独立性检验练习题
独立性检验(历年高考)练习题
独立性检验(历年高考)练习题1.为了研究某班学生打篮球的喜好与性别是否相关,对60名学生进行了问卷调查,得到了如下的2×2列联表。
现在有以下问题需要解决:I)在喜欢打篮球的学生中,采用分层抽样的方法抽取6人,其中男生应该抽几个?II)在上述抽样的6人中,恰好有一名女生的概率是多少?III)是否可以有95%的把握认为喜欢打篮球与性别有关?请说明理由。
临界值表如下:2.2014年山东省第二十三届运动会将在济宁举行,为了调查该市某校高中生是否愿意提供志愿者服务,使用简单随机抽样的方法对50名学生进行了调查,结果如下:I)在愿意提供志愿者服务的学生中,采用分层抽样的方法抽取6人,其中男生应该抽几个?II)在上述6人中,恰好有一名女生的概率是多少?III)可以有99%的把握认为该校高中生是否愿意提供志愿者服务与性别有关吗?临界值表如下:3.为了研究某市学生的百米跑成绩,按照男女比例随机抽取了50名学生进行测试,测试结果显示所有学生的成绩都在13秒到18秒之间。
将测试结果按照以下方式分成了五组:第一组:[13,14)第二组:[14,15)第三组:[15,16)第四组:[16,17)第五组:[17,18]以下是按照上述分组方法得到的频率分布直方图:现在有以下问题需要解决:1)设m和n表示从第一组和第五组的所有学生中任意抽取的两名学生的百米测试成绩,即m,n∈[13,14)∪[17,18),求事件“m-n>2”的概率;2)根据规定,成绩小于16秒为达标。
如果男女生使用相同的达标标准,则男女生达标情况如下表:现在需要完成上表,并根据上表数据,判断是否可以有99%的把握认为“体育达标与性别有关”。
参考公式:nad-bc)K=,其中n=a+b+c+d。
a+b)(c+d)(a+c)(b+d)临界值表如下:。
独立性检验练习含答案
§1.1 独立性检验一、基础过关1.当χ2>2.706时,就有________的把握认为“x 与y 有关系”.2.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶,则χ2≈__________.(结果保留3位小数)3.分类变量X 和Y 的列表如下,则下列说法判断正确的是________.(填序号)y 1 y 2 总计x 1 a b a +b x 2c d c +d 总计a +cb +da +b +c +d①ad -bc 越小,说明X 与Y 的关系越弱; ②ad -bc 越大,说明X 与Y 的关系越强; ③(ad -bc )2越大,说明X 与Y 的关系越强; ④(ad -bc )2越接近于0,说明X 与Y 的关系越强.4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )算得,χ2=110×(40×30-20×20)260×50×60×50≈7.8.附表:P (χ2≥k ) 0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是________.①在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”; ②在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”; ③有99%以上的把握认为“爱好该项运动与性别有关”; ④有99%以上的把握认为“爱好该项运动与性别无关”.5.为了研究男子的年龄与吸烟的关系,抽查了100个男子,按年龄超过和不超过40岁,吸烟量每天多于和不多于20支进行分组,如下表:年龄合计 不超过40岁 超过40岁吸烟量不多于20支/天 50 15 65 吸烟量多于20支/天10 25 35 合计6040100则有________的把握确定吸烟量与年龄有关. 二、能力提升6.某高校“统计初步”课程的教师随机调查了选该课的一些情况,具体数据如下表:专业 性别非统计专业统计专业 合计 男 13 10 23 女 7 20 27 合计203050为了判断主修统计专业是否与性别有关,根据表中的数据,得χ2=50×(13×20-10×7)223×27×20×30≈4.844.因为χ2≈4.844>3.841,所以判断主修统计专业与性别有关系,那么这种判断出错的可能性为________.7.在2×2列联表中,若每个数据变为原来的2倍,则卡方值变为原来的________倍. 8.下列说法正确的是________.(填序号)①对事件A 与B 的检验无关,即两个事件互不影响; ②事件A 与B 关系越密切,χ2就越大;③χ2的大小是判断事件A 与B 是否相关的惟一数据; ④若判定两事件A 与B 有关,则A 发生B 一定发生.9.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据:无效 有效 总计 男性患者 15 35 50 女性患者 6 44 50 总计2179100设H 0:服用此药的效果与患者的性别无关,则χ2的值约为________,从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.10.某县对在职的71名高中数学教师就支持新的数学教材还是支持旧的数学教材做了调查,结果如下表所示:支持新教材支持旧教材合计 教龄在15年以上的教师122537教龄在15年以下的教师102434合计224971根据此资料,你是否认为教龄的长短与支持新的数学教材有关?11.下表是某地区的一种传染病与饮用水的调查表:得病不得病总计干净水52466518不干净水94218312总计146684830(1)这种传染病是否与饮用水的卫生程度有关,请说明理由;(2)若饮用干净水得病5人,不得病50人;饮用不干净水得病9人,不得病22人.按此样本数据分析这种疾病是否与饮用水的卫生程度有关,并比较两种样本在反映总体时的差异.三、探究与拓展12.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:分组[29.86,29.90) [29.90,29.94) [29.94,29.98)[29.98,30.02)频数126386182分组[30.02,30.06) [30.06,30.10) [30.10,30.14)频数9261 4乙厂:分组[29.86,29.90) [29.90,29.94) [29.94,29.98) [29.98,30.02)频数297185159分组[30.02,30.06) [30.06,30.10) [30.10,30.14)频数766218(1)分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填写2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.答案1.90% 2.16.373 3.③ 4.③ 5.99.9% 6.5% 7.2 8.② 9.4.882 5%10.解 由公式得χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=71×(12×24-25×10)237×34×22×49≈0.08.∵χ2<2.706.∴我们没有理由说教龄的长短与支持新的数学教材有关. 11.解 (1)假设:传染病与饮用水的卫生程度无关. 由公式得χ2=830×(52×218-466×94)2146×684×518×312≈54.21.因为54.21>10.828.因此我们有99.9%的把握认为该地区这种传染病与饮用水的卫生程度有关. (2)依题意得2×2列联表:得病 不得病 总计 干净水 5 50 55 不干净水 9 22 31 总计147286此时,χ2=86×(5×22-50×9)255×31×14×72≈5.785.由于5.785>5.024,所以我们有97.5%的把握认为该种传染病与饮用水的卫生程度有关. 两个样本都能统计得到传染病与饮用水的卫生程度有关这一相同结论,但(1)问中我们有99.9%的把握肯定结论的正确性,(2)问中我们只有97.5%的把握肯定结论的正确性. 12.解 (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500×100%=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500×100%=64%. (2)甲厂 乙厂 总计 优质品 360 320 680 非优质品 140 180 320 总计5005001 000由列联表中的数据,得χ2=1 000×(360×180-320×140)2680×320×500×500≈7.353>6.635.所以有99%的把握认为“两个分厂生产的零件的质量有差异”.Welcome To Download !!!欢迎您的下载,资料仅供参考!。
独立性检验习题及答案
1.2 独立性检验的基本思想及其初步应用例题:1.三维柱形图中柱的高度表示的是( )A .各分类变量的频数B .分类变量的百分比C .分类变量的样本数D .分类变量的具体值解析: 三维柱形图中柱的高度表示图中各个频数的相对大小.选A2. 统计推断,当______时,有95 %的把握说事件A 与B 有关;当______时,认为没有充分的证据显示事件A 与B 是有关的.解析:当841.3>k 时,就有95 %的把握说事件A 与B 有关,当076.2≤k 时认为没有充分的证据显示事件A 与B 是有关的.3.为了探究患慢性气管炎与吸烟有无关系,调查了却339名50岁以上的人,结果如下表所示,据此数据请问:50岁以上的人患慢性气管炎与吸烟习惯有关系吗?分析:有表中所给的数据来计算2K 的观测值k,再确定其中的具体关系.解:设患慢性气管炎与吸烟无关.a=43,b=162,c=13,d=121,a+b=205,c+d=134, a+c=56,b+d=283,n=339所以2K 的观测值为469.7))()()(()(2==+++-=d b c a d c b a bc ad n k .因此635.6>k ,故有99%的把握认为患慢性气管炎与吸烟有关.课后练习:1. 在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就( )A.越大B.越小C.无法判断D.以上都不对2.下列关于三维柱形图和二维条形图的叙述正确的是: ( ) A .从三维柱形图可以精确地看出两个分类变量是否有关系B .从二维条形图中可以看出两个变量频数的相对大小,从三维柱形图中无法看出相对频数的大小C .从三维柱形图和二维条形图可以粗略地看出两个分类变量是否有关系D .以上说法都不对3.对分类变量X 与Y 的随机变量2K 的观测值K ,说法正确的是() A . k 越大," X 与Y 有关系”可信程度越小; B . k 越小," X 与Y 有关系”可信程度越小; C . k 越接近于0," X 与Y 无关”程度越小 D . k 越大," X 与Y 无关”程度越大4. 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )A.若K 2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误;D.以上三种说法都不正确.5.若由一个2*2列联表中的数据计算得k 2=4.013,那么有 把握认为两个变量有关系6.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:250(1320107) 4.84423272030k ⨯⨯-⨯=≈⨯⨯⨯因为23.841K ≥,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为 ____;7.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。
独立性检验练习题
