································4分22.(本题5分)解:如图所示:·····················4分用“>”连接为:312>3>−(−2.5)>0. ·········································5分23.(本题5分) 解:(1)如图所示:························································4分(2)图中共有9个小正方体. ······· ································5分21942343-=−=−×−×)()(6=5-11=5-4=7)()(+++24.(本题6分)解:(1)分数集合:{5.2,227,−234,…};····································2分(2)非负整数集合:{0,−(−3)…};····································4分(3)有理数集合:{5.2,0,227,+(−4),−234,−(−3)…}.···························6分25.(本题6分)解:(1)最重的一箱比最轻的一箱多重2.5﹣(﹣3)=2.5+3=5.5(千克),答:20箱石榴中,最重的一箱比最轻的一箱多重5.5千克;···························2分(2)﹣3×1+(﹣2)×4+(﹣1.5)×2+0×3+1×2+2.5×8=8(千克),答:20箱石榴总计超过8千克; ·············································4分(3)(25×20+8)×8=508×8=4064(元),答:售出这20箱石榴可赚4064元.·····················································6分26.(本题6分)解:(1)草坪面积为xxxx−2×1=(xxxx−2)平方米;·············································3分(2)(8×5−2)×20=(40−2)×20=38×20=760(元).答:绿化整个庭院的费用为760元。

南京玄武区2023-2024初一下学期期中数学试卷及答案

南京玄武区2023-2024初一下学期期中数学试卷及答案

2023~2024 学年度第二学期期中质量调研卷七年级数学(总分:100分)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列运算正确的是A .a 4+a 5=a 9B . a ·a 3=a 3C .(a 5)2=a 10D . a 6÷a 2=a 32.如图,已知直线a ∥b ,∠1=95°,则 ∠2的大小是 A .85° B .95° C .75°D .105°3.已知三角形的三边长分别为3,5,x ,则x 不可能是 A .3B .5C .7D .84.下列各式中,不能使用平方差公式计算的是A .(a +1) (-a -1)B .(a -1) (-a -1)C .(a +1) (a -1)D .(a +1) (1-a )5.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是A .110° B .105° C .108° D .100° 6.若a =-(0.2)2,b =-22,c =(-12 )-2,d =(-12)0,则它们的大小关系是A .a <b <d <cB .b <a <d <cC .a <d <c <bD .c <a <d <b7.下列三角形一定为直角三角形的有①△ABC 三个内角的关系为∠A +∠B =∠C ;②△ABC 三个内角的关系为∠A =12∠B =13∠C③三角形的三个内角之比为 2:3:4④三角形的一个外角与它不相邻的两个内角和为180°.A .1个B .2个C .3个D .4 个8.如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线交于点A 1, ∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,…,∠A n -1BC 的平分线与∠A n -1CD 的bac12 (第2题)(第5题)ABCDE 2 41 3分,共20分.不需写出解答过程,请把答案直0.000 000 27用科学记数法可表示为= ▲ . 如图,将三角板与直尺贴在一起,使三角板的直角顶点A 与直尺的一边重合,若∠若2m =12,2n =8,则2m -n =▲ .如图,BD 是△ABC 的中线,点E 、F 分别为BD 、CE 3cm 2,则△ABC 的面积是 cm 2..若代数式x 2+ax +16是一个完全平方式(a 是常数),则a =.如图,七星形中∠A +∠B ++∠D +∠E +∠F +∠G =如图,两个正方形的边长分别为a ,b ,若a +b =10,ab =20,则阴影部分的面积为 ▲ .(第8题)(第12题)(第14题) EABCD FGC′D′(第18题) (第16题)ABCDEFG(第17题) a b。

