(完整版)数学归纳法经典例题及答案(2)
(完整版)数学归纳法经典例题详解
例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n Λ. 请读者分析下面的证法:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k Λ. 那么当n =k +1时,有:()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k Λ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=3211211211217151513131121k k k k Λ 322221321121++⋅=⎪⎭⎫ ⎝⎛+-=k k k ()1121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切自然数n 等式成立.评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k Λ ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.因为起始值已证,可证第二步骤.假设n =k 时,等式成立,即a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)那么当n =k +1时,a 1+2a 2+3a 3+…+ka k +(k +1)a k +1= k (k +1)(k +2)+ (k +1)[3(k +1)+3]=(k +1)(k 2+2k +3k +6)=(k +1)(k +2)(k +3)=(k +1)[(k +1)+1][(k +1)+2]这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.例3.证明不等式n n 2131211<++++Λ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++Λ.那么当n =k +1时,11131211++++++k k Λ1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k Λ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N )能被3整除.分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=a 4k +3+a 4k +2+a 4k +2+a 4k +1=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1=3a 4k +2+2a 4k +1由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.因此,当m =k +1时,a 4(k +1)+1也能被3整除.由①、②可知,对一切自然数m ∈N ,数列{a n }中的第4m +1项都能被3整除.例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.用数学归纳法证明如下:①当n=2时,上面已证.②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴ f (k+1)=k2+k+(k+1)=k2+2k+1=(k+1)2∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).。
(完整版)高二数学归纳法经典例题
例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n . 请读者分析下面的证法:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 那么当n =k +1时,有:()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=3211211211217151513131121k k k k 322221321121++⋅=⎪⎭⎫ ⎝⎛+-=k k k ()1121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切自然数n 等式成立.评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.因为起始值已证,可证第二步骤.假设n =k 时,等式成立,即a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)那么当n =k +1时,a 1+2a 2+3a 3+…+ka k +(k +1)a k +1= k (k +1)(k +2)+ (k +1)[3(k +1)+3]=(k +1)(k 2+2k +3k +6)=(k +1)(k +2)(k +3)=(k +1)[(k +1)+1][(k +1)+2]这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.例3.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++ .那么当n =k +1时,11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N )能被3整除.分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=a 4k +3+a 4k +2+a 4k +2+a 4k +1=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1=3a 4k +2+2a 4k +1由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.因此,当m =k +1时,a 4(k +1)+1也能被3整除.由①、②可知,对一切自然数m ∈N ,数列{a n }中的第4m +1项都能被3整除.例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.用数学归纳法证明如下:①当n=2时,上面已证.②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴ f (k+1)=k2+k+(k+1)=k2+2k+1=(k+1)2∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).。
数学归纳法经典例题及答案
数学归纳法(2016.4.21)之老阳三干创作一、用数学归纳法证明与正整数有关命题的步伐是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确, 证明1n k =+时结论也正确.综合(1)、(2), ……注意:数学归纳法使用要点:两步伐,一结论.二、题型归纳: 题型1.证明代数恒等式例1.用数学归纳法证明:证明:①n =1时, 左边31311=⨯=, 右边31121=+=, 左边=右边, 等式成立.②假设n =k 时, 等式成立, 即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.这就说明, 当n =k +1时, 等式亦成立,由①、②可知, 对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时, 左边=1, 右边=2.左边<右边, 不等式成立.②假设n =k 时, 不等式成立, 即k k 2131211<++++ .那么当n =k +1时,这就是说, 当n =k +1时, 不等式成立.由①、②可知, 原不等式对任意自然数n 都成立. 说明:这里要注意, 当n =k +1时, 要证的目标是1211131211+<++++++k k k , 今世入归纳假设后, 就是要证明:12112+<++k k k .认识了这个目标, 于是就可朝这个目标证下去, 并进行有关的变形, 到达这个目标.题型3.证明数列问题例 3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2, n ∈N *).(1)当n =5时, 求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3, T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时, T n =n (n +1)(n -1)3.解:(1)当n =5时,原等式酿成(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n , 所以a 2=C n 2·2n -2 b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2, 左边=右边, 等式成立. ②假设当n =k (k ≥2, k ∈N *)时, 等式成立, 即T k =k (k +1)(k -1)3成立那么, 当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1)=k (k +1)⎝ ⎛⎭⎪⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时, 等式成立.综上①②, 当n ≥2时, T n =n (n +1)(n -1)3.。
