(备战2012中考15分钟精华题)考点9分式方程

合集下载

备战中考数学:分式方程的解题秘籍之基础知识

备战中考数学:分式方程的解题秘籍之基础知识

备战中考数学:分式方程的解题秘籍之基础知识归纳 1:分式方程的有关概念基础知识归纳:1、分式方程分母里含有未知数的方程叫做分式方程.2、分式方程的增根分式方程化成整式方程解得的未知数的值,如果这个值令最简公分母为零则为增根.基本方法归纳:判断分式方程时只需看分母中必须有未知数;分式方程的解只需带入方程看等式是否成立即可.注意问题归纳:未知数的系数必须不能为零;判断一个数增根的条件缺一不可:1、这个数是解化成的整式方程的根,2、使最简公分母为零.本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.考点:1.分式方程的解;2.解一元一次不等式.归纳2:分式方程的解法基础知识归纳:1、解分式方程的步骤:解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.基本方法归纳:分式方程首要是方程两边同乘以分母最小公倍数、去掉分母,转化为整式方程求解,其次注意一定要验根.注意问题归纳:解完方程后一定要注意验根.本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.考点:解分式方程.归纳3:分式方程的应用基础知识归纳:1、分式方程解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.(4)解方程.(5)检验,看方程的解是否符合题意.(6)写出答案.2、解应用题的书写格式:设→根据题意→解这个方程→答.基本方法归纳:解题时先理解题意找到等量关系列出方程再解方程最后检验即可.注意问题归纳:找对等量关系最后一定要检验.考点:分式方程的应用.。

中考数学复习总结第9讲:分式方程(含答案)

中考数学复习总结第9讲:分式方程(含答案)

中考数学复习第9讲:分式方程【基础知识回顾】一、分式方程的概念分母中含有 的方程叫做分式方程【名师提醒:分母中是否含有未知数是区分方程和整式方程根本依据】二、分式方程的解法:1、解分式方程的基本思路是 把分式方程转化为整式方程。

2、解分式方程的一般步骤:1、 2、 3、3、增根:在进行分式方程去分母的变形时,有时可产生使原方程分母为 的根称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为 的根是增根应舍去。

【名师提醒:1、分式方程解法中的验根是一个必备的步骤,不被省略2、分式方程的培根与无解并非用一个概念,无解完包含产生培根这一情况,也包含原方程去分母后的整式方程无解。

如:1x a x ---3x=1无解,有a 的值培根】 三、分式方程的应用:解题步骤同其它方程的应用一样,不同的是列出的方程是分式方程,所以在解分式方程应用题同样必须 完要检验是否为原方程的根,又要检验是否符合题意。

【名师提醒:分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水、航行这一类型】【重点考点例析】考点一:分式方程的概念(解为正、负数) 例1 (2009•孝感)关于x 的方程211x a x +=-的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-2 思路分析:先解关于x 的分式方程,求得x 的值,然后再依据“解是正数”建立不等式求a 的取值范围.解:去分母得,2x +a =x -1,∴x =-1-a ,∵方程的解是正数,∴-1-a >0即a <-1。

