作业·假设检验

合集下载

第三章假设检验作业

第三章假设检验作业

1.一种机床加工的零件尺寸绝对平均误差为1.35mm。

生产厂家现采用一种新的机床进行加工以期进一步降低误差。

为检验新机床加工的零件平均误差与旧机床相比是否有显著差异,从某天生产的零件中随机抽取50个进行检验。

利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著差异?如果想检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低,结果会如何?( =0.01)。

2.一种汽车配件的平均长度要求为12cm,高于或低于该标准均被认为是不合格的。

汽车生产企业在购进配件时,通常是经过招标,然后对中标的配件提供商提供的样品进行检验,以决定是否购进。

现对一个配件提供商提供的10个样本进行了检验。

假定该供货商生产的配件长度服从正态分布,在0.05的显著性水平下,检验该供货商提供的配件是否符合要求?12.210.812.011.811.912.411.312.212.012.33.对消费者的一项调查表明,17%的人早餐饮料是牛奶。

某城市的牛奶生产商认为,该城市的人早餐饮用牛奶的比例更高。

为验证这一说法,生产商随机抽取550人的一个随机样本,其中115人早餐饮用牛奶。

在显著性水平0.01下,检验该生产商的说法是否属实?4.甲、乙两台机床同时加工某种同类型的零件,已知两台机床加工的零件直径(单位:cm)分别服从正态分布,并且方差相等。

为比较两台机床的加工精度有无显著差异,分别独立抽取了甲机床加工的8个零件和乙机床加工的7个零件,通过测量得到如下数据。

在=0.05的显著性水平下,样本数据是否提供证据支持“两台机床加工的零件直径不一致”的看法?两台机床加工零件的样本数据(cm)甲20.519.819.720.420.120.019.019.9乙20.719.819.520.820.419.620.25.某饮料公司开发研制出一新产品,为比较消费者对新老产品口感的满意程度,该公司随机抽选一组消费者(8人),每个消费者先品尝一种饮料,然后再品尝另一种饮料,两种饮料的品尝顺序是随机的,而后每个消费者要对两种饮料分别进行评分(0分~10分),评分结果如下表。

大作业1: 假设检验在“新旧工艺有无差异”分析中的应用

大作业1: 假设检验在“新旧工艺有无差异”分析中的应用

大作业1:假设检验在“新旧工艺有无差异”分析中的应用姓名:***班级:人力032学号:**********提交日期:2005-12-4假设检验在“新旧工艺有无差异”分析中的应用假设检验原理:假设检验可用于各种场合,其思路是根据实际问题的要求提出一个关于质量特性值的论断(称为原假设),然后,根据样本的有关信息,对原假设的真伪进行判断。

在假设检验里,要提出原假设,同时根据实际问题提出原假设的对立面(称为备择假设),为了叙述方法,原假设用H0表示,备择假设用H1表示,假设检验是对H0的真伪进行判断。

1)编写假设检验实际问题案例:本例中企业为了提高生产效率,让车床更好的加工零件,自动车床采用新旧两种工艺加工同种零件,测得的加工偏差(单位:微米)分别为旧工艺 2.7 2.4 2.5 3.1 2.7 3.5 2.9 2.7 3.5 3.3新工艺 2.6 2.1 2.7 2.8 2.3 3.1 2.4 2.4 2.7 2.3设测量的加工偏差服从正态分布,所得的两个样本相互独立,且总体方差相等。

试问自动车床在新旧两种工艺的加工精度有无显著差异?(α=0.01)2)a.分析案例背景及用假设检验方法解决实际问题的必要性:企业为了提高经济效益,经常要开展QC小组活动或质量改进活动.在这些活动中,会遇到各种各样的问题.如:为了降低成本,改变生产工艺方法或配方,但不知改变工艺后的产品质量特性值和以前相比是否发生了变化;或为了扩大产量,增加了生产设备,但不知新设备生产出的产品质量特性值是否和老设备的一致;进厂原料有一定的质量要求,怎样根据进厂原料的检验结果来决定是接受或退货.b.简述你所运用的假设检验方法的算法步骤:解由题意知要检验的假设为.在H0为真时,检验统计量为:由此可得水平为α的拒绝域为这里m = n,α=0.01,故tα/2(m + n –2)=t0.005(18)=2.8784。

