自动控制原理第2章习题课
自动控制原理-第2章习题解答精选全文完整版
第2章 控制系统的数学模型习题及解答2-1 已知质量-弹簧系统如题2-1图所示,图中标明了质量和弹簧的弹性系数。
当外力F (t )作用时,系统产生运动,如果在不计摩擦的情况下,以质量m 2的位移y (t )为输出,外力F (t )为输入,试列写系统的运动方程。
解: 设 质量m 1的位移量为x (t ),根据牛顿第二定律有y k y x k dt yd m 21222-)(−= ①)(1221y x k F dtxd m −−= ②①式可以写作y k k x k dtyd m )(211222+−= ③由①式也可以得到y k dtyd m y x k 22221)(+=− ④③式两端同时求二阶导数,可得2221221442)(dty d k k dt x d k dt yd m +−= ⑤将②、③式代入⑤式中,整理可得F m k y m k k dty d m k m k m m dt y d m 1112122122121442)(=−++++ 2-2 求题2-2图中由质量-弹簧-阻尼器组成的机械系统,建立系统的运动方程。
其中,x (t )为基底相对于惯性空间的位移,y (t )为质量相对于惯性空间的位移。
z (t )= y (t )- x (t )为基底和质量之间的相对位移,z (t )由记录得到, x (t )和z (t )分别为输入量和输出量。
解:应用牛顿第二定律可得dtt dz f kz dt y d m )(22−−= 将z (t )= y (t )- x (t )代入上式,整理可得2222dtx d m kz dt dz f dt z d m −=++题2-2图题2-1图解:(a )引入中间变量u c (t)表示电容器两端的电压。
根据基尔霍夫电流定律有o c c u R u R dt du C2111=+ 根据基尔霍夫电压定律有o i c u u u −=联立消去中间变量,可得描述输入量u i (t )和输出量u o (t )之间关系的微分方程为i i o o u R dt du C u R R R R dt du C121211+=++ (b )引入回路电流i (t )和电容器两端的电压u c (t)作为中间变量,根据基尔霍夫电压定律有i o u u i R =+1 另有电容元件的元件约束关系方程dtdu Ci c =和i R u u o c 2−=联立求解,消去中间变量可得i i o o u R dt du C u R R R R dt du C121211+=++(c )设电容器C 2两端的电压为u c 2(t),根据基尔霍夫电流定律有dtduC u u R dt u u d C c o i o i 2211)(1)(=−+− ①求导可得22221221)(1)(dtu d C dt u u d R dt u u d C c o i o i =−+− ② 另有输出支路电压方程o c c u u dtdu C R =+2222 等式两边求导有dtdu dt du dt u d C R oc c =+222222 ③将①、②代入③式,整理可得i ii ooo u C R dt du C R C R C R dt u d C R u C R dt du C R C R C R C R dt u d C R 2121221121221212122112121122+++=++++2-4 试求题2-4图所示有源RC 电路的微分方程,其中u i (t )为输入量,u o (t )为输出量。
自动控制原理_王万良(课后答案2
第2章习题2.1 列写如图题2.1所示电路中以电源电压U 作为输入,电容1C ,2C 上的电压1c U 和2c U 作为输出的状态空间表达式。
图题2.1答案:X L R LL M C R M C M C R M C C X ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−+−=211321321100)(& X y ⎥⎦⎤⎢⎣⎡=010001其中)(3221311C C C C C C R M ++=2.2 如图题2.2所示为RLC 网络,有电压源s e 及电流源s i 两个输入量。
设选取状态变量23121,,C C L u x u x i x ===;输出量为y 。
建立该网络动态方程,并写出其向量-矩阵形式(提示:先列写节点a ,b 的电流方程及回路电势平衡方程)。