又因为x -1≠0,∴a ≠-2。

则a 的取值范围是a <-1且a ≠-2故选D .点评:由于我们的目的是求a 的取值范围,根据方程的解列出关于a 的不等式,另外,解答本题时,易漏掉a ≠-2,这是因为忽略了x -1≠0这个隐含的条件而造成的,这应引起同学们的足够重视.例2 (2012•鸡西)若关于x 的分式方程2213m x x x+-=-无解,则m 的值为( ) A .-1.5 B .1 C .-1.5或2 D .-0.5或-1.5 思路分析:去分母得出方程①2m +x )x -x (x -3)=2(x -3),分为两种情况:①根据方程无解得出x =0或x =3,分别把x =0或x =3代入方程①,求出m ;②求出当2m +1=0时,方程也无解,即可得出答案.解:方程两边都乘以x (x -3)得:(2m +x )x -x (x -3)=2(x -3),即(2m +1)x =-6,①①∵当2m +1=0时,此方程无解,∴此时m =-0.5,②∵关于x 的分式方程2213m x x x+-=-无解, ∴x =0或x -3=0,即x =0,x =3,当x =0时,代入①得:(2m +0)×0-0×(0-3)=2(0-3),解得:此方程无解;当x =3时,代入①得:(2m +3)×3-3(3-3)=2(3-3),解得:m =-1.5,∴m 的值是-0.5或-1.5,故选D .点评:本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x 的值,题目比较好,需要考虑周全,不要漏解,难度也适中.对应训练1.(2010•牡丹江)已知关于x 的分式方程22x +-2a x +=1的解为负数,那么字母a 的取值范围是 .答案:a >0且a ≠22.(2011•黑龙江)已知关于x 的分式方程1a x +-221a x x x --+=0无解,则a 的值为 .答案:0、12、或-1 解:去分母得ax -2a +x +1=0. ∵关于x 的分式方程1a x +-221a x x x --+=0无解, (1)x (x +1)=0,解得:x =-1,或x =0,当x =-1时,ax -2a +x +1=0,即-a -2a -1+1=0,解得a =0,当x =0时,-2a +1=0,解得a =12. (2)方程ax -2a +x +1=0无解,即(a +1)x =2a -1无解,∴a +1=0,a =-1.故答案为:0、12或-1. 点评:本题主要考查了分式方程无解的情况,需要考虑周全,不要漏解,难度适中.考点二:分式方程的解法例3 (2012•上海)解方程:261339x x x x +=+--. 思路分析:观察可得最简公分母是(x +3)(x -3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘(x +3)(x -3),得x (x -3)+6=x +3,整理,得x 2-4x +3=0,解得x 1=1,x 2=3.经检验:x =3是方程的增根,x =1是原方程的根,故原方程的根为x =1.点评:本题考查了分式方程的解法.注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定要验根.对应训练3.(2012•苏州)解分式方程:231422x x x x+=++. 解:去分母得:3x +x +2=4, 解得:x =12, 经检验,x =12是原方程的解.考点三:分式方程的增根问题 例4 (2012•攀枝花)若分式方程:2+12kx x --=12x-有增根,则k = . 思路分析:把k 当作已知数求出x =22k-,根据分式方程有增根得出x -2=0,2-x =0,求出x =2,得出方程22k-=2,求出k 的值即可. 解:∵分式方程2+12kx x --=12x -有增根, 去分母得:2(x -2)+1-kx =-1,整理得:(2-k )x =2,当2-k ≠0时,x =22k-; 当2-k =0是,此方程无解,即此题不符合要求;∵分式方程2+12kx x --=12x-有增根, ∴x -2=0,2-x =0,解得:x =2,即22k-=2, 解得:k =1.故答案为:1.点评:本题考查了对分式方程的增根的理解和运用,题目比较典型,是一道比较好的题目,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.对应训练4.(2012•佳木斯)已知关于x 的分式方程12a x -+=1有增根,则a = . 解:方程两边都乘以(x +2)得,a -1=x +2,∵分式方程有增根,∴x +2=0,解得x =-2,∴a -1=-2+2,解得a =1.故答案为:1.考点四:分式方程的应用例5 (2012•岳阳)岳阳王家河流域综合治理工程已正式启动,其中某项工程,若由甲、乙两建筑队合做,6个月可以完成,若由甲、乙两队独做,甲队比乙队少用5个月的时间完成.(1)甲、乙两队单独完成这项工程各需几个月的时间?(2)已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲队做a 个月,乙队做b 个月(a 、b 均为整数)分工合作的方式施工,问有哪几种施工方案?思路分析:(1)设乙队需要x 个月完成,则甲队需要(x -5)个月完成,根据两队合作6个月完成求得x 的值即可;(2)根据费用不超过141万元列出一元一次不等式求解即可.解:(1)设乙队需要x 个月完成,则甲队需要(x -5)个月完成,根据题意得: 11156x x +=-, 解得:x =15,经检验x =15是原方程的根.答:甲队需要10个月完成,乙队需要15个月完成;(2)根据题意得:15a +9b ≤141,11015a b +=, 解得:a ≤4 b ≥9.∵a 、b 都是整数∴a =4 b =9或a =2 b =12点评:此题主要考查了分式方程的应用,关键是弄清题意,找出题目中的等量关系,列出方程,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.对应训练5.(2012•珠海)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支. (1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?解:(1)设第一次每支铅笔进价为x 元,根据题意列方程得,6006003054x x -=, 解得,x =4,检验:当x =4时,分母不为0,故x =4是原分式方程的解.答:第一次每只铅笔的进价为4元.(2)设售价为y 元,根据题意列不等式为:600600(4)(5)4205444y y ⨯-+⨯-⨯…, 解得,y ≥6.答:每支售价至少是6元.【聚焦中考】1.(2012•莱芜)对于非零的实数a 、b ,规定a ⊕b =﹣.若2⊕(2x ﹣1)=1,则x =( ) A . B . C . D . ﹣分析: 根据新定义得到﹣=1,然后把方程两边都乘以2(2x ﹣1)得到2﹣(2x ﹣1)=2(2x ﹣1),解得x =,然后进行检验即可.选A .点评: 本题考查了解分式方程:先去分母,把分式方程转化为整式方程,解整式方程,然后把整式方程的解代入原方程进行检验,最后确定分式方程的解.也考查了阅读理解能力.2.(2012•潍坊)方程666003x x-=+的根是 . 答案:x =303.(2012•日照)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?解:设九年级学生有x 人,根据题意,列方程得:193619360.888x x ⨯=+, 经检验x =352是原方程的解.)答:这个学校九年级学生有352人.4.(2012•青岛)小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84千米,返回时经过跨海大桥,全程约45千米.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟.求小丽所乘汽车返回时的平均速度.答:小丽所乘汽车返回时的速度是75千米/时.5.(2012•临沂)某工厂加工某种产品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的37倍,求手工每小时加工产品的数量. 答:手工每小时加工产品27件.6.(2012•济南)冬冬全家周末一起去济南山区参加采摘节,他们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,若采摘油桃和樱桃分别用了80元,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元?答:油桃每斤为8元,则樱桃每斤是16元.7.(2012•泰安)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?故甲,乙两公司单独完成此项工程,各需20天,30天;(2)设甲公司每天的施工费为y 元,则乙公司每天的施工费为(y -1500)元, 根据题意得12(y +y -1500)=102000,解得y =5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000-1500)=105000(元);故甲公司的施工费较少.8.(2012•威海)小明计划用360元从大型系列科普丛书《什么是什么》(每本价格相同)中选购部分图书.“六一”期间,书店推出优惠政策:该系列丛书8折销售.这样,小明比原计划多买了6本.求每本书的原价和小明实际购买图书的数量.分析: 根据:用360元钱打折后可购书本数﹣打折前360元钱可购书本数=6,列分式方程. 所以,每本书的原价为15元,小明实际可购买图书30本.点评: 本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.【备考真题过关】 一、选择题1.(2012•丽水)把分式方程214x x=+转化为一元一次方程时,方程两边需同乘以( ) A .x B .2x C .x +4 D .x (x +4) 答案:D .2.(2012•随州)分式方程100602020v v=+-的解是( ) A .v =-20 B .v =5 C .v =-5 D .v =20答案:B .3.(2012•宜宾)分式方程21221339x x x -=-+-的解为( ) A .3 B .-3 C .无解 D .3或-3 答案:C4.(2012•台州)小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( ) A .40340204x x =⨯+ B .40340420x x =⨯+ C .40140204x x +=+ D .40401204x x =-+ 答案:A5.(2012•宁夏)运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为( )A .4030201.5x x -= B .4030201.5x x-= C .3040201.5x x -= D .3040201.5x x -= 答案:B7.(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( )A .B .C .D .分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.选:D.点评:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.8.(2012•吉林)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需时间相同.设原计划每天生产x台机器,则可列方程为()A.B.C.D.分析:根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.选:C.点评:此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.9.(2012•黑河)若关于x的分式方程=无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.5分析:先把方程两边乘以x(x﹣3)得到x(2m+x)﹣x(x﹣3)=2(x﹣3),整理得(2m+1)x=﹣6,由于关于x的分式方程=无解,则可能有x=3或x=0,然后分别把它们代入(2m+1)x=﹣6,即可得到m的值,然后再讨论方程(2m+1)x=﹣6无解得到m=﹣.选D.点评:本题考查了分式方程的解:把分式方程转化为整式方程,然后把整式方程的解代入原方程进行检验,若整式方程的解使分式方程的分母不为零,则这个整式方程的解是分式方程的解;若整式方程的解使分式方程的分母为零,则这个整式方程的解是分式方程的增根.10.(2012•赤峰)解分式方程的结果为()A.1 B.﹣1 C.﹣2 D.无解分析:观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.选D.点评:此题考查了分式方程的求解方法.此题比较简单,注意掌握转化思想的应用,注意解分式方程一定要验根.二、填空题11.(2012•襄阳)分式方程253x x=+的解是.答案:x=212.(2012•铁岭)某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队在单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为.答案:5451 20x+=13.(2012•资阳)观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:.分析:首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.答案为:x=n+3或x=n+4.点评:此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b的根为:x=a或x=b是解此题的关键.14.(2012•连云港)今年6月1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条例实施后,每购买一台,客户可获财政补贴200元,若同样用11万元所购买的此款空调台数,条例实施后比实施前多10%,则条例实施前此款空调的售价为元.分析:可根据:“同样用11万元所购买的此款空调台数,条例实施后比实施前多10%,”来列出方程组求解.答案为:2200.点评:此题主要考查了分式方程的应用,解题关键是找准描述语,找出合适的等量关系,列出方程,再求解.15.(2012•鞍山)A、B两地相距10千米,甲、乙二人同时从A地出发去B地,甲的速度是乙的速度的3倍,结果甲比乙早到小时.设乙的速度为x千米/时,可列方程为.分析:根据甲乙速度关系得出两人所行走的时间,进而得出等式方程即可.答案为:+=.点评:此题考查了由实际问题抽象出分式方程,解决行程问题根据时间找出等量关系是解决本题的关键.三、解答题16.(2012•盐城)解方程:321 x x=+.故原方程的解为:x=-3.17.(2012•咸宁)解方程:28124x x x -=--. 原分式方程无解. 18.(2012•泰州)当x 为何值时,分式32x x --的值比分式12x -的值大3? 当x =1时,分式32x x --的值比分式12x -的值大3. 19.(2012•长春)某班有45名同学参加紧急疏散演练,对比发现:经专家指导后,平均每秒撤离的人数是指导前的3倍,这45名同学全部撤离的时间比指导前快30秒,求指导前平均每秒撤离的人数.答:指导前平均每秒撤离的人数为1人.20.(2012•北京)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.答:一片国槐树叶一年的平均滞尘量为22毫克.21.(2012•玉林)一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由. 即甲车单独完成需要15天,乙车单独完成需要30天;(2)①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元;③单独租乙车需要的费用为:30×2500=75000元;综上可得,单独租甲车租金最少.22.(2012•河池)解分式方程:.分析: 先把方程两边都乘以3(x ﹣3)得到3(5x ﹣4)+x ﹣3=6x +5,解得x =2,然后进行检验确定分式方程的解.所以原方程的解为x =2.点评: 本题考查了解分式方程:先去分母,把分式方程转化为整式方程,解整式方程,然后把整式方程的解代入原方程进行检验,最后确定分式方程的解.24.(2012•贵阳)为了全面提升中小学教师的综合素质,贵阳市将对教师的专业知识每三年进行一次考核.某校决定为全校数学教师每人购买一本义务教育《数学课程标准(2011年版)》(以下简称《标准》),同时每人配套购买一本《数学课程标准(2011年版)解读》(以下简称《解读》),其中《解读》的单价比《标准》的单价多25元.若学校购买《标准》用了378元,购买《解读》用了1053元,请问《标准》和《解读》的单价各是多少元? 考点: 分式方程的应用。