并由样本算得于是:故接受H0,即认为新旧工艺对零件的加工精度无显著差异。

假设检验例题和习题

假设检验例题和习题

(第二版) (原假设与备择假设旳拟定)
1. 属于决策中旳假设检验
2. 不论是拒绝H0还是不拒绝H0,都必需采用 相应旳行动措施
3. 例如,某种零件旳尺寸,要求其平均长度为 10cm,不小于或不不小于10cm均属于不合 格
我们想要证明(检验)不小于或不不小于这两种 可能性中旳任何一种是否成立
4. 建立旳原假设与备择假设应为
H0: = 5
H1: 5
= 0.05
df = 10 - 1 = 9 临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-2.262 0 2.262 t
8 - 20
检验统计量:
t = x 0 = 5.3 5 = 3.16
s n 0.6 10
决策:
在 = 0.05旳水平上拒绝H0
结论:
阐明该机器旳性能不好
符?( = 0.05)
统计学
(第二版)
均值旳单尾 t 检验
(计算成果)
H0: 40000 H1: < 40000 = 0.05 df = 20 - 1 = 19 临界值(s):
拒绝域
.05
-1.7291 0
t
8 - 23
检验统计量:
t = x 0
sn
= 41000 40000 = 0.894 5000 20
8 - 12
双侧检验
统计学
(第二版)
H0: = 0.081
H1: 0.081
= 0.05
n = 200
临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-1.96 0 1.96 Z
8 - 13
检验统计量:

作业题07 假设检验

作业题07 假设检验

第七章 假设检验 作业习题答案7.1 设总体2(,)N ξμσ~,其中参数μ,2σ为未知,试指出下面统计假设中哪些是简单假设,哪些是复合假设:(1)0:0,1H μσ==; (2)0:0,1H μσ=>; (3)0:3,1H μσ<=; (4)0:03H μ<<; (5)0:0H μ=.7.2 设1225,,,ξξξ 取自正态总体(,9)N μ,其中参数μ未知,x 是子样均值,如对检验问题001:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c xx x x c μ=-≥ ,试决定常数c,使检验的显著性水平为0.057.3 设子样1225,,,ξξξ 取自正态总体20(,)N μσ,20σ已知,对假设检验0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=> ,(1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系;(2)设0μ=0.05,20σ=0.004,α=0.05,n=9,求μ=0.65时不犯第二类错误的概率。

7.4 设一个单一观测的ξ子样取自分布密度函数为()f x 的母体,对()f x 考虑统计假设:0011101201:():()00x x x H f x H f x ≤≤≤≤⎧⎧==⎨⎨⎩⎩其他其他试求一个检验函数使犯第一,二类错误的概率满足2min αβ+=,并求其最小值。

7.5 设某产品指标服从正态分布,它的根方差σ已知为150小时。

今由一批产品中随机抽取了26个,测得指标的平均值为1637小时,问在5%的显著性水平下,能否认为该批产品指标为1600小时?7.6 某电器零件的平均电阻一直保持在2.64Ω,根方差保持在0.06Ω,改变加工工艺后,测得100个零件,其平均电阻为2.62Ω,根方差不变,问新工艺对此零件的电阻有无显著差异?去显著性水平α=0.01。

假设检验练习题

假设检验练习题

假设检验练习题一、判断题1、大多数的统计调查研究的都是样本而不是整个总体。

2、零假设和研究假设是相互对立的关系。

3、当我们拒绝了一个真的零假设时,所犯错误为第二类错误。

4、我们可以通过减少α来降低β错误。

5、如果α=.05,当我们拒绝H0时我们就有5%的可能犯错误。

6、如果α=.05,则当我们接受H0时,我们就有95%的可能犯错误。

7、如果取α=.01,我们拒绝了H0,则取α=.05时,我们仍然可以拒绝H0。

8、如果取α=.01,我们接受了H0,则取α=.05时,我们仍然可以接受H0。

9、如果H0为假,采用单侧检验比双侧检验更容易得到拒绝H0的结论。

10、即使我们更多地利用样本,还是有必要对一个给定总体的所有个体进行研究。

二、选择题1、总体是:A、很难被穷尽研究;B、可以通过样本进行估计;C、通常是假设性的;D、可能是无限的;E、以上都对。

2、如果要研究100个选民在预选时的投票结果表明,我们的主要兴趣应该是:A、推断他们将会把票投给谁B、推断所有选民的投票情况;C、估计什么样的个人会投票;D、以上都是;E、以上都不是。

3、如果我们从一个已知的总体中抽取大量的样本,我们将毫不惊讶地得到:A、样本统计结果值之间有差异;B、样本统计结果分布在一个中心值附近;C、许多样本平均数不等于总体平均数;D、以上都可能;E、以上都不可能。

4、对零假设的拒绝通常是:A、直接的;B、间接的;C、建立对研究假设的拒绝的基础上;D、建立在对研究假设的直接证明上;E、以上都不对。

5、研究者考察了生字密度高低两种条件下各30名学生阅读成绩的情况,得到两种条件下两组被试的成绩分别为:78±10和84±8,从中你可以得到:A、两种条件下学生成绩的差异非常显著;B、因为84≠78,所以两种条件下学生成绩差异非常显著;C、因为84>78,所以生字密度低的条件下学生成绩非常显著地高于生字密度高的条件下学生的成绩;D、以上都对;E、以上都不对。