图题2.2*答案:⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−+⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡−−+−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s s e i C L L R C C L L L RR 0001100100111x x x 12121321&&&U 3+-se[]111−−−=R y ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x +[]⎥⎦⎤⎢⎣⎡s s e i R 11 2.3 列写图题2.3所示RLC 网络的微分方程。
其中,r u 为输入变量,c u 为输出变量图题2.3答案:r c cc u u dt du RC dtu d LC =++22 2.4 列写图题2.4所示RLC 网络的微分方程,其中r u 为输入变量,c u 为输出变量。
图题2.4答案:r c cc uu dt du R L dtu d LC =++22 2.5 图题2.5所示为一弹簧—质量—阻尼器系统,列写外力)(t F 与质量块位移)(t y 之间)(t图题2.5答案:)()()()(22t f t ky dt t dy f dtt y d m =++ 2.6 列写图题2.6所示电路的微分方程,并确定系统的传递函数,其中r u 为输入变量,cu 为输出变量。
自动控制原理课后习题答案第二章
第 二 章2-3试证明图2-5(a)的电网络与(b)的机械系统有相同的数学模型。
分析 首先需要对两个不同的系统分别求解各自的微分表达式,然后两者进行对比,找出两者之间系数的对应关系。
对于电网络,在求微分方程时,关键就是将元件利用复阻抗表示,然后利用电压、电阻和电流之间的关系推导系统的传递函数,然后变换成微分方程的形式,对于机械系统,关键就是系统的力学分析,然后利用牛顿定律列出系统的方程,最后联立求微分方程。
证明:(a)根据复阻抗概念可得:2221212112212211212112212122111()1()111oiR u C s R R C C s R C R C R C s R u R R C C s R C R C R C C sR C s R C s+++++==+++++++即220012121122121212112222()()i i o id u du d u duR R C C R C R C R C u R R C C R C R C u dt dt dt dt++++=+++取A 、B 两点进行受力分析,可得:o 112()()()i o i o dx dx dx dx f K x x f dt dt dt dt -+-=- o 22()dx dxf K x dt dt -= 整理可得:2212111221121212211222()()o o i i o id x dx d x dx f f f K f K f K K K x f f f K f K K K x dt dt dt dt ++++=+++经比较可以看出,电网络(a )和机械系统(b )两者参数的相似关系为1112221211,,,K f R K f R C C2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式的模态。
(1) ;)()(2t t x t x =+(2))。
自动控制原理第二章习题解答
Z1 + Z2
R1 T1s +
1
+
1 C2
s
(T2
s
+
1)
R1C2 s + (T1s + 1)(T2 s + 1)
(b)以 K1 和 f1 之间取辅助点 A,并设 A 点位移为 x ,方向朝下;根据力的平衡原则,可列出如下原始方程:
K 2 (xi − x0 ) + f 2 (x&i − x&0 ) = f1 (x&0 − x&) (1)
+
C1C2
R
d 2u0 dt 2
整理得:
C1C2
R
d 2u0 dt 2
+
(C2
+
2C1 )
du0 dt
+ u0 R
=
C1C2 R
d 2ui dt 2
+ ui R
+
2C1
dui dt
2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式的模态。
(1) 2x&(t) + x(t) = t;
所以:
