气态污染物控制技术优秀课件
合集下载
第5章气态污染物控制技术基础.pptx
3. 氨法脱硫就是以氨水作为SO2的吸收剂,所产生的副 产品为亚硫酸氨
氨水做吸收剂 NH3 SO2 H2O (NH4 )2 SO3
(NH4 )2 SO3 SO2 H2O 2NH4HSO3
图 氨法烟气脱硫工艺流程
(五)干法脱硫技术
❖ 干法烟气脱硫 ❖ 所得到得脱硫产物是干态形式 ❖ 特点:
CaSO3(液)+1/2O2→CaSO4(液) CaSO3(液)→CaSO3(固) CaSO4(液)→CaSO4(固)
该工艺的主要优点
投资和占地面积相对较小
无废水排放
技术较为成熟
缺点
对吸收剂的质量要求较高
脱硫副产品大部分是CaSO3, 难于进行综合利用。
吸收塔的温度
要求足够地低,以满足脱硫化学反应的要求;
❖ 缺点:
(1)但是该工艺装置的基建投资大 (约占电厂投资的 11~18%)
(2)运行费用高(约占电厂总运行费用的8~18%)
一、主要烟气脱硫工艺
一、主要烟气脱硫工艺
(一)石灰石/石灰法洗涤
目前应用最广泛的脱硫技术(20世纪30年代由英 国皇家化学工业公司提出)
(一)石灰石/石灰法洗涤
❖ 然后,生成的CaSO4与未反应的CaO以及飞灰一起, 随烟气进入锅炉后部的活化反应器。在活化器中, 通过喷水雾增湿,一部分尚未反应的CaO转变成具 有较高反应活性的Ca(OH)2继续与烟气中的SO2反 应,从而完成脱硫的全过程:
(五)干法脱硫技术
2.循环流化床烟气脱硫
§4烟气脱硝技术
❖ 一. 选择性催化还原法(SCR)
(1)石灰浆制备系统
将生石灰制成粒度为50mm 、具有较高活性的石灰乳浆
(2)脱硫系统 石灰乳浆在吸收塔内被雾化成<100mm 的雾粒,与 烟气接触混合,完成烟气脱硫的化学反应
氨水做吸收剂 NH3 SO2 H2O (NH4 )2 SO3
(NH4 )2 SO3 SO2 H2O 2NH4HSO3
图 氨法烟气脱硫工艺流程
(五)干法脱硫技术
❖ 干法烟气脱硫 ❖ 所得到得脱硫产物是干态形式 ❖ 特点:
CaSO3(液)+1/2O2→CaSO4(液) CaSO3(液)→CaSO3(固) CaSO4(液)→CaSO4(固)
该工艺的主要优点
投资和占地面积相对较小
无废水排放
技术较为成熟
缺点
对吸收剂的质量要求较高
脱硫副产品大部分是CaSO3, 难于进行综合利用。
吸收塔的温度
要求足够地低,以满足脱硫化学反应的要求;
❖ 缺点:
(1)但是该工艺装置的基建投资大 (约占电厂投资的 11~18%)
(2)运行费用高(约占电厂总运行费用的8~18%)
一、主要烟气脱硫工艺
一、主要烟气脱硫工艺
(一)石灰石/石灰法洗涤
目前应用最广泛的脱硫技术(20世纪30年代由英 国皇家化学工业公司提出)
(一)石灰石/石灰法洗涤
❖ 然后,生成的CaSO4与未反应的CaO以及飞灰一起, 随烟气进入锅炉后部的活化反应器。在活化器中, 通过喷水雾增湿,一部分尚未反应的CaO转变成具 有较高反应活性的Ca(OH)2继续与烟气中的SO2反 应,从而完成脱硫的全过程:
(五)干法脱硫技术
2.循环流化床烟气脱硫
§4烟气脱硝技术
❖ 一. 选择性催化还原法(SCR)
(1)石灰浆制备系统
将生石灰制成粒度为50mm 、具有较高活性的石灰乳浆
(2)脱硫系统 石灰乳浆在吸收塔内被雾化成<100mm 的雾粒,与 烟气接触混合,完成烟气脱硫的化学反应
气态污染物控制技术
x * A A * A
K x x K c c
Al A
南
* A
通
大
學
11 / 52
大 气
污
染
控
制
工
程
吸收系数的不同形式
南
通
大
學
12 / 52
大 气
污
染
控
制
工
程
吸收系数——传质阻力的倒数
传质总阻力=气相传质阻力+液相传质阻力
例:
1 1 m K y k y kx
由于在连续操作中GB、LS、y1、x1都是恒定的,所 以用摩尔分率表示较方便
LS L1 x G B G1 y x y X Y 1 x 1 y
南 通 大 學
17 / 52
大 气
污
染
控
制
工
程
根据吸收质的物料平衡有