假设检验例题 (3)

假设检验例题 (3)

假设检验例题引言假设检验是统计学中常用的一种方法,用于通过对样本数据进行推断来判断某个假设是否成立。

在实际应用中,假设检验可以用于验证某个新的产品是否与现有产品相同、进行医学研究是否有显著的治疗效果等。

本文将通过一个例题来介绍假设检验的基本概念和步骤,并以Markdown文本格式输出。

例题描述假设某个公司改变了产品包装的设计,认为新的包装可以提高产品的销售量。

为了验证这个假设,该公司进行了一项实验,在两个不同的市场中随机选择了一部分店铺,其中一部分店铺使用新的包装,另一部分店铺继续使用旧的包装。

经过一段时间的实验,记录下两组店铺的销售量。

以下是两组店铺的销售量数据:新包装店铺销售量:50, 52, 55, 48, 57, 55, 54, 53, 51, 56旧包装店铺销售量:45, 46, 44, 46, 42, 48, 43, 41, 47, 44现在的问题是,是否可以通过这些数据来判断新的包装是否显著地提高了产品的销售量?假设检验步骤进行假设检验的步骤如下:步骤1:建立零假设和备择假设在这个例题中,零假设表示新的包装不会显著地提高产品的销售量,备择假设表示新的包装显著地提高了产品的销售量。

假设检验的目标是通过样本数据来决定是拒绝零假设还是接受备择假设。

零假设 (H0):新的包装不会显著地提高产品的销售量。

备择假设 (H1):新的包装显著地提高了产品的销售量。

步骤2:选择显著性水平显著性水平是假设检验中的一个重要概念,用于决定拒绝或接受零假设的标准。

通常情况下,我们会选择一个合适的显著性水平,常见的显著性水平有0.05和0.01。

在这个例题中,我们选择显著性水平为0.05,表示要求95%的置信水平。

步骤3:计算检验统计量假设检验的目标是通过样本数据来计算一个统计量,并与一个期望的分布进行比较。

在这个例题中,我们可以使用两组店铺的平均销售量作为检验统计量。

步骤4:计算p值p值是一个概率值,表示当零假设为真时,观察到比检验统计量更极端结果的概率。

作业三 假设检验

作业三  假设检验

作业三假设检验一、为了研究两种教学方法的效果。

选择了6对智商、年龄、阅读能问:能否认为新教学方法优于原教学方法?问:(1)男性的身高与女性的身高是否相等?(2)学生的体重是否等于45公斤?三、双样本T检验(Independent-Samples T Test过程)分别测得14例老年性慢性支气管炎病人及11例健康人的尿中17酮类固醇实验步骤:1.建立数据文件。

定义变量名:把实际观察值定义为x,再定义一个变量group来区分病人与健康人。

输入原始数据,在变量group中,病人输入1,健康人输入2。

2. 选择菜单“Analyz e→Compare Means→Independent-samples T Test”项,弹出“Independent- samples T Test”对话框。

从对话框左侧的变量列表中选x,进入“Test Variable(s)”框,选择变量“group”,进入“Grouping Variable”框,点击“Define Groups”钮弹出“Define Groups”定义框,在Group 1中输入1,在Group 2中输入2。

3.单击“OK”按钮,得到输出结果。

四.成对样本T检验(Paired-Samples T Test过程)某单位研究饲料中缺乏维生素E与肝中维生素A含量的关系,将大白鼠按性别、体重等配为8对,每对中两只大白鼠分别喂给正常饲料和维生素E缺乏饲料,一段时期后将之宰杀,测定其肝中维生素A含量(μmol/L)如下,问饲料中缺乏维生素E对鼠肝中维生素A含量有无影响?实验步骤:1.建立数据文件。

定义变量名:正常饲料组测定值为x1,维生素E缺乏饲料组测定值为x2,输入原始数据。

2.选择菜单“Analyz e→Compare Means→Paired-samples T Test”项,弹出“Paired - samples T Test”对话框。

从对话框左侧的变量列表中选择变量x1、x2进入Variables框。

《应用数理统计》第三章假设检验课后作业参考答案

《应用数理统计》第三章假设检验课后作业参考答案

第三章 假设检验课后作业参考答案3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。

假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。

已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响?(01.0=α)解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u uu u u V (4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。

3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。

已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。

解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。

3.3某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。

现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。

设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高? 解:(1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。

《应用数理统计》吴翊李永乐第三章假设检验课后作业

《应用数理统计》吴翊李永乐第三章假设检验课后作业

《应⽤数理统计》吴翊李永乐第三章假设检验课后作业第三章假设检验课后作业参考答案3.1 某电器元件平均电阻值⼀直保持2.64Ω,今测得采⽤新⼯艺⽣产36个元件的平均电阻值为2.61Ω。