(完整版)数学归纳法测试题及答案
选修2-2 2. 3 数学归纳法一、选择题1.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( ) A .1+12<2 B .1+12+13<2 C .1+12+13<3 D .1+12+13+14<3 [答案] B[解析] ∵n ∈N *,n >1,∴n 取第一个自然数为2,左端分母最大的项为122-1=13, 2.用数学归纳法证明1+a +a 2+…+an +1=1-a n +21-a(n ∈N *,a ≠1),在验证n =1时,左边所得的项为( ) A .1 B .1+a +a 2 C .1+a D .1+a +a 2+a 3[答案] B[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.3.设f (n )=1n +1+1n +2+…+12n (n ∈N *),那么f (n +1)-f (n )等于( ) A.12n +1 B.12n +2C.12n +1+12n +2D.12n +1-12n +2[答案] D[解析] f (n +1)-f (n )=⎣⎢⎡⎦⎥⎤1(n +1)+1+1(n +1)+2+…+12n +12n +1+12(n +1) -⎣⎢⎡⎦⎥⎤1n +1+1n +2+…+12n =12n +1+12(n +1)-1n +1=12n +1-12n +2. 4.某个命题与自然数n 有关,若n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时该命题也成立.现在已知当n =5时,该命题不成立,那么可推得( )A .当n =6时该命题不成立B .当n =6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立[答案] C[解析]原命题正确,则逆否命题正确.故应选C.5.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步的证明时,正确的证法是()A.假设n=k(k∈N*),证明n=k+1时命题也成立B.假设n=k(k是正奇数),证明n=k+1时命题也成立C.假设n=k(k是正奇数),证明n=k+2时命题也成立D.假设n=2k+1(k∈N),证明n=k+1时命题也成立[答案] C[解析]∵n为正奇数,当n=k时,k下面第一个正奇数应为k+2,而非k+1.故应选C.6.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为()A.f(n)+n+1B.f(n)+nC.f(n)+n-1D.f(n)+n-2[答案] C[解析]增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.7.用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证() A.n=1时命题成立B.n=1,n=2时命题成立C.n=3时命题成立D.n=1,n=2,n=3时命题成立[答案] D[解析]假设n=k时不等式成立,即2k>k2-2,当n=k+1时2k+1=2·2k>2(k2-2)由2(k2-2)≥(k-1)2-4⇔k2-2k-3≥0⇔(k+1)(k-3)≥0⇒k≥3,因此需要验证n=1,2,3时命题成立.故应选D.8.已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N *,都能使m 整除f (n ),则最大的m 的值为( )A .30B .26C .36D .6[答案] C[解析] 因为f (1)=36,f (2)=108=3×36,f (3)=360=10×36,所以f (1),f (2),f (3)能被36整除,推测最大的m 值为36.9.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2、a 3、a 4,猜想a n =( )A.2(n +1)2B.2n (n +1)C.22n -1D.22n -1[答案] B[解析] 由S n =n 2a n 知S n +1=(n +1)2a n +1∴S n +1-S n =(n +1)2a n +1-n 2a n∴a n +1=(n +1)2a n +1-n 2a n∴a n +1=n n +2a n (n ≥2). 当n =2时,S 2=4a 2,又S 2=a 1+a 2,∴a 2=a 13=13a 3=24a 2=16,a 4=35a 3=110. 由a 1=1,a 2=13,a 3=16,a 4=110猜想a n =2n (n +1),故选B. 10.对于不等式n 2+n ≤n +1(n ∈N +),某学生的证明过程如下:(1)当n =1时,12+1≤1+1,不等式成立.(2)假设n =k (k ∈N +)时,不等式成立,即k 2+k <k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1,∴当n =k +1时,不等式成立,上述证法( )A .过程全都正确B .n =1验证不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确[答案] D[解析] n =1的验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.二、填空题11.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N *)”时,第一步的验证为________.[答案] 当n =1时,左边=4,右边=4,左≥右,不等式成立[解析] 当n =1时,左≥右,不等式成立,∵n ∈N *,∴第一步的验证为n =1的情形.12.已知数列11×2,12×3,13×4,…,1n (n +1),通过计算得S 1=12,S 2=23,S 3=34,由此可猜测S n =________.[答案] n n +1 [解析] 解法1:通过计算易得答案.解法2:S n =11×2+12×3+13×4+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 13.对任意n ∈N *,34n +2+a 2n+1都能被14整除,则最小的自然数a =________.[答案] 5[解析] 当n =1时,36+a 3能被14整除的数为a =3或5,当a =3时且n =3时,310+35不能被14整除,故a =5.14.用数学归纳法证明命题:1×4+2×7+3×10+…+n (3n +1)=n (n +1)2.(1)当n 0=________时,左边=____________,右边=______________________;当n =k 时,等式左边共有________________项,第(k -1)项是__________________.(2)假设n =k 时命题成立,即_____________________________________成立.(3)当n =k +1时,命题的形式是______________________________________;此时,左边增加的项为______________________.[答案] (1)1;1×(3×1+1);1×(1+1)2;k ;(k -1)[3(k -1)+1](2)1×4+2×7+3×10+…+k (3k +1)=k (k +1)2(3)1×4+2×7+…+(k +1)[3(k +1)+1]=(k +1)[(k +1)+1]2;(k +1)[3(k +1)+1]三、解答题15.求证:12-22+32-42+…+(2n -1)2-(2n )2=-n (2n +1)(n ∈N *).[证明] ①n =1时,左边=12-22=-3,右边=-3,等式成立.②假设n =k 时,等式成立,即12-22+32-42+…+(2k -1)2-(2k )2=-k (2k +1)2. 当n =k +1时,12-22+32-42+…+(2k -1)2-(2k )2+(2k +1)2-(2k +2)2=-k (2k +1)+(2k +1)2-(2k +2)2=-k (2k +1)-(4k +3)=-(2k 2+5k +3)=-(k +1)[2(k +1)+1],所以n =k +1时,等式也成立.