最新七年级数学期中考试测试卷及答案

最新七年级数学期中考试测试卷及答案

最新七年级数学期中考试测试卷及答案最新七年级数学期中考试测试卷及答案考试就是让一群拥有不同教育资源的人在一定的时间内完成一份相同的答卷。

然而考试的意义并不局限于此,考试其实就是让社会中来自不同社会地位的人拥有改变自己的机会。

以下是店铺为大家收集的最新七年级数学期中考试测试卷及答案,仅供参考,欢迎大家阅读。

最新七年级数学期中考试测试卷及答案1一、选择题(共8小题,每小题3分,满分24分)1.在数轴上表示不等式2x﹣4>0的解集,正确的是( )A. B. C. D.2.如果是二元一次方程2x﹣y=3的解,则m=( )A.0B.﹣1C.2D.33.若a>b,则下列不等式中,不成立的是( )A.a+5>b+5B.a﹣5>b﹣5C.5a>5bD.﹣5a>﹣5b4.下列长度的各组线段首尾相接能构成三角形的是( )A.3cm、5cm、8cmB.3cm、5cm、6cmC.3cm、3cm、6cmD.3cm、5cm、10cm5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有( )A.1种B.2种C.3种D.4种6.如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′等于( )A.30°B.45°C.60°D.75°7.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个8.已知关于x的不等式组无解,则a的取值范围是( )A.a≤2B.a≥2C.a<2 d.a="">2二、填空题(共7小题,每小题3分,满分21分)9.若是方程x﹣ay=1的解,则a= .10.不等式3x﹣9<0的最大整数解是.11.列不等式表示:“2x与1的和不大于零”:.12.将方程2x+y=6写成用含x的代数式表示y,则y= .13.等腰三角形的两边长分别为9cm和4cm,则它的周长为.14.一个三角形的三边长分别是3,1﹣2m,8,则m的取值范围是.15.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是cm.三、解答题(共9小题,满分75分)16.(1)解方程:﹣ =1;(2)解方程组: .17.解不等式组,并在数轴上表示它的解集..18.x为何值时,代数式﹣的值比代数式﹣3的值大3.19.如图,已知△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,若∠ADE=80°,∠EAC=20°,求∠B的度数.20.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=度;(2)求∠EDF的度数.21.在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3倍,求这个多边形的每一个外角的度数及这个多边形的边数.22.(1)分析图①,②,④中阴影部分的分布规律,按此规律,在图③中画出其中的阴影部分;(2)在4×4的正方形网格中,请你用两种不同方法,分别在图①、图②中再将两个空白的小正方形涂黑,使每个图形中的涂黑部分连同整个正方形网格成为轴对称图形.23.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PB1+PC最小.24.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.最新七年级数学期中考试测试卷及答案2一、选择题(共8小题,每小题3分,满分24分)1.在数轴上表示不等式2x﹣4>0的解集,正确的是( )A. B. C. D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】将不等式的解集在数轴上表示出来就可判定答案了.【解答】解:不等式的解集为:x>2,故选A2.如果是二元一次方程2x﹣y=3的解,则m=( )A.0B.﹣1C.2D.3【考点】二元一次方程的解.【分析】本题将代入二元一次方程2x﹣y=3,解出即可.【解答】解:∵ 是二元一次方程2x﹣y=3的解,∴2﹣m=3,解得m=﹣1.故选B.3.若a>b,则下列不等式中,不成立的是( )A.a+5>b+5B.a﹣5>b﹣5C.5a>5bD.﹣5a>﹣5b【考点】不等式的性质.【分析】根据不等式的性质1,可判断A、B,根据不等式的性质2,可判断C,根据不等式的性质3,可判断D.【解答】解:A、B、不等式的两边都加或都减同一个整式,不等号的方向不变,故A、B正确;C、不等式的两边都乘以同一个正数不等号的方向不变,故C正确;D、不等式的两边都乘以同一个负数不等号的方向改变,故D错误;故选:D.4.下列长度的各组线段首尾相接能构成三角形的是( )A.3cm、5cm、8cmB.3cm、5cm、6cmC.3cm、3cm、6cmD.3cm、5cm、10cm【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形的三边关系,得:A、3+5=8,排除;B、3+5>6,正确;C、3+3=6,排除;D、3+5<10,排除.故选B.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有( )A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′等于( )A.30°B.45°C.60°D.75°【考点】矩形的性质;翻折变换(折叠问题).【分析】根据折叠的性质求∠EAD′,再在Rt△EAD′中求∠AED′.【解答】解:根据题意得:∠DAE=∠EAD′,∠D=∠D′=90°.∵∠BAD′=30°,∴∠EAD′= (90°﹣30°)=30°.∴∠AED′=90°﹣30°=60°.故选C.7.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据直角三角形的判定方法对各个选项进行分析,从而得到答案.【解答】解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠A=∠B=∠C,所以三角形为等边三角形.所以能确定△ABC是直角三角形的有①②③共3个.故选:C.8.已知关于x的不等式组无解,则a的取值范围是( )A.a≤2B.a≥2C.a<2 d.a="">2【考点】解一元一次不等式组.【分析】根据不等式组无解的条件即可求出a的取值范围.【解答】解:由于不等式组无解,根据“大大小小则无解”原则,a≥2.故选B.二、填空题(共7小题,每小题3分,满分21分)9.若是方程x﹣ay=1的解,则a= 1 .【考点】二元一次方程的解.【分析】知道了方程的解,可以把这组解代入方程,得到一个含有未知数k的一元一次方程,从而可以求出a的值.【解答】解:把代入方程x﹣ay=1,得3﹣2a=1,解得a=1.故答案为1.10.不等式3x﹣9<0的最大整数解是 2 .【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.故答案为2.11.列不等式表示:“2x与1的和不大于零”:2x+1≤0.【考点】由实际问题抽象出一元一次不等式.【分析】理解:不大于的意思是小于或等于.【解答】解:根据题意,得2x+1≤0.12.将方程2x+y=6写成用含x的代数式表示y,则y= 6﹣2x .【考点】解二元一次方程.【分析】要用含x的代数式表示y,就要把方程中含有y的项移到方程的左边,其它的项移到方程的另一边.【解答】解:移项,得y=6﹣2x.故填:6﹣2x.13.等腰三角形的两边长分别为9cm和4cm,则它的周长为22cm .【考点】等腰三角形的性质;三角形三边关系.【分析】先根据已知条件和三角形三边关系定理可知,等腰三角形的腰长不可能为4cm,只能为9cm,再根据周长公式即可求得等腰三角形的周长.【解答】解:∵等腰三角形的两条边长分别为9cm,4cm,∴由三角形三边关系可知:等腰三角形的腰长不可能为4cm,只能为9cm,∴等腰三角形的周长=9+9+4=22.故答案为:22cm.14.一个三角形的三边长分别是3,1﹣2m,8,则m的取值范围是﹣5【考点】三角形三边关系;解一元一次不等式组.【分析】根据三角形的三边关系:①两边之和大于第三边,②两边之差小于第三边即可得到答案.【解答】解:8﹣3<1﹣2m<3+8,即5<1﹣2m<11,解得:﹣5故答案为:﹣515.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是19 cm.【考点】线段垂直平分线的性质.【分析】由已知条件,根据垂直平分线的性质得到线段相等,进行线段的等量代换后可得到答案.【解答】解:∵△ABC中,DE是AC的中垂线,∴AD=CD,AE=CE= AC=3cm,∴△ABD得周长=AB+AD+BD=AB+BC=13 ①则△ABC的周长为AB+BC+AC=AB+BC+6 ②把②代入①得△ABC的周长=13+6=19cm故答案为:19.三、解答题(共9小题,满分75分)16.(1)解方程:﹣ =1;(2)解方程组: .【考点】解二元一次方程组;解一元一次方程.【分析】(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)应用加减消元法,求出二元一次方程组的解是多少即可.【解答】解:(1)去分母,可得:2(x﹣1)﹣(x+2)=6,去括号,可得:2x﹣2﹣x﹣2=6,移项,合并同类项,可得:x=10,∴原方程的解是:x=10.(2)(1)+(2)×3,可得7x=14,解得x=2,把x=2代入(1),可得y=﹣1,∴方程组的解为: .17.解不等式组,并在数轴上表示它的解集..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀“同小取小”确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:解不等式 >x﹣1,得:x<4,解不等式4(x﹣1)<3x﹣4,得:x<0,∴不等式组的解集为x<0,将不等式解集表示在数轴上如下:18.x为何值时,代数式﹣的值比代数式﹣3的值大3.【考点】解一元一次方程.【分析】根据题意列出一元一次方程,解方程即可解答.【解答】解:由题意得:﹣9(x+1)=2(x+1)﹣9x﹣9=2x+2﹣11x=11x=﹣1.19.如图,已知△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,若∠ADE=80°,∠EAC=20°,求∠B的度数.【考点】三角形的外角性质;三角形内角和定理.【分析】要求∠B的度数,可先求出∠C=70°,再根据三角形内角和定理求出∠BAC+∠B=110°最后由三角形的外角与内角的关系可求∠ADE=∠B+∠BAD= (∠BAC+∠B)+ ∠B,即∠B=50°.【解答】解:∵AE⊥BC,∠EAC=20°,∴∠C=70°,∴∠BAC+∠B=110°.∵∠ADE=∠B+∠BAD= (∠BAC+∠B)+ ∠B,∴∠B=50°.20.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=110 度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.21.在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3倍,求这个多边形的每一个外角的度数及这个多边形的边数.【考点】多边形内角与外角.【分析】一个内角是一个外角的3倍,内角与相邻的外角互补,因而外角是45度,内角是135度.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:每一个外角的度数是180÷4=45度,360÷45=8,则多边形是八边形.22.(1)分析图①,②,④中阴影部分的分布规律,按此规律,在图③中画出其中的阴影部分;(2)在4×4的正方形网格中,请你用两种不同方法,分别在图①、图②中再将两个空白的小正方形涂黑,使每个图形中的涂黑部分连同整个正方形网格成为轴对称图形.【考点】规律型:图形的变化类;轴对称图形;旋转的性质.【分析】(1)从图中可以观察变化规律是,正方形每次绕其中心顺时针旋转90°,每个阴影部分也随之旋转90°.(2)如果一个图形沿着一条直线对折后,直线两旁的部分完全重合,这样的图形叫做轴对称图形,依据定义即可作出判断.【解答】解:(1)如图:(2)23.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PB1+PC最小.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)根据网格结构找出点A、B、C关于直线DE的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据轴对称确定最短路线问题,连接BC1,与直线DE的交点即为所求的点P.【解答】解:(1)△A1B1C1如图所示;(2)点P如图所示.24.