f1 f2 s2 + ( f1 + f2 )s +1
X 0 (s) =
f1 f2s2 + ( f1K2 + K1 f2 )s + K1K2
= K1K2
K 1
K2
X i (s) f1 f2s2 + ( f1K2 + K1 f1 + K1 f2 )s + K1K2
f1 f2 s2 + ( f1 + f2 )s +1+ f1
自动控制原理第二章习题答案
第二章习题答案名词解释1.一阶系统:以一阶微分方程作为运动方程的控制系统。
2.二阶系统:能够用二阶微分方程描述的系统。
3.应用函数方框把控制系统的全部变量联系起来以描述信号在系统中流通过程的图示。
4. 应用节点、支路把控制系统的全部变量联系起来以描述信号在系统中流通过程的图示。
5.初始条件为零时,线性定常系统或元件输出信号的拉氏变换与输入信号的拉氏变换的比。
6.从源点到阱点的通路上,通过任何节点不多于一次,称为前向通路。
7. 既有输入支路又有输出支路的节点。
8.动态模型:描述变量各阶导数之间关系的微分方程。
9.静态数学模型:在静态条件下(即变量各阶导数为零),描述变量之间关系的代数方程 。
简答1.能够提高的稳定裕度,抑制超调,但对噪声信号具有较高的增益。
2.比例微分(PD )控制和测速(微分)反馈。
3.a.系统是线性定常;b.零初始条件。
4.时域中常用的数学模型有微分方程、差分方程、和状态方程;复数域中有传递函数、结构图;频域中有频率特性等。
计算题1.解:通过比较点前移串倒数,引出点后移串倒数得31313322113211)()(H H G G H G H G H G G G G s R s C ++++=2.解:利用复阻抗的概念)(1/1/1)(2s U CsR Ls Cs s U ++= 则,传递函数为11)(1)(22++=RCs LCs s U s U 3.解:2条前向通道:4123211G G P G G G P == 5个回路: 415244232332121211G G L H G L H G G L G G -G L -=-=-==-=H G G L不存在不接触回路。
故,有:GG H G H G G G G G H G G L L L L L 124232321121543211)(1+++++=++++-=∆5个回路均与2个前向通道相接触,于是: 1 121=∆=∆ ()41242323211214132122111G G G G G P P 1P R(S)C(S)G G H G H G G G G G H G G ++++++=∆+∆∆== 4. 解:输入的拉氏变换:s s R /1)(= 输出的拉氏变换:11211)(+++-=s s s s C 则传递函数为: 22111)()()(+++-==s s s R s C s G 5.解:利用复阻抗的概念,有:)(1//)(212s U R CsR R s U r c += 所以,2212)1()1(11//)()(112122112212++=+++=++=+=s s R Cs R R Cs R R R Cs R R R R Cs R R s U s U r c 6 解:利用复阻抗的概念,有:)(1//)(212s U R CsR R s U r c += 所以,21)1()1(11//)()(112122112212++=+++=++=+=s s R Cs R R Cs R R R Cs R R R R Cs R R s U s U r c 7. 解:将G 3(S) 和G 4(S)两方框之间的引出点后移得:传递函数1432134323243211)()(H G G G G H G G H G G G G G G s R s C +++= 8. 解:对方程求拉氏变换,即得传递函数: 25.10125.0)(+=s s G。
自动控制原理及其应用(第2版)黄坚第二章习题课
第二章习题课
(2-9)
2-9 若系统在单位阶跃输入作用时,已知初 若系统在单位阶跃输入作用时, 始条件为零的条件下系统的输出响应, 始条件为零的条件下系统的输出响应,求 系统的传递函数和脉冲响应。 系统的传递函数和脉冲响应。 -t 1 -2t R(s)= s c(t)=1-e +e r(t)=I(t) 1 - 1 + 1 = (s2+4s+2) 解: C(s)= s s+2 s+1 s(s+1)(s+2) (s2+4s+2) G(s)=C(s)/R(s)= (s+1)(s+2) (s2+4s+2) =1+ 2 - 1 脉冲响应: 脉冲响应 C(s)= (s+1)(s+2) s+2 s+1 c(t)= (t)+2e-2t-e-t δ