分式方程篇(解析版)--中考数学必考考点总结+题型专训

分式方程篇(解析版)--中考数学必考考点总结+题型专训

知识回顾微专题分式方程--中考数学必考考点总结+题型专训考点一:分式方程之分式方程的解与解分式方程1.分式方程的定义:分母中含有未知数的方程叫做分式方程。

2.分式方程的解:使分式方程成立的未知数的值叫做分式方程的解。

3.解分式方程。

具体步骤:①去分母——分式方程的两边同时乘上分母的最简公分母。

把分式方程化成整式方程。

②解整式方程。

③检验——把解出来的未知数的值带入公分母中检验公分母是否为0。

若公分母不为0,则未知数的值即是原分式方程的解。

若公分母为0,则未知数的值是原分式方程的曾根,原分式方程无解。

1.(2022•营口)分式方程3=x 的解是()A .x =2B .x =﹣6C .x =6D .x =﹣2【分析】方程两边都乘x (x ﹣2)得出3(x ﹣2)=2x ,求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘x (x ﹣2),得3(x ﹣2)=2x ,解得:x =6,检验:当x =6时,x (x ﹣2)≠0,所以x =6是原方程的解,即原方程的解是x =6,故选:C .2.(2022•海南)分式方程12-x ﹣1=0的解是()A .x =1B .x =﹣2C .x =3D .x =﹣3【分析】方程两边同时乘以(x ﹣1),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解.【解答】解:去分母得:2﹣(x ﹣1)=0,解得:x =3,当x =3时,x ﹣1≠0,∴x =3是分式方程的根,故选:C .3.(2022•毕节市)小明解分式方程33211+=+x xx ﹣1的过程如下.解:去分母,得3=2x ﹣(3x +3).①去括号,得3=2x ﹣3x +3.②移项、合并同类项,得﹣x =6.③化系数为1,得x =﹣6.④以上步骤中,开始出错的一步是()A .①B .②C .③D .④【分析】按照解分式方程的一般步骤进行检查,即可得出答案.【解答】解:去分母得:3=2x ﹣(3x +3)①,去括号得:3=2x ﹣3x ﹣3②,∴开始出错的一步是②,故选:B .4.(2022•无锡)分式方程xx 132=-的解是()A .x =1B .x =﹣1C .x =3D .x =﹣3【分析】将分式方程转化为整式方程,求出x 的值,检验即可得出答案.【解答】解:=,方程两边都乘x (x ﹣3)得:2x =x ﹣3,解得:x =﹣3,检验:当x =﹣3时,x (x ﹣3)≠0,∴x =﹣3是原方程的解.故选:D .5.(2022•济南)代数式23+x 与代数式12-x 的值相等,则x =.【分析】根据题意列方程,再根据解分式方程的步骤和方法进行计算即可.【解答】解:由题意得,=,去分母得,3(x ﹣1)=2(x +2),去括号得,3x ﹣3=2x +4,移项得,3x ﹣2x =4+3,解得x =7,经检验x =7是原方程的解,所以原方程的解为x =7,故答案为:7.6.(2022•绵阳)方程113-+=-x x x x 的解是.【分析】先在方程两边乘最简公分母(x ﹣3)(x ﹣1)去分母,然后解整式方程即可.【解答】解:=,方程两边同乘(x ﹣3)(x ﹣1),得x (x ﹣1)=(x +1)(x ﹣3),解得x =﹣3,检验:当x =﹣3时,(x ﹣3)(x ﹣1)≠0,∴方程的解为x =﹣3.故答案为:x =﹣3.7.(2022•盐城)分式方程121-+x x =1的解为.【分析】先把分式方程转化为整式方程,再求解即可.【解答】解:方程的两边都乘以(2x ﹣1),得x +1=2x ﹣1,解得x =2.经检验,x =2是原方程的解.故答案为:x =2.8.(2022•内江)对于非零实数a ,b ,规定a ⊕b =a 1﹣b1.若(2x ﹣1)⊕2=1,则x 的值为.【分析】利用新规定对计算的式子变形,解分式方程即可求得结论.【解答】解:由题意得:=1,解得:x =.经检验,x =是原方程的根,∴x =.故答案为:.9.(2022•永州)解分式方程112+-x x =0去分母时,方程两边同乘的最简公分母是.【分析】根据最简公分母的定义即可得出答案.【解答】解:去分母时,方程两边同乘的最简公分母是x (x +1).故答案为:x (x +1).10.(2022•常德)方程()xx x x 25212=-+的解为.【分析】方程两边同乘2x (x ﹣2),得到整式方程,解整式方程求出x 的值,检验后得到答案.【解答】解:方程两边同乘2x (x ﹣2),得4x ﹣8+2=5x ﹣10,解得:x =4,检验:当x =4时,2x (x ﹣2)=16≠0,∴x =4是原方程的解,∴原方程的解为x =4.11.(2022•宁波)定义一种新运算:对于任意的非零实数a ,b ,a ⊗b =a 1+b 1.若(x +1)⊗x =xx 12+,则x 的值为.【分析】根据新定义列出分式方程,解方程即可得出答案.【解答】解:根据题意得:+=,化为整式方程得:x +x +1=(2x +1)(x +1),解得:x =﹣,检验:当x =﹣时,x (x +1)≠0,∴原方程的解为:x =﹣.故答案为:﹣.12.(2022•成都)分式方程xx x -+--4143=1的解为.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是分式方程的解,故答案为:x =3.13.(2022•牡丹江)若关于x 的方程11--x mx =3无解,则m 的值为()A .1B .1或3C .1或2D .2或3【分析】先去分母,再根据条件求m .【解答】解:两边同乘以(x ﹣1)得:mx ﹣1=3x ﹣3,∴(m ﹣3)x =﹣2.当m ﹣3=0时,即m =3时,原方程无解,符合题意.当m ﹣3≠0时,x =,∵方程无解,∴x ﹣1=0,∴x =1,∴m ﹣3=﹣2,∴m =1,综上:当m =1或3时,原方程无解.故选:B .14.(2022•通辽)若关于x 的分式方程:2﹣221--x k =x-21的解为正数,则k 的取值范围为()A .k <2B .k <2且k ≠0C .k >﹣1D .k >﹣1且k ≠0【分析】先解分式方程可得x =2﹣k ,再由题意可得2﹣k >0且2﹣k ≠2,从而求出k 的取值范围.【解答】解:2﹣=,2(x ﹣2)﹣(1﹣2k )=﹣1,2x ﹣4﹣1+2k =﹣1,2x =4﹣2k ,x =2﹣k ,∵方程的解为正数,∴2﹣k >0,∴k <2,∵x ≠2,∴2﹣k ≠2,∴k ≠0,∴k <2且k ≠0,故选:B .15.(2022•黑龙江)已知关于x 的分式方程xx m x ----1312=1的解是正数,则m 的取值范围是()A .m >4B .m <4C .m >4且m ≠5D .m <4且m ≠1【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可.【解答】解:方程两边同时乘以x ﹣1得,2x ﹣m +3=x ﹣1,解得x =m ﹣4.∵x 为正数,∴m ﹣4>0,解得m >4,∵x ≠1,∴m ﹣4≠1,即m ≠5,∴m 的取值范围是m >4且m ≠5.故选:C .16.(2022•德阳)如果关于x 的方程12-+x mx =1的解是正数,那么m 的取值范围是()A .m >﹣1B .m >﹣1且m ≠0C .m <﹣1D .m <﹣1且m ≠﹣2【分析】先去分母将分式方程化成整式方程,再求出方程的解x =﹣1﹣m ,利用x >0和x ≠1得出不等式组,解不等式组即可求出m 的范围.【解答】解:两边同时乘(x ﹣1)得,2x +m =x ﹣1,解得:x =﹣1﹣m ,又∵方程的解是正数,且x ≠1,∴,即,解得:,∴m 的取值范围为:m <﹣1且m ≠﹣2.故答案为:D .17.(2022•重庆)关于x 的分式方程x x x a x -++--3133=1的解为正数,且关于y 的不等式组()⎪⎩⎪⎨⎧-+≤+132229a y y y 的解集为y ≥5,则所有满足条件的整数a 的值之和是()A .13B .15C .18D .20【分析】解分式方程得得出x =a ﹣2,结合题意及分式方程的意义求出a >2且a ≠5,解不等式组得出,结合题意得出a <7,进而得出2<a <7且a ≠5,继而得出所有满足条件的整数a 的值之和,即可得出答案.【解答】解:解分式方程得:x =a ﹣2,∵x >0且x ≠3,∴a ﹣2>0且a ﹣2≠3,∴a >2且a ≠5,解不等式组得:,∵不等式组的解集为y ≥5,∴<5,∴a <7,∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13,故选:A .18.(2022•重庆)若关于x 的一元一次不等式组⎪⎩⎪⎨⎧--≥-a x x x <153141的解集为x ≤﹣2,且关于y 的分式方程111+=+-y ay y ﹣2的解是负整数,则所有满足条件的整数a 的值之和是()A .﹣26B .﹣24C .﹣15D .﹣13【分析】解不等式组得出,结合题意得出a >﹣11,解分式方程得出y =,结合题意得出a =﹣8或﹣5,进而得出所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,即可得出答案.【解答】解:解不等式组得:,∵不等式组的解集为x ≤﹣2,∴>﹣2,∴a >﹣11,解分式方程=﹣2得:y=,∵y 是负整数且y ≠﹣1,∴是负整数且≠﹣1,∴a =﹣8或﹣5,∴所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,故选:D .19.(2022•遂宁)若关于x 的方程122+=x mx 无解,则m 的值为()A .0B .4或6C .6D .0或4【分析】解分式方程可得(4﹣m )x =﹣2,根据题意可知,4﹣m =0或2x +1=0,求出m 的值即可.【解答】解:=,2(2x +1)=mx ,4x +2=mx ,(4﹣m )x =﹣2,∵方程无解,∴4﹣m =0或2x +1=0,即4﹣m =0或x =﹣=﹣,∴m =4或m =0,故选:D .20.(2022•黄石)已知关于x 的方程()1111++=++x x ax x x 的解为负数,则a 的取值范围是.【分析】先求整式方程的解,然后再解不等式组即可,需要注意分式方程的分母不为0.【解答】解:去分母得:x +1+x =x +a ,解得:x =a ﹣1,∵分式方程的解为负数,∴a ﹣1<0且a ﹣1≠0且a ﹣1≠﹣1,∴a <1且a ≠0,∴a 的取值范围是a <1且a ≠0,故答案为:a <1且a ≠0.21.(2022•齐齐哈尔)若关于x 的分式方程4222212-+=++-x mx x x 的解大于1,则m 的取值范围是.【解答】解:,给分式方程两边同时乘以最简公分母(x +2)(x ﹣2),得(x +2)+2(x ﹣2)=x +2m ,去括号,得x +2+2x ﹣4=x +2m ,解方程,得x =m +1,检验:当m +1≠2,m +1≠﹣2,即m ≠1且m ≠﹣3时,x =m +1是原分式方程的解,根据题意可得,m +1>1,∴m >0且m ≠1.知识回顾故答案为:m >0且m ≠1.22.(2022•泸州)若方程xx x -=+--23123的解使关于x 的不等式(2﹣a )x ﹣3>0成立,则实数a 的取值范围是.【分析】先解分式方程,再将x 代入不等式中即可求解.【解答】解:+1=,+=,=0,解得:x =1,∵x ﹣2≠0,2﹣x ≠0,∴x =1是分式方程的解,将x =1代入不等式(2﹣a )x ﹣3>0,得:2﹣a ﹣3>0,解得:a <﹣1,∴实数a 的取值范围是a <﹣1,故答案为:a <﹣1.考点二:分式方程之分式方程的应用1.列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。