独立性检验练习题1. 为了解某班学生喜爱打篮球是否与性别有关,对本班60人进行了问卷调查得到了如下的2×2列联表:(I)用分层抽样的方法在喜爱打篮球的学生中抽6人,其中男生抽多少人?(II)在上述抽取的人中选2人,求恰有一名女生的概率;(III)你是否有95%的把握认为喜爱打篮球与性别有关?说明你的理由。
下面的临界值表供参考:2. 2014年山东省第二十三届运动会将在济宁召开,为调查我市某校高中生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了50人,结果如下:(I )用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人? (II )在(I )中抽取的6人中任选2人,求恰有一名女生的概率;(III )你能否有99%的把握认为该校高中生是否愿意提供志愿者服务与性别有关? 下面的临界值表供参考:独立性检验统计量()()()()(),22d b c a d c b a bc ad n K ++++-=其中.d c b a n +++=3. 第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的2×2列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为311. (Ⅰ) 请完成右面的列联表;(Ⅱ)根据列联表的数据,若按99. 9%的可靠 性要求,能否认为“成绩与班级有关系”; (Ⅲ)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:22()()()()()n ad bc K a b c d a c b d -++++.4. 为调查某市学生百米运动成绩,从该市学生中按照男女比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[),14,13第二组[)15,14, 第五组[]18,17,如图是按上述分组方法得到的频率分布直方图.(1)设n m ,表示从第一组和第五组的所有学生中任意抽取的两名学生的百米测试成绩,即[)[]18,1714,13,⋃∈n m ,求事件“2>-n m ”的概率;(2)根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标标准,则男女生达标完成上表,并根据上表数据,能否有99﹪的把握认为“体育达标与性别有关”? 参考公式:()()()()().,22d c b a n d b c a d c b a bc ad n K +++=++++-=其中 参考数据:欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。
独立性检验练习
独立性检验练习题1、为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由附:2、电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查。
下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”。
(Ⅰ)根据已知条件完成下面的22⨯列联表,并据此资料你是否认为“体育迷”与性别 有关?(Ⅱ)将上述调查所得到的频率视为概率。
现在从该地区大量电视观众中,采用随机抽 样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X 。
若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X 。
附:22112212211212(),n n n n n n n n n χ++++-=独立性检验练习题答案1、解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为7014% 500=(2)22500(4027030160)9.96720030070430K⨯⨯-⨯==⨯⨯⨯。
由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关。
(III)由(II)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.2、。
独立性检验专项练习-2025届高三数学一轮复习
班级:_____ 考号:____________ 姓名:____________【章节】独立性检验专项 【用时】45分钟一、单选题1.有甲、乙两种过滤水中重金属的设备,为了检验使用这两种设备与过滤后水中重金15重金属含量高 重金属含量低设备甲 6 9 设备乙 114根据以上数据,则2χ=( )A .750161B .7516C .398D .1742.以下说法正确的是( )A .等高堆积条形图可以直观反映两个分类变量之间是否具有关联性B .用2χ独立性检验推断的结论可靠,不会犯错误C .残差平方和越大,则相应模型的拟合效果越好D .决定系数2R 越小,则相应模型的拟合效果越好3.根据分类变量X 和Y 的样本观察数据的计算结果,根据小概率值0.005α=的独立性检验,认为和有关,则2χ ) ()20P x χ≥ 0.100.05 0.025 0.010 0.0050x2.7063.841 5.024 6.635 7.879D .9.6984.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:使用手机情况成绩合计及格 不及格很少 20 5 25 经常 10 15 25 合计302050 参考公式:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.α0.05 0.025 0.010 0.005 0.001x α 3.841 5.024 6.635 7.879 10.828A .依据小概率值0.01α=的独立性检验,认为“经常使用手机与数学学习成绩无关”B .依据小概率值0.001α=的独立性检验,认为“经常使用手机与数学学习成绩有关”C .在犯错误的概率不超过0.5%的前提下,认为“经常使用手机与数学学习成绩无关”D .在犯错误的概率不超过0.5%的前提下,认为“经常使用手机与数学学习成绩有关”5.为研究男生和女生对数学课程的喜爱程度是否有差异,运用22⨯列联表进行检验,经计算得2 3.526χ=,参考下表,则认为“男生和女生对数学课程的喜爱程度有差异”犯错误的概率不超过( ) α 0.100 0.050 0.025 0.0100.001x α 2.706 3.841 5.024 6.635 10.828.1% D .0.1%6.通过随机询问某中学110名中学生是否爱好跳绳,得到列联表,并由()()()()()22n ad bc a b c d a c b d χ-=++++计算得:27.822χ≈,参照附表,则下列结论正确的是( )附: α0.10.050.010.005 0.001x α 2.706 3.841 6.635 7.879 10.828B .根据小概率值0.001α=的独立性检验,我们认为爱好跳绳与性别无关,这个结论犯错误的概率不超过0.001C .根据小概率值0.01α=的独立性检验,我们认为爱好跳绳与性别无关D .在犯错误的概率不超过0.01的前提下,我们认为爱好跳绳与性别无关7.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了下喜爱打篮球 不喜爱打篮球 合计男生 25 1035 女生 5 10 15 合计 302050根据表中的数据你认为喜爱打篮球与性别之间有关系的把握是( ) A .0097.5 B .0099 C .0099.5 D .0099.9参考数据:22()()()()()n ad bc a b c d a c b d χ-=++++.临界值表:2()P k χ≥0.100 0.050 0.025 0.010 0.005 0.001k2.706 3.841 5.024 6.635 7.879 10.828二、多选题8.某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如下所示的列联表,经计算24.762χ≈,则可以推断出( )A .该学校男生对食堂服务满意的概率的估计值为35B .调研结果显示,该学校男生比女生对食堂服务更满意C .认为男、女生对该食堂服务的评价有差异此推断犯错误的概率不超过0.05D .认为男、女生对该食堂服务的评价有差异此推断犯错误的概率不超过0.019.深圳某中学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务绘出满意或不满意的评价,得到如表所示的列联表,经计算2 4.762K ≈,则下列结论正确的是( )A .该学校男生对食堂服务满意的概率的估计值为35;B .调研结果显示,该学校男生比女生对食堂服务更满意:C .根据小概率值α0.050=的独立性检验,认为男、女生对该食堂服务的评价有差异;D .根据小概率值α0.010=的独立性检验,认为男、女生对该食堂服务的评价有差异. 10.某校为了解高一新生对数学是否感兴趣,从400名女生和600名男生中通过分层抽样的方式随机抽取100名学生进行问卷调查,将调查的结果得到如下等高堆积条形图和列联表,则( )性别数学兴趣合计感兴趣 不感兴趣女生 a b a b +男生 c d +c d合计 a c +b d +100参考数据:本题中()()()()22() 3.94nad bc a b c d a c b d χ-=≈++++ α0.1 0.05 0.01 0.005 0.001x α 2.706 3.841 6.635 7.879 10.828B .可以估计该校高一新生中对数学不感兴趣的女生人数比男生多C .根据小概率值0.05α=的2χ独立性检验,可以认为性别与对数学的兴趣有差异D .根据小概率值0.01α=的2χ独立性检验,可以认为性别与对数学的兴趣没有差异满意 不满意 男 30 20 女40102()P K k ≥ 0.100 0.050 0.010 k 2.7063.841 6.535满意 不满意男 30 20 女 40 10。
高中数学独立性检验精选题
独立性检验精选题26道一.选择题(共18小题)1.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n a d b cKa b c d a c b d-=++++算得,22110(40302020)7.860506050K⨯⨯-⨯=≈⨯⨯⨯.参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n a d b cKa d c d a cb d-=++++算得,22110(40302020)7.860506050K⨯⨯-⨯=≈⨯⨯⨯附表:参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”3.某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用22⨯列联表进行独立性检验,经计算2 6.705K=,则所得到的统计学结论是:有()的把握认为“学生性别与支持该活动没有关系”.附:A.99.9%B.99%C.1%D.0.1%4.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:,则下列说法正确的是()已知在全部105人中随机抽取1人,成绩优秀的概率为27A.列联表中c的值为30,b的值为35B.列联表中c的值为15,b的值为50C.根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”D.根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系”5.有人认为在机动车驾驶技术上,男性优于女性.这是真的么?某社会调查机构与交警合作随机统计了经常开车的100名驾驶员最近三个月内是否有交通事故或交通违法事件发生,得到下面的列联表:附:22()()()()()n a d b cKa b c d a c b d-=++++据此表,可得()A.