最新七年级配套问题应用题

合集下载

初中方程应用题公式配套问题

初中方程应用题公式配套问题

初中方程应用题公式配套问题嘿,朋友们,咱来聊聊初中方程应用题里的配套问题。

就说那生产螺丝和螺母的事儿吧,这就像一对小情侣,必须得配套呀。

假设生产螺丝的效率是x个/小时,生产螺母的效率是y个/小时。

如果一个螺丝要配两个螺母,那生产出来的螺母数量得是螺丝数量的两倍才行,这方程就是2×生产螺丝的数量 = 生产螺母的数量,就像两个小跟班(螺母)要紧紧跟着一个老大(螺丝),写成方程就是2×ax = by(a是生产螺丝的时间,b是生产螺母的时间)。

再看那做桌椅的,桌子腿和桌面就像人的腿和身子,得配好喽。

要是一张桌子配四条腿,设做桌面的速度是m张/天,做桌腿的速度是n条/天。

那桌腿的数量得是桌面数量的四倍,这方程就像是桌腿在喊:“嘿,桌面,我得是你的四倍呢!”方程就是4×做桌面的数量 = 做桌腿的数量,也就是4×cm = dn(c是做桌面的天数,d是做桌腿的天数)。

还有那组装汽车的,汽车轮子和车身的配套,就像鞋子和脚。

一辆汽车四个轮子,设生产车身的数量为p,生产轮子的数量为q。

那轮子数量得是车身数量的四倍呀,方程就像是轮子在说:“车身啊,我要四倍于你才能让你跑起来。

”4p = q。

做衣服和扣子也是,扣子就像衣服的小点缀,可少不得。

一件衣服5个扣子,假设做衣服的数量是r件,做扣子的数量是s个。

扣子数量得是衣服数量的5倍,就像扣子在给衣服喊加油:“我得是你的5倍才能让你完整。

”5r = s。

那生产笔杆和笔帽的,笔帽就像笔杆的小帽子。

如果一个笔杆配一个笔帽,设生产笔杆的效率为u个/分钟,生产笔帽的效率为v个/分钟。

生产的笔杆和笔帽数量得相等,这方程就像它们在互相说:“嘿,咱俩得一样多哦。

”au = bv(a是生产笔杆的时间,b是生产笔帽的时间)。

像生产灯罩和灯座的,灯罩和灯座就像房子和地基。

一个灯罩配一个灯座,设做灯罩的速度为w个/小时,做灯座的速度为x个/小时。

那灯罩数量和灯座数量要相等,方程就是cw = dx(c是做灯罩的时间,d是做灯座的时间)。

七年级数学配套应用题专项训练

七年级数学配套应用题专项训练

七年级数学配套应用题专项训练一、行程问题1. 题目甲、乙两人从相距36千米的两地相向而行。

如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇。

甲、乙两人每小时各走多少千米?解析设甲每小时走公式千米,乙每小时走公式千米。

当甲比乙先走2小时,甲先走的路程为公式千米,两人共同走的时间是公式小时,共同走的路程为公式千米,可得到方程公式。

当乙比甲先走2小时,乙先走的路程为公式千米,两人共同走的时间是3小时,共同走的路程为公式千米,可得到方程公式。

对第一个方程进行化简:公式,即公式,两边同时乘以2得到公式。

对第二个方程进行化简:公式,即公式。

用公式减去公式:公式公式公式,解得公式。

把公式代入公式,得到公式,公式,公式,解得公式。

2. 题目一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

解析设船在静水中的速度为公式千米/小时。

顺水速度公式船在静水中的速度+水流速度,即公式千米/小时;逆水速度公式船在静水中的速度-水流速度,即公式千米/小时。

根据路程 = 速度×时间,且两个码头之间的距离不变。

顺水航行的路程为公式千米,逆水航行的路程为公式千米,则公式。

展开方程得公式。

移项可得公式,解得公式。

两码头之间的距离为公式千米。

二、工程问题1. 题目一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析把这项工程的工作量看作单位“1”。

甲单独做需要10天完成,则甲每天的工作效率为公式;乙单独做需要15天完成,则乙每天的工作效率为公式。

两人合作4天完成的工作量为公式。

先计算括号内的值:公式。

那么两人合作4天完成的工作量为公式。

剩下的工作量为公式。

乙单独完成剩下的工作量需要的时间为公式天。

2. 题目某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成。

(完整版)七年级配套问题应用题

(完整版)七年级配套问题应用题

(完整版)七年级配套
问题应用题
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)
2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片和一张长方形铁片可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套
3.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。

4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。

该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。

5.某车间有22名工人,每人每天可以生产1200个螺钉或2000各螺母。

一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名
6.某服装厂加工车间有工人54人,每人每天可以加工上衣8件或裤子10条,应该怎样分配人数, 才能使每天生产的上衣和裤子配套
7.制作一张桌子要用1个桌面和4个桌腿,1立方米木材可制作20个桌面,或者制作400条桌腿,现有12立方米木材,应怎样计划用料才能制作尽可能多的桌子
8.服装厂计划生产一批某种型号的学生服装,已知每 3米长的某种布料可做2件上衣或3条裤子,一件上衣和一条裤子为一套,现仓库内存有这样的布料600米,应分别用多少布料做上衣和裤子,才能恰好配套。