初三数学【分式方程应用题】精选50道答案,考试就会一分不扣

初三数学【分式方程应用题】精选50道答案,考试就会一分不扣

初三数学【分式方程应用题】精选50道答案,考试就会一分不扣临近中考,大家的复习任务变得越发的紧张,为了帮助同学们提升复习的效率,所以王老师今天特意为大家总结中考数学必考的内容——分式知识点,以及方式方程专题练习50题,只要能够掌握了,考试就会一分不扣。

分式知识点关键词:分式、分式的基本性质、分式的约分、分式的通分、分式的运算、整数指数幂、科学计数法、分式方程、最后结果一定时最简形式必须清晰知道的基本概念:分式:1,定义:一般地,如果A和B为两个整式,并且B中含有字母,那么式子A/B就叫做分式,A为分子,B为分母。

请联系前面讲的分数,基本是一样的2,与分式有关的一些知识点:1>分式有意义,要求分母不为0,隐含分母要有字母;2>分式无意义,分母为0;3>分式值为0,分子为0 ,且分母不为0;4>分式值为负或小于0,分子分母异号;5>分式值为正或大于0,分子分母同号;6>分式值为1,分子分母值相等;7>分式值为-1,分子分母值互为相反数;这些知识点看上去非常简单,甚至给人感觉都是废话。

那是因为没有放在具体的题目中,其实你那些没有拿到的分都是从这些很简单的知识里面来的。

比如,一个很复杂的分式,分子分母都很复杂,但是如果能够知道它的值为1,则表示分子和分母是相等的。

这些东西要有谦虚的心态在以后的学习中才能慢慢体会到的。

这里给大家强调三点!1.分母中一定要含有字母的式子才叫分式;也就是分式的分母要满足两个条件的,a>不为0,b>必须含有字母;2.分式与整式的和,也是分式。

3.判断分式有无意义时,一定要讨论原分式,而不能时化简后的分式!举例:问(x2-1)/x2-x-2何时有意义?答案是x≠2和x≠-1;而如果化简后只能得到x≠2这个答案了。

分式的基本知识:1.分式的基本性质,分式的分子分母同时乘以或除以一个不等于0的数,分式的值不变;2.分式的符号,分式的分子分母和分式本身的符号,改变其中任何两个,分式的值不变;3.分式的约分,就是把一个分式的分子和分母的公因式约去,约至它们再也没有公因式时就是最简分式了。

初三数学总复习--分式方程及应用

初三数学总复习--分式方程及应用

初三数学总复习分式方程及应用一:【课前预习】(一):【知识梳理】1.分式方程:分母中含有 的方程叫做分式方程.2.分式方程的解法:解分式方程的关键是 (即方程两边都乘以最简公分母),将分式方程转化为整式方程;3.分式方程的增根问题:⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根;⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根。

验根的方法是将所求的根代人 或 ,若 的值为零或 的值为零,则该根就是增根。

4.分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.5.通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题。

6. 分式方程的解法有 和 。

(二):【课前练习】1. 把分式方程11122x x x--=--的两边同时乘以(x-2), 约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1 C .1-(1-x)=x-2 D .1+(1-x)=x-22. 方程2321x x -=+的根是( ) A.-2 B.12 C.-2,12D.-2,1 3. 当m =_____时,方程212mx m x +=-的根为12 4. 如果25452310A B x x x x x -+=-+--,则 A=____ B =________. 5. 若方程1322a x x x -=---有增根,则增根为_____,a=________.二:【经典考题剖析】1. 解下列分式方程:25211111 332552323x x x x x x x x x -+=+==+---++();(2);(); 2222213(1)1142312211x x x x x x x x x x x x -++⎛⎫⎛⎫+=+=+-+= ⎪ ⎪--++⎝⎭⎝⎭(4);(5);(6) 分析:(1)用去分母法;(2)(3)(4)题用化整法;(5)(6)题用换元法;分别设211x y x +=+,1y x x=+,解后勿忘检验。

2012中考中考数学分式方程

2012中考中考数学分式方程

1.解分式方程常见误区: 1.解分式方程常见误区: 解分式方程常见去分母时漏乘整数项; (2)去分母时弄错符号 去分母时弄错符号; (2)去分母时弄错符号; (3)换元出错 换元出错; (3)换元出错; (4)忘了验根 忘了验根. (4)忘了验根. 2.列分式方程解应用题常见误区: 2.列分式方程解应用题常见误区: 列分式方程解应用题常见误区 (1)单位不统一 单位不统一; (1)单位不统一; (2)解完分式方程后忽略 双检” 解完分式方程后忽略“ (2)解完分式方程后忽略“双检”.
6 解 : 设x − x = y, 则y − + 1 = 0 , y +y-6=0,即(y+3)(y∴y2+y-6=0,即(y+3)(y-2)=0, y1=-3,y2=2
2
x=-3,△<0; 当y=-3时,x2-x=-3,△<0; y=当y=2时,原方程为x2-x-2=0,x1=2,x2=-1. y=2时 原方程为x
课前热身
桂林) 4.(2008年·桂林)用换元法解方程 2008年 桂林 若设x x+1=y, 若设x2-3x+1=y,则原方程可化为 A.y2-6y+8=0 y+8 B . y 2- 6 y - 8 = 0 y+8 C.y2+6y+8=0 D . y 2+ 6 y - 8 = 0 5.用换元法解方程: 用换元法解方程: , ( A )
分式方程
要点、 要点、考点聚焦
1.解分式方程的基本思路 1.解分式方程的基本思路 将分式方程化为整式方程. 将分式方程化为整式方程 2.解分式方程的一般步骤 把方程两边都乘以最简公分母,化成整式方程; (1)把方程两边都乘以最简公分母,化成整式方程; 解这个整式方程; (2)解这个整式方程; 检验:把整式方程的根代入最简公分母, (3)检验:把整式方程的根代入最简公分母,若使 最简公分母值为0 则这个根是原方程的增根, 最简公分母值为0,则这个根是原方程的增根,必须 舍去. 舍去. 用换元法解分式方程是一种重要的思想方法, 3. 用换元法解分式方程是一种重要的思想方法,也是中 考的必考知识. 考的必考知识

专题09 中考数学初中数学复习考点精讲热考题型专项训练 分式方程(解析版)

专题09 中考数学初中数学复习考点精讲热考题型专项训练 分式方程(解析版)

专题09 分式方程【思维导图】【知识要点】知识点一:分式的基础概念:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子叫做分式,A为分子,B为分母。

与分式有关的条件:要求表示分式有意义分母≠0分式无意义分母=0分式值为0分子为0且分母不为0分式值为正或大于0分子分母同号①A>0,B>0②A<0,B<0分式值为负或小于0分子分母异号①A>0,B<0②A<0,B>0分式值为1分子分母值相等A=B分式值为-1分子分母值互为相反数A+B=0知识点二:分式的运算(重点)基本性质(基础):分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:,,其中A、B、C是整式,C0。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即注意:在应用分式的基本性质时,要注意C0这个限制条件和隐含条件B0。

⏹分式的约分约分的定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去。

最简公式的定义:分子与分母没有公因式的分式。

分式约分步骤:1)提分子、分母公因式2)约去公因式3)观察结果,是否是最简分式或整式。

注意:1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式⏹分式的通分通分的定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

分式通分的关键:确定最简公分母确定分式的最简公分母的方法1.因式分解2.系数:各分式分母系数的最小公倍数;3.字母:各分母的所有字母的最高次幂4.多项式:各分母所有多项式因式的最高次幂5.积约分与通分的相同点:分式的四则运算与分式的乘方1)分式的乘除法法则:用分子的积作为积的分子,分母的积作为积的分母。

中考复习专题第9讲分式方程

中考复习专题第9讲分式方程

第九讲 分式方程【基础知识回顾】1、 分式方程的概念分母中含有 的方程叫做分式方程【提醒:分母中是否含有未知数是区分分式方程和整式方程的根本依据】2、分式方程的解法:基本思路是 把分式方程转化为整式方程:3、增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为 的根称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为 的根是增根应舍去。