第二章习题课
(2) dy(t) 2 dt +y(t)=t
(2-4)
y(0)=0
第二章习题课
(2-5)
2-5 试画题图所示电路的动态结构图, 试画题图所示电路的动态结构图, c 并求传递函数。 并求传递函数。 i1 (1) 解: + R
Ur(s)
Cs _
I1(s)
+ +
i2
1
+
I(s)
R2
Uc(s)
+ i uo -
第二章习题课
(b) 解: (ui-u1) i=i1+i2 i= R
1
(2-1)
u1 L i
R1 C
+
ui
i1 i2
R2
+ uo -
自动控制原理第二章习题答案详解
习题习题2-1 列写如图所示系统的微分方程习题2-1附图习题2-2 试建立如图所示有源RC网络的动态方程习题2-2附图习题2-3 求如图所示电路的传递函数, 并指明有哪些典型环节组成(a)(b)(c)习题2-3附图习题2-4 简化如图所示方块图, 并求出系统传递函数习题2-4附图习题2-5 绘制如下方块图的等效信号流图, 并求传递函数图(a)图(b)习题2-5附图习题2-6 系统微分方程组如下, 试建立对应信号流图, 并求传递函数。
),(d )(d )(),(d )(d ),()()()(),()(),(d )(d )(),()()(54435553422311121t y tt y T t x k t x k tt x t y k t x t x t x t x k t x t x k tt x t x t y t r t x +==--==+=-=τ习题2-7 利用梅逊公式直接求传递函数。
习题2-7附图习题2-8 求如图所示闭环传递函数, 并求(b)中)(s H x 的表达式, 使其与(a)等效。
图(a )图(b)习题2-8附图习题2-9 求如下各图的传递函数(a)(b)(c)习题2-9附图习题2-10 已知某些系统信号流图如图所示, 求对应方块图(a )(b)(c)(d)习题2-10附图习题答案习题2-1答案:解:设外加转矩M 为输入量,转角θ为输出量,转动惯量J 代表惯性负载,根据牛顿定律可得:θθθ1122d d d d k t f M tJ --=式中,1,1,k f 分别为粘性阻尼系数和扭转弹性系数,整理得:M k t f tJ =++θθθ1122d d d d习题2-2答案:解: 设r u 为输入量,c u 为输出量,,,,21i i i 为中间变量,根据运算放大器原理可得:1221d d R u i R u i t u c i r c c ===消去中间变量可得: r c c u R Ru t u C R 122d d -=+ 习题2-3答案: 解: (a)11111111221212211121121120++=+++=+++=+++=Ts Ts s R R R C R s C R R sC R sC R sC sC R R sC R u u i β其中:221121,R R R C R T +==β, 一阶微分环节,惯性环节.(b)21121212111221122011//1R R s C R R R s C R R R sC R R R sC R R u u i+++=++=+= 11111111212121221121111++=+∙++∙+=+++=Ts Ts s C R R R R s C R R R R R R s C R R s C R αα其中 α=+=21211,R R R T C R , 一阶微分环节,惯性环节.(c)s C R s C R s C R s C R s C R sC R R sC sC R u u i 21221122112211220)1)(1()1)(1(1//11+++++=+++= 由微分环节,二阶振荡环节组成。
孙亮版《自动控制原理》课后习题答案
t
F ( s ) = F1 ( s) + F2 ( s ) =
− s Aω ⋅ (1 + e ω ) 2 2 s +ω
π
(c) 由于信号 f (t ) 为周期信号,第一周期的信号如图所示, 其拉氏变换为
F1 ( s ) =
M 2 M −ηTs M −Ts M − e + e = (1 − 2e −ηTs + e −Ts ) s s s s F (s) = 1 ⋅ F1 ( s ) 1 − e −Ts
• •
忽略二次以上各项有