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)等量关系为:A种型号衣服9件乘进价+B种型号衣服10件乘进价=1810,A种型号衣服12件乘进价+B种型号衣服8件乘进价=1880;(2)关键描述语是:获利不少于699元,且A型号衣服不多于28件.关系式为:18×A型件数+30×B型件数≥699,A型号衣服件数≤28.【解答】解:(1)设A种型号的衣服每件x元,B种型号的衣服y 元,则:,解之得 .答:A种型号的衣服每件90元,B种型号的衣服100元;(2)设B型号衣服购进m件,则A型号衣服购进(2m+4)件,可得:,解之得,∵m为正整数,∴m=10、11、12,2m+4=24、26、28.答:有三种进货方案:(1)B型号衣服购买10件,A型号衣服购进24件;(2)B型号衣服购买11件,A型号衣服购进26件;(3)B型号衣服购买12件,A型号衣服购进28件.最新七年级数学期中考试测试卷及答案3一、精心选一选,你一定很棒!(本大题共8小题,每小题3分,共24分,每小题所给的选项中只有一项符合题目要求,请把答案直接写在答题纸相应的位置上.)1.(3分)(2012安徽)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.考点:有理数的加法.分析:设这个数为x,根据题意可得方程x+(﹣3)=0,再解方程即可.解答:解:设这个数为x,由题意得:x+(﹣3)=0,x﹣3=0,x=3,故选:A.点评:此题主要考查了一元一次方程的应用,关键是理解题意,根据题意列出方程.2.(3分)下列一组数:﹣8,2.7,,,0.66666…,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数的有()A.0个B.1个C.2个D.3个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,0.080080008…(相邻两个8之间依次增加一个0).共2个.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(3分)下列表示某地区早晨、中午和午夜的温差(单位:℃),则下列说法正确的是()A.午夜与早晨的温差是11℃B.中午与午夜的温差是0℃C.中午与早晨的温差是11℃D.中午与早晨的温差是3℃考点:有理数的减法;数轴.专题:数形结合.分析:温差就是气温与最低气温的差,分别计算每一天的温差,比较即可得出结论.解答:解:A、午夜与早晨的温差是﹣4﹣(﹣7)=3℃,故本选项错误;B、中午与午夜的温差是4﹣(﹣4)=8℃,故本选项错误;C、中午与早晨的温差是4﹣(﹣7)=11℃,故本选项正确;D、中午与早晨的温差是4﹣(﹣7)=11℃,故本选项错误.故选C.点评:本题是考查了温差的概念,以及有理数的减法,是一个基础的题目.有理数减法法则:减去一个数等于加上这个数的相反数.4.(3分)今年中秋国庆长假,全国小型车辆首次被免除高速公路通行费.长假期间全国高速公路收费额减少近200亿元.将数据200亿用科学记数法可表示为()A.2×1010B.20×109C.0.2×1011D.2×1011考点:科学记数法—表示较大的数.专题:存在型.分析:先把200亿元写成20000000000元的形式,再按照科学记数法的法则解答即可.解答:解:∵200亿元=20000000000元,整数位有11位,∴用科学记数法可表示为:2×1010.故选A.点评:本题考查的是科学记算法,熟知用科学记数法表示较大数的法则是解答此题的关键.5.(3分)下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣22×32考点:有理数的乘方;有理数的混合运算;幂的乘方与积的乘方.专题:计算题.分析:利用有理数的混合运算法则,先算乘方,再算乘除,最后算加减,有括号应先算括号里面的,按照运算顺序计算即可判断出结果.解答:解:A、34=81,43=64,81≠64,故本选项错误,B、﹣42=﹣16,(﹣4)2=16,﹣16≠16,故本选项错误,C、﹣23=﹣8,(﹣2)3=﹣8,﹣8=﹣8,故本选项正确,D、(﹣2×3)2=36,﹣22×32=﹣36,36≠﹣36,故本选项错误,故选C.点评:本题主要考查了有理数的混合运算法则,乘方意义,积的乘方等知识点,按照运算顺序计算出正确结果是解此题的关键.6.(3分)下列运算正确的是()A.5x﹣2x=3B.xy2﹣x2y=0C.a2+a2=a4D.考点:合并同类项.专题:计算题.分析:这个式子的运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.据此对各选项依次进行判断即可解答.解答:解:A、5x﹣2x=3x,故本选项错误;B、xy2与x2y不是同类项,不能合并,故本选项错误;C、a2+a2=2a2,故本选项错误;D、,正确.故选D.点评:本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.7.(3分)每个人身份证号码都包含很多信息,如:某人的身份证号码是321284************,其中32、12、84是此人所属的省(市、自治区)、市、县(市、区)的编码,1976、10、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是321123************的人的生日是()A.1月1日B.10月10日C.1月8日D.8月10日考点:用数字表示事件.分析:根据题意,分析可得身份证的第7到14位这8个数字为该人的出生、生日信息,由此人的身份证号码可得此人出生信息,进而可得答案.解答:解:根据题意,分析可得身份证的第7到14位这8个数字为该人的出生、生日信息,身份证号码是321123************,其7至14位为19801010,故他(她)的生日是1010,即10月10日.故选:B.点评:本题考查了数字事件应用,训练学生基本的计算能力和找规律的能力,解答时可联系生活实际根据身份证号码的信息去解.8.(3分)如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A﹣B﹣C为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为.A.5次B.6次C.7次D.8次考点:规律型:数字的变化类.专题:规律型.分析:首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为﹣5,终点为9,即可得出它需要跳的次数.解答:解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳=7次.故选C.点评:此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.二、认真填一填,你一定能行!(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题纸相应的位置上.)9.(3分)(2012铜仁地区)|﹣2012|=2012.考点:绝对值.专题:存在型.分析:根据绝对值的性质进行解答即可.解答:解:∵﹣2012<0,∴|﹣2012|=2012.故答案为:2012.点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.10.(3分)我区郭猛镇生态园区生产的草莓包装纸箱上标明草莓的质量为千克,如果这箱草莓重4.98千克,那么这箱草莓质量符合标准.(填“符合”或“不符合”).考点:正数和负数.分析:据题意求出标准质量的范围,然后再根据范围判断.解答:解:∵5+0.03=5.03千克;5﹣0.03=4.97千克,∴标准质量是4.97千克~5.03千克,∵4.98千克在此范围内,∴这箱草莓质量符合标准.故答案为:符合.点评:本题考查了正、负数的意义,懂得质量书写含义求出标准质量的范围是解题的关键.11.(3分)(2012河源)若代数式﹣4x6y与x2ny是同类项,则常数n的值为3.考点:同类项.分析:根据同类项的定义得到2n=6解得n值即可.解答:解:∵代数式﹣4x6y与x2ny是同类项,∴2n=6解得:n=3故答案为3.点评:本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项.12.(3分)某校去年初一招收新生x人,今年比去年减少20%,用代数式表示今年该校初一学生人数为0.8x.考点:列代数式.分析:根据今年的收新生人数=去年的新生人数﹣20%×去年的新生人数求解即可.解答:解:去年收新生x人,所以今年该校初一学生人数为(1﹣20%)x=0.8x人,故答案为:0.8x.点评:本题考查了列代数式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.注意今年比去年增加20%和今年是去年的20%的区别.13.(3分)已知代数式x+2y﹣1的值是3,则代数式3﹣x﹣2y 的值是﹣1.考点:代数式求值.专题:整体思想.分析:由代数式x+2y﹣1的值是3得到x+2y=4,而3﹣x﹣2y=3﹣(x+2y),然后利用整体代值的思想即可求解.解答:解:∵代数式x+2y﹣1的值是3,∴x+2y﹣1=3,即x+2y=4,而3﹣x﹣2y=3﹣(x+2y)=3﹣4=﹣1.故答案为:﹣1.点评:此题主要考查了求代数式的值,解题的关键把已知等式和所求代数式分别变形,然后利用整体思想即可解决问题.14.(3分)一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了原点,则点A所表示的数是±7.考点:数轴.分析:一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了原点,则这个数的绝对值是7,据此即可判断.解答:解:一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了原点,则这个数的绝对值是7,则A表示的数是:±7.故答案是:±7.点评:本题考查了绝对值的定义,根据实际意义判断A的绝对值是7是关键.15.(3分)现定义某种运算“*”,对任意两个有理数a,b,有a*b=ab,则(﹣3)*2=9.考点:有理数的乘方.专题:新定义.分析:将新定义的运算按定义的规律转化为有理数的乘方运算.解答:解:因为a*b=ab,则(﹣3)*2=(﹣3)2=9.点评:新定义的运算,要严格按定义的规律来.16.(3分)代数式6a2的实际意义:a的平方的6倍考点:代数式.分析:本题中的代数式6a2表示平方的六倍,较为简单.解答:解:代数式6a2表示的实际意义即为a的平方的6倍.故答案为:a的平方的6倍.点评:本题考查代数式的意义问题,对式子进行分析,弄清各项间的关系即可.17.(3分)已知|x﹣2|+(y+3)2=0,则x﹣y=5.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,x﹣2=0,y+3=0,解得x=﹣2,y=﹣3,所以,x﹣y=2﹣(﹣3)=5.故答案为:5.点评:本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.18.(3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性.若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为an,计算a2﹣a1,a3﹣a2,a4﹣a3,…,由此推算,可知a100=5050.考点:规律型:数字的变化类.专题:计算题;压轴题.分析:先计算a2﹣a1=3﹣1=2;a3﹣a2=6﹣3=3;a4﹣a3=10﹣6=4,则a2=1+2,a3=1+2+3,a4=1+3+4,即第n个三角形数等于1到n的所有整数的和,然后计算n=100的'a的值.解答:解:∵a2﹣a1=3﹣1=2;a3﹣a2=6﹣3=3;a4﹣a3=10﹣6=4,∴a2=1+2,a3=1+2+3,a4=1+2+3+4,…∴a100=1+2+3+4+…+100==5050.故答案为:5050.点评:本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.三、耐心解一解,你笃定出色!(本大题共有8题,共66分.请在答题纸指定区域内作答,解题时写出必要的文字说明,推理步骤或演算步骤.)19.(12分)计算题:(1)﹣6+4﹣2;(2);(3)(﹣36)×;(4).考点:有理数的混合运算.分析:(1)从左到右依次计算即可求解;(2)首先把除法转化成乘法,然后计算乘法,最后进行加减运算即可;(3)利用分配律计算即可;(4)首先计算乘方,计算括号内的式子,再计算乘法,最后进行加减运算即可.解答:解:(1)原式=﹣2﹣2=﹣4;(2)原式=81×××=1;(3)原式=36×﹣36×+36×=16﹣30+21=7;(4)原式=﹣1﹣(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.点评:本题考查了有理数的混合运算,正确确定运算顺序是关键.20.(10分)(1)先化简,再求值:3(x﹣y)﹣2(x+y)+2,其中x=﹣1,y=2.。