假设在正常条件下,电阻值服从正态分布,⽽且新⼯艺不改变电阻值的标准偏差。

已知改变⼯艺前的标准差为0.06Ω,问新⼯艺对产品的电阻值是否有显著影响?(01.0=α)解:(1)提出假设64.2:64.2:10≠=µµH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σµ(3)否定域>=><=--21212αααu u uu u u V (4)给定显著性⽔平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落⼊否定域,故拒绝原假设,认为新⼯艺对电阻值有显著性影响。

3.2 ⼀种元件,要求其使⽤寿命不低于1000(⼩时),现在从⼀批这种元件中随机抽取25件,测得其寿命平均值为950(⼩时)。

已知这种元件寿命服从标准差100σ=(⼩时)的正态分布,试在显著⽔平0.05下确定这批元件是否合格。

解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αµµσµα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故⽤统计量:此题中:代⼊上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信⽔平5下这批元件不合格。

3.3某⼚⽣产的某种钢索的断裂强度服从正态分布()2,σµN ,其中()2/40cm kg =σ。

现从⼀批这种钢索的容量为9的⼀个⼦样测得断裂强度平均值为X ,与以往正常⽣产时的µ相⽐,X 较µ⼤20(2/cm kg )。

假设检验例题 (5)

假设检验例题 (5)

假设检验例题引言假设检验是统计学中常用的一种推断方法,用于判断一个统计推断的结论是否可靠。

通常,假设检验的过程包括假设的设定、对样本数据的收集和分析、推断的结论以及结果的解释。

本文将通过一个具体的例子,详细介绍假设检验的步骤和方法。

例题背景假设某家电公司声称他们生产的电视机平均使用寿命超过5年。

我们对该公司的50台电视进行了检测,并记录下每台电视使用的寿命。

现在我们的任务是根据样本数据,判断该公司声称的平均使用寿命是否可信。

假设的设定在进行假设检验之前,我们需要先设定原假设(H0)和备择假设(H1)。

原假设通常是我们需要验证的观点,备择假设则是对原假设的否定。

对于本例,我们的原假设是:该家电公司生产的电视机平均使用寿命超过5年。

备择假设是:该家电公司生产的电视机平均使用寿命不超过5年。

数据收集与分析现在我们已经有了50台电视机的使用寿命数据,下面是样本数据的统计信息:•样本均值(x̄): 5.2年•样本标准差(s): 0.8年接下来,我们需要选择一个适当的假设检验方法。

根据样本数量和总体标准差是否已知,我们可以选择使用t检验或者z检验。

由于总体标准差未知,我们将选择使用t检验。

在进行t检验前,我们还需要设定显著性水平(α),它表示我们能够接受原假设的风险。

常用的显著性水平有0.05和0.01。

在本例中,我们选择α为0.05,意味着我们能够接受5%的错误率。

推断的结论现在我们可以进行假设检验了。

根据样本数据和设定的假设,我们可以计算出t值。

根据t值和t分布的临界值,我们可以判断是否拒绝原假设。

首先,我们计算出t值的公式如下:t值公式t值公式其中,x̄表示样本均值,μ表示总体均值,s表示样本标准差,n表示样本数量。

我们将通过计算得到的t值与t分布的临界值进行比较。

根据t检验的临界值表,当自由度为49(即n-1=50-1)时,对应的双侧检验的临界值约为2.01。

假设计算得到的t值为3.0,显著性水平为0.05。

假设检验的5个步骤例题

假设检验的5个步骤例题

假设检验的5个步骤例题
假设检验的五个步骤分别是:提出假设、构造检验统计量、确定显著水平、进行统计决策和结论。

以下是一个例题:
研究问题:某公司认为,他们的新产品的销售额会在100万以上,否则就会在100万以下。

我们来检验这个预测是否准确。

提出假设:
假设1: 新产品的销售额在100万以上。

假设2: 新产品的销售额在100万以下。

构造检验统计量:
如果新产品的销售额在100万以上,则认为假设1为真,否则假设2为真。

我们需要收集新产品的销售额数据来进行判断。

确定显著水平:
选择显著水平为0.05,这意味着如果数据不支持假设1的准确性,那么我们有5%的概率会错误地拒绝假设1。

进行统计决策:
根据收集的数据,我们计算出销售额为150万。

由于这个数值高于100万,所以假设1是正确的。

结论:根据以上步骤,我们得出结论:新产品的销售额在100万以上,因此假设1是正确的。

请注意,这只是一个简单的例子,实际应用中的假设检验可能会涉及更复杂的统计方法和数据分析。

假设检验与方差分析的作业

假设检验与方差分析的作业

管理工程学院硕士生《应用统计方法》课程作业I 假设检验与方差分析一、假设检验:(配对均值检验)1、某药厂最近研制出一种新的降压药,为了验证其疗效,选择15个高血压病人进行实验。