【提醒:1、分式方程解法中的验根是一个必备的步骤,不被省略。

2、分式方程有增根与无解并非用一个概念,无解既包含产生增根这一情况,也包含原方程去分母后的整式方程无解。

如:1x a x ---3x=1有增根,则a= ,若该方程无解,则a= 。

】 4、分式方程的应用:解题步骤同其它方程的应用一样,不同的是列出的方程是分式方程,所以在解分式方程应用题同样必须 ,既要检验是否为原方程的根,又要检验是否符合题意。

【提醒:分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型】【重点考点例析】考点一:分式方程的解考点三:由实际问题抽象出分式方程C.352025x x+=D.352025x x+=考点四:分式方程的应用例4 某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.问今年5月份A款汽车每辆售价多少万元?【聚焦中考】13一、选择题1.x=1 B .x=2 C .x=3 D .x=42.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( ).A .405012x x =-B .405012x x =-C .405012x x =+D .405012x x=+3.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A 型陶笛与用4500购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( ).A .2700450020x x =- B .27004500200x x =- C .2700450020x x =+ D .27004500200x x =+ 二、填空题12 3 三、解答题12.娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,求小张离长沙还有多远?3.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?4.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?5.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.求甲、乙两工程队m?每天能完成绿化的面积分别是多少2。

备战中考2012年中考数学新题分类汇编中考真题模拟新题分式与分式方程

备战中考2012年中考数学新题分类汇编中考真题模拟新题分式与分式方程

第7章 分式与分式方程一、选择题1.(2010湖北孝感,6,3分)化简x y x yy x x⎛⎫--÷⎪⎝⎭的结果是( ) A.1yB. x y y +C. x y y -D. y【答案】B2. (2011山东威海,8,3分)计算:211(1)1mm m+÷⋅--的结果是( ) A .221m m --- B .221m m -+- C .221m m --D .21m -【答案】B3. (2011四川南充市,8,3分) 当8、分式21+-x x 的值为0时,x 的值是( ) (A )0 (B )1 (C )-1 (D )-2 【答案】B4. (2011浙江丽水,7,3分)计算1a -1 – aa -1的结果为( ) A. 1+aa -1B. -a a -1C. -1D.1-a【答案】C5. (2011江苏苏州,7,3分)已知2111=-b a ,则ba ab-的值是 A.21 B.-21C.2D.-2 【答案】D6. ( 2011重庆江津, 2,4分)下列式子是分式的是( ) A.2x B.1+x x C. y x +2 D. 3x 【答案】B.7. (2011江苏南通,10,3分)设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于A. 336D. 3【答案】A8. (2011山东临沂,5,3分)化简(x -x 1-x 2)÷(1-x 1)的结果是( ) A .x1B .x -1C .x 1-xD .1-x x【答案】B9. (2011广东湛江11,3分)化简22a b a b a b---的结果是 A a b + B a b - C 22a b - D 1【答案】A10.(2011浙江金华,7,3分)计算1a -1 – aa -1的结果为( ) A.1+a a -1 B. -aa -1C. -1D.1-a 【答案】C 二、填空题1. (2011浙江省舟山,11,4分)当x 时,分式x-31有意义. 【答案】3x ≠2. (2011福建福州,14,4分)化简1(1)(1)1m m -++的结果是 【答案】m3. (2011山东泰安,22 ,3分)化简:(2x x+2-x x-2)÷x x 2-4的结果为 。

中考数学专题知识点精讲:分式方程

中考数学专题知识点精讲:分式方程

分式方程一、知识要点概述1、分式方程:分母中含有未知数的有理方程叫分式方程.2、解分式方程的基本思想方法是:3、解分式方程必须验根.二、典型例题剖析例1、解方程.分析:根据解分式方程的一般步骤来解此题.解:方程两边同乘以(x+3)(x-2)得:10+2(x-2)=(x+3)(x-2)化简,整理得:x2-x-12=0解之得x1=-3或x2=4经检验可知:x1=-3是原方程的增根,x2=4是原方程的根.∴原方程的根是x=4.分析:用换元法解这些分式方程.解:(1)设x2-x=y,则原方程变为解这个方程得y1=-2,y2=6,当y1=-2时,x2-x=-2,此方程无解;当y2=6时,x2-x=6,∴x1=-2,x2=3.经检验可知:x1=-2,x2=3都是原方程的根.∴原方程的解为x1=-2,x2=3.例3、当m为何值时,关于x的方程无实根?分析:先将分式方程化为整式方程,如果整式方程有实根,那么这些根均是原方程的增根,这样x=0或x=1是所得整式方程的根,如果整式方程无实根,那么原方程也无实根.解:原方程去分母,整理得:x2-x+2-m=0①(1)若方程①有实根,根据题意知,方程①的根为x=0或x=1.把x=0或x=1代入方程①得m=2.而x=0或x=1是原方程的增根.∴当m=2时原方程无实根.(2)若方程(1)无实根,则△=(-1)2-4(2-m)<0解之得∴当时,原方程无实根.综合之,当m=2或时,原方程无实根.例4、若方程有增根,试求m的值.分析:分式方程将会产生增根,即最简公分母x2-4=0,故方程产生增根有两种可能:x1=2,x2=-2.由增根的定义知:x1=2,x2=-2是原分式方程去分母化成整式方程的根,由根的定义即可求出m的值.解:将原方程去分母得:2(x+2)+mx=3(x-2)整理得:(m-1)x=-10 (1)∵原方程有增根,∴x2-4=0∴x1=2,x2=-2.将x1=2代入(1)得2(m-1)=-10∴m=-4将x2=-2代入(1)得-2(m-1)=-10∴m=6所以m的值为-4或6.点评:(1)增根的求法:令最简公分母为0;(2)求有增根的方程中参数的值,应先求出可能的增根,再将其代入化简后的整式方程即可.例5、已知a2-a-1=0且求x的值.分析:为求x的值,须将x与a2分离,联想到分式的基本性质,从而原等式含,这样应从条件出发构造倒数关系.解:。

专题09 分式方程(归纳与讲解)(解析版)

专题09 分式方程(归纳与讲解)(解析版)

专题09 分式方程【专题目录】技巧1:分式的意义及性质的四种题型 技巧2:分式运算的八种技巧技巧3:巧用分式方程的解求字母的值或取值范围 技巧4:分式求值的方法 【题型】一、分式有意义的条件 【题型】二、分式的运算 【题型】三、分式的基本性质 【题型】四、解分式方程 【题型】五、分式方程的解 【题型】六、列分式方程 【考纲要求】1、理解分式、最简分式、最简公分母的概念,掌握分式的基本性质,能熟练地进行约分、通分.2、能根据分式的加、减、乘、除的运算法则解决计算、化简、求值等问题,并掌握分式有意义、无意义和值为零的约束条件.3、理解分式方程的概念,会解可化为一元一次(二次)方程的分式方程(方程中的分式不超过两个)。