由①②得,等式对任何n ∈N *都成立.16.求证:12+13+14+…+12n -1>n -22(n ≥2). [证明] ①当n =2时,左=12>0=右, ∴不等式成立.②假设当n =k (k ≥2,k ∈N *)时,不等式成立.即12+13+…+12k -1>k -22成立. 那么n =k +1时,12+13+…+12k -1 +12k -1+1+…+12k -1+2k -1>k -22+12k -1+1+…+12k >k -22+12k +12k +…+12k =k -22+2k -12k =(k +1)-22, ∴当n =k +1时,不等式成立.据①②可知,不等式对一切n ∈N *且n ≥2时成立.17.在平面内有n 条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点.求证:这n 条直线将它们所在的平面分成n 2+n +22个区域.[证明] (1)n =2时,两条直线相交把平面分成4个区域,命题成立.(2)假设当n =k (k ≥2)时,k 条直线将平面分成k 2+k +22块不同的区域,命题成立. 当n =k +1时,设其中的一条直线为l ,其余k 条直线将平面分成k 2+k +22块区域,直线l 与其余k 条直线相交,得到k 个不同的交点,这k 个点将l 分成k +1段,每段都将它所在的区域分成两部分,故新增区域k +1块.从而k +1条直线将平面分成k 2+k +22+k +1=(k +1)2+(k +1)+22块区域. 所以n =k +1时命题也成立.由(1)(2)可知,原命题成立.18.(2010·衡水高二检测)试比较2n +2与n 2的大小(n ∈N *),并用数学归纳法证明你的结论.[分析] 由题目可获取以下主要信息:①此题选用特殊值来找到2n +2与n 2的大小关系;②利用数学归纳法证明猜想的结论.解答本题的关键是先利用特殊值猜想.[解析] 当n =1时,21+2=4>n 2=1,当n =2时,22+2=6>n 2=4,当n =3时,23+2=10>n 2=9,当n =4时,24+2=18>n 2=16,由此可以猜想,2n +2>n 2(n ∈N *)成立下面用数学归纳法证明:(1)当n =1时,左边=21+2=4,右边=1,所以左边>右边,所以原不等式成立.当n =2时,左边=22+2=6,右边=22=4,所以左边>右边;当n=3时,左边=23+2=10,右边=32=9,所以左边>右边.(2)假设n=k时(k≥3且k∈N*)时,不等式成立,即2k+2>k2.那么n=k+1时,2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2.又因:2k2-2-(k+1)2=k2-2k-3=(k-3)(k+1)≥0,即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立.根据(1)和(2),原不等式对于任何n∈N*都成立.。
数学归纳法经典例题及答案
数学归纳法(2016421)、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值n 0 (如n 0 1或2等)时结论正确; (2)假设当n k (k N , k n °)时结论正确,证明n k 1时结论也正确.综合(1)、( 2),注意:数学归纳法使用要点: 两步骤,一结论、题型归纳: 题型1.证明代数恒等式用数学归纳法证明:当n=k+1时.k 12k 3由①、②可知,对一切自然数 n 等式成立.证明:①n=1时,左边 ②假设n =k 时, 2n 11 2n 1 n 2n 11 3 等式成立,即:-,右边 3 -,左边=右边,等式成立. 3 2k 1 2k 1 k2k 12k 1 2k 1 2k 1 2k 32k 1 2k 1 2k 32k 2 2k 1 3k 1 2k 3 2k 1 k 12k 1 2k 3 这就说明, 当n=k+1时,等式亦成立,题型2.证明不等式11 1 _例2 •证明不等式1 2打(n € N ).V 2 <3 V n证明:①当n=1时,左边=1,右边=2.左边 <右边,不等式成立.那么当n=k+1时,2 .k2k 1 2.k 1这就是说,当n=k+1时,不等式成立.由①、②可知,原不等式对任意自然数 n 都成立.说明:这里要注意,当 n=k+1时,要证的目标是1 1 1 1 ----------------------------------------1 — — — ------------2 \ k 1,当代入归纟纳假设后,就是要证明:■. 2 3 . k 、k 12、、k 1— 2 k 1 .-k 1认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题例 3 (x + 1)n = a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + …+ a n (x — 1)n (n > 2, n € N *).(1)当 n = 5 时,求 a o + a 1 + a 2 + a 3 + a 4 + a 5 的值.a 2 十⑵设b n = 2厂3, T n = b 2 + b 3 + b 4+…+ b n .试用数学归纳法证明:当 n 》2时,T n = n(n +1)( n — 1)3 .解:(1) 当 n = 5 时,原等式变为(x + 1)5= a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + a 4(x — 1)4+ a 5(x — 1)5②假设n=k 时,不等式成立,即 1 'I 1.31 .2 1■-3令x = 2 得a°+ a i + a2+ a3+ a4+ a5= 35= 243. ⑵因为(x+ 1)n= [2 + (x—1)]n,所以a2= C n22旷2b n=長=2C n2= n(n —1)(n > 2)①当n= 2时.左边=T2= b2 = 2,右边=2(2 +屮2 —1=2,左边=右边,等式成立.②假设当n = k(k>2, k€ N*)时,等式成立,即T k=k(k+!)(k—1成立那么,当n = k+ 1时,左边=T k+ b k+1 =k(k+ ¥(k— " + (k+ 1)[( k+ 1) —1] = k(k+ ¥(k—1 + k(k + 1) =k(k+ 1)宁 + 1 迩+ 1)(k+ 2)(k+ 1)[( k+ 1) + 1][(k + 1)-1]=右边故当n= k+ 1时,等式成立.综上①②,当n》2时,T n =n(n+ 1)( n—13。
数学归纳法经典例题及答案
数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。
二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3. 解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立 那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。
数学归纳法经典例题及参考答案
由①、②可知,对一切自然数 n 等式成立. 题型 2.证明不等式
例 2.证明不等式1 1 1 1 2 n (n∈N).
23
n
证明:①当 n=1 时,左边=1,右边=2. 左边<右边,不等式成立.
②假设 n=k 时,不等式成立,即1 1 1 1 2 k .
认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.
题型 3.证明数列问题 例 3(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n(n≥2,
n∈N*). (1)当 n=5 时,求 a0+a1+a2+a3+a4+a5 的值. (2)设 bn=,Tn=b2+b3+b4+…+bn.试用数学归纳法证明:当 n≥2 时,Tn
=. 解: (1)当 n=5 时, 原等式变为(x+1)5=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-
1)5 令 x=2 得 a0+a1+a2+a3+a4+a5=35=243. (2)因为(x+1)n=[2+(x-1)]n,所以 a2=Cn2·2n-2 bn==2Cn2=n(n-1)(n≥2) ①当 n=2 时.左边=T2=b2=2, 右边==2,左边=右边,等式成立. ②假设当 n=k(k≥2,k∈N*)时,等式成立, 即 Tk=成立 那么,当 n=k+1 时, 左边=Tk+bk+1=+(k+1)[(k+1)-1]=+k(k+1) =k(k+1)= ==右边. 故当 n=k+1 时,等式成立. 综上①②,当 n≥2 时,Tn=.
例 1.用数学归纳法证明:
证明:①n=1 时,左边 1 1 ,右边 1 1 ,左边=右边,等式成立.