认为机动车驾驶技术与性别有关的可靠性不足50%B.认为机动车驾驶技术与性别有关的可靠性超过50%C.认为机动车驾驶技术与性别有关的可靠性不足60%D.认为机动车驾驶技术与性别有关的可靠性超过60%6.如表是一个22⨯列联表:则表中a,b的值分别为()A.94,72B.52,50C.52,74D.74,527.为了调查中学生近视情况,某校150名男生中有80名近视,140名女生中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力() A.平均数B.方差C.回归分析D.独立性检验8.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数35,若有95%的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人附表:附:22()()()()()n a d b cKa b c d a c b d-=++++A.20B.40C.60D.309.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为()参考公式附:22()()()()()n a d b cKa b c d a c b d-=++++,其中n a b c d=+++.参考数据:A.130B.190C.240D.25010.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有()人参考数据及公式如下:22()()()()()n a d b cKa b c d a c b d-=++++A.12B.11C.10D.1811.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是()A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这个人有99%的概率患有肺癌C .在100个吸烟者中一定有患肺癌的人D .在100个吸烟者中可能一个患肺癌的人也没有12.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用22⨯列联表,由计算得27.218K ≈,参照如表:得到正确结论是( )A .有99%以上的把握认为“学生性别与中学生追星无关”B .有99%以上的把握认为“学生性别与中学生追星有关”C .在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D .在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关” 13.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有()参考数据及公式如下:22()()()()()n a d b c Ka b c d a c b d -=++++A .12B .11C .10D .1814.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如表所示的列联表:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法.正确的是()参考公式及数据:22()6.109()()()()n a d b c K a b c d a c b d -=≈++++附表:A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系” 15.为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有效果的图形是()A .B .C .D .16.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”⋯⋯小波同学为了验证“日落云里走,雨在半夜后”,观察了所在地区A 的100天日落和夜晚天气,得到如下22⨯列联表:临界值表并计算得到219.05K ≈,下列小波对地区A 天气判断不正确的是()A .夜晚下雨的概率约为12B .未出现“日落云里走”夜晚下雨的概率约为514C .有99.9%的把握认为“‘日落云里走’是否出现”与“当晚是否下雨”有关D .出现“日落云里走”,有99.9%的把握认为夜晚会下雨 17.有关独立性检验的四个命题,其中不正确的是()A .两个变量的22⨯列联表中,对角线上数据的乘积相差越大,说明两个变量有关系成的可能性就越大B .对分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的可信程度越小C .从独立性检验可知:有95%把握认为秃顶与患心脏病有关,我们说某人秃顶,那么他有95%可能患有心脏病D .从独立性检验可知:有99%把握认为吸烟与患肺癌有关,是指在犯错误的概率不超过1%前提下认为吸烟与患肺癌有关18.为了调查患胃病是否与生活不规律有关,在患胃病与生活不规律这两个分类变量的计算中,下列说法正确的是()A .k 越大,“患胃病与生活不规律没有关系”的可信程度越大.B .k 越大,“患胃病与生活不规律有关系”的可信程度越小.C .若计算得23.918K ≈,经查临界值表知2( 3.841)0.05P K ≈…,则在100个生活不规律的人中必有95人患胃病.D .从统计量中得知有95%的把握认为患胃病与生活不规律有关,是指有5%的可能性使得推断出现错误. 二.填空题(共3小题)19.2020年12月31日,国务院联防联控机制发布,国药集团中国生物的新冠病毒灭活疫苗已获国家药监局批准附条件上市.在新冠病毒疫苗研发过程中,需要利用基因编辑小鼠进行动物实验.现随机抽取100只基因编辑小鼠对某种新冠病毒疫苗进行实验,得到如下22⨯列联表(部分数据缺失):表中a的值为;计算可知,在犯错误的概率最多不超过的前提下,可认为“给基因编辑小鼠注射该种疫苗能起到预防新冠病毒感染的效果”.参考公式:22()()()()()n a d b cKa b c d a c b d-=++++,n a b c d=+++.参考数据:20.在西非“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:附:22()()()()()n a d b cKa b c d a c b d-=++++根据上表,有的把握认为“小动物是否被感染与服用疫苗有关”21.某学生为了研究高二年级同学的体质健康成绩与学习成绩的关系,从高二年级同学中随机抽取30人,统计其体质健康成绩和学习成绩,得到22⨯列联表如表:有 的把握认为学生的体质健康成绩高低与学习成绩高低有关. 附:22()()()()()n a d b c Ka b c d a c b d -=++++.三.解答题(共5小题)22.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:)m in 绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n a d b c Ka b c d a c b d -=++++,23.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:)k g ,其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附:22()()()()()n a d b c K a b c d a c b d -=++++.24.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n a d b cKa b c d a c b d-=++++.25.某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:22()()()()()n a d b cKa b c d a c b d-=++++.26.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n a d b c Ka b c d a c b d -=++++独立性检验精选题26道参考答案与试题解析一.选择题(共18小题)1.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n a d b cKa b c d a c b d-=++++算得,22110(40302020)7.860506050K⨯⨯-⨯=≈⨯⨯⨯.参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”【分析】题目的条件中已经给出这组数据的观测值,我们只要把所给的观测值同节选的观测值表进行比较,发现它大于6.635,得到有99%以上的把握认为“爱好这项运动与性别有关”.【解答】解:由题意算得,22110(40302020)7.860506050K⨯⨯-⨯=≈⨯⨯⨯.7.8 6.635>,∴有0.011%=的机会错误,即有99%以上的把握认为“爱好这项运动与性别有关”故选:C.【点评】本题考查独立性检验的应用,这种问题一般运算量比较大,通常是为考查运算能力设计的,本题有创新的地方就是给出了观测值,只要进行比较就可以,本题是一个基础题.2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n a d b cKa d c d a cb d-=++++算得,22110(40302020)7.860506050K⨯⨯-⨯=≈⨯⨯⨯附表:参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”【分析】根据条件中所给的观测值,同题目中节选的观测值表进行检验,得到观测值对应的结果,得到结论有99%以上的把握认为“爱好该项运动与性别有关”.【解答】解:由题意知本题所给的观测值,2 2110(40302020)7.860506050K⨯⨯-⨯=≈⨯⨯⨯7.8 6.635>,∴这个结论有0.011%=的机会说错,即有99%以上的把握认为“爱好该项运动与性别有关”故选:A.【点评】本题考查独立性检验的应用,考查对于观测值表的认识,这种题目一般运算量比较大,主要考查运算能力,本题有所创新,只要我们看出观测值对应的意义就可以,是一个基础题.3.某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用22⨯列联表进行独立性检验,经计算2 6.705K=,则所得到的统计学结论是:有()的把握认为“学生性别与支持该活动没有关系”.附:A.99.9%B.99%C.1%D.0.1%【分析】把观测值同临界值进行比较.得到有99%的把握说学生性别与支持该活动有关系.【解答】解:2 6.705 6.635K=>,对照表格:∴有99%的把握说学生性别与支持该活动有关系,∴有1%的把握说学生性别与支持该活动没有关系,故选:C.【点评】本题考查独立性检验知识,难度不大,属于基础题.4.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是() A.列联表中c的值为30,b的值为35B.列联表中c的值为15,b的值为50C.根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”D.根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系”【分析】根据成绩优秀的概率求出成绩优秀的学生数,从而求得c和b的值;再根据公式计算相关指数2K的值,比较与临界值的大小,判断“成绩与班级有关系”的可靠性程度.【解答】解:成绩优秀的概率为27,∴成绩优秀的学生数是2105307⨯=,成绩非优秀的学生数是75,20c∴=,45b=,选项A、B错误.