七年级应用题以及答案

七年级应用题以及答案

七年级应用题以及答案题目一:速度与时间小明骑自行车去学校,他的速度是每小时15公里,如果他需要30分钟到达学校,那么小明家到学校的距离是多少公里?答案一:小明的速度是每小时15公里,即每分钟0.25公里(15公里/60分钟)。

他需要30分钟到达学校,所以距离是0.25公里/分钟× 30分钟 = 7.5公里。

题目二:百分比问题一个班级有50名学生,其中25%的学生喜欢数学,20%的学生喜欢英语,剩下的学生喜欢其他科目。

问喜欢数学和英语的学生总共占班级的百分比是多少?答案二:喜欢数学的学生占25%,喜欢英语的学生占20%,所以喜欢数学和英语的学生总共占25% + 20% = 45%。

题目三:面积计算一个长方形的长是10米,宽是5米,求这个长方形的面积。

答案三:长方形的面积计算公式是:面积 = 长× 宽。

所以这个长方形的面积是10米× 5米 = 50平方米。

题目四:折扣问题一件衣服原价是200元,现在打八折出售,问这件衣服现在的价格是多少?答案四:打八折意味着现价是原价的80%。

所以这件衣服现在的价格是200元× 80% = 160元。

题目五:时间计算如果现在是下午3点,那么从现在起4小时后是什么时间?答案五:从下午3点起4小时后是晚上7点。

题目六:分数问题一个班级有40名学生,其中2/5的学生是女生,问这个班级有多少名女生?答案六:班级女生的比例是2/5,所以女生的人数是40名学生× 2/5 = 16名。

题目七:体积计算一个长方体的长是4厘米,宽是3厘米,高是2厘米,求这个长方体的体积。

答案七:长方体的体积计算公式是:体积 = 长× 宽× 高。

所以这个长方体的体积是4厘米× 3厘米× 2厘米 = 24立方厘米。

题目八:比例问题如果5个苹果的重量是1千克,那么10个苹果的重量是多少?答案八:如果5个苹果重1千克,那么10个苹果的重量是1千克× (10/5) = 2千克。

完整版)七年级配套问题应用题

完整版)七年级配套问题应用题

完整版)七年级配套问题应用题1.某车间有28名工人,他们生产螺栓和螺母。

每个工人每小时平均能生产12个螺栓或18个螺母。

如何分配工人来生产螺栓和螺母,使它们能够完美地搭配(一个螺栓需要两个螺母)?2.包装厂有42名工人,他们可以生产圆形铁片和长方形铁片。

每个工人每小时平均可以生产120张圆形铁片或80张长方形铁片。

如果将两张圆形铁片和一张长方形铁片组合在一起,就可以制作出一个密封圆桶。

如何安排工人的生产任务,才能使圆形和长方形铁片的配套合理?3.某部队派出一支由25人组成的小分队参加防汛抗洪斗争。

每个人每小时可以装18袋泥土,或者每两个人每小时可以抬14袋泥土。

如何安排这些人的工作,才能使装泥和抬泥的任务密切配合,同时确保清场干净?4.某车间加工机轴和轴承。

每个工人每天平均可以加工15个机轴或10个轴承。

该车间共有80名工人。

一根机轴和两个轴承可以组成一套。

如何分配工人来加工机轴和轴承,才能使每天生产的机轴和轴承能够完美地配套?5.某车间有22名工人。

每个工人每天可以生产1200个螺钉或2000个螺母。

一个螺钉需要配两个螺母。

为了使每天生产的螺钉和螺母能够完美地搭配,应该安排多少工人来生产螺钉和螺母?6.某服装厂加工车间有54名工人。

每个工人每天可以加工8件上衣或10条裤子。

如何分配这些工人,才能使每天生产的上衣和裤子能够完美地配套?7.制作一张桌子需要1个桌面和4个桌腿。

一立方米的木材可以制作20个桌面,或者制作400条桌腿。

现在有12立方米的木材。

如何计划用料,才能制作尽可能多的桌子?。

初一配套应用题及答案

初一配套应用题及答案

初一配套应用题及答案初一配套应用题及答案「篇一」1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求"两队合作的天数尽可能少",所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能"两队合作的天数尽可能少"。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1,x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量,(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据"甲、丙合做2小时后,余下的乙还需做6小时完成"可知甲做2小时、乙做6小时、丙做2小时一共的.工作量为1。

数学初一应用题及答案

数学初一应用题及答案

数学初一应用题及答案1. 问题:小明的爸爸给他买了一辆自行车,原价为500元,现在商店打8折出售,小明的爸爸实际支付了多少钱?答案:首先,我们需要计算打折后的价格。