4、了解解分式方程产生增根的原因,会检验和对分式方程出现的增根进行讨论. 【考点总结】一、分式形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子叫做分式.A A【考点总结】二、分式方程【注意】1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式 分式混合运算的运算运算顺序:1.先把除法统一成乘法运算;2.分子、分母中能分解因式的多项式分解因式;3.确定分式的符号,然后约分;4.结果应是最简分式.【技巧归纳】分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即a b ·c d =acbd .分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即a b ÷c d =a b ·d c =adbc在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.技巧1:分式的意义及性质的四种题型 【类型】一、分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m中,不是分式的式子有( )A .1个B .2个C .3个D .4个2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个. 【类型】二、分式有无意义的条件3.若代数式1a -4在实数范围内有意义,则实数a 的取值范围为( )A .a =4B .a>4C .a<4D .a≠4 4.当x =________时,分式x -1x 2-1无意义. 5.已知不论x 为何实数,分式3x +5x 2-6x +m 总有意义,试求m 的取值范围.【类型】三、分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( )A .x <-2B .x <1C .x >-2且x≠1D .x >1 7.若分式3x -42-x 的值为负数,则x 的取值范围是________.8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.【类型】四、分式的基本性质及其应用 9.下列各式正确的是( )A .a b =a 2b 2B .a b =ab a +bC .a b =a +c b +cD .a b =ab b 2 10.要使式子1x -3=x +2x 2-x -6从左到右的变形成立,x 应满足的条件是( ) A .x >-2 B .x =-2 C .x <-2 D .x≠-2 11.已知 x 4=y 6=z7≠0,求 x +2y +3z 6x -5y +4z 的值.12.已知x +y +z =0,xyz≠0,求x |y +z|+y |z +x|+z|x +y|的值. 参考答案1.C 点拨:4x -25,2m ,x 2π+1不是分式.2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式. 3.D 4.±15.解:x 2-6x +m =(x -3)2+(m -9).因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为分式的值为正数,所以x +2>0且x -1≠0.解得x >-2且x≠1. 7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b≠±1.9.D 10.D11.解:设x 4=y 6=z7=k(k≠0),则x =4k ,y =6k ,z =7k.所以x +2y +3z 6x -5y +4z =4k +2×6k +3×7k 6×4k -5×6k +4×7k =37k 22k =3722.12.解:由x +y +z =0,xyz≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z|-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z|-z|=1-1-1=-1.综上所述,所求式子的值为1或-1. 值的分式消元求值. 技巧2:分式运算的八种技巧 【类型】一、约分计算法 1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.【类型】二、整体通分法 2.计算:a -2+4a +2.【类型】三、顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.【类型】四、换元通分法4.计算:(3m -2n)+(3m -2n )33m -2n +1-(3m -2n)2+2n -3m3m -2n -1.【类型】五、裂项相消法⎝⎛⎭⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).【类型】六、整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abcab +bc +ac 的值.【类型】七、倒数求值法7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.【类型】八、消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.参考答案1.解:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 点拨:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程. 2.解:原式=a -21+4a +2=a 2-4a +2+4a +2 =a 2a +2. 点拨:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减. 3.解:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1)=8x 7x 8-1. 点拨:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.解:设3m -2n =x ,则原式=x +x 3x +1-x 2-x x -1=x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x(x +1)(x -1)=4n -6m(3m -2n +1)(3m -2n -1).5.解:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100=100a (a +100).点拨:对于分子是1,分母是相差为1的两个整式的积的分式相加减,常用1n (n +1)=1n -1n +1进行裂项,然后相加减,这样可以抵消一些项. 6.解:1a +1b =16,1b +1c =19,1a +1c =115,上面各式两边分别相加,得⎝⎛⎭⎫1a +1b +1c ×2=16+19+115, 所以1a +1b +1c =31180.易知abc≠0,所以abc ab +bc +ac =11c +1a +1b =18031.7.解:由xx 2-3x +1=-1,知x≠0,所以x 2-3x +1x =-1.所以x -3+1x =-1.即x +1x =2.所以x 4-9x 2+1x 2=x 2-9+1x 2=⎝⎛⎭⎫x +1x 2-11=22-11=-7. 所以x 2x 4-9x 2+1=-17.8.解:以x ,y 为主元,将已知的两个等式化为⎩⎪⎨⎪⎧4x -3y =6z ,x +2y =7z.解得x =3z ,y =2z. 因为xyz≠0,所以z≠0.所以原式=5×9z 2+2×4z 2-z 22×9z 2-3×4z 2-10z 2=-13.点拨:此题无法直接求出x ,y ,z 的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.技巧3:巧用分式方程的解求字母的值或取值范围 【类型】一、利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.【类型】二、利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=mx -3+2有解,求m 的取值范围.【类型】三、利用分式方程有增根求字母的值 3.如果解关于x 的分式方程m x -2-2x 2-x=1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-44.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.【类型】四、利用分式方程无解求字母的值5.若关于x 的分式方程x -ax +1=a 无解,则a =________.6.已知关于x 的方程x -4x -3-m -4=m3-x 无解,求m 的值.7.已知关于x 的分式方程x +a x -2-5x=1.(1)若方程的增根为x =2,求a 的值; (2)若方程有增根,求a 的值; (3)若方程无解,求a 的值. 参考答案1.解:解分式方程32x =1x -1,得x =3.经检验,x =3是该方程的解. 将x =3代入2x +4=mx ,得27=m 3.解得m =67. ∴m 2-2m =⎝⎛⎭⎫672-2×67=-4849.2.解:去分母并整理,得x +m -4=0.解得x =4-m.∵分式方程有解, ∴x =4-m 不能为增根. ∴4-m≠3.解得m≠1.∴当m≠1时,原分式方程有解. 3.D4.解:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0,所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3. 当x =3时,m +2×(3-3)=3+3,解得m =6; 当x =-3时,m +2×(-3-3)=-3+3, 解得m =12.综上所述,原方程的增根是x =3或x =-3. 当x =3时,m =6; 当x =-3时,m =12.点拨:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m 的值.5.1或-16.解:原方程可化为(m +3)x =4m +8.由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m +3=0且4m +8≠0,此时m =-3;(2)若整式方程的根是原方程的增根,则4m +8m +3=3,解得m =1.经检验,m =1是方程4m +8m +3=3的解.综上所述,m 的值为-3或1.7.解:原方程去分母并整理,得(3-a)x =10.(1)因为原方程的增根为x =2,所以(3-a)×2=10.解得a =-2. (2)因为原分式方程有增根,所以x(x -2)=0.解得x =0或x =2.因为x =0不可能是整式方程(3-a)x =10的解,所以原分式方程的增根为x =2.所以(3-a)×2=10.解得a =-2.(3)①当3-a =0,即a =3时,整式方程(3-a)x =10无解,则原分式方程也无解; ②当3-a≠0时,要使原方程无解,则由(2)知,a =-2.综上所述,a 的值为3或-2.点拨:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解. 技巧4:分式求值的方法 【类型】一、直接代入法求值 1.先化简,再求值:⎝⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.【类型】二、活用公式求值2.已知实数x 满足x 2-5x +1=0,求x 4+1x 4的值.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.【类型】三、整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z≠0,求x 2y +z +y 2z +x +z 2x +y 的值.【类型】四、巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x 的值.【类型】五、设参数求值6.已知x 2=y 3=z4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.参考答案1.解:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,3a +1=35+1=12.2.解:由x 2-5x +1=0得x≠0,∴x +1x=5.∴⎝⎛⎭⎫x +1x 2=25.∴x 2+1x 2=23. ∴x 4+1x 4=⎝⎛⎭⎫x 2+1x 22-2=232-2=527 点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答. 3.解:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xyxy (x +y ).因为x +y =12,xy =9, 所以(x +y )2+xy xy (x +y )=122+99×12=1712.4.解:因为x +y +z≠0,所以等式的两边同时乘x +y +z ,得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z.所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z.所以x 2y +z +y 2z +x +z 2x +y=0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想. 5.解:∵4x 2-4x +1=0,∴(2x -1)2=0.∴2x =1. ∴2x +12x =1+11=2.6.解:设x 2=y 3=z4=k≠0,则x =2k ,y =3k ,z =4k.所以x 2-y 2+2z 2xy +yz +xz=(2k )2-(3k )2+2(4k )22k·3k +3k·4k +2k·4k=27k 226k 2=2726. 【题型讲解】【题型】一、分式有意义的条件例1x 的取值范围是( ) A .x≥4 B .x >4C .x≤4D .x <4【答案】D【分析】直接利用二次根式有意义的条件分析得出答案.4﹣x >0,解得:x <4 即x 的取值范围是:x <4故选D . 【题型】二、分式的运算 例2、分式222111a a a a++---化简后的结果为( ) A .11a a +-B .31a a +-C .1a a --D .2231a a +--【答案】B【分析】根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算. 【详解】解:222111a a a a++--- ()()()()()21221111a a a a a a ++=-+--+ ()()()222111a a a a +++=+-()()2222111a a a a a ++++=+-()()()()3111a a a a +=++- 31a a +=- 故选:B .【题型】三、分式的基本性质 例3、若b a b -=14,则ab的值为( ) A .5B .15C .3D .13【答案】A 【解析】因为b a b -=14, 所以4b=a -b .,解得a=5b① 所以a b ①55b b=. 故选A.【题型】四、解分式方程 例4、方程2152x x =+-的解是( ) A .1x =- B .5x =C .7x =D .9x =【答案】D【分析】根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解. 【详解】 解:方程可化简为()225x x -=+ 245x x -=+9x =经检验9x =是原方程的解 故选D【题型】五、分式方程的解 例5、关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2, 由分式方程有增根,得到x ﹣2=0,即x =2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.【题型】六、列分式方程例6、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.3000420080x x=-B.3000420080x x+=C.4200300080x x=-D.3000420080x x=+【答案】D【分析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量,结合快递公司的快递员人数不变,即可得出关于x的分式方程,此题得解.【详解】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据快递公司的快递员人数不变列出方程,得:3000420080x x=+,故选:D.分式方程(达标训练)一、单选题1.(2022·广西·富川瑶族自治县教学研究室模拟预测)关于x的分式方程3122m xx x++=--有解,则实数m应满足的条件是()A.m=-1B.m≠-1C.m=1D.m≠1【答案】D【分析】解分式方程得:m + x-3=2-x即x=52m,由题意可知x≠2,即可得到m.【详解】解:31 22m xx x++= --方程两边同时乘以2-x得:m+x-3=2-x, 2x=5-m,x=52m①分式方程有解① x ≠2, 即52m≠2, ①m ≠1. 故选D .【点睛】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.2.(2022·海南省直辖县级单位·二模)分式方程211x =+的解为( ) A .1- B .0 C .1 D .2【答案】C【分析】按照分式方程的解法求解判断即可. 【详解】①211x =+, 去分母,得2=x +1, 移项,得 x =2-1=1,经检验,x =1是原方程的根 故选C .【点睛】本题考查了分式方程的解法,熟练掌握分式方程的解法是解题的关键. 3.(2022·天津南开·二模)化简2222432x y x yx y y x -----的结果是( )A .5x y- B .5x y+ C .225x y -D .223x yx y +-【答案】B【分析】利用同分母分式的加法法则计算,约分得到最简结果即可.【详解】解:2222432x y x yx y y x ----- 2222432x y x yx y x y --=+--55()()x yx y x y -=+-5()()()x y x y x y -=+-5x y=+,【点睛】本题主要考查了分式的加减,解题的关键是掌握分式混合运算顺序和运算法则. 4.(2022·贵州贵阳·三模)计算222m m m ---的结果是( ) A .2 B .-2C .1D .-1【答案】C【分析】根据分式减法运算法则进行运算,化简即可. 【详解】解:221222m m m m m --==---, 故选:C .【点睛】本题考查了分式的减法,正确运算是解题关键,注意运算后需要约分化简. 5.(2022·江苏淮安·一模)若分式2xx +有意义,则x 的取值范围是( ) A .0x ≠ B .2x ≠- C .2x >- D .2x ≥-【答案】B【分析】根据分式有意义的条件:分母不为0即可得到. 【详解】要分式2xx +有意义,则20x +≠, 解得:2x ≠-. 故选:B【点睛】本题考查分式有意义的条件,掌握分式有意义的条件是解题的关键.二、填空题6.(2022·四川省遂宁市第二中学校二模)分式方程31311x x x -=-+的解为 ______. 【答案】x =-2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:3x (x +1)-(x -1)=3(x +1)(x -1), 解得:x =-2,经检验x =-2是分式方程的解, 故答案为x =-2.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(2022·湖南怀化·模拟预测)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++ 故答案为:1.【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.三、解答题8.(2022·浙江丽水·一模)解方程:13233x x-=--. 【答案】=5x【分析】这是一道可化为一元一次方程的分式方程,根据解分式方程的一般步骤:去分母,转化为求解整式方程,然后检验得到的解是否符合题意,最后得出结论. 【详解】两边同时乘以(3)x -,得132(3)x +=-, 去括号,得426x =-, 化简,得=5x ,检验:当=5x 时,30x -≠, ∴原分式方程的解为=5x .【点睛】此题考查可化为一元一次方程的分式方程,熟练掌握解分式方程的方法与步骤是解此题的关键,但是要特别注意:检验是不可少的环节.分式方程(提升测评)一、单选题1.(2022·辽宁葫芦岛·一模)2022年北京冬奥会的吉祥物“冰墩墩”和“雪容融”深受国内外朋友的喜爱.某特许零售店准备购进一批吉祥物销售.已知用600元购进“冰墩墩”的数量与用500元购进“雪容融”数置相同,已知购进“冰墩墩”的单价比“雪容融”的单价多10元,设购进“冰墩墩”的单价为x 元,则列出方程正确的是( )A .60050010x x=+ B .60050010x x =+ C .60050010x x=- D .60050010x x =- 【答案】D【分析】设“冰墩敏”的销售单价为x ,则 “雪容融”的销售单价为(x -10)元,然后根据用600元购进“冰墩墩”的数量与用500元购进“雪容融”数置相同即可列出方程.【详解】解:设“冰墩敏”的销售单价为x ,则 “雪容融”的销售单价为(x -10)元, 根据题意,得60050010x x =-。