又根据列联表中的数据,得到2105(10302045)26.109 3.84155503075K ⨯⨯-⨯=≈>⨯⨯⨯,因此有95%的把握认为“成绩与班级有关系”, 故选:C .【点评】本题考查了独立性检验思想方法,熟练掌握列联表个数据之间的关系及相关指数2K 的计算公式是解题的关键.5.有人认为在机动车驾驶技术上,男性优于女性.这是真的么?某社会调查机构与交警合作随机统计了经常开车的100名驾驶员最近三个月内是否有交通事故或交通违法事件发生,得到下面的列联表:附:22()()()()()n a d b c Ka b c d a c b d -=++++据此表,可得( )A .认为机动车驾驶技术与性别有关的可靠性不足50%B .认为机动车驾驶技术与性别有关的可靠性超过50%C .认为机动车驾驶技术与性别有关的可靠性不足60%D .认为机动车驾驶技术与性别有关的可靠性超过60% 【分析】由表中数据计算观测值,对照临界值得出结论. 【解答】解:由表中数据,计算22100(40103515)0.33670.45555457525K⨯⨯-⨯=≈<⨯⨯⨯,∴认为机动车驾驶技术与性别有关的可靠性不足50%;故选:A .【点评】本题考查独立性检验的应用,关键是理解独立性检验的思路.属中档题. 6.如表是一个22⨯列联表:则表中a ,b 的值分别为()A.94,72B.52,50C.52,74D.74,52【分析】由列联表中数据的关系求得.【解答】解:732152b a=+=+=.a=-=,22522274故选:C.【点评】本题考查了列联表的做法,属于基础题.7.为了调查中学生近视情况,某校150名男生中有80名近视,140名女生中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力() A.平均数B.方差C.回归分析D.独立性检验【分析】这是一个独立性检验应用题,处理本题时要注意根据已知构建方程计算出表格中男性近视与女性近视,近视的人数,并填入表格的相应位置.根据列联表,及2K的计算公式,计算出2K的值,并代入临界值表中进行比较,不难得到答案.【解答】解:分析已知条件,易得如下表格.根据列联表可得:2K,再根据与临界值比较,检验这些中学生眼睛近视是否与性别有关,故利用独立性检验的方法最有说服力.故选:D.【点评】独立性检验,就是要把采集样本的数据,利用公式计算2K的值,比较与临界值的大小关系,来判定事件A与B是否无关的问题.具体步骤:(1)采集样本数据.(2)由公式计算的2K值.(3)统计推断,当2 3.841K>时,有95%的把握说事件A与B有关;当2 6.635K>时,有99%的把握说事件A与B有关;当2 3.841K…时,认为事件A与B是无关的.8.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数35,若有95%的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人附表:附:22()()()()()n a d b cKa b c d a c b d-=++++A.20B.40C.60D.30【分析】设男生可能有x人,依题意填写列联表,由2 3.841K>求出x的取值范围,从而得出正确的选项.【解答】解:设男生可能有x人,依题意可得列联表如下;若有95%的把握认为是否喜欢抖音和性别有关,则2 3.841K>,由2242312()255553.841732155x x x x xxKx x x x⋅-⋅==>⋅⋅⋅,解得40.335x>,由题意知0x>,且x是5的整数倍,60∴满足题意.故选:C.【点评】本题考查列联表与独立性检验的应用问题,考查运算求解能力,是基础题.9.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:22()()()()()n a d b c K a b c d a c b d -=++++,其中na b c d=+++.参考数据:A .130B .190C .240D .250【分析】根据题意设男、女生的人数各为5x ,建立22⨯列联表,计算2K ,列不等式组求出x 的取值范围,即可确定满足条件的选项.【解答】解:依题意,设男、女生的人数各为5x ,建立22⨯列联表如下所示:由表中数据,计算2210(423)10557321x x x x x x K x x x x⋅⋅-⋅==⋅⋅⋅,由题可知106.63510.82821x <<,所以139.33510227.388x <<.只有B 符合题意. 故选:B .【点评】本题考查了列联表与独立性检验应用问题,也考查了运算求解能力,是基础题. 10.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有()人参考数据及公式如下:22()()()()()n a d b c Ka b c d a c b d -=++++A .12B .11C .10D .18【分析】设男生人数为x ,依题意填写列联表,计算观测值,列不等式求出x 的取值范围,再根据题意求出男生的人数.【解答】解:设男生人数为x ,依题意可得列联表如下:若在犯错误的概率不超过0.05的前提下认为是否喜欢追星和性别有关,则23.841K >,由2235()326636 3.841822x x x x x K x x x x x ⋅-⋅==>⋅⋅⋅,解得10.24x >,2x ,6x 都为整数,∴若在犯错误的概率不超过0.05的前提下认为是否喜欢追星和性别有关,则男生至少有12人. 故选:A .【点评】本题考查了列联表与独立性检验的应用问题,是基础题.11.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是()A .100个吸烟者中至少有99人患有肺癌B .1个人吸烟,那么这个人有99%的概率患有肺癌C .在100个吸烟者中一定有患肺癌的人D .在100个吸烟者中可能一个患肺癌的人也没有【分析】“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,表示有99%的把握认为这个结论成立,与多少个人患肺癌没有关系,得到结论.【解答】解: “吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,表示有99%的把握认为这个结论成立, 与多少个人患肺癌没有关系, 只有D 选项正确, 故选:D .【点评】本题考查独立性检验的应用,是一个基础题,解题的关键是正确理解有多大把握认为这件事正确,实际上是对概率的理解.12.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用22⨯列联表,由计算得27.218K ≈,参照如表:得到正确结论是( )A .有99%以上的把握认为“学生性别与中学生追星无关”B .有99%以上的把握认为“学生性别与中学生追星有关”C .在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D .在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关” 【分析】利用已知概率对照表,在2K 大于对应值是认为相关,在小于对应值时不认为相关. 【解答】解:27.218 6.635K ≈>,对应的20()P K k …为0.010,可得有99%以上的把握认为“学生性别与中学生追星有关”, 故选:B .【点评】本题考查了独立性检验的应用问题,考查判断相关性,是基础题目.13.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有( )参考数据及公式如下:22()()()()()n a d b c Ka b c d a c b d -=++++A .12B .11C .10D .18【分析】设男生人数为x ,依题意填写列联表,计算观测值,列不等式求出x 的取值范围,再根据题意求出男生的人数.【解答】解:设男生人数为x ,依题意可得列联表如下:若在犯错误的概率不超过0.05的前提下认为是否喜欢追星和性别有关,则23.841K >,由2235()326663 3.841822xx x x x x K x x x x⨯-⨯==>⨯⨯⨯,解得10.24x>,2x ,6x 都为整数,∴若在犯错误的概率不超过0.05的前提下认为是否喜欢追星和性别有关,则男生至少有12人. 故选:A .【点评】本题考查了列联表与独立性检验的应用问题,属于基础题.14.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如表所示的列联表:。
第九周-01-独立性检验-练习题
3.1.1 独立性检验一、选择题1.若用独立性检验我们有99%的把握说事件A 与B 有关,则( )A.χ2>0.618 B.χ2>6.635 C.χ2≤3.841D.χ2>0.6322.下面是一个2×2列联表:则表中a、b 处的值分别为( )A.94、96 B.52、50 C.52、60 D.54、523.在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的.下列说法中正确的是( )A.100 个心脏病患者中至少有 99 人打酣B.1 个人患心脏病,那么这个人有 99%的概率打酣C.在100 个心脏病患者中一定有打酣的人D.在 100 个心脏病患者中可能一个打酣的人都没有4.某学校为判断高三学生选修文科是否与性别有关,现随机抽取 50 名学生,得到如下2 ⨯ 2 列联表:50⨯(13⨯20-10⨯2根据表中数据得到K 2=≈ 4.844 ,已知P (K ≥ 3.841)≈ 0.05 ,P (K≥5.024)≈0.025 .现作出23⨯ 27 ⨯ 20⨯ 30结论“选修文科与性别相关”,估计这种判断出错的可能性约为( )A.97.5% B.95% C.2.5% D.5%5.为了考察高中生的性别与是否喜欢数学课程之间的关系,在某校高中生中随机抽取了 300 名学生,得到下表:A.0 B.95% C.99% D.100%二、填空题6.有甲、乙两个班级进行一门课程的考试,按照学生考试成绩优秀和不优秀统计成绩后,得到下表:利用表中数据的独立性检验估计,成绩与班级(7.在一次独立性检验中,有 300 人按性别和是否色弱分类如下表:由此表计算得χ2=.8.某市政府在调查市民收入增减与旅游愿望的关系时,采用独立性检验法抽查了 3000 人,计算发现χ 2=6.023,根据这一数据查表,市政府断言市民收入增减与旅游愿望有关系,这一断言犯错误的概率不超过.三、解答题9.在对人们休闲的一次调查中,共调查了 124 人,其中女性 70 人,男性 54 人.女性中有 43 人主要的休闲方式是看电视,另外 27 人主要的休闲方式是运动;男性中有 21 人主要的休闲方式是看电视,另外 33 人主要的休闲方式是运动.(1)根据以上数据建立一个2×2的列联表;(2)检验性别与休闲方式是否有关系.10.某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了 189 名员工进行调查,所得数据如下表所示:。
7独立性检验 习题 简单