(完整版)数学归纳法典型例题,推荐文档
【知识梳理】数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。
近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。
一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n = n0时命题成立;(2)(归纳递推)假设n = k()时命题成立,证明当时命题也成立。
只要完成这两个步骤,就可以断定命题对从开始的所有正整数n都成立。
上述证明方法叫做数学归纳法。
数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。
【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。
用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。
2、运用数学归纳法时易犯的错误(1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。
(2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。
(3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。
数学归纳法经典例题及答案
数学归纳法一、用数学归纳法证明与正整数有关命题的步骤是: 1证明当n 取第一个值0n 如01n =或2等时结论正确;2假设当0(N ,)n k k k n *=∈≥ 时结论正确;证明1n k =+时结论也正确.综合1、2;……注意:数学归纳法使用要点: 两步骤;一结论.. 二、题型归纳: 题型1.证明代数恒等式例1.用数学归纳法证明: 证明:①n =1时;左边31311=⨯=;右边31121=+=;左边=右边;等式成立.②假设n =k 时;等式成立;即:()()1212121751531311+=+-++⨯+⨯+⨯k kk k .当n =k +1时.这就说明;当n =k +1时;等式亦成立; 由①、②可知;对一切自然数n 等式成立. 题型2.证明不等式例2.证明不等式n n2131211<++++n ∈N .证明:①当n =1时;左边=1;右边=2.左边<右边;不等式成立. ②假设n =k 时;不等式成立;即k k2131211<++++.那么当n =k +1时;这就是说;当n =k +1时;不等式成立.由①、②可知;原不等式对任意自然数n 都成立. 说明:这里要注意;当n =k +1时;要证的目标是1211131211+<++++++k k k ;当代入归纳假设后;就是要证明:12112+<++k k k .认识了这个目标;于是就可朝这个目标证下去;并进行有关的变形;达到这个目标.题型3.证明数列问题例3 x +1n =a 0+a 1x -1+a 2x -12+a 3x -13+…+a n x -1n n ≥2;n ∈N . 1当n =5时;求a 0+a 1+a 2+a 3+a 4+a 5的值.2设b n =错误!;T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时;T n =错误!.解: 1当n =5时;原等式变为x +15=a 0+a 1x -1+a 2x -12+a 3x -13+a 4x -14+a 5x -15 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. 2因为x +1n =2+x -1n ;所以a 2=C n 2·2n -2b n =错误!=2C n 2=nn -1n ≥2①当n =2时.左边=T 2=b 2=2;右边=错误!=2;左边=右边;等式成立. ②假设当n =kk ≥2;k ∈N 时;等式成立; 即T k =错误!成立 那么;当n =k +1时;左边=T k +b k +1=错误!+k +1k +1-1=错误!+kk +1=kk+1错误!=错误!=错误!=右边.故当n=k+1时;等式成立.综上①②;当n≥2时;T n=错误!.。
数学归纳法典型例题
课前探究学习
课堂讲练互动
活页规范训练
题型四 “归纳、猜想、证明”问题
【例4】 (12分)在数列{an},{bn}中,a1=2,b1=4,且an, bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N+). 求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}的通项公 式,并证明你的结论. 审题指导 归纳——猜想——证明是高考重点考查的内容之一, 此类问题可分为归纳性问题和存在性问题,本例中归纳性问 题需要从特殊情况入手,通过观察、分析、归纳、猜想,探 索出一般规律.
课前探究学习
课堂讲练互动
活页规范训练
【解题流程】 由条件得an,bn,an+1,bn+1之间的关系 ―→ 代入a1=2,b1=4,求出a2,a3,a4,b2,b3,b4的值 ―→ 归纳猜想an,bn的通项公式 ―→ 用数学归纳法证明所得结论 [规范解答] 由条件得 2bn=an+an+1, a2n+1=bnbn+1. 由此可以得 a2=6,b2=9,a3=12,b3=16,a4=20,b4=25. 猜测 an=n(n+1),bn=(n+1)2. 用数学归纳法证明: ①当 n=1 时,由上可得结论成立.
课前探究学习
课堂讲练互动
活页规范训练
=k+1 1+k+1 2+…+31k+3k+1 1+3k+1 2+3k+1 3-k+1 1 >56+3k+1 1+3k+1 2+3k+1 3-k+1 1 >56+3×3k+1 3-k+1 1=56. 所以当 n=k+1 时,不等式也成立. 由(1),(2)可知,原不等式对一切 n≥2,n∈N+都成立.
活页规范训练
【训练4】 设数列{an}满足an+1=an2-nan+1,n=1,2,3,… (1)当a1=2时,求a2,a3,a4,并由此猜想出an的一个通项 公式;
数学归纳法经典例题及答案
数学归纳法(一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确.综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。
二、题型归纳: 题型1.证明代数恒等式例1.用数学归纳法证明: 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立.②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k .当n =k +1时.这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式例2.证明不等式n n2131211<++++(n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k2131211<++++.那么当n =k +1时,这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明:12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题例 3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3.解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2)①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立.②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3成立那么,当n =k +1时, 左边=T k +b k+1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1)=k (k +1)⎝ ⎛⎭⎪⎫k -13+1=k (k +1)(k +2)3=(k +1)[(k +1)+1][(k +1)-1]3=右边.故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。