数据表是服药前后的血压值。

选用适当的统计方法验证该药是否有效。

patient 1 2 3 4 5 6 7 8 before 115 135 127 130 103 90 101 104 after 109 120 125 130 105 94 90 100patient 9 10 11 12 13 14 15before 109 89 120 113 118 130 120after 90 90 110 103 100 121 108二、方差分析:1、对于硅酸盐水泥的抗折强度,用四种不同的配方方法收集了以下数据:配方法抗折强度1 3129 3000 2865 28902 3200 3300 2975 31503 2800 2900 2985 30504 2600 2700 2600 2765(1)检验配方法影响水泥砂浆强度的假设。

(2)选择一种比较方法对均值进行比较。

2、纺织厂有很多织布机,设每台机器每分钟织出同样的布,为了研究这一假设,随机选取5台织布机并测定它们在不同时间的产量,得出数据:织布机产量1 14.0 14.1 14.2 14.0 14.12 13.9 13.8 13.9 14.0 14.03 14.1 14.2 14.1 14.0 13.94 13.6 13.8 14.0 13.9 13.75 13.8 13.6 13.9 13.8 14.0(1)说明为什么这是一种随机效应实验。

织布机的产量相等吗?(2)估计织布机间的变异。

(3)估计实验的误差方差。

3、电视机厂感兴趣于对彩色显像管四种不同的涂层对显像管的电导率是否有影响。

测得电导率的数据如下:涂层电导率1 143 141 150 1462 152 149 137 1433 134 136 132 1274 129 127 132 129 (1)涂层使电导率有差异吗?(2)估计总均值与处理效应。

作业·假设检验

作业·假设检验

假设检验:1. (卢淑华课后练习)根据某公司的上报,平均每天的营业额为55万元。

经过6天的普查,其营业额为(设营业额满足正态分布):592000元683000元578000元565000元637000元573000元。

问:原摊贩上报的数字是否可信?(显著性水平=0.05)解题:(1)原假设H0:u = 55万元即经普查所得的平均每天的营业额与55万元无显著差异。

备择假设H1 : u 不等于55万元即经普查所得的平均每天的营业额与55万元存在显著差异。

(2)选择的检验统计量为t统计量(3)(4)分析:单样本t检验的t统计量的观测值为2.904,对应的概率p-值(sig.)为0.031。

给定的显著性水平a=0.05, 由于概率p-值小于显著性水平a,因此应该拒绝原假设,认为经普查所得的平均每天的营业额与55万元存在显著差异。

同时55万元没有在相应的95%的置信区间,也证实了上述结论。

2、工作人员宣称水样中钙的均值为每立方米20.7克,现用某方法重复测定该水样11次,分别测得每立方米钙的含量为:20.99 20.41 20.10 20.00 20.91 22.60 20.99 20.41 23.00 22.00 20.00 。

问该方法测得的均值是否偏高?(0.05)解题:(1)(单样本t检验)原假设:用此方法测得的均值与20.7克无显著差异。

备择假设(2)选择的检验统计量为t 统计量分析:t统计量的观测值为1.064,对应的概率p-值为3.312。

给定的显著性水平为a=0.05,由概率p-值大于0.05,因此接受原假设,认为用此方法测得的均值与20.7克无显著差异。

同时20.7克在相应的95%的置信区间内也证实了这点。

3、长春市政府官员宣称,长春市居民的生活水平已经明显提高,平均居民月收入已经达到1200元。

现以抽样调查方法来验证该官员的说法是否正确,随机抽样15名居民,他们的月收入分别为:1350 1300 1100 1200 1250 1000 1100 1350 1200 1150 1050 1100 1150 1200 1250 ,根据这个调查结果,如何评价该官员的说法?解题:(单总体t检验)(1)原假设:居民平均收入与1200无显著差异(2)选择检验统计量为t统计量4. 对两种不同的水稻品种A和B分别统计了8个地区的单位面积产量(公斤),得到下面数据:A品种:86 87 56 93 84 93 75 79B品种:80 79 58 91 77 82 76 66要求检验两个水稻品种的单位面积产量之间是否有显著。