原价为500元,打8折,即支付原价的80%。

计算方法如下:500元× 80% = 500元× 0.8 = 400元所以,小明的爸爸实际支付了400元。

2. 问题:一个长方形的长是15米,宽是10米,求这个长方形的面积。

答案:长方形的面积可以通过长乘以宽来计算。

计算方法如下:面积 = 长× 宽 = 15米× 10米 = 150平方米所以,这个长方形的面积是150平方米。

3. 问题:一个班级有40名学生,其中男生人数是女生人数的1.5倍,求这个班级男生和女生各有多少人?答案:首先,我们设女生人数为x,那么男生人数就是1.5x。

根据题意,男生和女生的总人数为40人。

我们可以列出方程:x + 1.5x = 402.5x = 40x = 40 ÷ 2.5 = 16所以,女生有16人,男生有1.5x = 1.5 × 16 = 24人。

4. 问题:小华家离学校的距离是2公里,小华每天骑自行车上学,他的速度是每小时5公里。

求小华每天骑自行车上学需要多少时间?答案:首先,我们需要计算小华骑自行车上学的总时间。

已知距离是2公里,速度是每小时5公里。

计算方法如下:时间 = 距离÷ 速度 = 2公里÷ 5公里/小时 = 0.4小时所以,小华每天骑自行车上学需要0.4小时。

5. 问题:一个数的3倍加上4等于20,求这个数。

答案:设这个数为x,根据题意,我们可以得到方程:3x + 4 = 203x = 20 - 43x = 16x = 16 ÷ 3x = 5.33(保留两位小数)所以,这个数是5.33。

初一数学应用题带答案

初一数学应用题带答案

初一数学应用题带答案1. 问题:小明骑自行车去上学,他的速度是每小时15公里。

如果他骑了40分钟,那么他骑了多远?答案:首先,我们需要将40分钟转换为小时,因为速度的单位是公里/小时。

40分钟等于2/3小时。

然后,我们使用公式:距离 = 速度× 时间。

所以,小明骑的距离是 15公里/小时× 2/3小时 = 10公里。

2. 问题:一个长方形的长是宽的两倍,如果宽是5米,那么长方形的周长是多少?答案:首先,我们知道长方形的长是宽的两倍,所以长是5米× 2 = 10米。

长方形的周长公式是:周长= 2 × (长 + 宽)。

将已知的长和宽代入公式,我们得到周长= 2 × (10米 + 5米) = 2 × 15米 = 30米。

3. 问题:一个班级有40名学生,如果每名学生需要2本练习册,那么总共需要多少本练习册?答案:根据题目,每名学生需要2本练习册。

所以,总共需要的练习册数量是 40名学生× 2本/学生 = 80本。

4. 问题:一个游泳池的长是25米,宽是10米,如果游泳池的水深是2米,那么游泳池的容积是多少立方米?答案:游泳池的容积可以通过体积公式计算,即体积 = 长× 宽× 高。

将游泳池的尺寸代入公式,我们得到体积 = 25米× 10米× 2米 = 500立方米。

5. 问题:一个苹果的重量是150克,如果一箱苹果有20个,那么一箱苹果的总重量是多少克?答案:一箱苹果的总重量可以通过将单个苹果的重量乘以苹果的数量来计算。

所以,总重量 = 150克/个× 20个 = 3000克。

6. 问题:一个工厂每天生产500个零件,如果一周工作5天,那么一周内工厂生产了多少个零件?答案:一周内工厂生产的零件数量可以通过将每天生产的零件数量乘以一周的工作天数来计算。

所以,一周内生产的零件数量 = 500个/天× 5天 = 2500个。

初一数学配套问题

初一数学配套问题

初一数学配套问题第一篇:初一数学配套问题1.班主任张老师带五年级(7)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问几名男生,几名女生?2.大油瓶一瓶装4千克,小油瓶2瓶装1千克,现有100千克油装了共60个瓶子。

问大小油瓶各多少个?3.小毛参加数学竞赛,共做20道题,得67分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的同样多。

问小毛做对几道题?4.红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支1.龟鹤共有100个头,350只脚.龟,鹤各多少只2.学校有象棋,跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副3.一些2分和5分的硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍,问5分硬币有多少个4.某人领得工资240元,有2元,5元,10元三种人民币,共50张,其中2元与5元的张数一样多.那么2元,5元,10元各有多少张5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下的部分,这样前后共用了16天.甲先做了多少天6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有的是由一段上坡路(3千米),一段平路(4千米),一段下坡路(2千米)和一段平路(4千米)组成的;有的是由一段上坡路(3千米),一段下坡路(2千米)和一段平路(4千米)组成的.已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段7.用1元钱买4分,8分,1角的邮票共15张,问最多可以买1角的邮票多少张第二篇:七年级数学一元一次方程配套问题配套问题1、某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知2个大齿轮和3个小齿轮配套,问应如何安排劳力使生产的产品刚好成套?2、某车间有22人,加工生产一种螺栓和螺母。

七年级数学一元一次方程:配套问题(有答案)

七年级数学一元一次方程:配套问题(有答案)