(完整版)高中数学高考总复习数学归纳法习题及详解
高中数学高考总复习数学归纳法习题及详解一、选择题 1.已知a n =1n +1+n,数列{a n }的前n 项和为S n ,已计算得S 1=2-1,S 2=3-1,S 3=1,由此可猜想S n =( )A.n -1B.n +1-1C.n +1-2D.n +2-2 [答案] B2.已知S k =1k +1+1k +2+1k +3+…+12k (k =1,2,3,…),则S k +1等于( )A .S k +12(k +1)B .S k +12k +1-1k +1C .S k +12k +1-12k +2D .S k +12k +1+12k +2[答案] C [解析] S k +1=1(k +1)+1+1(k +1)+2+…+12(k +1)=1k +2+1k +3+…+12k +2=1k +1+1k +2+…+12k +12k +1+12k +2-1k +1=S k +12k +1-12k +2.3.对于不等式n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 1°当n =1时,12+1≤1+1,不等式成立.2°假设n =k (k ∈N *)时不等式成立,即k 2+k <k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+k +2=(k +2)2=(k +1)+1. ∴当n =k +1时,不等式成立. 上述证法( ) A .过程全都正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 [答案] D[解析]没用归纳假设.4.将正整数排成下表:12 3 45 6 7 8 910 11 12 13 14 15 16……则在表中数字2010出现在()A.第44行第75列B.第45行第75列C.第44行第74列D.第45行第74列[答案] D[解析]第n行有2n-1个数字,前n行的数字个数为1+3+5+…+(2n-1)=n2.∵442=1936,452=2025,且1936<2010,2025>2010,∴2010在第45行.又2025-2010=15,且第45行有2×45-1=89个数字,∴2010在第89-15=74列,选D.5.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k +1)≥(k+1)2成立”.那么,下列命题总成立的是()A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立C.若f(7)<49成立,则当k≥8时,均有f(k)>k2成立D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立[答案] D[解析]对于A,f(3)≥9,加上题设可推出当k≥3时,均有f(k)≥k2成立,故A错误.对于B,要求逆推到比5小的正整数,与题设不符,故B错误.对于C,没有奠基部分,即没有f(8)≥82,故C错误.对于D,f(4)=25≥42,由题设的递推关系,可知结论成立,故选D.6.一个正方形被分成九个相等的小正方形,将中间的一个正方形挖去,如图(1);再将剩余的每个正方形都分成九个相等的小正方形,并将中间的一个挖去,得图(2);如此继续下去……则第n个图共挖去小正方形()A .(8n -1)个B .(8n +1)个 C.17(8n -1)个 D.17(8n +1)个 [答案] C[解析] 第1个图挖去1个,第2个图挖去1+8个,第3个图挖去1+8+82个……第n 个图挖去1+8+82+…+8n -1=8n -17个. 7.观察下式:1+3=22 1+3+5=32 1+3+5+7=42 1+3+5+7+9=52……据此你可归纳猜想出的一般结论为( ) A .1+3+5+…+(2n -1)=n 2(n ∈N *) B .1+3+5+…+(2n +1)=n 2(n ∈N *) C .1+3+5+…+(2n -1)=(n +1)2(n ∈N *) D .1+3+5+…+(2n +1)=(n +1)2(n ∈N *) [答案] D[解析] 观察可见第n 行左边有n +1个奇数,右边是(n +1)2,故选D.8.(2010·天津滨海新区五校)若f (x )=f 1(x )=x1+x ,f n (x )=f n -1[f (x )](n ≥2,n ∈N *),则f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=( )A .n B.9n +1 C.n n +1 D .1 [答案] A[解析] 易知f (1)=12,f (2)=23,f (3)=34,…,f (n )=n n +1;由f n (x )=f n -1(f (x ))得,f 2(x )=x1+2x ,f 3(x )=x 1+3x ,…,f n (x )=x 1+nx ,从而f 1(1)=12,f 2(1)=13,f 3(1)=14,…,f n (1)=1n +1,,所以f (n )+f n (1)=1,故f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=n .9.(2010·曲阜一中)设f (x )是定义在R 上恒不为零的函数,且对任意的实数x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A .[12,2)B .[12,2]C .[12,1]D .[12,1)[答案] D[解析] 由已知可得a 1=f (1)=12,a 2=f (2)=f 2(1)=⎝⎛⎭⎫122,a 3=f (3)=f (2)·f (1)=f 3(1)=⎝⎛⎭⎫123,…,a n =f (n )=f n (1)=⎝⎛⎭⎫12n ,∴S n=12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n =12[1-(12)2]1-12=1-(12)n, ∵n ∈N *,∴12≤S n <1.10.如图,一条螺旋线是用以下方法画成的:△ABC 是边长为1的正三角形,曲线CA 1、A 1A 2,A 2A 3是分别以A 、B 、C 为圆心,AC 、BA 1、CA 2为半径画的圆弧,曲线CA 1A 2A 3称为螺旋线旋转一圈.然后又以A 为圆心,AA 3为半径画圆弧……这样画到第n 圈,则所得螺旋线的长度l n 为( )A .(3n 2+n )πB .(3n 2-n +1)π C.(3n 2+n )π2D.(3n 2-n +1)π2[答案] A[解析] 由条件知CA 1,A 1A 2,A 2A 3,…,A n -1A n 对应的中心角都是2π3,且半径依次为1,2,3,4,…,故弧长依次为2π3,2π3×2,2π3×3…,据题意,第一圈长度为2π3(1+2+3),第二圈长度为2π3(4+5+6),第n 圈长度为2π3[(3n -2)+(3n -1)+3n ],故L n =2π3(1+2+3+…+3n )=2π3·3n (1+3n )2=(3n 2+n )π.二、填空题11.(2010·浙江金华十校模考)已知2+23=223,3+38=338,4+415=4415,…,若6+at=6at,(a,t均为正实数),类比以上等式,可推测a,t的值,则a+t=________.[答案]41[解析]注意分数的分子、分母与整数的变化规律,2→分子2,分母3=22-1,3→分子3,分母8=32-1,4→分子4,分母15=42-1,故猜想a=6,t=62-1=35,再验证6+635=6635成立,∴a+t=41.[点评]一般地,n+nn2-1=n3n2-1=nnn2-1,(n∈N*)成立.例如,若15+at=15at成立,则t+a=239.12.