F ( x, i ) = F0 ( x0 , i0 ) + F x ( x, i ) x = x0 ⋅ ( x − x0 ) + F i ( x, i ) x = x0 ⋅ (i − i0 )
i =i0 i =i0
令
ΔF = F ( x, i ) − F0 ( x0 , i0 ) K x = F x ( x , i ) x = x0
→ F2 ( s ) = −
t0 f3(t)
f2(t)
1 1 −t 0 s 1 −t0 s 1 − e − t0 s (1 + t0 s ) F ( s ) = F1 ( s ) + F2 ( s ) + F3 ( s ) = 2 − 2 ⋅ e − t0 ⋅ ⋅ e = s s s s2 (b) 由于信号 f (t ) 可以分解为信号的组合如图所示, f(t) f1(t) f2(t) A Aω f1 (t ) = A sin ωt → F1 ( s ) = 2 2 s +ω 0 π π − s Aω π ω → F2 ( s ) = 2 ⋅e f 2 (t ) = sin ωt ⋅1(t − ) 2 ω s +ω ω
自动控制原理课后习题答案第二章
解:由图可得
联立上式消去中间变量U1与U2,可得:
2-8某位置随动系统原理方块图如图2-7所示。已知电位器最大工作角度,功率放大级放大系数为K3,要求:
(1) 分别求出电位器传递系数K0、第一级与第二级放大器得比例系数K1与K2;
(2) 画出系统结构图;
(3) 简化结构图,求系统传递函数。
证明:(a)根据复阻抗概念可得:
即 取A、B两点进行受力分析,可得:
整理可得:
经比较可以瞧出,电网络(a)与机械系统(b)两者参数得相似关系为
2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式得模态。
(1)
(2)
2-7由运算放大器组成得控制系统模拟电路如图2-6所示,试求闭环传递函数Uc(s)/Ur(s)。
2-10试简化图2-9中得系统结构图,并求传递函数C(s)/R(s )与C(s)/N(s)。
图2-9 题2-10系统结构图
分析:分别假定R(s)=0与N(s)=0,画出各自得结构图,然后对系统结构图进行等效ቤተ መጻሕፍቲ ባይዱ换,将其化成最简单得形式,从而求解系统得传递函数。
解:(a)令N(s)=0,简化结构图如图所示:
可求出:
令R(s)=0,简化结构图如图所示:
所以:
(b)令N(s)=0,简化结构图如下图所示:
所以:
令R(s)=0,简化结构图如下图所示:
2-12 试用梅逊增益公式求图2-8中各系统信号流图得传递函 数C(s)/R(s)。
图2-11 题2-12系统信号流图
解:
(a)存在三个回路:
存在两条前向通路:
所以:
(3)简化后可得系统得传递函数为
自动控制原理第二章课后习题答案(免费)
自动控制原理第二章课后习题答案(免费)离散系统作业注明:*为选做题2-1 试求下列函数的Z 变换 (1)()E z L =();n e t a = 解:01()[()]1k k k z E z L e t a z z z aa∞-=====--∑ (2) ();at e t e -= 解:12211()[()][]1...1atakT k aT aT aTaT k z E z L e t L ee z e z e z z e e z∞----------=====+++==--∑2-2 试求下列函数的终值:(1)112();(1)Tz E z z --=-解: 11111()(1)()1lim lim lim t z z Tz f t z E z z---→∞→→=-==∞- (2)2()(0.8)(0.1)z E z z z =--。
解:211(1)()(1)()0(0.8)(0.1)lim lim limt z z z z f t z E z z z →∞→→-=-==-- 2-3* 已知()(())E z L e t =,试证明下列关系成立:(1)[()][];n z L a e t E a =证明:0()()nn E z e nT z∞-==∑00()()()()[()]n n n n n n z z E e nT e nT a z L a e t a a ∞∞--=====∑∑ (2)()[()];dE z L te t TzT dz=-为采样周期。