假设检验例题讲解

假设检验例题讲解

假设检验例题讲解引言假设检验是统计学中一种重要的推断方法,用于根据样本数据对总体参数进行推断。

在实际应用中,我们经常需要对某个总体参数是否满足某个假设进行检验,以此来判断某种情况的发生是否是偶然的还是具有统计学意义的。

在本文中,我们将通过一个具体的例子来详细讲解假设检验的步骤和方法。

例题描述某公司通过市场调研,推出了一种新的产品,并声称该产品的平均寿命超过了现有市场上的同类产品。

为了验证这一声称,该公司随机选取了30台该产品进行了测试,并记录了它们的寿命(以小时为单位)。

假设该产品的寿命服从正态分布,现在我们想要对该声称进行检验。

步骤1:建立假设在进行假设检验之前,首先需要明确我们的原假设和备择假设。

原假设(H0):该产品的平均寿命不超过现有市场上同类产品的平均寿命,即μ ≤ μ0(μ0为现有产品的平均寿命)。

备择假设(H1):该产品的平均寿命超过现有市场上同类产品的平均寿命,即μ> μ0。

在本例中,我们要采用单侧检验,因为我们关心的是新产品平均寿命是否超过现有产品的平均寿命。

步骤2:选择显著性水平显著性水平(α)是在进行假设检验时事先设定的一个值,它规定了我们对收集到的样本数据作出判断的临界点。

常用的显著性水平有0.05和0.01两种。

在本例中,我们选择α = 0.05作为显著性水平。

步骤3:计算样本统计量根据收集到的样本数据,我们需要计算出一个样本统计量,用来对总体参数进行估计。

在本例中,我们要计算平均寿命的样本均值和样本标准差。

假设样本的平均寿命为x̄,样本标准差为s。

步骤4:计算检验统计量在假设检验中,我们需要计算一个检验统计量来判断样本数据和原假设是否一致。

在本例中,我们要计算t检验统计量,其公式为: t统计量其中,x̄为样本均值,μ0为原假设的参数值,s为样本标准差,n为样本容量。

步骤5:计算P值在假设检验中,P值是一个重要的指标,用于评估样本数据在原假设为真时出现的概率。

在本例中,我们要计算P值,即检验统计量大于等于观察到的t检验统计量的概率。

应用统计学——假设检验书面作业和答案

应用统计学——假设检验书面作业和答案

假设检验作业1. 一种罐装饮料采用自动生产线生产,每罐的容量是255ml (总体的均值 ),标准差为5ml (总体的标准差)。

为检验每罐容量是否符合要求,质检人员在某天生产的饮料中随机抽取了40罐进行检验,测得每罐平均容量为255.8ml (样本的均值)。

取显著性水平=0.05 ,检验该天生产的饮料容量是否符合标准要求? 解:正态,总体方差已经,大样本,Z 检验统计量,双侧检验 96.105.040/52558.255)1,0(~n /2552552010==-=-=≠=αασμμμZ N X Z H H :: 若计算的Z 值在(-1.96,1.96)之间,不能拒绝原假设,认为符合标准;反之,拒绝原假设,即产品不符合标准。

2. 某一小麦品种的平均产量为5200kg/hm2 。

一家研究机构对小麦品种进行了改良以期提高产量。

为检验改良后的新品种产量是否有显著提高,随机抽取了36个地块进行试种,得到的样本平均产量为5275kg/hm2,标准差为120/hm2 。

试检验改良后的新品种产量是否有显著提高? (a=0.05)解:不知是否正态总体,总体标准差未知,但因是大样本,可用Z 分布检验统计量,右侧检验(注意临界值或拒绝域的确定,用图形表示更清楚)645.105.036/12052005275)1,0(~n /52005200010==-=-=≤ααμμμZ N s X Z H H ::计算出的Z 值,若Z 值大于1.645则拒绝原假设;反之,不能拒绝原假设。

3. 一种以休闲和娱乐为主题的杂志,声称其读者群中有80%为女性。

为验证这一说法是否属实,某研究部门抽取了由200人组成的一个随机样本,发现有146个女性经常阅读该杂志。

分别取显著性水平 a=0.05和a=0.01 ,检验该杂志读者群中女性的比率是否为80%?注意:(1)有些书,用大写的π表示总体比例。

(2) 不同的显著性水平,可能得出不同的结论。

假设检验练习题-(答案)

假设检验练习题-(答案)

假设检验练习题1. 简单回答下列问题:1)假设检验的基本步骤?答:第一步建立假设 (通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论)有三类假设第二步选择检验统计量给出拒绝域的形式。

根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1: W为双边H1: W为单边H1: W为单边第三步:给出假设检验的显著水平第四步给出零界值C,确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。

例如:对于=0.05有的双边 W为的右单边 W为的右单边 W为第五步根据样本观测值,计算和判断计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受(计算P值 227页 p值由统计软件直接得出时拒绝,否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)2)假设检验的两类错误及其发生的概率?答:第一类错误:当为真时拒绝,发生的概率为第二类错误:当为假时,接受发生的概率为3)假设检验结果判定的3种方式?答:1.计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受2.计算P值 227页 p值由统计软件直接得出时拒绝,否则接受3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受4)在六西格玛A阶段常用的假设检验有那几种?应用的对象是什么?答:连续型(测量的数据):单样本t检验 -----比较目标均值双样本t检验 -----比较两个均值方差分析 -----比较两个以上均值等方差检验 -----比较多个方差离散型(区分或数的数据):卡方检验 -----比较离散数2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。