考察下列一组不等式:23+53>22·5+2·5224+54>23·5+2·53252+552>22·512+212·52将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为________________________.[答案]a m+n+b m+n>a m b n+a n b m(a,b>0,a≠b,m,n>0)13.(2010·浙江杭州质检)观察下列等式:(x2+x+1)0=1;(x2+x+1)1=x2+x+1;(x2+x+1)2=x4+2x3+3x2+2x+1;(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1;可以推测(x2+x+1)4的展开式中,系数最大的项是________.[答案]19x4[解析]观察其系数变化规律:(x2+x+1)1为1,1,1(x2+x+1)2为1,2,3,2,1(x2+x+1)3为1,3,6,7,6,3,1故由此可推测(x2+x+1)4系数中最大的为6+7+6=19,故系数最大项是19x4.14.(2010·南京调研)五位同学围成一圈依次循环报数,规定:第一位同学首次报出的数为2,第二位同学首次报出的数为3,之后每位同学所报出的数都是前两位同学所报出数的乘积的个位数字,则第2010个被报出的数为________.[答案] 4[解析] 根据规则,五位同学第一轮报出的数依次为2,3,6,8,8,第二轮报出的数依次为4,2,8,6,8,第三轮报出的数依次为8,4,2,8,6,故除第一、第二位同学第一轮报出的数为2,3外,从第三位同学开始报出的数依次按6,8,8,4,2,8循环,则第2010个被报出的数为4.[点评] 数字2010比较大,不可能一个一个列出数到第2010个数,故隐含了探寻其规律性(周期)的要求,因此可通过列出部分数,观察是否存在某种规律来求解.明确了这一特点解决这类问题就有了明确的解题方向和思路.三、解答题15.已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…A n 是线段A n -2A n -1的中点,…,(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明. [解析] (1)当n ≥3时,x n =x n -1+x n -22. (2)a 1=x 2-x 1=a ,a 2=x 3-x 2=x 2+x 12-x 2=-12(x 2-x 1)=-12a ,a 3=x 4-x 3=x 3+x 22-x 3=-12(x 3-x 2)=14a ,由此推测a n =(-12)n -1a (n ∈N *).证法1:因为a 1=a >0,且a n =x n +1-x n =x n +x n -12-x n =x n -1-x n 2=-12(x n -x n -1)=-12a n -1(n ≥2),所以a n =(-12)n -1a .证法2:用数学归纳法证明:(1)当n =1时,a 1=x 2-x 1=a =(-12)0a ,公式成立.(2)假设当n =k 时,公式成立,即a k =(-12)k -1a 成立.那么当n =k +1时,a k +1=x k +2-x k +1=x k +1+x k 2-x k +1=-12(x k +1-x k )=-12a k =-12(-12)k -1a =(-12)(k +1)-1a ,公式仍成立,根据(1)和(2)可知,对任意n ∈N *,公式a n =(-12)n -1a 成立.16.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点⎝⎛⎭⎫n ,S n n 都在函数f (x )=x +a n2x 的图象上.(1)求a 1,a 2,a 3的值,猜想a n 的表达式,并用数学归纳法证明;(2)将数列{a n }依次按1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7,a 8,a 9,a 10);(a 11),(a 12,a 13),(a 14,a 15,a 16),(a 17,a 18,a 19,a 20);(a 21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n },求b 5+b 100的值.[分析] (1)将点⎝⎛⎭⎫n ,S n n 的坐标代入函数f (x )=x +a n2x 中,通过整理得到S n 与a n 的关系,则a 1,a 2,a 3可求;(2)通过观察发现b 100是第25组中第4个括号内各数之和,各组第4个括号中各数之和构成首项为68、公差为80的等差数列,利用等差数列求和公式可求b 100.[解析] (1)∵点⎝⎛⎭⎫n ,S n n 在函数f (x )=x +a n2x 的图象上, ∴S n n =n +a n 2n ,∴S n =n 2+12a n . 令n =1得,a 1=1+12a 1,∴a 1=2;令n =2得,a 1+a 2=4+12a 2,∴a 2=4;令n =3得,a 1+a 2+a 3=9+12a 3,∴a 3=6.由此猜想:a n =2n . 用数学归纳法证明如下:①当n =1时,由上面的求解知,猜想成立. ②假设n =k (k ≥1)时猜想成立,即a k =2k 成立, 则当n =k +1时,注意到S n =n 2+12a n (n ∈N *),故S k +1=(k +1)2+12a k +1,S k =k 2+12a k .两式相减得,a k +1=2k +1+12a k +1-12a k ,所以a k +1=4k +2-a k .由归纳假设得,a k =2k ,故a k +1=4k +2-a k =4k +2-2k =2(k +1). 这说明n =k +1时,猜想也成立. 由①②知,对一切n ∈N *,a n =2n 成立.(2)因为a n =2n (n ∈N *),所以数列{a n }依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b 100是第25组中第4个括号内各数之和.由分组规律知,各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,所以b 100=68+24×80=1988, 又b 5=22,所以b 5+b 100=2010.[点评] 由已知求出数列的前几项,做出猜想,然后利用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式问题的方法.证明的关键是根据已知条件和假设寻找a k 与a k +1或S k 与S k +1间的关系,使命题得证.17.(2010·南京调研)已知:(x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3.[解析] (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22n -3=2C n 2=n (n -1)(n ≥2)①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立.②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3成立那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1)=k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3=(k +1)[(k +1)+1][(k +1)-1]3=右边.故当n=k+1时,等式成立.综上①②,当n≥2时,T n=n(n+1)(n-1)3.。
数学归纳法二(解析,练习及答案)