中考数学复习专题09 分式方程

中考数学复习专题09 分式方程

专题09 分式方程☞解读考点☞2年中考 【2015年题组】 1.(2015海南省)方程322x x =-的解为( ) A .2x = B .6x = C .6x =- D .无解 【答案】B . 【解析】试题分析:方程两边同乘以x (x ﹣2),得3(x ﹣2)=2x ,解得x =6, 将x =6代入x (x ﹣2)=24≠0,所以原方程的解为:x =6,故选B . 考点:解分式方程.2.(2015遵义)若x =3是分式方程0212=---x x a 的根,则a 的值是( ) A .5 B .﹣5 C .3 D .﹣3【答案】A . 【解析】试题分析:∵x =3是分式方程0212=---x x a 的根,∴210332a --=-,∴213a -=,∴a ﹣2=3,∴a =5,即a 的值是5.故选A . 考点:分式方程的解. 3.(2015济宁)解分式方程22311x x x++=--时,去分母后变形为( ) A .2+(x +2)=3(x ﹣1) B .2﹣x +2=3(x ﹣1) C .2﹣(x +2)=3(1﹣x ) D .2﹣(x +2)=3(x ﹣1) 【答案】D . 【解析】试题分析:方程两边都乘以x ﹣1,得:2﹣(x +2)=3(x ﹣1).故选D . 考点:解分式方程.4.(2015齐齐哈尔)关于x 的分式方程52ax x =-有解,则字母a 的取值范围是( ) A .a =5或a =0 B .a ≠0 C .a ≠5 D .a ≠5且a ≠0 【答案】D .考点:分式方程的解.5.(2015枣庄)关于x 的分式方程211x ax -=+的解为正数,则字母a 的取值范围为( )A .1a ≥-B .1a >-C .1a ≤-D .1a <- 【答案】B . 【解析】试题分析:分式方程去分母得:2x ﹣a =x +1,解得:x =a +1,根据题意得:a +1>0且a +1+1≠0,解得:a >﹣1且a ≠﹣2.即字母a 的取值范围为a >﹣1.故选B . 考点:分式方程的解.6.(2015南宁)对于两个不相等的实数a 、b ,我们规定符号Max {a ,b }表示a 、b 中的较大值,如:Max {2,4}=4,按照这个规定,方程{}21x Max x x x+-=,的解为( )A .21-B .22-C .1+或21-D .1+或﹣1 【答案】D .考点:1.解分式方程;2.新定义;3.综合题.7.(2015岳阳)岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( ) A .2003503x x =- B . 2003503x x =+ C .2003503x x =+ D .2003503x x=- 【答案】B . 【解析】试题分析:设每个笔记本的价格为x 元,则每个笔袋的价格为(x +3)元,由题意得:2003503x x =+,故选B .考点:由实际问题抽象出分式方程.8.(2015鄂尔多斯)小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x 本笔记本,则根据题意可列方程( ) A .120224=-+x x B .122420=+-x x C .=1 D .=1【答案】B . 【解析】试题分析:设他上月买了x 本笔记本,则这次买了(x +2)本,根据题意得:2020412x x +-=+,即:122420=+-x x .故选B . 考点:由实际问题抽象出分式方程. 9.(2015襄阳)分式方程2110051025x x x -=--+的解是 . 【答案】15x =. 【解析】试题分析:去分母得:5100x --=,解得:15x =,经检验15x =是分式方程的解.故答案为:15x =. 考点:解分式方程.10.(2015龙东)关于x 的分式方程02142=+--x x m 无解,则m = .【答案】0或﹣4.考点:1.分式方程的解;2.分类讨论. 11.(2015毕节)关于x 的方程2430x x -+=与121x x a=-+有一个解相同,则a = .【答案】1. 【解析】试题分析:由关于x 的方程2430x x -+=,得:(x ﹣1)(x ﹣3)=0,∴x ﹣1=0,或x ﹣3=0,解得x =1或x =3;当x =1时,分式方程121x x a =-+无意义;当x =3时,12313a=-+,解得a =1,经检验a =1是原方程的解.故答案为:1.考点: 1.分式方程的解;2.解一元二次方程-因式分解法;3.分类讨论.12.(2015淄博)为充分利用雨水资源,幸福村的小明家和相邻的爷爷家采取了修建蓄水池、屋顶收集雨水的做法.已知小明和爷爷家的屋顶收集雨水的面积、蓄水池的容积和蓄水池已有水的量如表:气象预报即将会下雨,为了收集尽可能多的雨水,下雨前需从爷爷家的蓄水池中抽取多少立方米的水注入小明家的蓄水池? 【答案】6.考点:分式方程的应用.13.(2015嘉兴)小明解方程121xx x--=的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.【答案】小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验,正确解法见试题解析.【解析】试题分析:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验,写出正确的解题过程即可.试题解析:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边乘以x,得:1﹣(x﹣2)=x,去括号得:1﹣x+2=x,移项得:﹣x﹣x =﹣1﹣2,合并同类项得:﹣2x =﹣3,解得:32x =,经检验32x =是分式方程的解,则方程的解为32x =. 考点:1.解分式方程;2.阅读型.14.(2015宜宾)列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元? 【答案】0.6万元,0.4万元.考点:1.分式方程的应用;2.应用题.15.(2015贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m %,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍. 问:今年第一季度生产总量是多少台机器?m 的值是多少? 【答案】590,m 的值是25. 【解析】试题分析:今年一月份生产量为:120(1+m %);二月份生产量:120(1+m %)+50;根据题意列出方程并解答.试题解析:设去年月平均生产效率为1,则今年一月份的生产效率为(1%m +),二月份的生产效率为51%12m ++.根据题意得:604551%1%12m m =+++,解得:m %=14,即25m =.经检验可知25m =是原方程的解.∴m =25.∴第一季度的总产量=120×1.25+120×1.25+50+120×2=590.答:今年第一季度生产总量是590台,m 的值是25. 考点:1.分式方程的应用;2.综合题.16.(2015连云港)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率. 【答案】(1)400;(2)10%.考点:1.一元二次方程的应用;2.分式方程的应用;3.增长率问题.17.(2015成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?【答案】(1)120件;(2)150元.考点:1.分式方程;2.一元一次不等式的应用;3.应用题.18.(2015德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP 客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.【答案】(1)面料的单价为50元/米,里料的单价为20元/米;(2)①8;②5%.【解析】试题分析:(1)设里料的单价为x元/米,面料的单价为(2x+10)元/米,根据题意列方程求解即可;(2)①设打折数为m,根据题意列不等式求解即可;②设vip客户享受的降价率为x,然后根据VIP客户与普通用户批发件数相同列方程求解即可.考点:1.分式方程的应用;2.一元一次方程的应用;3.一元一次不等式的应用;4.最值问题.19.(2015咸宁)在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.【答案】(1)甲工程队每天能完成绿化的面积是100m2,乙工程队每天能完成绿化的面积是50m2;(2)y=36﹣2x;(3)安排甲队施工10天,乙队施工16天时,施工总费用最低.【解析】试题分析:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意列方程求解即可;(2)由题意得到100x+50y=1800,整理得:y=36﹣2x,即可解答.(3)由甲乙两队施工的总天数不超过26天,得到x≥10,设施工总费用为w元,由题意得:w=0.1x+9,根据一次函数的性质,即可解答.