2024年人教版初一上学期期中数学试卷及答案指导

2024年人教版初一上学期期中数学试卷及答案指导

2024年人教版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是5厘米,它的周长是多少厘米?选项:A、13厘米B、23厘米C、30厘米D、40厘米2、一个数加上它的两倍,再减去3,结果是7,这个数是多少?选项:A、1B、2C、3D、43、题目:一个长方形的长是10厘米,宽是5厘米,它的周长是多少厘米?选项:A. 15厘米B. 25厘米C. 30厘米D. 50厘米4、题目:一个数的2倍是12,这个数是多少?选项:A. 2B. 4C. 6D. 85、下列各数中,有理数是()A、√2B、πC、3.14D、-1/36、下列各数中,属于无理数的是()A、1.414B、-2/3C、3/5D、π7、下列各数中,是正数的是:A、-1/2B、-2C、0D、1/28、下列各数中,是负数的是:A、-1/2B、-2C、0D、1/29、选择题:一个长方形的长是6cm,宽是3cm,那么这个长方形的周长是多少平方厘米?A. 18cm²B. 15cm²C. 18cmD. 15cm² 10、选择题:一个圆的半径是4cm,那么这个圆的面积是多少平方厘米?(取π≈3.14)A. 50.24cm²B. 78.5cm²C. 25.12cm²D. 12.56cm²二、填空题(本大题有5小题,每小题3分,共15分)1、若一个等腰三角形的底边长为4cm,腰长为6cm,则该三角形的周长为______cm。

2、在直角坐标系中,点A的坐标为(2,3),点B的坐标为(-1,-2)。

那么线段AB的中点坐标为 ______ 。

3、若一个数的3倍减去12等于18,则这个数是 ______ 。

4、一个长方形的长是宽的3倍,若长方形的周长是48厘米,则这个长方形的面积是 ______ 平方厘米。

5、在等差数列{an}中,若a1=3,d=2,则前n项和Sn=______ 。

初一期中数学试卷及答案

初一期中数学试卷及答案

初一期中数学试卷及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.下列哪个数是负数?A.-5B.0C.3D.7答案:A2.2的平方根是?A.2B.4C.-2D.无法确定答案:D3.若a=3,b=5,则a+b的值为?A.2B.8C.6D.10答案:D4.下列哪个数是偶数?A.11B.13C.15D.16答案:D5.下列哪个数是无理数?A.√9B.√16C.√25D.√2答案:D二、判断题(每题1分,共20分)1.1的倒数是1。