数学归纳法(Ⅱ)用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明:当n取第一个值n0结论正确;(2)假设当n=k(k∈N*,且k≥n0)时结论正确,证明当n=k+1时结论也正确.由(1),(2)可知,命题对于从n0开始的所有正整数n都正确.例1、比较2n与n2的大小(n∈N*).解:当n=1时,2n>n2,当n=2、4时,2n=n2,当n=3时,2n<n2,当n=5时,2n>n2,猜想:当n≥5时,2n>n2,n∈N*.下面用数学归纳法证明:(1)当n=5时,结论显然成立.(2)假设n=k(k∈N*,k≥5)时2k>k2,当n=k+1时,2k+1=2·2k>2k2.下面证明2k2>(k+1)2,2k2-(k+1)2=k2-2k-1,此式在k≥5时单调递增.∴k2-2k-1≥14>0,∴2k2>(k+1)2.即n=k+1时,2k+1>(k+1)2.∴由(1)(2)得所求证成立.综上,当n=1或n≥5时,2n>n2;当n=2,4时,2n=n2;当n=3时,2n<n2.例2、已知数列满足,,试猜想的通项公式并用数学归纳法证明.解:由和,得,,,,归纳上述结果,可猜想.下面用数学归纳法证明:(1)当n=1时,,右边,等式成立.(2)假设当n=k(k≥1)时,等式成立,即成立.当n=k+1时,.即n=k+1时等式成立.根据(1)和(2),可知猜想对任意正整数n都成立.例3、是否存在常数a、b、c,使等式对一切正整数n 都成立?证明你的结论.解:把n=1,2,3代入得方程组,解得,猜想:等式对一切都成立.下面用数学归纳法证明:(1)当n=1时,由上面的探求可知等式成立.(2)假设n=k时等式成立,即,当n=k+1时,所以当n=k+1时,等式也成立,∴由(1)(2)知猜想成立,即存在a=3,b=11,c=10使命题成立.例4、是否存在正整数m,使得f(n)=(2n+7)·3n+9对任意自然数n都能被m整除?若存在,求出最大的m值,并证明结论;若不存在,请说明理由.解:由f(n)=(2n+7)·3n+9,得f(1)=36, f(2)=3×36, f(3)=10×36, f(4)=34×36,由此猜想最大的m=36.下面用数学归纳法证明f(n)能被36整除:(1)当n=1时,显然成立.(2)假设n=k时, f(k)能被36整除,即f(k)=(2k+7)·3k+9能被36整除;当n=k+1时,f(k+1)=[2(k+1)+7]·3k+1+9=3[(2k+7)·3k+9]+18(3k-1-1),由于3k-1-1是偶数,故18(3k-1-1)能被36整除.∴当n=k+1时,f(n)也能被36整除.由(1)(2)可知对一切正整数n都有f(n)=(2n+7)·3n+9能被36整除,m的最大值为36.练习:一、选择题1、如果命题对成立,那么它对也成立,又若对及成立,则下列结论正确的是()A.对所有自然数成立 B.只对所有正偶数成立C.只对所有正奇数成立 D.对所有大于1的自然数成立2、用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证()A.n=1时命题成立B.n=1,n=2时命题成立C.n=3时命题成立D.n=1,n=2,n=3时命题成立3、用数学归纳法证明命题“n3+(n+1)3+(n+2)3(n∈N)能被9整除”要利用归纳假设证n=k+1时的情况,只需展开()A.(k+3)3 B.(k+2)3 C.(k+1)3D.(k+1)3+(k+2)34、如果命题对n=k成立,则它对n=k+1也成立,现已知对n=4不成立,则下列结论中正确的是()A.对成立 B.对n>4且成立C.对n<4且成立 D.对n≤4且不成立二、填空题5、用数学归纳法证明“2n>n2+1对于n≥n0的正整数n都成立”时,第一步证明中的起始值n0应取__________.6、证明<1++++…+<n+1(n>1),当n=2时,中间式子等于_________.三、解答题7、用数学归纳法证明:对一切大于1的自然数,不等式(1+)(1+)…(1+)>均成立.8、已知数列{a n}的前n项和为S n,且a1=1,S n=n2a n(n∈N*).(1)试求出S1,S2,S3,S4,并猜想S n的表达式;(2)证明你的猜想,并求出a n的表达式.9、是否存在常数a、b、c使等式12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)对于一切n∈N*都成立,若存在,求出a、b、c并证明;若不存在,试说明理由.10、已知数列,计算S1,S2,S3,S4,根据计算结果,猜想S n的表达式,并用数学归纳法进行证明.11、已知等差数列{a n}的公差d大于0,且a2,a5是方程x2-12x+27=0的两根,数列{b n}的前n项和为T n,且T n=1-.(1)求数列{a n}、{b n}的通项公式;(2)设数列{a n}的前n项和为S n,试比较与S n+1的大小,并说明理由.参考答案:1、D 解析:命题对成立,则它对也成立;由成立可以得取所有正偶数都成立,由成立可以得取所有正奇数都成立,所以答案选D.2、D 解析:假设n=k时不等式成立,即2k>k2-2.当n=k+1时,2k+1=2·2k>2(k2-2),由2(k2-2)≥(k+1)2-2k2-2k-3≥0(k+1)(k-3)≥0k≥3,因此需验证n=1,2,3时命题成立.3、A 解析:假设n=k时命题成立,即k3+(k+1)3+(k+2)3能被9整除,当n=k+1时(k+1)3+(k+2)3+(k+3)3=[k3+(k+1)3+(k+2)3]+9(k2+3k)+27.4、D 解析:可以考虑“命题对n=k成立,则它对n=k+1也成立”的逆否命题:“命题对n=k+1不成立,则它对n=k不成立”.5、5 提示:时2n>n2+1都不成立,以后都成立.6、1+++提示:时,所以中间的式子为1+++.7、证明:(1)当n=2时,左边=1+=;右边=.∵左边>右边,∴不等式成立.(2)假设n=k(k≥2,且k∈N*)时不等式成立,即(1+)(1+)…(1+)>.则当n=k+1时,(1+)(1+)…(1+)>·==>==.∴当n=k+1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n,不等式都成立.8、解:(1)∵a n=S n-S n-1(n≥2),∴S n=n2(S n-S n-1),∴S n=S n-1(n≥2).∵a1=1,∴S1=a1=1,∴S2=,S3==,S4=,猜想S n=(n∈N*).(2)证明:①当n=1时,S1=1成立.②假设n=k(k≥1,k∈N*)时,等式成立,即S k=,当n=k+1时, S k+1=(k+1)2·a k+1=a k+1+S k=a k+1+,∴a k+1=,∴S k+1=(k+1)2·a k+1==,∴n=k+1时等式也成立,得证.∴根据①、②可知,对于任意n∈N*,等式均成立.又∵a k+1=,∴a n=.9、解:假设存在a、b、c使12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)对于一切n∈N*都成立.当n=1时,a(b+c)=1;当n=2时,2a(4b+c)=6;当n=3时,3a(9b+c)=19.解方程组解得证明如下:①当n=1时,由以上知存在常数a,b,c使等式成立.②假设n=k(k∈N*)时等式成立,即12+22+32+…+k2+(k-1)2+…+22+12=k(2k2+1);当n=k+1时,12+22+32+…+k2+(k+1)2+k2+(k-1)2+…+22+12=k(2k2+1)+(k+1)2+k2 =k(2k2+3k+1)+(k+1)2=k(2k+1)(k+1)+(k+1)2=(k+1)(2k2+4k+3)=(k+1)[2(k+1)2+1],即n=k+1时,等式成立.因此存在a=,b=2,c=1,使等式对一切n∈N*都成立.10、解:;.猜想:证明:(1)当n=1时,左边=,右边=,猜想成立.(2)假设当n=k时猜想成立,即那么,所以,当n=k+1时猜想也成立.综合(1)(2)知,猜想对任何都成立.11、解:(1)由已知得,又∵{a n}的公差大于0,∴a5>a2,∴a2=3,a5=9.∴d===2,a1=1,∴a n=2n-1.∵T n=1-b n,∴b1=,当n≥2时,T n-1=1-b n-1,∴b n=T n-T n-1=1-b n-(1-b n-1),化简,得b n=b n-1,∴{b n}是首项为,公比为的等比数列,即b n=·=,∴a n=2n-1,b n=.(2)∵S n==n2,∴S n+1=(n+1)2,=.以下比较与S n+1的大小:当n=1时,=,S2=4,∴<S2,当n=2时,=,S3=9,∴<S3,当n=3时,=,S4=16,∴<S4,当n=4时,=,S5=25,∴>S5.猜想:n≥4时,>S n+1.下面用数学归纳法证明:①当n=4时,已证.②假设当n=k(k∈N*,k≥4)时,>S k+1,即>(k+1)2.那么n=k+1时,==3·>3(k+1)2=3k2+6k+3=(k2+4k+4)+2k2+2k-1>[(k+1)+1]2=S(k+1)+1,∴n=k+1时,>S n+1也成立.由①②可知n∈N*,n≥4时,>S n+1都成立.综上所述,当n=1,2,3时,<S n+1,当n≥4时,>S n+1.。