证明:11100[()]()()()()()()()()()nn n n n n n n n n L te t nT e nT zTz ne nT z dE z de nT z dz dz e nT n zne nT z ∞∞---==∞-=∞∞----======-=-∑∑∑∑∑所以:()[()]dE z L te t Tzdz=- 2-4 试求下图闭环离散系统的脉冲传递函数()z Φ或输出z 变换()C z 。
自动控制原理 吴怀宇 课后习题 第二章
第二章2-1试求下图所示电路的微分方程和传递函数.解:(a)根据电路定律,列写出方程组:001L i R c L R C di L u u dtu R i i dt Ci i i ⋅+==⋅==+⎰ 消除中间变量可得微分方程:20002i d u du L L C u u dt R dt⋅⋅+⋅+= 对上式两边取拉氏变换得:2000()()()()i L L C U s s U s s U s U s R⋅⋅⋅+⋅⋅+= 传递函数为022()1()()1i U s R G s L U s R Ls LCRs s LCs R ===++++ (b )根据电路定律,列写出方程组:12011()i i u i R R idt C u u i R =++-=⎰消除中间变量可得微分方程:121012i R R R u u idt R R C+=-⎰ 对上式两边取拉氏变换得:2012()(1)()(1)i U s R Cs U s R Cs R Cs +=++ 传递函数为0212()1()()1i U s R Cs G s U s R Cs R Cs+==++2-3求下图所示运算放大器构成的电路的传递函数。
解:(a )由图(a ),利用等效复数阻抗的方法得22111(s)1(s)()1o i R U R Cs Cs G U s R R Cs ++==-=-+ (b )由图(b ),利用等效复数阻抗的方法得222121211221211111(s)()1(s)1()1o i R U C s R R C C s R C R C s G U s R C s R C sR C s ++++==-=-+ 2-5试简化下图中各系统结构图,并求传递函数()()C s R s 。
2—6试求下图所示系统的传递函数11()()C s R s ,21()()C s R s ,12()()C s R s 及22()()C s R s 。
自动控制原理第2章课后习题及解答
+
1 C2R2
uc
=
du
2 r
dt 2
+
2 CR
dur dt
+
1 C2R2
ur
(c) 由图解 2-2(c)可写出
Ur (= s) R1 [I1(s) + I2 (s)] + (Ls + R2 )I2 (s) (6)
1 Cs
I1
(s)
=
(Ls
+
R2
)I2
(s)
(7)
U c (s) = R2 I 2 (s)
第 2 章习题及解答
2-1 建立图 2-32 所示各机械系统的微分方程(其中 F (t) 为外力,x(t) 、y(t) 为位移; k 为弹性系数, f 为阻尼系数, m 为质量;忽略重力影响及滑块与地面的摩擦)。
图 2-32 系统原理图
解. (a)以平衡状态为基点,对质块 m 进行受力分析(不再
考虑重力影响),如图解 2-1(a)所示。根据牛顿定理可写出
2
2
X (s=)
e−s s2
(s
+
1) 2
−
e−3s s2
(2s
+
1) 2
(c) x(t) = a + (b − a)(t − t1 ) − (b − c)(t − t2 ) − c(t − t3 ) X (s) = 1 [a + (b − a)e−t1s − (b − c)e−t2s − ce−t3s ] s
k1k 2
k1 k2 k1
图解 2-3(a)
(b) 由图可写出
Uc (s) =
Ur (s)
R2
自动控制原理第二版课后答案第二章精选全文完整版
x kx ,简记为
y kx 。
若非线性函数有两个自变量,如 z f (x, y) ,则在
平衡点处可展成(忽略高次项)
f
f
z xv
|( x0 , y0 )
x y |(x0 , y0 )
y
经过上述线性化后,就把非线性关系变成了线性 关系,从而使问题大大简化。但对于如图(d)所示的 强非线性,只能采用第七章的非线性理论来分析。对于 线性系统,可采用叠加原理来分析系统。
Eb (s) Kbsm (s)
Js2 m(s) Mm fsm(s)
c
(s)
1
i
m
(s)
45
系统各元部件的动态结构图
传递函数是在零初始条件下建立的,因此,它只 是系统的零状态模型,有一定的局限性,但它有现 实意义,而且容易实现。
26
三、典型元器件的传递函数