七年级一元一次方程配套问题:方法总结:总数量相等或对应成比例。

1、某车间每天能制作甲种零件500只,或者乙种零件250只,甲、乙两种各一只配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?2、制作一张桌子要用一个桌面和4条桌腿,1m的立方木材可制作20个桌面,或者制作400条桌腿,现有12m的立方木材,应怎样计划用料才能制作尽可能多的桌子?3、某车间有22名工人,每人一天平均生产螺钉1200个或螺母2000个,一个螺钉配两螺母,为使每天的产品刚好配套则应该分配多少名工人生产螺钉?多少名工人生产螺母?4、一套仪器由一个A部件和三个B部件构成。

用1立方米钢材可做40个A部件或240个B部件。

现要用6立方米钢材做这种仪器,应用多少钢材做A、B两种部件,恰好配成这种仪器多少套?5、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?6、红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?练习:1、包装厂有42人,每个人平均每小时生产圆片120片,或长方形片80片,将两张圆片与一张长方形片配成一套,问如何安排工人?2、用铝片做听装饮料瓶,每张铝片可制瓶身16张或制瓶底43张,一个瓶身和两个瓶底可配成一套,有150张铝片,用多少张制瓶身和多少张制瓶底?3、某工厂计划生产一种新型豆浆机,每台豆浆机需3个A种零件和5个B种零件正好配套已知车间每天能生产A 种零件450个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应安排多少天生产甲种零件,多少天生产乙种零件?4、某车间有工人16名,每人每天可加工甲零件5个或乙零件4个,已知每加工一个甲零件可获利16元,美加工一个乙零件可获利24元,若此车间一共获利1440元。

人教版七年级上册数学第三章一元一次方程应用题——配套问题训练

人教版七年级上册数学第三章一元一次方程应用题——配套问题训练

人教版七年级上册数学第三章一元一次方程应用题——配套问题训练1.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?2.某车间有技术工人40人,平均每天每人可加工甲种部件16个或乙种部件12个.1个甲种部件和3个乙种部件配成一套,问加工甲、乙部件各安排多少人,才能使每天加工的部件刚好配套?3.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?4.甲车间有32人,乙车间有28人,现从乙车间抽调部分人到甲车间,请用列方程的方法解答下列问题:(1)调人后甲车间人数是乙车间人数的2倍,求抽调的人数;(2)若每人每天能加工A零件300个或B零件140个,3个A零件和一个B零件刚好配成一套,甲车间负责加工A零件,乙车间负责加工B零件,为了使每天加工的零件刚好完全配套,求抽调的人数.5.某机械厂加工车间有51名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套.问需要安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?6.某服装厂要生产一批学生校服,已知每3米的布料可以做上衣2件或裤子3条,因裤子旧得快,要求一件上衣和两条裤子配一套,现计划用1008米的布料加工成学生校服,应如何安排布料加工上衣和裤子才能刚好配套?且能加工多少套校服?7.用白铁皮做罐头盒,每张白铁皮可制盒身16个或盒底64个;一个盒身与两个盒底配成一套罐头盒。

现有150张白铁皮;求用多少张白铁皮制盒身,多少张白铁皮制盒底,可以制成整套的罐头盒?8.有一些相同的房间需要粉刷墙面,2名一级技工粉刷5个房间,一天下来有30m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多刷了另外的40m2墙面,平均每名一级技工比二级技工每天多粉刷10m2墙面,求每个房间需要粉刷的墙面面积.9.学校安排学生住宿,若每室住5人,则有4人无法安排;若每室住6人,可空出1个房间.问这个学校的住宿生有多少人?宿舍有多少房间?10.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,一个螺栓需要配两个螺母,要想每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?11.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少人?12.向阳文化用品商店出售不同规格的甲、乙两种钢笔,甲种比乙种贵1元,小明用86元钱买了5支甲种钢笔和4支乙种钢笔,则乙种钢笔每支多少元?13.某车间每天只能生产甲种零件120个或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套.要想27天生产的产品恰好配套,问怎样安排生产甲、乙两种零件的天数?14.某车间每天能生产甲种零件120个或乙种零件100个,甲、乙两种零件分别取2个和1个才能配成一套,要在80内生产最多的成套产品,则甲、乙两种零件各应生产多少天?15.某班去看演出,甲种票每张25元,乙种票每张20元.如果40名学生购票恰好用去880元,甲乙两种票各买了多少张?16.一名工人一天可以加工100个A零件,或者加工150个B零件,每一个A零件和两个B零件可以组装成一套零件,某车间共有35名工人,问应如何安排这些工人,使加工出来的零件刚好可以配套.17.一张方桌由1个桌面和4条桌腿组成,如果31m木料可以做方桌的桌面40个或做桌腿240条,现有310m木料,那么应需要多少立方米的木料制作桌面,多少立方米的木料制作桌腿才能使桌面和桌腿正好配套?18.甲、乙两商场有某品牌服装共450件,由于甲商场销量上升,需从乙商场调运该服装50件,调运后甲商场该服装的数量是乙商场的2倍,求甲、乙两商场原来各自有该品牌服装的数量.19.现用190张铁皮做盒子,每张铁皮能做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个盒子,那么需要多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?20.一套仪器由一个A部件和三个B部件构成,用1m3钢材可做40个A部件或240个B部件,现要用6m3钢材制作这种仪器,为使所做的A部件和B部件刚好配套,则做A部件和B部件的钢材各需多少m3。