()答案:正确2.0乘以任何数都等于0。

()答案:正确3.2的平方根是2。

()答案:错误4.负数乘以负数等于正数。

()答案:正确5.两个奇数相加一定是偶数。

()答案:正确三、填空题(每空1分,共10分)1.5的平方是______。

答案:252.4的立方是______。

答案:643.9的平方根是______。

答案:34.1的倒数是______。

答案:15.两个奇数相加一定是______。

答案:偶数四、简答题(每题10分,共10分)1.请简述勾股定理。

答案:勾股定理是指在直角三角形中,直角边的平方和等于斜边的平方。

五、综合题(1和2两题7分,3和4两题8分,共30分)1.已知a=3,b=5,求a+b的值。

答案:a+b=3+5=82.已知一个正方形的边长为4,求其面积。

答案:面积=边长×边长=4×4=163.已知一个等差数列的前三项分别为2,5,8,求该数列的公差。

答案:公差=第二项-第一项=5-2=34.已知一个等差数列的前三项分别为2,5,8,求该数列的第四项。

答案:第四项=第三项+公差=8+3=11六、解答题(每题5分,共10分)1.解方程:2x+5=15。

答案:2x=155,2x=10,x=5。

2.解方程:3(x2)=12。

答案:3x6=12,3x=12+6,3x=18,x=6。

七、应用题(每题5分,共10分)1.小明有10个苹果,他吃掉了3个,还剩下多少个苹果?答案:103=7个苹果。

七年级数学上册期中考试试卷及答案

七年级数学上册期中考试试卷及答案

七年级数学上册期中考试试卷及答案七年级数学上册期中考试试卷及答案一、选择题1、在数轴上,点A表示的数是-2,那么在数轴上到点A的距离为3的点表示的数是() A. -5 B. -1和5 C. -2.5 D. -5和12、下列说法正确的是() A. 不是负数的数一定是正数 B. 不是正数的数一定是负数 C. 0既不是正数也不是负数 D. 正数和负数互为相反数二、填空题3、火车在车站上东西方向沿直线行驶。

面向火车站站台,乘客若正对站台,火车从左往右依次有四节车厢,则火车往右行驶时,乘客看到的车厢数目依次是________、、、________。

31、当时钟表示12点45分时,时针与分针的夹角是________度。

三、解答题5、计算:(1)(-2)÷(- )×5 (2)÷2-(- )×8+(- )÷(-2)51、化简:(1)(-3)-(-7)-(+9)+(+3)(2) 4 +[(-2)-(-8)]-(+3)-(+7)511、某班学生利用节假日参加夏令营活动,到山区走了峡谷A和B 两地,其中峡谷A收门票15元/人,峡谷B收门票20元/人,购买峡谷A和峡谷B门票的总人数为100人,且购买峡谷A门票共花费1500元,购买峡谷B门票共花费2000元。

(1)请问购买峡谷A门票和峡谷B门票的人数各是多少?(2)如果峡谷A和峡谷B门票的价格分别上涨了m%,其中m>0,在人数不变的情况下,峡谷A和峡谷B 门票的价格分别上涨了多少元?四、应用题8、甲、乙两车同时从A、B两地出发相向而行,在距B地50千米处相遇,两车各自到达对方出发地后立即返回,第一次相遇后第二相遇地点距离A地40千米,求A、B两地相距多少千米?81、一项工程,甲队单独做需12天完成,乙队单独做需15天完成。

如果甲、乙两队合作3天后,再由乙队单独完成剩余工程,那么乙队还需要多少天才能完成全部工程?五、附加题10、已知方程组,求x和y的值。

2024年最新人教版初一数学(上册)期中试卷及答案(各版本)

2024年最新人教版初一数学(上册)期中试卷及答案(各版本)

2024年最新人教版初一数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √2B. √3C. √5D. √94. 下列运算中,先进行乘除后进行加减的是()A. (a + b) × cB. a + b × cC. a ÷ b + cD. a +b ÷ c5. 下列图形中,是平行四边形的是()A. 矩形B. 正方形C. 梯形D. 圆形二、判断题5道(每题1分,共5分)1. 任何两个奇数之和都是偶数。

()2. 任何两个偶数之和都是偶数。

()3. 任何两个奇数之积都是奇数。

()4. 任何两个偶数之积都是偶数。

()5. 任何两个相同的数之积都是偶数。

()三、填空题5道(每题1分,共5分)1. 任何数与0相乘的积都是______。

2. 任何数与1相乘的积都是______。

3. 任何数与1相乘的积都是______。

4. 任何数与0相加的和都是______。

5. 任何数与1相加的和都是______。

四、简答题5道(每题2分,共10分)1. 请简述有理数的定义。

2. 请简述整数的定义。

3. 请简述分数的定义。

4. 请简述小数的定义。

5. 请简述实数的定义。

五、应用题:5道(每题2分,共10分)1. 计算下列各式的值:(1) 3 × (4 + 2) 5 ÷ 1(2) (6 3) × (2 + 1)(3) 2 × (3 + 4) ÷ 2 1(4) (7 + 2) ÷ (3 1)(5) 4 × (5 2) + 3 ÷ 12. 解下列方程:(1) 3x 4 = 11(2) 2x + 5 = 9(3) 5x 7 = 8(4) 4x + 3 = 19(5) 6x 9 = 33. 解下列不等式:(1) 3x 4 > 7(2) 2x + 5 < 9(3) 5x 7 ≥ 8(4) 4x + 3 ≤ 19(5) 6x 9 ≠ 34. 已知一个正方形的边长为a,求它的面积和周长。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