1. 电位器
1 2
max
E
Θs
U s
K
U
K E
max
27
2. 电位器电桥
1
2
E
K1p1
K1 p 2
U
Θ 1
s
Θ
K1 p
Θ 2
s
U s
28
3.齿轮
传动比 i N2 N1
G2(s)
两个或两个以上的方框,具有同一个输入信号,并 以各方框输出信号的代数和作为输出信号,这种形
式的连接称为并联连接。
41
3. 反馈连接
R(s)
-
C(s) G(s)
H(s)
一个方框的输出信号输入到另一个方框后,得 到的输出再返回到这个方框的输入端,构成输 入信号的一部分。这种连接形式称为反馈连接。
自动控制原理课后习题答案第二章
第二章2-3试证明图2-5( a )的电网络与(b)的机械系统有相同的数学模型。
分析首先需要对两个不同的系统分别求解各自的微分表达式,然后两者进行对比,找岀两者之间系数的对应关系。
对于电网络,在求微分方程时,关键就是将元件利用复阻抗表示,然后利用电压、电阻和电流之间的关系推导系统的传递函数,然后变换成微分方程的形式,对于机械系统,关键就是系统的力学分析,然后利用牛顿定律列岀系统的方程,最后联立求微分方程。
证明:(a)根据复阻抗概念可得:即取A、B两点进行受力分析,可得:整理可得:经比较可以看岀,电网络( a)和机械系统(b)两者参数的相似关系为2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指岀各方程式的模态。
(1)(2 )2-7由运算放大器组成的控制系统模拟电路如图2-6所示,试求闭环传递函数U c ( s )/Ur ( s)。
图2-6 控制系统模拟电路解:由图可得联立上式消去中间变量U1和U2,可得:2-8某位置随动系统原理方块图如图2-7所示。
已知电位器最大工作角度,功率放大级放大系数为K3,要求:(1) 分别求岀电位器传递系数K 0、第一级和第二级放大器的比例系数 K 1和K 2;(2) 画岀系统结构图; (3) 简化结构图,求系统传递函数。
图2-7 位置随动系统原理图(2)假设电动机时间常数为 Tm 忽略电枢电感的影响,可得直流电动机的传递函数为 式中Km 为电动机的传递系数,单位为。
又设测速发电机的斜率为,则其传递函数为由此可画岀系统的结构图如下:(3)简化后可得系统的传递函数为2-9若某系统在阶跃输入 r(t)=1(t) 时,零初始条件下的输岀 响应,试求系统的传递函数 和脉冲响应。
分析:利用拉普拉斯变换将输入和输出的时间域表示变成频域表示,进而求解出系统的传递函数,然后对传递函数进行反变换求岀系统的脉冲响应函数。
解:(1),则系统的传递函数 (2)系统的脉冲响应2-10试简化图2-9中的系统结构图,并求传递函数 C(s)/R(s ) 和C(s)/N(s) 分析:分别假定R(s)=o 和N(s)=O ,画出各自的结构图,然后对系统结构图进行等效变换, 将其化成最简单的形式,从而求解系统的传递函数。
自动控制原理第二章习题课
第二章习题课
(2-8)
2-8 设有一个初始条件为零的系统,系 设有一个初始条件为零的系统, 统的输入、输出曲线如图, 统的输入、输出曲线如图,求G(s)。 。
δ(t)c(t)Fra bibliotek解:T
δ(t)
c(t)
K 0
K
t
0
T
t
K t- K (t-T) K (1-e-TS) c(t)= T T C(s)= Ts2 C(s)=G(S)
uo
2-6-b 用运算放大器组成的有源电网络如 力所示,试采用复数阻抗法写出它们的传 力所示 试采用复数阻抗法写出它们的传 递函数。 C 递函数。
R2 ui R1 -∞ + + R3
uo R4 R5
UO (R2R3SC+R2+R3)(R4+R5) = - UI R1(R3SC+1)R5 R2R3 (R4+R5)(R2+R3)( SC+1) R2+R3 =- - R1R5(R3SC+1) R5 UO(R3SC+1) R4+ R5 =- - R2R3SC+R2+R3 R5 R5 UO UO UI R4+ R5 R4+ R5 =- - R3 R1 R3 R2 + SC R3 SC+ 1 + R2 + 1 R3 + SC
Ui(s)=R1I1(s)+UC(s)
UC(s)=UO(s)+UL(s) I1(s)=IL(s)+IC(s)
UO(s) I2(s)= R2 UI(s)+UC(S) I 即:1(s)= R1 IL(s)=I1(s)-IC(s)
Ui 1 R1 I1