假设检验作业参考答案

假设检验作业参考答案

(4)计算检测统计量的值
2
n 1 S 2 30 1 2 103.11
02
0.752
(5)作出决策
2 103.11 42.557 ,落入拒绝域,故在 0.05 的显著性水平上拒绝 H 0 。
结论:有证据表明电视的使用寿命的方差显著大于视频录像设备的使用寿命的方差。
2
n=30, S =2, s0 = 0.75 = 0.5625 (1)提出假设
2 2 H0 : 2 0 ; H1 : 2 0
2
2
2
(2)构造检测统计量
n 1 S 2 2 n 1 2
2
0
(3)给定显著性水平 0.05 29 42.557 ,其拒绝域为 42.557, 。
(3)给定显著性水平 0.01 ,确定拒绝域。
0.01 , z0.01 2.33 ,其拒绝域为 2.33, 。
(4)计算检测统计量的值
z
x 0 7.25 6.70 3.11 s / n 2.5 / 200
(5)作出决策
z 3.11 2.33 ,落入拒绝域,故在 0.01 的显著性水平上拒绝 H 0 。
np 356 0.879 313 5 , np 1 p 356 0.879 1 0.879 37.81 5 。
本题为大样本下总体比例的双侧检验问题,应采取 Z 检验法。 (1)已知本题假设为
H 0 : 0.75; H1 : 0.75
n
p 0

0.879 0.75 0.75 1 0.75 356
5.63
(5)作出决策

假设检验基本步骤

假设检验基本步骤

假设检验基本步骤假设检验(hypothesis testing),又称统计假设检验,是用来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。

显著性检验是假设检验中最常用的一种方法,也是一种最基本的统计推断形式,其基本原理是先对总体的特征做出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。

常用的假设检验方法有Z检验、t检验、卡方检验、F检验等。

1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。

H0:样本与总体或样本与样本间的差异是由抽样误差引起;H1:样本与总体或样本与样本间存在本质差异;预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。

2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。

根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。

3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。

若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。

P值的大小一般可通过查阅相应的界值表得到。

4、注意问题1、作假设检验之前,应注意资料本身是否有可比性。

2、当差别有统计学意义时应注意这样的差别在实际应用中有无意义。

3、根据资料类型和特点选用正确的假设检验方法。

4、根据专业及经验确定是选用单侧检验还是双侧检验。

5、判断结论时不能绝对化,应注意无论接受或拒绝检验假设,都有判断错误的可能性。

假设检验的例子及解析

假设检验的例子及解析

假设检验的例子及解析以下是 9 条关于假设检验的例子及解析:1. 咱就说,你觉得每天喝一杯牛奶能长高,这是不是一个假设呀,就像你觉得学习一门新语言能让你更聪明一样。

那咱们怎么检验呢?那就得观察长期喝牛奶的人是不是真的普遍比不喝的高呀!要是真这样,那这假设可能就有点靠谱呢!2. 比如说你假设经常锻炼的人身体更好,这可不是凭空说的吧!就好像你说经常笑的人运气不会差一样。

那怎么知道对不对呢?那就去看看那些健身达人,他们是不是真的很少生病,身体倍儿棒!3. 你说多吃水果皮肤会变好,这咋检验呀?好比你说早睡早起精神好一样。

那就找一群人,一部分多吃水果,一部分不多吃,过段时间看看他们皮肤状态的差别不就行了嘛!4. 假设下雨天心情会不好,哎呀,这可真太常见了!就像你说考试前会紧张一样。

那咱们去问问周围的人,下雨天的时候是不是大多都有点小情绪低落呀!5. 要是说努力工作就会升职加薪,这是真理吗?这就如同说长得帅就一定有女朋友一样。

那得看看那些努力了很久的同事,是不是真的得到了相应的回报呀!6. 有人假设听音乐能提高工作效率,哇,这有点意思哦!好比说吃巧克力能让人开心一样。

那咱们自己试试呗,边工作边听听音乐,看看效率是高了还是低了!7. 假设玩游戏能锻炼思维能力,这能是真的吗?就像有人说逛街能减肥一样。

那找些爱玩游戏的人,看看他们的思维是不是真的很敏捷呀!8. 你觉得看小说能增长知识,这到底对不对呢?这就好比说发呆能放松身心一样。

拿自己做个实验呗,看看看完一本小说后知识量有没有增加呀!9. 说吃辣能让人性格开朗,这可太神奇了吧!就仿佛说跑步能让人更有毅力一样。

那到底是不是这样呢?去观察那些无辣不欢的人呀!我的观点结论就是:假设检验真是个有意思的事儿,能让我们知道好多事情到底是不是真的像我们想的那样,通过观察和对比来验证,真的很有趣!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假设检验:
1. (卢淑华课后练习)根据某公司的上报,平均每天的营业额为55万元。