独立性检验习题一、选择题(共14小题;共70分)1. 某市政府在调查市民收入增减与旅游愿望的关系时,采用独立性检验法抽查了3000人,计算发现K2的观测值k=6.023,根据这一数据查阅下表,市政府断言市民收入增减与旅游愿望有关系这一断言犯错误的概率不超过( )P(K2≥k0)0.500.400.250.150.100.50.0250.0100.0050.001 k00.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.87910.828A. 0.1B. 0.05C. 0.025D. 0.0052. 某企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了72名员工进行调查,所得的数据如表所示:积极支持改革不太支持改革合计工作积极28836工作一般162036合计442872对于人力资源部的研究项目,根据上述数据能得出的结论是.当Χ2>3.841时,有95%的把握说(参考公式与数据:X2=n(n11n22−n12n21)2(n11+n12)(n11+n21)(n12+n22)(n21+n22)事件A与B有关;当Χ2>6.635时,有99%的把握说事件A与B有关;当Χ2<3.841时认为事件A与B无关.)( )A. 有99%的把握说事件A与B有关B. 有95%的把握说事件A与B有关C. 有90%的把握说事件A与B有关D. 事件A与B无关3. 通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女合计爱好402060不爱好203050合计6050110由K方公式算得:K2≈7.8,附表:P(K2≥k)0.0500.0100.001k 3.841 6.63510.828参照附表:得到的正确的结论是( )A. 在犯错的概率不超过0.1%的前提下,认为“爱好该运动与性别无关”B. 在犯错的概率不超过0.1%的前提下,认为“爱好该运动与性别有关”C. 有99%以上的把握认为“爱好该运动与性别有关”D. 有99%以上的把握认为“爱好该运动与性别无关”4. 通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由X2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)计算得,X2=110×(40×30−20×20)260×50×60×50≈7.8.附表:P(X2≥k)0.0500.0100.001k 3.841 6.63510.828参照附表,得到的正确结论是( )A. 有99%以上的把握认为“爱好该项运动与性别有关”B. 有99%以上的把握认为“爱好该项运动与性别有无关”C. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”5. 某医疗研究所为了检验新开发的流感疫苗对甲型H7N9流感的预防作用,把1000名注射了疫苗的人与另外1000名未注射疫苗的人半年的感冒记录作比较,提出假设H o:“这种疫苗不能起到预防甲型H7N9流感的作用”,并计算出P(χ2≥6.635≈0.01),则下列说法正确的是( )A. 这种疫苗能起到预防甲型H7N9流感的有效率为1%;B. 若某人未使用该疫苗,则他在半年中有99%的可能性得甲型H7N9;C. 有1%的把握认为“这种疫苗能启动预防甲型H7N9流感的作用”;D. 有99%的把握认为“这种疫苗能启动预防甲型H7N9流感的作用”.6. 考察棉花种子经过处理跟生病之间的关系,得到下表中的数据:种子经过处理种子未处理合计得病32101133不得病61213274合计93314407根据以上数据可以判断( )A. 种子经过处理跟是否得病有关B. 种子经过处理跟是否得病无关C. 种子是否经过处理决定是否得病D. 以上都是错误的7. 某校为了研究“学生的性别”和“对待某项运动的喜爱程度”是否有关,运用2×2列联表进行独立性检验,经计算K2=6.669,则认为“学生性别与对待某项运动的喜爱程度有关系”的犯错误的概率不超过( )附:P(K2≥k0)0.1000.0500.0250.0100.001k0 2.706 3.841 5.024 6.63510.828A. 0.1%B. 1%C. 99%D. 99.9%8. 某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K2=7.069,则所得到的统计学结论是:有( )的把握认为“学生性别与支持该活动有关系”.P(K2≥k0)0.1000.0500.0250.0100.001k0 2.706 3.841 5.024 6.63510.828A. 0.1%B. 1%C. 99%D. 99.9%9. 利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好某项运动,利用2×2列联表,由计算可得K2≈8.806P(K2>k)0.100.050.0250.0100.0050.001k 2.706 3.841 5.024 6.6357.87910.828参照附表,得到的正确结论是( )A. 有99.5%以上的把握认为“爱好该项运动与性别无关”B. 有99.5%以上的把握认为“爱好该项运动与性别有关”C. 在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别有关”D. 在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别无关”10. 下列说法中正确的是( )A. 若分类变量X和Y的随机变量K2的观测值k越大,则“X与Y相关”的可信程度越小B. 对于自变量x和因变量y,当x取值一定时,y的取值具有一定的随机性,x,y间的这种非确定关系叫做函数关系C. 相关系数r2越接近1,表明两个随机变量线性相关性越弱D. 若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小11. 通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由K2=n(ad−bc)2(a+d)(c+d)(a+c)(b+d)算得,K2=110×(40×30−20×20)260×50×60×50≈7.8.附表:p(K2≥k)0.0500.0100.001k 3.841 6.63510.828参照附表,得到的正确结论是( )A. 有99%以上的把握认为“爱好该项运动与性别有关”B. 有99%以上的把握认为“爱好该项运动与性别无关”C. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”12. 假设有两个分类变量X和Y的2×2列联表:XY y1y2总计x1a10a+10x2c30c+30总计6040100对同一样本,以下数据能说明X与Y有关系的可能性最大的一组为( )A. a=45,c=15B. a=40,c=20C. a=35,c=25D. a=30,c=3013. 某同学利用课余时间做了一次社交软件使用习惯调查,得到2×2列联表如下:偏爱微信偏爱QQ合计30岁以下481230岁以上16218合计201030则下列结论正确的是( )A. 在犯错误的概率不超过0.005的前提下认为社交软件使用习惯与年龄有关B. 在犯错误的概率超过0.005的前提下认为社交软件使用习惯与年龄有关C. 在犯错误的概率不超过0.001的前提下认为社交软件使用习惯与年龄有关D. 在犯错误的概率超过0.001的前提下认为社交软件使用习惯与年龄有关14. 随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.非一线一线总计愿生452065不愿生132235总计5842100附表:P(K2≥k)0.0500.0100.001k 3.841 6.63510.828由K2=n(ad−bc)2a+b c+d a+c b+d 算得,K2=100×(45×22−20×13)258×42×35×65≈9.616.参照附表,得到的正确结论是( )A. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C. 有99%以上的把握认为“生育意愿与城市级别有关”D. 有99%以上的把握认为“生育意愿与城市级别无关”二、填空题(共4小题;共20分)15. 某高校《统计学初步》课程的教师随机调查了选该课的一些学生的情况,具体数据见下表:非统计专业统计专业合计男131023女72027合计203050≈为了判断主修统计专业是否与性别有关系,根据表中的数据求得χ2=50×(13×20−10×7)220×30×23×274.844.因为χ2>3.841,所以主修统计专业与性别有关系.这种判断出错的可能性为.16. 为了研究服用某种新药是否会患某种慢性病,调查了200名服用此种新药和100名未服用此种新药的人,调查结果见下表:患慢性病未患慢性病合计服用新药40160200未服用新药1387100合计53247300根据列联表中的数据可得χ2=.17. 某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如表所示:文艺节目新闻节目总计20岁至40岁401858大于40岁152742总计5545100由表中数据直观分析,收看新闻节目的观众是否与年龄有关(填“是”或“否”).18. 若两个分类变量X与Y的列联表为:y1y2总计x1101525x2401656总计503181则“X与Y之间有关系”这个结论出错的概率为.三、解答题(共2小题;共26分)19. 某同学对本市一家妇产科医院在一天中男、女孩的出生时间进行了调查,他把一天的时间分为白天(6:00至18:00)与晚上(18:00至次日6:00),然后作出了出生时间和性别之间的独立性检验,并得出如下结论:有90%的把握认为“性别与出生时间有关”,请你解释这个结论.20. 为考察某种药物预防禽流感的效果,进行动物家禽试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本.(1)根据所给样本数据画出2×2列联表;(2)请问能有多大把握认为药物有效?第一部分1. C 【解析】因为K2=6.023,6.023>5.024,所以市政府断言市民收入增减与旅游愿望有关系这一断言犯错误的概率不超过0.025.≈8.416>6.6352. A 【解析】求得Χ2=72×(28×20−16×8)244×28×36×36所以有99%的把握说抽样员工对待企业改革的态度与工作积极性有关,从而认为企业的全体员工对待企业改革的态度与其工作积极性有关.3. C4. A5. D【解析】因为P(χ2≥6.635≈0.01),所以接受这个假设H o的概率大约是1%,所以我们有99%的把握拒接假设H o,所以有99%的把握拒接认为“这种疫苗能启动预防甲型H7N9流感的作用”.6. B 【解析】因为χ2≈0.1641<2.706,所以没有充分的证据显示两个变量有关系,即可以判断种子经过处理是否得病无关.7. B 【解析】因为K2=6.669>6.635对照表格:P(K2≥k0)0.1000.0500.0250.0100.001k0 2.706 3.841 5.024 6.63510.828所以认为“学生性别与对待某项运动的喜爱程度有关系”的犯错误的概率不超过1%8. C9. B10. D11. A12. A=13. A 【解析】根据题意,由题目中所给的2×2列联表,有K2=n(ad−bc)2(a+c)(b+d)(a+b)(c+d)30×(4×2−8×16)2=10>7.879,则在犯错误的概率不超过0.005的前提下认为社交软件使用习惯与年龄12×18×20×10有关.≈14. C 【解析】根据列联表所给的数据,代入随机变量的观测值公式,K2=100×(45×22−20×13)258×42×35×659.616>6.635,所以有99%以上的把握认为“生育意愿与城市级别有关”.第二部分15. 5%【解析】卡方统计量χ2的临界值表如下:P(x2≥x0)0.500.400.250.150.100.050.0250.0100.0050.001 x00.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.87910.828因为χ2>3.841,所以有95%的把握认为主修统计专业与性别有关系.这种判断出错的可能性为5%.16. 2.246≈2.246.【解析】根据列联表中的数据可求得χ2=300×(40×87−160×13)253×247×200×10017. 是18. 0.01【解析】由2×2列联表,可求得随机变量χ2的值为≈7.227>6.635.χ2=81×(10×16−40×15)225×56×50×31因为P(χ2≥6.635)≈0.01,所以“X与Y之间有关系”出错的概率仅为0.01.第三部分19. 出生小孩的性别与出生时间相关,这个结论的可信度为90%.20. (1)根据服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本,得到列联表不得禽流感得禽流感总计服药402060不服药202040总计6040100(2)假设检验问题H0:服药与家禽得禽流感没有关系,K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)≈2.778,=100×(40×20−20×20)260×40×60×40由P(K2≥2.706)=0.10,所以大概有90%把握认为药物有效.。