初一上册数学期中试题及答案【四篇】

初一上册数学期中试题及答案【四篇】

【导语】上学期期中考试马上到了,想要测试⼀下⾃⼰数学半个学期的学习⽔平吗?下⾯是为您整理的初⼀上册数学期中试题及答案【四篇】,仅供⼤家参考。

【篇⼀】初⼀上册数学期中试题及答案 ⼀、精⼼选⼀选(每题3分,共计24分) 1.在2、0、﹣3、﹣2四个数中,最⼩的是()A.2B.0C.﹣3D.﹣2 【考点】有理数⼤⼩⽐较. 【分析】在数轴上表⽰出各数,利⽤数轴的特点即可得出结论. 【解答】解:如图所⽰, , 由图可知,最⼩的数是﹣3. 故选C. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知数轴上右边的数总⽐左边的⼤是解答此题的关键. 2.下列式⼦,符合代数式书写格式的是()A.a÷3B.2xC.a×3D. 【考点】代数式. 【分析】利⽤代数式书写格式判定即可 【解答】解: A、a÷3应写为, B、2a应写为a, C、a×3应写为3a, D、正确, 故选:D. 【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式. 3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,⽆理数有()A.1个B.2个C.3个D.4个 【考点】⽆理数. 【分析】⽆理数是指⽆限不循环⼩数,根据定义逐个判断即可. 【解答】解:⽆理数有﹣,2.010010001…,共2个, 故选B. 【点评】本题考查了对⽆理数定义的应⽤,能理解⽆理数的定义是解此题的关键,注意:⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数. 4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7 【考点】⾮负数的性质:偶次⽅;⾮负数的性质:绝对值. 【分析】先根据⾮负数的性质求出m、n的值,再代⼊代数式进⾏计算即可. 【解答】解:∵|m﹣3|+(n+2)2=0, ∴m﹣3=0,n+2=0,解得m=3,n=﹣2, ∴m+2n=3﹣4=﹣1. 故选A. 【点评】本题考查的是⾮负数的性质,熟知⼏个⾮负数的和为0时,其中每⼀项必为0是解答此题的关键. 5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2 【考点】合并同类项. 【专题】常规题型. 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可. 【解答】解:A、a+a=2a,故本选项错误; B、a5与a2不是同类项,⽆法合并,故本选项错误; C、3a与b不是同类项,⽆法合并,故本选项错误; D、a2﹣3a2=﹣2a2,本选项正确. 故选D. 【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数. 6.⽤代数式表⽰“m的3倍与n的差的平⽅”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 【考点】列代数式. 【分析】认真读题,表⽰出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平⽅,于是答案可得. 【解答】解:∵m的3倍与n的差为3m﹣n, ∴m的3倍与n的差的平⽅为(3m﹣n)2. 故选A. 【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平⽅与平⽅差的区别,做题时注意体会. 7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3 【考点】有理数的乘⽅. 【分析】分别利⽤有理数的乘⽅运算法则化简各数,进⽽判断得出答案. 【解答】解:A、∵(﹣3)2=9,23=8, ∴(﹣3)2和23,不相等,故此选项错误; B、∵﹣32=﹣9,(﹣3)2=9, ∴﹣23和(﹣2)3,不相等,故此选项错误; C、∵﹣33=﹣27,(﹣33)=﹣27, ∴﹣33和(﹣3)3,相等,故此选项正确; D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216, ∴﹣3×23和(﹣3×2)3不相等,故此选项错误. 故选:C. 【点评】此题主要考查了有理数的乘⽅运算,正确掌握运算法则是解题关键. 8.等边△ABC在数轴上的位置如图所⽰,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针⽅向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015 【考点】数轴. 【专题】规律型. 【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第⼆次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这⼀规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014. 【解答】解:因为2015=671×3+2=2013+2, 所以翻转2015次后,点B所对应的数是2014. 故选:C. 【点评】考查了数轴,本题是⼀道找规律的题⽬,要求学⽣通过观察,分析、归纳发现其中的规律,并应⽤发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1. ⼆、细⼼填⼀填(每空2分,共计30分) 9.﹣5的相反数是5,的倒数为﹣. 【考点】倒数;相反数. 【分析】根据相反数及倒数的定义,即可得出答案. 【解答】解:﹣5的相反数是5,﹣的倒数是﹣. 故答案为:5,﹣. 【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键. 10.⽕星和地球的距离约为34000000千⽶,这个数⽤科学记数法可表⽰为3.4×107千⽶. 【考点】科学记数法—表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:34000000=3.4×107, 故答案为:3.4×107. 【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值. 11.⽐较⼤⼩:﹣(+9)=﹣|﹣9|;﹣>﹣(填“>”、“ 【考点】有理数⼤⼩⽐较. 【分析】先去括号及绝对值符号,再根据负数⽐较⼤⼩的法则进⾏⽐较即可. 【解答】解:∵﹣(+9)=﹣9,﹣|﹣9|=﹣9, ∴﹣(+9)=﹣|﹣9|; ∵|﹣|==,|﹣|==, ∴﹣>﹣. 故答案为:=,>. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知负数⽐较⼤⼩的法则是解答此题的关键. 12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式. 【考点】多项式;单项式. 【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答. 【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式. 【点评】根据单项式的单项式的系数是单项式前⾯的数字因数,次数是单项式所有字母指数的和; 多项式是由单项式组成的,常数项也是⼀项,多项式的次数是“多项式中次数的项的次数”. 13.若﹣7xyn+1与3xmy4是同类项,则m+n=4. 【考点】同类项. 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,求出n,m的值,再代⼊代数式计算即可. 【解答】解:根据题意,得:m=1,n+1=4, 解得:n=3, 则m+n=1+3=4. 故答案是:4. 【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点. 14.⼀个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2. 【考点】整式的加减. 【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可. 【解答】解:设这个整式为M, 则M=x2﹣1﹣(﹣3+x﹣2x2), =x2﹣1+3﹣x+2x2, =(1+2)x2﹣x+(﹣1+3), =3x2﹣x+2. 故答案为:3x2﹣x+2. 【点评】解决此类题⽬的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简. 15.按照如图所⽰的操作步骤,若输⼊x的值为﹣3,则输出的值为22. 【考点】有理数的混合运算. 【专题】图表型. 【分析】根据程序框图列出代数式,把x=﹣3代⼊计算即可求出值. 【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22, 故答案为:22 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.⼀只蚂蚁从数轴上⼀点A出发,沿着同⼀⽅向在数轴上爬了7个单位长度到了B点,若B点表⽰的数为﹣3,则点A所表⽰的数是4或﹣10. 【考点】数轴. 【分析】“从数轴上A点出发爬了7个单位长度”,这个⽅向是不确定的,可以是向左爬,也可以是向右爬. 【解答】解:分两种情况: 从数轴上A点出发向左爬了7个单位长度,则A点表⽰的数是4; 从数轴上A点出发向右爬了7个单位长度,则A点表⽰的数是﹣10, 故答案为:4或﹣10. 【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想. 17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1. 