IC(s)=CsUC(s) UO(s) I1(s)= R2 UC(s) IC(s)= Cs
自动控制原理第2章 习题及解析
第二章 习题解析2-4 当系统处于零初始条件下时,给系统输入单位阶跃响应信号,其输出响应为2()1t t y t e e --=-+试求该系统的传递函数。
参考解答:2111421()()21(2)(1)s s Y s R s s s s s s s s++=-+==++++ 22()42()()32Y s s s G s R s s s ++==++2-5 某可控硅整流器的输出电压d 2cos U KU αΦ=式中,K 为常数;2U Φ为整流变压器副边相电压有效值;α为可控硅的控制角。
设α在0α附近作微小变化,试将d U 与α的关系式线性化。
参考解答:将非线性微分方程d 2cos U KU αΦ=进行线性化,即在平衡点α0 附近将其展为泰勒级数取一次近似,线性化后用变量增量的线性方程ΔU d = C Δα 代替原来的非线性方程,式中常数2020sin sin dd dU C KU U KU d ααααααΦΦ===-→∆=-∆略去增加量符号“Δ”,上式可简写为20sin d U KU ααΦ=- 2-6 试求图2-70所示电路的传递函数()/()y r U s U s 。
参考解答:图 a)可作出该无源电路的动态结构图(图a-1)亦可作成图(图a-2)所示由结构图等效变换可求得传递函数212()11()()11c r U s R Cs bTs U s R R Cs Ts ++==+++式中21212(),1R T R R C b R R =+=<+ ,该网络称为滞后网络。
图 b)由图(b )网络可作出其动态结构图(b-1),简化为(b-2)即可得传递函数:112221122112212()(1)(1)()()1y r U s R C s R C s U s R C R C s R C R C R C s ++=++++该网络称为滞后-超前网络(滞后-超前电路)。
2-7 试求图2-71所示有源电路的传递函数y r ()/()U s U s 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时,求系统
的开环增益。
R(s) E(s) G1(s) N(s) G2(s) H(s)
C(s)
Let’s test!
求下列象函数的 拉氏反变换 f ( t ) .
1 (1)F ( s ) = 2 s( s + 2 s − 3) 1− s (2)F ( s ) = 2 s + 2s + 3
3、结构图 * 串联、并联、反馈 4、梅森公式:
1 φ = ∑ Pk Δ k Δ k =1
n
*找回路,确定△(闭环特征多项式); *找前向通路,计算 Pk 和相应的 Δ k * 注意符号(公式、增益) *由结构图直接计算,注意“相加点从后不 从前” *不要直接写出结果,特征式写错扣分多
练习1: 1、关于系统传递函数,以下说法不正确的是: A、是在零初始条件下定义的; B、只适合于描述线性定常系统; C、与相应s平面零极点分布图等价; D、与输入作用下输出的幅值无关。
M (S ) 2、某系统开环传递函数 G ( S ) = N (S ) ,则闭环特征方程为: A、N(S) = 0 B、N(S)+M(S) = 0 C、1+ N(S) = 0 D、与是否为单位反 馈系统有关
练习2(加分题):已知系统的结构图如下,求 (1)系统分别在输入信号R(s)和扰动信号N(s) 作用下的闭环传递函数,误差传递函数; (2)当
(10年试题)某系统结构图如下图所示,用梅 逊公式求在R(s)和N(s)作用下,系统输出C(s) 的表达式。(16分)
(09试题)用梅逊公式求系统的闭环传递 函数 C(s) 。(16分)
Rs )
G2(s)
(07年试题)欲使下图所示系统中E(s)=0, 求G1(s)和G2(s)的表达式。(15分)
K s
1 T1 s + 1
T2 s + 1
第一章 控制系统的一般概念
非重点,只需清楚控制系统的基本概念 1.反馈控制,控制系统基本控制方式、 分类、基本要求 2.明确典型信号的定义和表示方法 3.会用叠加原理判断线性定常系统
第二章 控制系统的数学模型
1、拉氏变换 *微分定理和终值定理 *拉氏反变换(部分分式展开法) 2、传递函数 * 定义(零初始条件、求法) * 开环传递函数、闭环传递函数(单位 负反馈系统) * “首1”形式和“尾1”形式 * 四种闭环传递函数(特征多项式相同) P74