人教版七年级上册数学一元一次方程应用题(配套问题)专题训练

人教版七年级上册数学一元一次方程应用题(配套问题)专题训练

人教版七年级上册数学一元一次方程应用题(配套问题)专题训练1.某瓷器厂共有工人120人,每个工人一天能做200只茶杯或50只茶壶.如果8只茶杯和一只茶壶为一套.(1)应安排多少人生产茶杯,可使每天生产的瓷器配套.(2)按(1)中的安排,每天可以生产多少套茶具?2.列方程解应用题:某车间有15个工人,生产水桶、扁担两种商品;已知每人每天平均能生产水桶80个或扁担110个,则应分配多少人生产水桶、多少人生产扁担,才能使每天生产的水桶和扁担刚好配套?(每2个水桶和1个扁担配成一套)3.一个车间加工轴杆和轴承,每人每天平均可以加工轴杆6根或者轴承8个,1根轴杆与2个轴承为一套,该车间共有40人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?4.某服装厂加工一批西服,每1米布料能裁上衣1件或裁裤子2件.现有布料15米,为了使上衣和裤子配套,裁上衣和裤子的布料各几米?5.某校七年级(2)班共有42名学生,在一节科技活动课上作长方体纸盒,已知每名同学一节课可制作盒身20个或盒盖30个,一个盒身和两个盒盖配成一个长方体纸盒.为使一节课制作的盒身、盒盖刚好配套,应安排制作盒身和盒盖的同学各多少名?6.3月12日是植树节,七年级170名学生参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女生各多少人?7.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?8.某车间有94个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每1个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?每天能生产成多少套?(列一元一次方程求解)9.某工厂生产茶具,每套茶具有1个茶壶和4只茶杯组成,生产这套茶具的主要材料是紫砂泥,用1千克紫砂泥可做2个茶壶或8只茶杯.现要用6千克紫砂泥制作这些茶具,应用多少千克紫砂泥做茶壶,多少个千克紫砂泥做茶杯,恰好配成这种茶具多少套?10.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库存有布料300m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料227m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)11.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾,为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?12.某车间有技术工人50人,平均每天每人可加工甲种部件18个或乙种部件14个,1个甲种部件和2个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套13.某玩具生产厂家A车间原来有30名工人,B车间原来有20名工人,现将新增25名工人分配到两车间,使A A车间工人总数是B车间工人总数的2倍.(1)新分配到A、B车间各是多少人?(2)A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现要制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人和生产线后比原来提前几天完成任务?14.某校新进了一批课桌椅,七年(2)班的学生利用活动课时间帮助学校搬运部分课桌椅,已知七年(2)班共有学生45人,其中男生的人数比女生人数的2倍少24人,要求每个学生搬运60张桌子或者搬运150张椅子.请解答下列问题:(1)七年(2)班有男生、女生各多少人?(2)一张桌子配两把椅子,为了使搬运的桌子和椅子刚好配套,应该分配多少个学生搬运桌子,多少个学生搬运椅子?15.某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在18天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?16.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库内存有布料180m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料202m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)17.某丝巾厂家70名工人义务承接了2020年上海进博会上志愿者佩戴的手环、丝巾的制作任务.已知每人每天平均生产手环180个或者丝巾120条,一条丝巾要配两个手环.(1)为了使每天生产的丝巾和手环刚好配套,应分配多少名工人生产手环,多少名工人生产丝巾?(2)在(1)的方案中,能配成套.18.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?19.糕点厂中秋节前要制作一批盒装月饼,每盒装2块大月饼和4块小月饼,制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.(1)若制作若干盒月饼共用了450kg面粉,请问制作大小两种月饼各用了多少面粉?(列方程解应用题)(2)在(1)的条件下,该糕点厂将销售价定为每盒108元,测算发现每盒月饼可盈利80%,若该厂按此售价销售完这批月饼,共可盈利多少元?20.在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级2班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗如果不配套,那么如何进行人员调配,才能使每小时剪出的筒身与筒底刚好配套?参考答案:1.(1)80人(2)2000(套)2.分配11人生产水桶,4人生产扁担,才能使每天生产的水桶和扁担刚好配套3.安排16人加工轴杆,24人加工轴承4.裁上衣的布料为10米,裁裤子的布料为5米5.18名同学制作盒身,24名同学制作盒盖6.该年级的男生有119人,那么女生有51人7.18个工人生产塑料棒,16个工人生产金属球8.46人生产甲种零件,48人生产乙种零件,每天生产552套9.应用3千克紫砂泥做茶壶,3千克紫砂泥做茶杯,恰好配成这种茶具6套10.(1)做上衣用布料180m,则做裤子用布料120m,可以生成120套衣服(2)最多可以生产90套衣服,余料可以做2条裤子11.应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.12.安排14人加工甲部件,安排36人加工乙部件才能使每天加工的两种部件刚好配套,一共加工了252套13.(1)新分配到A车间20人,分配到B车间5人(2)A车间新增工人和生产线后比原来提前2天完成任务14.(1)七年(2)班有男生22人、女生23人(2)应该分配25名学生搬运桌子,20名学生搬运椅子15.甲种零件生产10天,乙种零件生产8天.16.(1)做上衣用布料108m,则做裤子用布料72m;72套;(2)最多可以生产80套衣服,余料可以做1件上衣或2条裤子.17.(1)应分配40名工人生产手环,30名工人生产丝巾;(2)360018.(1)调入6名工人;(2)10名工人生产螺柱,12名工人生产螺母.19.(1)用了250kg面粉制作大月饼,200kg制作小月饼;(2)120000元.20.(1)七年级2班有男生有24人,女生有26人;(2)男生应向女生支援4人时,才能使每小时剪出的筒身与筒底刚好配套.。