【考点】代数式求值. 【专题】整体思想. 【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代⼊求值. 【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2, ∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1. 故答案为:1. 【点评】主要考查了代数式求值问题.代数式中的字母表⽰的数没有明确告知,⽽是隐含在题设中,把所求的代数式变形整理出题设中的形式,利⽤“整体代⼊法”求代数式的值. 18.已知f(x)=1+,其中f(a)表⽰当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…•f(100)=101. 【考点】代数式求值. 【专题】新定义. 【分析】把数值代⼊,计算后交错约分得出答案即可. 【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=, ∴f(1)•f(2)•f(3)…•f(100) =2×××…×× =101. 故答案为:101. 【点评】此题考查代数式求值,理解题意,计算出每⼀个式⼦的数值,代⼊求得答案即可. 三、认真答⼀答(共计46分) 19.画⼀条数轴,然后在数轴上表⽰下列各数:﹣(﹣3),﹣|﹣2|,1,并⽤“ 【考点】有理数⼤⼩⽐较;数轴. 【分析】根据数轴是⽤点表⽰数的⼀条直线,可⽤数轴上得点表⽰数,根据数轴上的点表⽰的数右边的总⽐左边的⼤,可得答案. 【解答】解:在数轴上表⽰各数: ⽤“ 【点评】本题考查了有理数⽐较⼤⼩,数轴上的点表⽰的数右边的总⽐左边的⼤. 20.计算: (1)﹣20+(﹣5)﹣(﹣18); (2)(﹣81)÷×÷(﹣16) (3)(﹣+﹣)÷(﹣) (4)(﹣1)100﹣×[3﹣(﹣3)2]. 【考点】有理数的混合运算. 【专题】计算题. 【分析】(1)原式利⽤减法法则变形,计算即可得到结果; (2)原式从左到右依次计算即可得到结果; (3)原式利⽤除法法则变形,再利⽤乘法分配律计算即可得到结果; (4)原式先计算乘⽅运算,再计算乘法运算,最后算加减运算即可得到结果. 【解答】解:(1)原式=﹣20﹣5+18=﹣25+18=﹣7; (2)原式=81×××=1; (3)原式=(﹣+﹣)×(﹣24)=6﹣4+3=5; (4)原式=1﹣×(﹣6)=1+1=2. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 21.化简 (1)3b+5a﹣(2a﹣4b) (2)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b); (3)先化简,再求值:4(x﹣1)﹣2(x2+1)+(4x2﹣2x),其中x=﹣3. 【考点】整式的加减—化简求值;整式的加减. 【专题】计算题. 【分析】(1)原式去括号合并即可得到结果; (2)原式去括号合并即可得到结果; (3)原式去括号合并得到最简结果,把x的值代⼊计算即可求出值. 【解答】解:(1)原式=3b+5a﹣2a+4b=3a+7b; (2)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2; (3)原式=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6, 当x=﹣3时,原式=﹣15. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 22.有这样⼀道题⽬:“当a=3,b=﹣4时,求多项式3(2a3b﹣a2b﹣a3)﹣(6a3b﹣3a2b+3)+3a3的值”.⼩敏指出,题中给出的条件a=3,b=﹣4是多余的,她的说法有道理吗?为什么? 【考点】整式的加减—化简求值. 【专题】计算题. 【分析】原式去括号合并得到结果为常数,故⼩敏说法有道理. 【解答】解:原式=6a3b﹣3a2b﹣3a3﹣6a3b+3a2b﹣3+3a3=﹣3, 多项式的值为常数,与a,b的取值⽆关, 则⼩敏说法有道理. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.定义⼀种新运算:观察下列式: 1⊙3=1×4+3=7; 3⊙(﹣1)=3×4﹣1=11; 5⊙4=5×4+4=24; 4⊙(﹣3)=4×4﹣3=13;… (1)根据上⾯的规律,请你想⼀想:a⊙b=4a+b; (2)若a⊙(﹣2b)=6,请计算(a﹣b)⊙(2a+b)的值. 【考点】有理数的混合运算. 【专题】新定义. 【分析】(1)利⽤已知新定义化简即可得到结果; (2)已知等式利⽤已知新定义化简求出2a﹣b的值,原式利⽤新定义化简后代⼊计算即可求出值. 【解答】解:(1)根据题中新定义得:a⊙b=4a+b; 故答案为:4a+b; (2)∵a⊙(﹣2b)=4a﹣2b=6,∴2a﹣b=3, 则(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b=3(2a﹣b)=3×3=9. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.某⼯艺⼚计划⼀周⽣产⼯艺品2100个,平均每天⽣产300个,但实际每天⽣产量与计划相⽐有出⼊.表是某周的⽣产情况(超产记为正、减产记为负): 星期⼀⼆三四五六⽇ 增减(单位:个)+5﹣2﹣5+15﹣10﹣6﹣9 (1)写出该⼚星期三⽣产⼯艺品的数量; (2)本周产量中最多的⼀天⽐最少的⼀天多⽣产多少个⼯艺品? (3)请求出该⼯艺⼚在本周实际⽣产⼯艺品的数量; (4)已知该⼚实⾏每周计件⼯资制,每⽣产⼀个⼯艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少⽣产⼀个扣80元.试求该⼯艺⼚在这⼀周应付出的⼯资总额. 【考点】正数和负数. 【分析】(1)根据每天平均300辆,超产记为正、减产记为负,即可解题; (2)⽤15﹣(﹣10)即可解答; (3)把正负数相加计算出结果,再与2100相加即可; (3)计算出本周⼀共⽣产电车数量,根据⼀辆车可得60元即可求得该⼚⼯⼈这⼀周的⼯资总额. 【解答】解:(1)300﹣5=295(个). 答:该⼚星期三⽣产⼯艺品的数量是295个; (2)15﹣(﹣10)=25(个). 答:最多⽐最少多25个; (3)5﹣2﹣5+15﹣10﹣6﹣9=﹣12, 2100﹣12=2088(个). 答:该⼯艺⼚在本周实际⽣产⼯艺品的数量为2088个; (4)2088×60﹣12×80=124320(元). 答:该⼯艺⼚在这⼀周应付出的⼯资总额为124320元. 【点评】本题考查了正数和负数的定义,明确超产记为正、减产记为负是解题的关键. 25.先看数列:1,2,4,8,…,263.从第⼆项起,每⼀项与它的前⼀项的⽐都等于2,象这样,⼀个数列:a1,a2,a3,…,an﹣1,an;从它的第⼆项起,每⼀项与它的前⼀项的⽐都等于⼀个常数q,那么这个数列就叫等⽐数列,q 叫做等⽐数列的公⽐. 根据你的阅读,回答下列问题: (1)请你写出⼀个等⽐数列,并说明公⽐是多少? (2)请你判断下列数列是否是等⽐数列,并说明理由;,﹣,,﹣,…; (3)有⼀个等⽐数列a1,a2,a3,…,an﹣1,an;已知a1=5,q=﹣3;请求出它的第25项a25.(结果不需化简,可以保留乘⽅的形式) 【考点】规律型:数字的变化类. 【专题】新定义. 【分析】(1)根据定义举⼀个例⼦即可; (2)根据定义,即每⼀项与它的前⼀项的⽐都等于⼀个常数q(q≠0),那么这个数列就叫做等⽐数列,进⾏分析判断; (3)根据定义,知a25=5×224. 【解答】解:(1)1,3,9,27,81.公⽐为3; (2)等⽐数列的公⽐q为恒值, ﹣÷=﹣,÷(﹣)=﹣,﹣÷=﹣, 该数列的⽐数不是恒定的,所以不是等⽐数例; (3)由等⽐数列公式得an=a1qn﹣1=5×(﹣3)24, 它的第25项a25=5×(﹣3)24. 【点评】此题考查数字的变化规律,理解等⽐数列的意义,抓住计算的⽅法是解决问题的关键. 【篇⼆】初⼀上册数学期中试题及答案 ⼀、选择题(每题3分,共30分) 1-的相反数是().A.-2016B.2016C.D.- 2.甲⼄两地的海拔⾼度分别为300⽶,-50⽶,那么甲地⽐⼄地⾼出().A.350⽶B.50⽶C.300⽶D.200⽶ 3.下⾯计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=0 4.学校、家、书店依次坐落在⼀条南北⾛向的⼤街上,学校在家的南边20⽶,书店在家北边100⽶,李明同学从家⾥出发,向北⾛了50⽶,接着⼜向北⾛了-70⽶,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地⽅ 5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a 6.下列⽅程中,是⼀元⼀次⽅程的为()A.5x-y=3B.C.D. 7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定 8.已知有理数,所对应的点在数轴上如图所⽰,化简得()A.a+bB.b-aC.a-bD.-a-b 9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6. 10.某区中学⽣⾜球赛共赛8轮(即每队均参赛8场),胜⼀场得3分,平⼀场得1分,输 ⼀场得0分,在这次⾜球联赛中,猛虎⾜球队踢平的场数是所负场数的2倍,共得17 分,则该队胜了()场.A.6B.5C.4D.3 ⼆、填空题(每题3分,共24分) 11.地球绕太阳每⼩时转动经过的路程约为110000千⽶,⽤科学记数法记为⽶ 12.若,,且,则的值可能是:. 13.当时,代数式的值为2015.则当时,代数式的 值为。