独立性测试题及答案
独立性测试题及答案一、选择题1. 在统计学中,独立性指的是两个事件的发生互不影响。
以下哪项描述正确地反映了独立性的概念?A. 事件A的发生增加了事件B发生的概率B. 事件A的发生减少了事件B发生的概率C. 事件A的发生不影响事件B发生的概率D. 事件A和B不能同时发生答案:C2. 假设有两个事件A和B,已知P(A) = 0.3,P(B) = 0.4,要判断A 和B是否独立,需要计算:A. P(A ∩ B)B. P(A) + P(B)C. P(A|B) - P(A)D. P(A ∪ B)答案:A3. 如果事件A和B是独立的,那么P(A ∩ B)等于:A. P(A) * P(B)B. P(A) + P(B)C. |P(A) - P(B)|D. P(A) / P(B)答案:A二、填空题4. 如果P(A) = 0.2,P(B) = 0.5,并且A与B独立,那么P(A ∩ B)等于_________。
答案:0.15. 在一次随机抽样调查中,如果P(事件A发生) = 0.3,P(事件B发生|事件A发生) = 0.4,那么事件A和B独立的概率是_________。
答案:0.4三、简答题6. 解释为什么事件A和B的独立性意味着P(A ∩ B) = P(A) * P(B)。
答案:如果事件A和B是独立的,那么意味着事件A的发生不会影响事件B发生的概率,反之亦然。
因此,我们可以将两个独立事件同时发生的概率看作是它们各自发生概率的乘积,即P(A ∩ B) = P(A) * P(B)。
7. 如果事件A和B不独立,那么P(A ∩ B)与P(A) * P(B)的关系是什么?答案:如果事件A和B不独立,那么它们同时发生的概率P(A ∩ B)不等于它们各自发生概率的乘积P(A) * P(B)。
在这种情况下,P(A ∩ B)可能会大于或小于P(A) * P(B),具体取决于一个事件的发生是否增加了或减少了另一个事件发生的概率。
四、计算题8. 假设在一个班级中,学生通过数学考试的概率是0.7,通过物理考试的概率是0.6。
独立性检验练习含答案
独立性检验练习含答案一、基础过关1. 5 2×2.706 时,就有 的把握认为“x与y 百大系”。
2.在某医院,由于意心解病而住院的 665名男性病人中,有 214人类殖,而另外772名不是由于忠心鼓励自住院的男性病人中有175人先项,统 计~ (结果保留 3位小数)①ad b c 接小,说明X 与Y 的关系线段. ②ad -bc 越大,说明X 与Y 的关系越来。
②[ad -bo]'越大,说明X 与Y 的关系基础. ①(ad -bc)²能按照下0.说明x 与Y 的关系解析.4. 请对随机询问110名性别有限的血拉工品五级每上项目sh ,是到up 下的网联表:lna −n (ad−log 3)(a+b/c+d/a+c ]b+d其中 xx =110×(40×30−20×20)60×50×60×50=7.8参照班表,得到的正确结论是 .②在配错误的概率不超过 0.1%的前提下,认为“爱好该难运动与性别无关”。
③有 99%以上的把握认为“爱好该项运动与性别有关”。
①有 99%以上的把握认为“爱好该项运动与性别无关”。
3.分类型是 X 和Y填序号)进入.5.为了争辩男子的年龄与吸烟的关系,并查了100个男子,按年龄超过和不超过40岁.0烟就有 的把握确定吸烟量与年龄有关。
二、才能提升为了判定上修统计专业是否与性别有关,依据表示的数据,智可能性为 .7.0.2×2列联表中,如哪个数据变为较大的20.认中方们交入课 文的 。
B.以下说法正确选项 .(填序号)00对大事A 与B 的检验无关,即两个大事无不影响. ②大事A 与B 关系越宗热, x 就越大.③义的大小处判定大事 A 与B 是否相关的参一数据. ④如判定两大事 A 与8有关,就 A 发生8确定发生。
9.为争辩某新药的疗效,输无论 “” 。
”4124 46 36 50 ␡ “ “ -- 21 79 400设 H 。
高中数学独立性检验精选题目(附解析)
高中数学独立性检验精选题目(附解析)(1)分类变量和列联表①分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.②列联表(ⅰ)定义:列出的两个分类变量的频数表,称为列联表.(ⅱ)2×2列联表.一般地,假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为(2)等高条形图①等高条形图和表格相比,更能直观地反映出两个分类变量间是否相互影响,常用等高条形图展示列联表数据的频率特征.②观察等高条形图发现aa+b和cc+d相差很大,就判断两个分类变量之间有关系.(3)独立性检验一、用2×2列联表分析两分类变量间的关系1.在对人们饮食习惯的一次调查中,共调查了124人,其中六十岁以上的70人,六十岁以下的54人.六十岁以上的人中有43人的饮食以蔬菜为主,另外27人则以肉类为主;六十岁以下的人中有21人饮食以蔬菜为主,另外33人则以肉类为主.请根据以上数据作出饮食习惯与年龄的列联表,并利用aa+b与cc+d判断二者是否有关系.解:2×2列联表如下:a a+b =4364=0.671 875.cc+d=2760=0.45.显然二者数据具有较为明显的差距,据此可以在某种程度上认为饮食习惯与年龄有关系.注:(1)作2×2列联表时,关键是对涉及的变量分清类别.计算时要准确无误.(2)利用2×2列联表分析两个分类变量间的关系时,首先要根据题中数据获得2×2列联表,然后根据频率特征,即将aa+b与cc+d⎝⎛⎭⎪⎫ba+b与dc+d的值相比,直观地反映出两个分类变量间是否相互影响,但方法较粗劣.2.假设有两个分类变量X与Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表为:则当m取下面何值时,X)A.8B.9C.14D.19解析:选C由10×26≈18m,解得m≈14.4,所以当m=14时,X与Y的关系最弱.3.分类变量X和Y的列联表如下:则下列说法正确的是()A.ad-bc越小,说明X与Y关系越弱B.ad-bc越大,说明X与Y关系越强C.(ad-bc)2越大,说明X与Y关系越强D.(ad-bc)2越接近于0,说明X与Y关系越强解析:选C|ad-bc|越小,说明X与Y关系越弱,|ad-bc|越大,说明X与Y关系越强.4.假设有两个变量X与Y,它们的取值分别为x1,x2和y1,y2,其列联表为:为()A.a=50,b=40,c=30,d=20B.a=50,b=30,c=40,d=20C.a=20,b=30,c=40,d=50 D.a=20,b=30,c=50,d=40解析:选D当(ad-bc)2的值越大,随机变量K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)的值越大,可知X与Y有关系的可能性就越大.显然选项D中,(ad-bc)2的值最大.5.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:________(填“是”或“否”).解析:因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba+b=1858,dc+d=2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.答案:是二、用等高条形图分析两分类变量间的关系1.某学校对高三学生作了一项调查发现:在平时的模拟考试中,性格内向的学生426人中有332人在考前心情紧张,性格外向的学生594人中有213人在考前心情紧张,作出等高条形图,利用图形判断考前心情紧张与性格类型是否有关系.解:作列联表如下:续表考前心情不紧94381475张总计426594 1 020相应的等高条形图如图所示:图中阴影部分表示考前心情紧张与考前心情不紧张中性格内向的人数的比例,从图中可以看出考前心情紧张的样本中性格内向的人数占的比例比考前心情不紧张样本中性格内向的人数占的比例高,可以认为考前紧张与性格类型有关.注:利用等高条形图判断两个分类变量是否相关的步骤:2.在调查的480名男人中有38人患色盲,520名女人中有6名患色盲,试利用图形来判断色盲与性别是否有关?解:根据题目给出的数据作出如下的列联表:色盲不色盲总计男38442480女6514520总计449561000根据列联表作出相应的等高条形图:从等高条形图来看,在男人中患色盲的比例要比在女人中患色盲的比例大得多,因此,我们认为患色盲与性别是有关系的.3.观察下列各图,其中两个分类变量x,y之间关系最强的是()解析:选D在四幅图中,D图中两个深色条的高相差最明显,说明两个分类变量之间关系最强.4.在独立性检验中,可以粗略地判断两个分类变量是否有关系的是() A.散点图B.等高条形图C.假设检验的思想D.以上都不对解析:选B用等高条形图可以粗略地判断两个分类变量是否有关系,体现了数形结合思想,但是无法给出结论的可信程度,故选B.5.为了研究子女吸烟与父母吸烟的关系,调查了一千多名青少年及其家长,数据如下:父母吸烟父母不吸烟总计子女吸烟23783320子女不吸烟678522 1 200总计915605 1 520利用等高条形图判断父母吸烟对子女吸烟是否有影响?解:等高条形图如图所示:由图形观察可以看出父母吸烟者中子女吸烟的比例要比父母不吸烟者中子女吸烟的比例高,因此可以在某种程度上认为“子女吸烟与父母吸烟有关系”.三、独立性检验1.研究人员选取170名青年男女大学生为样本,对他们进行一种心理测验.发现有60名女生对该心理测验中的最后一个题目的反应是:作肯定的有22名,否定的有38名;110名男生在相同的项目上作肯定的有22名,否定的有88名.问:性别与态度之间是否存在某种关系?用独立性检验的方法判断.(链接教材P95-例1)附:解:根据2×2k=170×(22×38-22×88)2110×60×44×126≈5.622>5.024.所以在犯错误的概率不超过0.025的前提下,认为“性别与态度有关系”.注:根据题意列出2×2列联表,计算K2的观测值,如果K2的观测值很大,说明两个分类变量有关系的可能性很大;如果K2的观测值比较小,则认为没有充分的证据显示两个分类变量有关系.2.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.(1)写出2×2列联表;判断能否在犯错误的概率不超过0.10的前提下认为猜对歌曲名称与年龄有关系;说明你的理由;(下面的临界值表供参考)P(K2≥k0)0.100.050.0100.005k0 2.706 3.841 6.6357.879(2)6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20~30岁之间的概率.解:(1)根据所给的二维条形图得到列联表:正确错误总计20~30岁10304030~40岁107080总计20100120k=120×(10×70-10×30)220×100×40×80=3.∵3>2.706,∴在犯错误的概率不超过0.10的前提下认为猜对歌曲名称与年龄有关系.(2)按照分层抽样方法可知,20~30(岁)抽取:6×40120=2(人);30~40(岁)抽取:6×80120=4(人).在上述抽取的6名选手中,年龄在20~30(岁)有2人,年龄在30~40(岁)有4人.记至少有一人年龄在20~30岁为事件A,则P(A)=1-C34C36=1-420=45.