2024年七年级上册数学应用题

2024年七年级上册数学应用题

2024年七年级上册数学应用题一、行程问题。

1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?- 解析:设x小时后两人相遇。

根据路程 = 速度和×时间,可列方程(6 + 4)x=20,即10x = 20,解得x = 2。

所以2小时后两人相遇。

2. 一辆汽车以每小时60千米的速度从A地开往B地,3小时后到达。

返回时速度为每小时45千米,求汽车往返的平均速度。

- 解析:A地到B地的距离为60×3 = 180千米。

返回时所用时间为180÷45=4小时。

往返总路程为180×2 = 360千米,总时间为3 + 4=7小时。

则平均速度为360÷7=(360)/(7)≈51.43千米/小时。

3. 甲、乙两人在环形跑道上跑步,甲每分钟跑200米,乙每分钟跑160米,两人同时同地同向出发,经过40分钟甲第一次追上乙。

求环形跑道的周长。

- 解析:甲每分钟比乙多跑200 - 160 = 40米,40分钟甲比乙多跑了一圈,即环形跑道的周长。

所以周长为40×40 = 1600米。

二、工程问题。

4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?- 解析:设两人合作需要x天完成。

把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。

根据工作量=工作效率和×工作时间,可列方程((1)/(10)+(1)/(15))x = 1,通分得到((3)/(30)+(2)/(30))x=1,即(1)/(6)x = 1,解得x = 6。

所以两人合作需要6天完成。

5. 某工程队修一条路,原计划每天修400米,25天完成,实际每天修500米,实际多少天可以完成?- 解析:这条路的总长度为400×25 = 10000米。

实际每天修500米,那么实际完成天数为10000÷500 = 20天。

配套问题应用题

配套问题应用题

单人产量
总产量
x × 1 200 = 1 200 x (22﹣x) × 2 000 =2 000(22-x)
人数和为22人 螺母数量 =螺钉数量
螺母总产量:螺 钉总产量=1:1
1200x=2023(22-x)
解:设分配x名工人生产螺钉,假如其设他怎x名(样工2列2人方-x生程)产?名螺母, 工人生产螺母.则
二 自学检测
1 某车间22名工人生产螺钉和螺母,每人每天平 均生产螺钉1200个或螺母2023个,1个螺钉要配 1个螺母,为了使每天旳产品刚好配套,应该分 配多少工人生产螺钉,多少人生产螺母?
本题旳配套关系是: 1个螺钉配1个螺母,即螺钉数:螺母 数=1:1.
列表分析:
产品类型 螺钉 螺母
生产人数
分析:本题旳配套关系是:
2个螺钉配3个螺母,即螺钉数:螺母数=2:3.
3×螺钉数量=2×螺母数量
方程列为:3×1 200 x=2×2 000(22-x)
3×1 200 x=2×2 000(22-x)
3600x=4000(22-x) 3600x=88000-4000x 7600x=88000 x=19/220
Page 11
1/1200:2/2023=5:6 生产螺钉:22÷(5+6)x5=10(人) 生产螺母:22-10=12(人)
Page 12
自学检测
3 某车间22名工人生产螺钉和螺母,每人每天平均 生产螺钉1200个或螺母2023个,2个螺钉要配3个 螺母,为了使每天旳产品刚好配套,应该分配多 少工人生产螺钉,多少人生产螺母?
答:应分配10名工人生产螺钉,12名工人生产 螺母.
Page 10
设x名工人生产螺钉,则有 22-x人生产螺母,可得: 1200x=2023(22-x)÷2 1200x=22023-1000x 1200x+1000x=22023 22x=220 x=10 所以生产螺母旳人数为: 22-10=12(人)

初一配套问题应用题

初一配套问题应用题

1.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母。

1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?2.某车间有技工85人,平均每天每人加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙部件个安排多少人才能使每天加工甲、乙部件刚好配套?3.某车间有28名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓12个或螺母18个,一个螺栓要配两个螺母,应分配多少人生产螺栓、多少人生产螺母,才能使生产的螺栓和螺母刚好配套?4.某车间有28名工人生产一种螺栓和螺母,平均每人每小时能生产螺栓12个或螺母18个,两个螺栓要配三个螺母,应分配多少人生产螺栓,多少人生产螺母,才能使生产的螺栓和螺母刚好配套?5. 一张方桌有1个桌面、4条桌腿组成,如果1立方米木料可以做方桌的桌面50个或做桌腿300条,现有5立方米木料,那么用多少立方米木料做桌面、多少立方米木料做桌腿,做出的桌面和桌腿恰好配成方桌?能配成多少方桌?6.根据市场调查,某种消毒液的大瓶(500g)和小瓶(250g)两种产品的销售数量(按瓶计算)比为2:5,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大小瓶两种产品多少瓶?7. 某车间28名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓12个或螺母18个,一个螺栓要配两个螺母。