经过6天的普查,其营业额为(设营业额满足正态分布):
592000元683000元578000元565000元637000元573000元。

问:原摊贩上报的数字是否可信?(显著性水平=0.05)
解题:(1)原假设H0:u = 55万元
即经普查所得的平均每天的营业额与55万元无显著差异。

备择假设H1 : u 不等于55万元
即经普查所得的平均每天的营业额与55万元存在显著差异。

(2)选择的检验统计量为t统计量
(3)
(4)分析:单样本t检验的t统计量的观测值为2.904,对应的概率p-值(sig.)为0.031。

给定的显著性水平a=0.05, 由于概率p-值小于显著性水平a,因此应该拒绝原假设,认为经普查所得的平均每天的营业额与55万元存在显著差异。

同时55万元没有在相应的95%的置信区间,也证实了上述结论。

2、工作人员宣称水样中钙的均值为每立方米20.7克,现用某方法重复测定该水样11次,分别测得每立方米钙的含量为:20.99 20.41 20.10 20.00 20.91 22.60 20.99 20.41 23.00 22.00 20.00 。

问该方法测得的均值是否偏高?(0.05)
解题:(1)(单样本t检验)
原假设:用此方法测得的均值与20.7克无显著差异。

备择假设
(2)选择的检验统计量为t 统计量
分析:t统计量的观测值为1.064,对应的概率p-值为3.312。

给定的显著性水平为a=0.05,由概率p-值大于0.05,因此接受原假设,认为用此方法测得的均值与20.7克无显著差异。

同时20.7克在相应的95%的置信区间内也证实了这点。

3、长春市政府官员宣称,长春市居民的生活水平已经明显提高,平均居民月收入已经达到1200元。

现以抽样调查方法来验证该官员的说法是否正确,随机抽样15名居民,他们的月收入分别为:1350 1300 1100 1200 1250 1000 1100 1350 1200 1150 1050 1100 1150 1200 1250 ,根据这个调查结果,如何评价该官员的说法?
解题:(单总体t检验)
(1)原假设:居民平均收入与1200无显著差异
(2)选择检验统计量为t统计量
4. 对两种不同的水稻品种A和B分别统计了8个地区的单位面积产量(公斤),得到下面数据:
A品种:86 87 56 93 84 93 75 79
B品种:80 79 58 91 77 82 76 66
要求检验两个水稻品种的单位面积产量之间是否有显著。

解题:(1)原假设H0:u1-u2=0 ,两个水稻品种的单位面积产量之间没有显著差异备择假设H1:u1-u2不等于0,两个水稻品种的单位面积产量之间存在显著差异(2)选择检验统计量为f统计量和t统计量
分析:
两总体方差是否相等的f检验。

这里f统计量的观测值为0.205,对应的概率p值为0.339。

给定的显著性水平为0.05,因此概率p-值大于显著性水平,所以接受原假设,认为两个水稻品种的单位面积产量之间没有显著差异。

同时置信区间跨零也证实了这一点。

5. 某克山病区测得11名急性克山病患者与13名健康人的血磷值如下:
患者:2.60 3.24 3.73 3.73 4.32 4.73 5.18 5.58 5.78 6.40 6.53
健康人:1.67 1.98 1.98 2.33 2.34 2.50 3.60 3.73 4.14 4.17 4.57
4.82
5.78
问该地急性克山病患者与健康人的血磷值是否不同?
解题:(1)原假设H0:u1-u2=0,该地急性克山病患者与健康人的血磷值没有显著差异备择假设H1:u1-u2不等于0,
该地急性克山病患者与健康人的血磷值存在显著差异
(2)选择统计量
(3)
分析:
A 两总体方差是否相等的f统计量。

这里f统计量的观测值为0.038,对于的概率p-值(sig.)为0.019。

给定的显著性水平为0.05,因为概率p-值小于0.05,可以认为两总体的方差有显著差异。

B 两总体均值的检验。

由于两总体的方差有显著差异,因此应该看第二行t检验的结果,t 统计量的观测值为2.54,对于的双尾概率p-值为0.019。

给定的a为0.05,因为p-小于a,说明两者均值存在显著差异,所以应该拒绝原假设,认为两者存在显著差异。

同时置信区间不夸零也从另一角度证实了上述判断。

相关文档
最新文档