故至少有一人年龄在20~30岁之间的概率为4 5.3.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.平均数与方差B.回归分析C.独立性检验D.概率解析:选C判断两个分类变量是否有关的最有效方法是进行独立性检验.4.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是() A.k越大,“X与Y有关系”的可信程度越小B.k越小,“X与Y有关系”的可信程度越小C.k越接近于0,“X与Y没有关系”的可信程度越小D.k越大,“X与Y没有关系”的可信程度越大解析:选B k越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大,即k越小,“X与Y有关系”的可信程度越小.5.某班主任对全班50名学生进行了作业量的调查,数据如下表,则学生的性别与认为作业量的大小有关的把握大约为()A.99%C.90% D.无充分证据解析:选B由2×2列联表得K2的观测值k=50×(18×15-8×9)2 27×23×26×24≈5.059>5.024,故有97.5%的把握认为学生性别与认为作业量大小有关,故选B.6.为了解决高二年级统计案例入门难的问题,某校在高一年级的数学教学中设有试验班,着重加强统计思想的渗透,下面是高二年级统计案例的测验成绩统计表(单位:分)的一部分,试分析试验效果.附:解:k=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=100(32×38-18×12)250×50×44×56≈16.234.因为16.234>6.635,所以,在犯错误的概率不超过0.01的前提下认为高二年级统计案例的测试成绩与高一年级数学教学中增加统计思想的渗透有联系.巩固练习:1.下列关于K2的说法不正确的是()A.根据2×2列联表中的数据计算得出K2的观测值k≥6.635,而P(K2≥6.635)≈0,01,则有99%的把握认为两个分类变量有关系B.K2的观测值k越大,两个分类变量的相关性就越大C.K2是用来判断两个分类变量是否有关系的随机变量D.K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d为样本容量解析:选D D选项的公式中分子应该是n(ad-bc)2.故选D.2.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1表2A.成绩B.视力C.智商D.阅读量解析:选D因为K21=52×(6×22-14×10)2 16×36×32×20=52×8216×36×32×20,K22=52×(4×20-16×12)216×36×32×20=52×112216×36×32×20,K23=52×(8×24-12×8)216×36×32×20=52×96216×36×32×20,K24=52×(14×30-6×2)216×36×32×20=52×408216×36×32×20,则有K24>K22>K23>K21,所以阅读量与性别有关联的可能性最大.2.在某次独立性检验中,得到如下列联表:最后发现,两个分类变量没有任何关系,则a的值可能是() A.200 B.720C.100 D.180解析:选B由于A和B没有任何关系,根据列联表可知2001 000和180180+a基本相等,检验可知,B满足条件,故选B.3.两个分类变量X,Y,它们的取值分别为{x1,x2}和{y1,y2},其列联表为:若两个分类变量X,Y没有关系,则下列结论正确的是________(填序号).①ad≈bc;②aa+b≈cc+d;③c+da+b+c+d≈b+da+b+c+d;④c+aa+b+c+d≈b+da+b+c+d;⑤(a+b+c+d)(ad-bc)2(a+b)(b+d)(a+c)(c+d)≈0.解析:因为分类变量X,Y独立,所以aa+b ≈cc+d,化简得ad≈bc,所以①②⑤正确,③④显然不正确.答案:①②⑤4.随着生活水平的提高,人们患肝病的越来越多,为了解中年人患肝病与经常饮酒是否有关,现对30名中年人进行了问卷调查得到如下列联表:已知在全部30人中随机抽取1人,抽到肝病患者的概率为4 15.(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患肝病与常饮酒有关?说明你的理由;(2)现从常饮酒且患肝病的中年人(恰有2名女性)中,抽取2人参加电视节目,则正好抽到一男一女的概率是多少?解:(1)设患肝病中常饮酒的人有x人,x+230=415,x=6.常饮酒不常饮酒总计患肝病628 不患肝病41822 总计102030由已知数据可求得K2=30×(6×18-2×4)210×20×8×22≈8.523>7.879,因此有99.5%的把握认为患肝病与常饮酒有关.(2)设常饮酒且患肝病的男性为A,B,C,D,女性为E,F,则任取两人有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种.其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF,共8种.故抽出一男一女的概率是P=8 15.5.某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在(495,510]的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本频率分布直方图.表1甲流水线样本频数分布表产品质量/克频数(490,495] 6(495,500]8(500,505]14(505,510]8(510,515] 4(1)根据上表数据作出甲流水线样本频率分布直方图;(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;(3)由以上统计数据作出2×2列联表,并回答在犯错误的概率不超过多少的前提下认为“产品的包装质量与两条要自动包装流水线的选择有关”.解:(1)甲流水线样本频率分布直方图如下:(2)由表1知甲样本合格品数为8+14+8=30,由图1知乙样本中合格品数为(0.06+0.09+0.03)×5×40=36,故甲样本合格品的频率为3040=0.75,乙样本合格品的频率为3640=0.9,据此可估计从甲流水线任取1件产品,该产品恰好是合格品的概率为0.75. 从乙流水线任取1件产品,该产品恰好是合格品的概率为0.9. (3)2×2列联表如下:甲流水线 乙流水线 总计 合格品 a =30 b =36 66 不合格品 c =10 d =4 14 总计4040n =80因为K 2k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=80×(120-360)266×14×40×40≈3.117>2.706, 所以在犯错误的概率不超过0.1的前提下认为产品的包装质量与两条自动包装流水线的选择有关.。
《独立性检验》练习题
《独立性检验》练习题一、选择题1.下面是一个2×2列联表y 1y 2总计x 1a 2173x 222527总计b46则表中a、b 处的值分别为()A.94、96B.52、50C.52、54D.54、522.关于独立性检验的说法中,错误的是()A.独立性检验依据小概率原理B.独立性检验原理得到的结论一定正确C.样本不同,独立性检验的结论可能有差异D.独立性检验不是判定两类事物是否相关的唯一方法3.利用独立性检验来考察两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 与Y 有关系”的可信程度.如果k 2>5.024,那么就有把握认为“X 与Y 有关系”的百分比为()A.25%B.75%C.2.5%D.97.5%4.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如下列联表:班级与成绩列联表优秀不优秀总计甲班113445乙班83745总计197190则随机变量2K 的观测值约为()A.0.60B.0.828C.2.712D.6.0045.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若K 2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;)k (K 02 P 0.500.400.250.150.100.050.0250.0100.0050.001k 0.4550.708 1.323 2.072 2.706 3.841 5.0246.6357.87910.828B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误;D.以上三种说法都不正确.6.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110计算得,()22110403020207.860506050K⨯⨯-⨯=≈⨯⨯⨯.2()P K k≥0.0500.0100.001 k3.8416.63510.828参照附表,得到的正确结论是A.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”7.对分类变量X与Y的随机变量2K的观测值K,说法正确的是()A.k越大,“X与Y有关系”可信程度越小;B.k越小,“X与Y有关系”可信程度越小;C.k越接近于0,“X与Y无关”程度越小D.k越大,"X与Y无关”程度越大8.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.根据以上数据,则()A.含杂质的高低与设备改造有关B.含杂质的高低与设备改造无关C.设备是否改造决定含杂质的高低D.以上答案都不对9、分类变量X和Y的列联表如下y 1y2总计x1x b x+bx 2c d c+d杂质高杂质低旧设备37121新设备22202总计x+c b+d x+b+c+d则下列说法正确的是()A.xd-bc 越小,说明X 和Y 关系越弱B.xd-bc 越大,说明X 和Y 关系越强C.(xd-bc)2越大,说明X 和Y 关系越强D.(xd-bc)2越接近于0,说明X 和Y 关系越强10、某医疗研究所为了检验新研发的流感疫苗对甲型的H1N1流感的预防作用,把1000名注射了疫苗的人与另外1000名未注射疫苗的人的半年的感冒记录作比较,提出假设0H :“这种疫苗不能起到预防甲型H1N1流感的作用”,并计算出)635.6(2≥K P 01.0≈,则下列说法正确的是()A、这种疫苗能起到预防甲型H1N1流感的有效率为1%;B、若某人未使用该疫苗,则他在半年中有99%的可能性得到甲型H1N1;C、有1%的把握认为“这种疫苗不能起到预防甲型H1N1流感的作用”D、有99%的把握认为“这种疫苗不能起到预防甲型H1N1流感的作用”二、填空题11、我们常利用随机变量2K 来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验,其思想类似于数学上的.12.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:性别专业非统计专业统计专业男1310女720为了判断主修统计专业是否与性别有关系,根据表中的数据,得到=k (保留三位小数)13、为了探究50岁以上的人患慢性气管炎与吸烟有无关系时,提出的假设是;14、通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110则2K 的观测值=k (保留一位小数)15、假设有两个分类变量X 和Y,它们的取值分别为}{21,x x 和}{21,y y ,其2×2联表为:1y 2y 总计1x a b a+b 2x c d c+d 总计a+cb+da+b+c+d定义||dc cb a a W +-+=,则W 越(大或小),就有利于结论“X 和Y 有关系”;W 越(大或小),就越有利于结论“X 和Y 没有关系”;三、解答题16.某企业为考察生产同一种产品的甲、乙两条生产线的产品合格率,同时各抽取100件产品,检验后得到如下列联表:生产线与产品合格数列联表合格不合格总计甲线973100乙线955100总计1928200请问甲、乙两线生产的产品合格率在多大程度上有关系?17.在对人们的休闲方式的一次调查中,共调查了120人,其中女性60人,男性60人。