已知车间原有剩余的螺母210个。

问应分配多少人生产螺栓,多少人生产螺母,才能使当天的螺栓和螺母恰好配套?7.某车间有28名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓12个或螺母18个,一个螺栓要配两个螺母。

第一天安排14名工人生产螺栓,14名工人生产螺母,问第二天应分配多少人生产螺栓,多少人生产螺母,才能使两天总的生产效率最高?9.(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的支持)。

人教版七年级上册数学期末一元一次方程应用题(配套问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(配套问题)专题训练(含答案)

7.(1)七年级 2001 班有男生 20 人,女生 30 人 (2)应该分配 30 人剪筒身,20 人剪筒底
8.(1)裁剪出的侧面个数是 4x ;裁剪出的底面个数是 6x 672 (2)A 方法裁剪 84 张,B 方法裁剪 28 张,能做 84 个盒子
9.应该分配 27 名学生做机身,18 名学生做机翼,每小时能够做出 540 套
(1)请用含 x 的代数式分别表示裁剪出的侧面和底面个数; (2)若裁剪出的侧面和底面恰好全部用完,问 A 方法、B 方法各裁剪几张?能做多少个盒 子?
9.初一年级共 45 名学生参与科技节活动,制作纸飞机模型.每人每小时可做 20 个机 身或 60 个机翼,一个飞机模型要 1 个机身配 2 个机翼,为了使每小时制作的成品刚好 配套,应该分配多少名学生做机身?多少名学生做机翼?在刚好配套的情况下,每小时 能够做出多少套?
5.一套仪器由一个 A 部件和三个 B 部件构成.用1m3 钢材可做 40 个 A 部件或 200 个 B 部件.现要用 8m3 钢材制作这种仪器,应用多少钢材做 A 部件,多少钢材做 B 部件,恰 好配成这种仪器多少套?
6.某瓷器厂共有工人120 人,每个工人一天能做 200 只茶杯或 50只茶壶.如果 8 只茶杯 和一只茶壶为一套. (1)应安排多少人生产茶杯,可使每天生产的瓷器配套. (2)按(1)中的安排,每天可以生产多少套茶具?
17.(1)侧面数:5x+90;底面数:120﹣4x;(2)若裁剪出的侧面和底面恰好全部用完, 能做 32 个盒子. 18.(1)20 立方米 (2)800 元
(1)按 B 种方法剪裁的有______张白板纸;(用含 x 的代数式表示) (2)将 5 32 名工人生产桌子和椅子,每人每天平均生产 15 张桌子或 50 把椅子,一 张桌子要配两把椅子.已知车间每天安排 x 名工人生产桌子. (1)求车间每天生产桌子和椅子各多少?(用含 x 的式子表示) (2)当每天安排多少名工人生产桌子时,生产的桌子和椅子刚好配套?

人教版七年级上册数学第三章一元一次方程应用题——配套问题

人教版七年级上册数学第三章一元一次方程应用题——配套问题

人教版七年级上册数学第三章一元一次方程应用题——配套问题1.某工厂甲、乙两个车间共有22名工人,每人每天可以生产1200个螺钉或2000个螺母.(1)如果甲车间的人数比乙车间的人数多4人,那么两个车间各有多少人?(2)如果1个螺钉需配2个螺母,为使每天生产的螺钉和螺母刚好匹配,工厂应安排其中多少人生产螺母?2.制作一张桌子要用一个桌面和4条桌腿,1m3木材可制作15个桌面,或者制作300条桌腿,现有12m3木材,应怎样计划用料才能制作尽可能多的桌子?最多能制作多少张桌子?3.一张桌子有一张桌面和四条桌腿,做一张桌面需要木材0.03m3,做一条桌腿需要木材0.002m3.现做一批这样的桌子,恰好用去木材3.8m3,共做了多少张桌子?4.某中学有住宿生若干人,若每个房间住8人,则有3人无处住;若每个房间住9人则有两张空床位,问该中学有宿舍多少间,住宿生有多少人?5.在预防新型冠状病毒期间,电子体温枪成为最重要的抗疫资源之一.某品牌电子体温枪由甲、乙两部件各一个组成,加工厂每天能生产甲部件600个,或者生产乙部件400个,现要在30天内生产最多的该种电子体温枪,则甲、乙两种部件各应生产多少天?6.某车间有84名工人,每人每天可以生产16个大齿轮或10个小齿轮,已知1个大齿轮和2个小齿轮配成一套,为使每天生产的大齿轮和小齿轮刚好配套,应安排生产大齿轮和小齿轮的工人各多少名?一共可以配成多少套?7.某车间有技术工人58人,平均每天每人可加工甲种部件16个或乙种部件10个,1个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?8.某车间每天能生产甲种零件150个,或乙种零件100个,甲、乙两种零件分别取3个、1个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?9.东方红机械厂加工车间有90名工人,平均每人每天加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问一天可以生产多少套这样成套的产品?10.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知二个大齿轮和三个小齿轮配成一套,问应如何安排劳力使生产的产品刚好成套?11.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?12.某车间有75个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件15个或乙种零件20个.已知每1个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?13.机械厂加工车间有68名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?14.某车间每天能制作甲种零件500个,或者制作乙种零件250个,甲乙两种零件各一个配成一套产品,现要在30天内制作最多的成套产品,则甲种零件制作多少天?15.某班统计数学考试成绩,平均成绩是84.3分:后来发现莉莉的成绩是97分,而被错误地统计为79分.重新计算后,平均成绩是84.7分.这个班有多少名学生?16.配制一种黑色火药,硫磺、硝、木炭的比为1:2:3,要配火药1218千克,各需多少千克硫磺、硝、木炭?(设未知数,只列方程)17.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元,求钢笔和毛笔的单价各为多少元?18.某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套,要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?19.制作一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面或者制作400条桌腿,现有24立方米木材,要使桌面和桌腿正好配套,应分别计划用多少立方米木材制作桌面和桌腿?20.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件,几个工人加工乙种零件?。