数学归纳法典型例题
数学归纳法典型例题【知识梳理】数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。
近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。
一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n = n 0时命题成立;(2)(归纳递推)假设n = k()时命题成立,证明当时命题也成立。
只要完成这两个步骤,就可以断定命题对从开始的所有正整数n都成立。
上述证明方法叫做数学归纳法。
数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。
【要点解析】1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。
用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。
2、运用数学归纳法时易犯的错误(1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。
(2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。
(3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。
数学归纳法典型例题
数学归纳法典型例题
1. 用数学归纳法证明:时,。
2. 。
3. 用数学归纳法证明:对一切大于1的自然数n,不等式成立。
4. 用数学归纳法证明:能被9整除。
,,……你能得出怎样的结论?并进行证明。
5.由下列各式:
,,
1.解析:①当时,左边,右边,左边=右边,所以等式成立。
②假设时等式成立,即有,则当时,
所以当时,等式也成立。
由①,②可知,对一切等式都成立。
2.解析:(1)当时,左边,右边,命题成立。
(2)假设当时命题成立,即
那么当时,左边。
上式表明当时命题也成立。
由(1)(2)知,命题对一切正整数均成立。
3.解析:①当时,左=,右,左>右,∴不等式成立。
②假设时,不等式成立,即
,
那么当时,
∴时,不等式也成立。
由①,②知,对一切大于1的自然数n,不等式都成立。
4.解析:方法一:令,
(1)能被9整除。
(2)假设能被9整除,则
∴能被9整除。
由(1)(2)知,对一切,命题均成立。
方法二:(1),原式能被9整除,
(2)若,能被9整除,则时
∴时也能被9整除。
由(1),(2)可知,对任何,能被9整除。
5. 解:对所给各式进行观察比较,注意各不等式左边最后一项的分母特点:,,,,…,猜想为,对应各式右端为。
归纳得一般结论
①当时,结论显然成立。
②假设当时,结论成立,
即成立,
则当时,
,即当时结论也成立。
由①②可知对任意,结论都成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学归纳法(2016.4.21)
一、用数学归纳法证明与正整数有关命题的步骤是:
(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;
(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……
注意:数学归纳法使用要点: 两步骤,一结论。
二、题型归纳:
题型1.证明代数恒等式
例1.用数学归纳法证明:
()()12121217
51531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边3
1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:
()()12121217
51531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.
()()()()32121121217
51531311++++-++⨯+⨯+⨯k k k k ()()
3212112++++=k k k k ()()()()()()
321211232121322++++=++++=k k k k k k k k ()1
121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,
由①、②可知,对一切自然数n 等式成立.
题型2.证明不等式
例2.证明不等式n n 21
31
21
1<++++ (n ∈N).
证明:①当n =1时,左边=1,右边=2.
左边<右边,不等式成立.
②假设n =k 时,不等式成立,即k k 2131211<++++
.
那么当n =k +1时, 11
1
31
21
1++++++k k
1
1
1211
2+++=++<k k k k k ()()
1211211
1+=++=++++<k k k k k k
这就是说,当n =k +1时,不等式成立.
由①、②可知,原不等式对任意自然数n 都成立.
说明:这里要注意,当n =k +1时,要证的目标是
121113
1
21
1+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .
认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.
题型3.证明数列问题
例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).
(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.
(2)设b n =a 22n -3
,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3
. 解: (1)当n =5时,
原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5
令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.
(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2
b n =a 22
n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,
右边=2(2+1)(2-1)3
=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,
即T k =k (k +1)(k -1)3
成立 那么,当n =k +1时,
左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3
+k (k +1) =k (k +1)⎝⎛
⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3
=右边. 故当n =k +1时,等式成立.
综上①②,当n ≥2时,T n =
n (n +1)(n -1)3
.。