试题解析:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:40040042x x-=,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2);答:甲工程队每天能完成绿化的面积是100m2,乙工程队每天能完成绿化的面积是50m2;(2)根据题意,得:100x+50y=1800,整理得:y=36﹣2x,∴y与x的函数解析式为:y=36﹣2x;(3)∵甲乙两队施工的总天数不超过26天,∴x+y≤26,∴x+36﹣2x≤26,解得:x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,∵k=0.1>0,∴w随x减小而减小,∴当x=10时,w有最小值,最小值为0.1×10+9=10,此时y=36﹣20=16.答:安排甲队施工10天,乙队施工16天时,施工总费用最低.考点:1.一次函数的应用;2.分式方程的应用;3.方案型;4.最值问题;5.综合题.20.(2015牡丹江)夏季来临,商场准备购进甲、乙两种空调.已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场欲同时购进两种空调20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式;(3)在(2)的条件下,若商场计划用不超过36000元购进空调,且甲种空调至少购进10台,并将所获得的最大利润全部用于为某敬老院购买1100元/台的A型按摩器和700元/台的B型按摩器.直接写出购买按摩器的方案.【答案】(1)甲种空调每台进价为2000元,乙种空调每台进价为1500元;(2)y=200x+6000;(3)有两种购买方案:①A型0台,B型12台;②A型7台,B型1台.考点:1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用;4.应用题;5.最值问题;6.方案型.21.(2015赤峰)李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.【答案】(1)李老师步行的平均速度为76m/分钟;(2)李老师能按时上班.考点:1.分式方程的应用;2.行程问题.22.(2015泰安)某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?【答案】(1)甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)5960元.【解析】考点:分式方程的应用.23.(2015葫芦岛)某中学要进行理、化实验加试,需用九年级两个班级的学生整理实验器材.已知一班单独整理需要30分钟完成.(1)如果一班与二班共同整理15分钟后,一班另有任务需要离开,剩余工作由二班单独整理15分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?(2)如果一、二的工作效率不变,先由二班单独整理,时间不超过20分钟,剩余工作再由一班独立完成,那么整理完这批器材一班至少还需要多少分钟?【答案】(1)60;(2)20.【解析】试题分析:(1)设二班单独整理这批实验器材需要x分钟,根据题意列方程:111515()130x x++=,求出x 的值,再进行检验即可; (2)设一班需要m 分钟,则2013060m +≥,解不等式即可. 试题解析:(1)设二班单独整理这批实验器材需要x 分钟,则111515()130x x++=,解得x =60.经检验,x =60是原分式方程的根.答:二班单独整理这批实验器材需要60分钟; (2)方法一:设一班需要m 分钟,则2013060m +≥,解得m ≥20, 答:一班至少需要20分钟. 方法二:设一班需要m 分钟,则2013060m +=,解得m =20. 答:一班至少需要20分钟.考点:1.分式方程的应用;2.一元一次不等式的应用;3.应用题.24.(2015抚顺)某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等. (1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品? 【答案】(1)甲礼品100元,乙礼品60元;(2)5.考点:1.分式方程的应用;2.一元一次不等式的应用;3.最值问题.【2014年题组】1.(2014年广西贵港3分)分式方程213x 1x 1=--的解是( ) A .x =﹣1 B .x =1 C .x =2 D .无解 【答案】C . 【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.去分母得:x +1=3,解得:x =2. 经检验x =2是分式方程的解. 故选C .考点:解分式方程.2.(2014年广西来宾3分)将分式方程12x x 2=-去分母后得到的整式方程,正确的是( ) A .x ﹣2=2x B .x 2﹣2x =2x C .x ﹣2=x D .x =2x ﹣4【答案】A . 【解析】试题分析:分式方程两边乘以最简公分母x (x ﹣2)即可得到结果: 去分母得:x ﹣2=2x ,故选A . 考点:解分式方程的去分母法则.3.(2014年黑龙江龙东地区3分)已知关于x 的分式方程m 31x 11x+=--的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠3 【答案】C .考点:1. 解分式方程;2.解一元一次不等式. 4.(2014年山东德州3分)分式方程()()x 31x 1x 1x 2-=--+的解是( )A . x =1B . x 1=-+C . x =2D . 无解【答案】D . 【解析】试题分析:去分母得:x (x +2)﹣(x ﹣1)(x +2)=3,去括号得:x 2+2x ﹣x 2﹣x +2=3,解得:x =1,经检验x =1是增根,分式方程无解. 故选D .考点:解分式方程.5.(2014年福建福州4分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( ) A .600450x 50x =+B .600450x 50x =- C .600450x x 50=+ D .600450x x 50=- 【答案】A . 【解析】试题分析:要列方程,首先要根据题意找出存在的等量关系.本题等量关系为:生产600台所需时间与原计划生产450台机器所需时间相同,即600450x 5x=+. 故选A . 考点:由实际问题抽象出分式方程(工程问题). 6.(2014年甘肃天水4分)若关于x 的方程ax 110x 1+-=-有增根,则a 的值为 . 【答案】﹣1.考点:分式方程的增根.7.(2014年四川巴中3分)若分式方程x m 2x 11x-=--有增根,则这个增根是 _. 【答案】x =1. 【解析】试题分析:分式方程的增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.因此,根据分式方程有增根,得到x 10-=,即x =1,则方程的增根为x =1. 考点:分式方程的增根.8.(2014年贵州安顺4分)小明上周三在超市恰好用10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多用了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x 袋牛奶,则根据题意列得方程为 . 【答案】()10x 20.512x ⎛⎫+-= ⎪⎝⎭. 【解析】试题分析:要列方程,首先要根据题意找出关键描述语,确定相等关系.本题关键描述语为:“每袋比周三便宜0.5元”;等量关系为:周日买的奶粉的单价×周日买的奶粉的总数=总钱数.因此,根据题意,得出方程:()10x 20.512x ⎛⎫+-= ⎪⎝⎭. 考点:由实际问题抽象出分式方程. 9.(2014年广西南宁6分)解方程:2x 21x 2x 4-=--. 【答案】x 1=-. 【解析】试题分析:首先去掉分母,观察可得最简公分母是(x +2)(x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.试题解析:去分母得:()2x x 22x 4+-=-,解得:x 1=-.经检验x 1=-是分式方程的根.∴原方程的解为x 1=-. 考点:解分式方程.10.(2014年贵州贵阳10分)2014年12月26日,西南真正意义上的第一条高铁﹣贵阳至广州高速铁路将开始试运行,从贵阳到广州,乘特快列车的行程约为1800km ,高铁开通后,高铁列车的行程约为860km ,运行时间比特快列车所用的时间减少了16h .若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度. 【答案】特快列车的平均速度为91km /h考点:分式方程的应用(行程问题).☞考点归纳归纳 1:分式方程 的有关概念 基础知识归纳: 1、分式方程分母里含有未知数的方程叫做分式方程. 2、分式方程的增根分式方程化成整式方程解得的未知数的值,如果这个值令最简公分母为零则为增根. 基本方法归纳:判断分式方程时只需看分母中必须有未知数;分式方程的解只需带入方程看等式是否成立即可.注意问题归纳: 未知数的系数必须不能为零;判断一个数增根的条件缺一不可:1、这个数是解化成的整式方程的根,2、使最简公分母为零.【例1】方程0112=+-x x 的解是( )A .1或﹣1B .﹣1C .0D .1 【答案】D .考点:解分式方程.归纳 2:分式方程的解法 基础知识归纳:1、解分式方程的步骤:解分式方程的思想是将“分式方程”转化为“整式方程”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档