7独立性检验 习题 中等
独立性检验习题一、选择题(共14小题;共70分)1. 通过随机询问名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好不爱好总计算得由附表:参照附表,得到的正确结论是A. 在犯错误的概率不超过的前提下,认为"爱好该项运动与性别有关"的前提下,认为"爱好该项运动与性别无关"B. 在犯错误的概率不超过以上的把握认为"爱好该项运动与性别有关"C. 有有D. 以上的把握认为"爱好该项运动与性别无关" 2. 考察棉花种子经过处理跟生病之间的关系得到如表数据:合计种子未处理种子处理得病不得病合计根据以上数据,则种子经过处理与是否生病无关种子经过处理与是否生病有关A. B.种子经过处理决定是否生病D. 以上都是错误的C. 的说法中正确的是 3. 下列关于卡方A. 在任何相互独立问题中都可以用于检验是否相关B. 的值越大,两个事件的相关性越大是用来判断两个相互独立事件相关与否的一个统计量,它可以来判断两个事件是否相关这 C. 一类问题D.,所以判断性别与数学有关,那4. 如果根据性别与是否爱好数学的列表,得到么这种判断出错的可能性为A. B. C. D. 5. 已知与之间的几组数据如下表:,若某同学根据上表中的前两组数据假设根据上表数据所得线性回归直线方程为,则以下结论正确的是和求得的直线方程为, D. , B. , C. , A. 时,有的把握;当有两个临界值:和6. 在独立性检验中,统计量的把握说明两个事件有关,当时,时,有说明两个事件有关,当,人,经计算得认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了根据这一数据分析,认为打鼾与患心脏病之间A. 有的把握认为两者有关B. 约有的打鼾者患心脏病D. 约有的打鼾者患心脏病C. 有的把握认为两者有关,则其两个变量间有关系的可能性为列联表中,由其数据计算得7. 在一个A. B. C. D. 无关系8. 给出如下列联表:合计患心脏病患其它病高血压不高血压合计,,得到的正确,参照公式结论是A. 有以上的把握认为“高血压与患心脏病无关”B. 有以上的把握认为“高血压与患心脏病有关”C. 在犯错误的概率不超过的前提下,认为“高血压与患心脏病无关”D. 在犯错误的概率不超过的前提下,认为“高血压与患心脏病有关”9. 为了普及环保知识,增强环保意识,某大学从理工类专业的A班和文史类专业的B班各抽取名同学参加环保知识测试.统计得到成绩与专业的列联表:优秀非优秀总计班班总计则下列说法正确的是附:参考公式及数据:.()统计量:)独立性检验的临界值表:(的把握认为环保知识测试成绩与专业有关A. 有的把握认为环保知识测试成绩与专业无关B. 有C. 有的把握认为环保知识测试成绩与专业有关D. 有的把握认为环保知识测试成绩与专业无关分以下为非优秀统计成绩,分为优秀,10. 有甲、乙两个班级进行数学考试,按照大于等于得到如下所示的列联表:总计优秀非优秀甲班乙班合计附:,则下列说法正确的是人,成绩优秀的概率为已知在全部人中随机抽取A. 列联表中的值为,的值为B. 列联表中的值为,的值为C. 根据列联表中的数据,若按的可靠性要求,能认为“成绩与班级有关系”D. 根据列联表中的数据,若按的可靠性要求,不能认为“成绩与班级有关系”11. 考察棉花种子经过处理与生病之间的关系得到如下表数据:种子处理种子未处理合计得病不得病合计根据以上数据,则A. 种子经过处理与是否生病有关B. 种子经过处理与是否生病无关D. 以上都是错误的 C. 种子经过处理决定是否生病12. 某人研究中学生的性别与成绩、视力、智商、阅读量这个变量之间的关系,随机抽查了名,则与性别有关联的可能性最大的变量是4至表 1 中学生,得到统计数据如表.阅读量智商D. A. 成绩B. 视力C. 人参加环保知识人,从女生中随机制取了13. 为了增强环保意识,某校从男生中随机抽取了测试,统计数据如下表所示:总计非优秀优秀男生女生总计附:的把握认为环保知识是否优秀与性别有关.则有 C. D. A. B.名成年人调查是否吸烟及是否某疾病研究所想知道吸烟与患肺病是否有关,于是随机抽取14..已知在假设吸烟与患肺病无关的前提条列联表,经计算得患有肺病,得到,则该研究所可以,件下,”以上的把握认为“吸烟与患肺病有关A. 有“吸烟与患肺病无关” B. 有以上的把握认为吸烟与患肺病有关”有以上的把握认为“C.”以上的把握认为“吸烟与患肺病无关D. 有20分)二、填空题(共4小题;共15. 为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取名学生,得到如下列联表:理科文科男女.根据表中数据,得到,已知..则认为选修文科与性别有关系出错的可能性为16. 某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:到的数据,得关否与性别有系,根据表中专为了判断主修统计业是的把握判定主修统计专业与性别有关.,所以有名男女大学生,在17. 报载,中国的青少年在最近几年的体质情况逐年下降,某高校调查询问了课余时间是否参加运动,得到下表所示的数据,从表中数据分析,认为大学生的性别与参加运.动之间有关系的把握有合计参加运动不参加运动男大学生女大学生合计名未使用名使用血清的人与另外18. 某医疗研究所为了检验某种血清预防感冒的作用,把,利用“这种血清不能起到预防感冒的作用”血清的人一年中的感冒记录作比较,提出假设:.则下列结论中,正确列联表计算得,经查临界值表知结论的序号是;“这种血清能起到预防感冒的作用”有的把握认为①的可能性得感冒;②若某人未使用该血清,那么他在一年中有;这种血清预防感冒的有效率为③.这种血清预防感冒的有效率为④分)262三、解答题(共小题;共在一次飞行航程中调查男、女乘客的晕机情况,其二维条形图如图.19.列联表;(1)写出2)判断性别与晕机是否有关.(岁以上的人,并根据名20. 为了调查生活规律与患胃病是否有关,某同学在当地随机调查了调查结果制成了不完整的列联表如下:总计不患胃病患胃病生活有规律生活无规律总计参考公式和数表如下:.)补全列联表中的数据;(1? )用独立性检验的基本原理,说明生活无规律与患胃病有关时,出错的概率不会超过多少(2。
《9.2 独立性检验》(同步训练)高中数学选择性必修第二册_苏教版_2024-2025学年
《9.2 独立性检验》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、在下列关于独立性检验的描述中,正确的是()A. 独立性检验用于检验两个分类变量之间是否存在某种关系B. 独立性检验是一种用于估计参数的统计方法C. 独立性检验只能用于二分类变量D. 独立性检验的结果不受样本大小的影响2、在某高中的学生中,对A和B两个课外活动项目的兴趣进行独立性检验。
根据表1的数据,当α=0.05时,可以认为学生对这两个课外活动项目的兴趣具有独立性。
表1是检验的数据摘要:参加B活动不参加B活动总计参加A活动503080不参加A活动204060总计7070140给出选项:A、独立B、相关C、不足以判断D、以上都不对3、以下哪个选项不是独立性检验中的假设检验类型?A、双侧检验B、左尾检验C、右尾检验D、非参数检验4、以下关于独立性检验的描述,不正确的是()A. 独立性检验可以用来判断两个分类变量之间是否独立;B. 卡方检验是独立性检验中常用的一种方法;C. 当样本量较小时,可以使用费舍尔精确检验;D. 独立性检验的结果可以用来指导决策,但不能直接用来预测具体事件发生的概率。
5、在下列关于两个样本数据的相关性的描述中,哪一项是正确的?A、两个样本数据相关系数的绝对值接近0时,表明两个变量之间没有线性关系;B、两个样本数据相关系数的绝对值接近1时,表明两个变量之间有极弱的线性关系;C、两个样本数据相关系数的绝对值接近1时,表明两个变量之间有极强的非线性关系;D、两个样本数据相关系数为负时,表明两个变量之间有极弱的相关性。
6、从甲、乙两城市各随机抽取100名居民,调查他们对某项新政策的支持率。
甲城市居民中支持该政策的有68人,乙城市居民中支持该政策的有58人。
为检验两个城市居民对政策支持率的差异是否显著,应采用以下哪种检验方法?A. 方差分析B. 拉丁方分析C. 卡方检验D. t检验7、在进行独立性检验时,假设检验的原假设(H0)是什么?A. 两个分类变量之间独立B. 两个分类变量之间不独立C. 两个分类变量之间相关D. 两个分类变量之间显著相关8、在下列假设检验中,经计算得知卡方值接近于9.488,显著性水平为0.05,假设检验后的结论是:A. 拒绝零假设,说明两个总体频率分布有显著差异;B. 接受零假设,说明两个总体频率分布无显著差异;C. 结论不能确定,需进一步检查自由度和P值;D. 结论不能确定,需进一步检查样本量和显著水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
独立性检验练习题
一、选择题
1 •对长期吃含三聚氰胺的婴幼儿奶粉与患肾结石这两个分类变量的计算中,下列说法正确的是
()
2
A. 若K的值大于6.635,我们有99%的把握认为长期吃含三聚氰胺的三鹿婴幼儿奶粉与患肾结石有关系,那么在100个长期吃含三聚氰胺的三鹿奶粉的婴幼儿中必有99人患有肾结石病;
B. 从独立性检验可知有99%的把握认为吃含三聚氰胺的三鹿婴幼儿奶粉与患肾结石有关系时,我们说某一个婴幼儿吃含三聚氰胺的三鹿婴幼儿奶粉,那么他有99%的可能患肾结石病;
C. 若从统计量中求岀有95%的把握认为吃含三聚氰胺的三鹿婴幼儿奶粉与患肾结石有关系,是指有5%的可能性使得推判岀现错误;
D. 以上三种说法都不正确。
根据上述数据,试问色盲与性别关系是( )
A.相互独立
B.不相互独立
A. 0.4
B. 0.5
C. 0.75
D. 0.85
二、填空题
2
4. 通过计算高中生的性别与喜欢唱歌列联表中的数据,得到K ■ 4.9 8并且已知
2
P(K -3.841) : 0.05,那么可以得到的结论是 _____________________________________________
5•下面是一个2X 2列联表
则
三、计算题
7.某大型企业人力资源部为了研究企业员工工作积极性和对企业改革态度的关系,随机抽取了189名员工进行调查,所得数据如下表所示:
独立性检验练习题参考答案-、选择题
1 • C对于A,若K2的值为6.635,我们有99%的把握认为吃含三聚氰胺的三鹿奶粉的婴幼儿与患肾结
石有关系,但在100个吃含三聚氰胺的三鹿婴幼儿奶粉婴幼儿中未必有99人患有肺病;对于B同样不成立,C是正确的,故选C.
2. B k =27.139 10,828,所以的99.9%的把握认为色盲与性别是有关的,从而拒绝原假设,可
以认为色盲与性别不是相互独立.
心 2 90(20 汉27— 25 182 729000 “、心亠八钿舟
3. B计算K20.18218623 ::: 2.706可知,没有充分理由
45 汶45 疋38 乂52 4001400
说明成绩与班级有关系”,即成绩的优秀与不优秀”与班级是相互独立的,所以估计成绩与班级有关系”犯错误的概率约是0.5.
二•填空题
4 •有约95%以上的把握认为性别与喜欢唱歌之间有关系”
5. 26,44
因为a+42=68,b+54=68+30,所以a=68-42=26,b=68+30-54=44
三、解答题
7.解:根据列联表中的数据,得到K2」89 (54 63
一
4
°彳
2)? =10.76 .
94 汉95^86003
因10.76 7.879,所以有99.5%的把握说:员工“工作积极”与“积极支持企业改革”是有关的,可以认为企业的全体员工对待企业改革的态度与其工作积极性是有关的.。