七年级上册数学配套问题

七年级上册数学配套问题

七年级上册数学配套问题
以下是七年级上册数学配套问题的示例:
1. 某班学生计划做100件衣服,实际上交的作品中,男生做的衣服占60%,女生做的衣服占40%,结果总数少于计划的10件,那么男生做的衣服最多比女生少多少件?
2. 甲、乙两地相距30千米,A、B、C、D四人同时从甲地出发前往乙地,每人所带物品数相等,共计90件,他们带物品不带物品的速度是带物品速
度的一半,不带物品走15千米,带物品走30千米,问这四个人各带了物
品多少件?
若您想要了解更加详细的信息,建议前往教育资源类网站获取答案。

七年级数学一元一次方程:配套问题(有答案)

七年级数学一元一次方程:配套问题(有答案)

七年级数学一元一次方程:配套问题(有答案)1、某车间可以制作甲种零件和乙种零件,每天甲种零件可以制作500只,乙种零件可以制作250只。

一套产品需要一只甲种零件和一只乙种零件。

现在需要在30天内制作尽可能多的成套产品,问甲、乙两种零件各应制作多少天?解:设甲种零件制作x天,那么乙种零件制作(30-x)天。

因为总数量相等,所以有500x=250(30-x),解得x=10,即甲种零件制作10天,乙种零件制作20天。

2、制作一张桌子需要一个桌面和四条桌腿,现在有12立方米的立方木材,1立方米木材可以制作20个桌面或400条桌腿。

问如何计划用料才能制作尽可能多的桌子?解:设用x立方米木材制作桌面,那么用(12-x)立方米木材制作桌腿。

因为总数量相等,所以有20x=400(12-x),解得x=2.4,即用2.4立方米木材制作桌面,用9.6立方米木材制作桌腿。

3、某车间有22名工人,每人每天平均可以生产1200个螺钉或2000个螺母。

一只螺钉需要配两只螺母。

为了使每天的产品刚好配套,问应该分配多少名工人生产螺钉?多少名工人生产螺母?解:设生产螺钉的工人数为x,那么生产螺母的工人数为(22-x)。

因为总数量相等,所以有1200x=2000(22-x),解得x=12,即应该安排12名工人生产螺钉,10名工人生产螺母。

4、一套仪器由一个A部件和三个B部件构成。

现在有6立方米的钢材,1立方米钢材可以制作40个A部件或240个B部件。

问应该用多少钢材制作A、B两种部件,才能恰好配成这种仪器多少套?解:设用x立方米钢材制作A部件,那么用(6-x)立方米钢材制作B部件。

因为总数量相等,所以有40x=240(6-x),解得x=1,即用1立方米钢材制作A部件,用5立方米钢材制作B部件。

因为每套仪器需要一个A部件和三个B部件,所以可以制作1个A部件和15个B部件,即可以制作5套仪器。

5、机械厂加工车间有85名工人,平均每人每天可以加工16个大齿轮或10个小齿轮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?
2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片和一张长方形铁片可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?
3.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。

4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。

该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。

5.某车间有22名工人,每人每天可以生产1200个螺钉或2000各螺母。

一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?
6.某服装厂加工车间有工人54人,每人每天可以加工上衣8件或裤子10条,应该怎样分配人数, 才能使每天生产的上衣和裤子配套?
7.制作一张桌子要用1个桌面和4个桌腿,1立方米木材可制作20个桌面,或者制作400条桌腿,现有12立方米木材,应怎样计划用料才能制作尽可能多的桌子?
8.服装厂计划生产一批某种型号的学生服装,已知每3米长的某种布料可做2件上衣或3条裤子,一件上衣和一条裤子为一套,现仓库内存有这样的布料600米,应分别用多少布料做上衣和裤子,才能恰好配套?。

相关文档
最新文档