苏科版数学初一上学期期中试卷及解答参考(2024-2025学年)

苏科版数学初一上学期期中试卷及解答参考(2024-2025学年)

2024-2025学年苏科版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是多少厘米?A、19厘米B、21厘米C、30厘米D、40厘米2、一个正方形的边长是10厘米,那么这个正方形的面积是多少平方厘米?A、100平方厘米B、50平方厘米C、25平方厘米D、20平方厘米3、下列哪一个等式表示的是线性方程?A.(2x2+3x−5=0)B.(4x+7=15)C.(x3−2x+1=0)+2=3)D.(1x4、如果一个长方形的长是宽的两倍,并且它的周长是30厘米,那么这个长方形的面积是多少平方厘米?A. 30B. 45C. 60D. 905、下列各组数中,都是质数的一组是:A. 7,11,13,17B. 6,10,14,18C. 4,8,12,16D. 3,9,15,216、若a、b是正整数,且a+b=10,则a和b的最大公约数是:A. 1B. 2C. 5D. 107、已知点A(3, -2),点B(-1, 4),则线段AB的中点M的坐标是多少?A. (1, 1)B. (2, 1)C. (1, 2)D. (1, 1.5)8、如果一个正方形的边长增加了原来的50%,那么面积增加了多少百分比?A. 50%B. 100%C. 125%D. 150%9、一个长方形的长是8厘米,宽是长的一半,那么这个长方形的周长是多少厘米?选项:A. 16厘米B. 20厘米C. 24厘米D. 32厘米 10、一个正方形的对角线长是10厘米,那么这个正方形的边长是多少厘米?选项:A. 5厘米B. 10厘米C. 15厘米D. 20厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若(a+b=7),且(a−b=3),则(a)的值为____ 。

2、已知一个长方形的长是宽的2倍,如果它的周长是30厘米,则这个长方形的面积为 ____ 平方厘米。

数学七年级期中试卷及答案

数学七年级期中试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a + 2 < b + 2D. a - 2 < b - 23. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. -34. 下列代数式中,同类项是()A. 2x^2 + 3xB. 4x^2 - 5xC. 3x^3 + 2x^2D. 5x^2 - 4x^35. 若a, b是方程x^2 - 5x + 6 = 0的两个根,则a + b的值为()A. 5B. 6C. 2D. -56. 在平面直角坐标系中,点P的坐标为(2,-3),则点P关于y轴的对称点的坐标是()A. (-2, 3)B. (2, 3)C. (-2, -3)D. (2, -3)7. 下列函数中,是反比例函数的是()A. y = x + 1B. y = 2x^2C. y = 3/xD. y = 4x - 58. 在△ABC中,∠A = 90°,∠B = 45°,则∠C的度数是()A. 45°B. 90°C. 135°D. 180°9. 若x^2 - 4x + 3 = 0,则x的值为()A. 1B. 3C. 1或3D. -1或-310. 下列各数中,无理数是()A. √4B. √9C. √16D. √25二、填空题(每题5分,共25分)11. 若a = -3,b = 2,则a - b的值为______。

12. 若x^2 = 25,则x的值为______。

13. 若m + n = 10,m - n = 2,则m的值为______。

14. 在平面直角坐标系中,点A的坐标为(-2,3),则点A关于原点的对称点的坐标是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学期中试卷及答案2019 数学是理科的根基,数学不好,很难在物理、化学上有所成绩,但数学又不同于物理、化学,比较抽象,脱离实践,所以必须给予最大的重视。

接下来我们一起练习初一数学期中试卷及答案。

初一数学期中试卷及答案2019
一、选择题(每小题3分,共21分)
1.2019的相反数是( )
A.2019
B.﹣2019
C.﹣
D.
【考点】相反数.
【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.
【解答】解:根据相反数的含义,可得
2019的相反数是:﹣2019.
故选:B.
【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.
2.计算2﹣3的结果是( )
A.﹣5
B.﹣1
C.1
D.5
【考点】有理数的减法.
【分析】减去一个数等于加上这个数的相反数,再运用加法法则求和.
【解答】解:2﹣3=2+(﹣3)=﹣1.【七年级数学期中试卷及答案】
故选B.
【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法.
3.化简|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3这四个数中,负数的个数有( )
A.1个
B.2个
C.3个
D.4个
【考点】正数和负数.
【分析】首先利用绝对值以及有理数乘方的性质化简各数,进而得出答案.
【解答】解:∵|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,
∴这四个数中,负数的个数有2个.
故选:B.
【点评】此题主要考查了正数与负数,正确化简各数是解题关键.
4.下列各式计算结果正确是( )
A.﹣3+3=﹣6
B.﹣6÷2×3=﹣1
C.﹣9÷(﹣1 )2=﹣4
D.﹣4+(【七年级数学期中试卷及答案】﹣2)× =﹣3
【考点】有理数的混合运算.
【专题】探究型.
【分析】将选项的式子进行计算,然后对照选项,即可解答本题.
【解答】解:∵﹣3+3=0,∴选项A错误;
∵﹣6÷2×3=﹣9,∴选线B错误;
∵﹣9÷,∴选项C正确;
∵﹣4+(﹣2)×,∴选项D错误.
故选C.
【点评】本题考查有理数的混合运算,解题的关键是明确有理数数混合运算的法则.
5.小芳和小明在手工课上各自制作楼梯模型,他们用的材料如图,则( )
A.一样多
B.小明多
C.小芳多
D.不能确定
【考点】生活中的平移现象.
【分析】首先根据已知图形中两个图形中共同含有的边,再判断形状不同的边的长度即可.
【解答】解:他们用的铁丝一样长.两个图形右侧边与左侧相等,上侧与下侧相等,
即两个图形都可以利用平移的方法变为长为8cm,宽为5cm 的矩形,
所以两个图形的周长都为(8+5)×2=26cm,
所以他们用的铁丝一样长.
故选:A.
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高很快。

【点评】此题主要考查了平移的应用,考生通过观察、分析识别图形的能力,解决此题的关键是通过观察图形确定右侧与上侧各边的长相等.
6.有理数a,b在数轴上的对应点的位置如图所示,则( )
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

一般说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人
以不及,故谓师为师资也”。

这儿的“师资”,其实就是先秦而后历代对教师的别称之一。

《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。

这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

A.a+b=0 B.a+b>0 C.|a|>|b| D.a﹣b>0。

相关文档
最新文档