LS LS Y X Y X 1 1 GB G B
南 通 大
x p /E
*
y* m x
學
7 / 52
大 气
污
染
控
制
工
程
二、吸收速率存在气膜和液膜,膜内为层流, 传质阻力只 在膜内 气膜和液膜外湍流流动,无浓度梯度, 即无扩散阻力 气液界面上,气液达溶解平衡 即:CAi=HpAi 膜内无物质积累,即达稳态
kg
DAg Zg
气液两相传质过程示意图
南 通 大 學
10 / 52
大 气
污
染
控
制
工
程
液相分传质速率方程
N A k x x Ai x A N A kl c Ai c A
K x x K c c
Al A
南
* A
通
大
學
11 / 52
大 气
污
染
控
制
工
程
吸收系数的不同形式
南
通
大
學
12 / 52
大 气
污
染
控
制
工
程
吸收系数——传质阻力的倒数
传质总阻力=气相传质阻力+液相传质阻力
例:
1 1 m K y k y kx
由于在连续操作中GB、LS、y1、x1都是恒定的,所 以用摩尔分率表示较方便
LS L1 x G B G1 y x y X Y 1 x 1 y
南 通 大 學
17 / 52
大 气
污
染
控
制
工
程
根据吸收质的物料平衡有
LS LS Y X Y X 1 1 GB G B
南 通 大
x p /E
*
y* m x
學
7 / 52
大 气
污
染
控
制
工
程
二、吸收速率存在气膜和液膜,膜内为层流, 传质阻力只 在膜内 气膜和液膜外湍流流动,无浓度梯度, 即无扩散阻力 气液界面上,气液达溶解平衡 即:CAi=HpAi 膜内无物质积累,即达稳态
kg
DAg Zg
气液两相传质过程示意图
南 通 大 學
10 / 52
大 气
污
染
控
制
工
程
液相分传质速率方程
N A k x x Ai x A N A kl c Ai c A
东南大大气污染控制工程课件07气态污染物控制(空气净化技术)
筛 板 塔
➢ 填料吸收塔的设计
• 塔径的计算
处理气量:根据实际的 工业过程而定。
DT
4Q
V0
• 填料塔高度的计算
空塔速度:一般由填料 塔的液泛速率Vt 确定, 通常取V0=0.60-0.70Vt。
由过程吸收速率NA和对吸收效率的要求来确定。
H
G P
d P PA G 1
AG
PA G 2 N A a
✓气相与液相相同为分散相
▪ 按汽液接触方式分类
✓连续接触式 填料塔、喷淋塔、湍球塔
✓间断接触式
板式塔
➢ 常用吸收塔介绍
要求气液有效接触面积大,气液湍动程度高, 设备压力损失小,结构简单,易操作维修, 投资少,操作费用低等。
• 填料塔
结构简单、便于用耐腐蚀材料制造,气液 接触效果好,压降小。 当烟气中含有悬 浮颗粒时,填料容易堵塞,清理检修时填 料损耗大。
液体以液滴形式分散于气体中
空心(喷嘴式)喷洒吸收器 高气速并流喷洒吸收器
机械喷洒吸收器
▪ 按气液两相界面形成原理分类
✓具有固定相界面的吸收设备 ✓在气液两相流动过程中形成相界面的吸收设备
✓有外部能量引入的吸收设备 ▪ 按汽液分散形式分类
板式塔
✓气相分散、液相连续
喷淋塔、填料塔
✓液相分散、气相连续
文丘里吸收塔
环境工程学
第七章 气态污染物控制 (空气净化技术)
主要内容
• 吸收净化 • 吸附净化 • 催化转化 • 燃烧转化 • 冷凝法 • 生物净化 • 其他空气净化方法
第一节 吸收净化
利用气体混合物中不同组分在吸收剂中溶解 度不同,或者与吸收剂发生选择性化学反应, 从而将有害组分从气流中分离出来。
气态污染物控制技术概述(ppt29张)
• 组员:刘旭东刘洋材龙欢
大气污染控制技术
第五章 气态污染物控制技术
---5.2 烟气脱硫技术
5.2 烟气脱硫技术
烟气脱硫技术
湿法烟气脱硫 半干法烟气脱硫 干法烟气脱硫
烟气脱硫后的 生成物是否回收?
脱硫技术
净化原理
抛弃法
回收法
吸收法
吸附法、 催化法
5.2.1 湿法烟气脱硫
•
烟气脱硫技术是采用含有吸收剂的溶液 或浆液在湿润状态下洗涤烟气以除去SO2 。由于是气态反应,脱硫反应速度快、效 率高、脱硫剂利用率高,是目前广泛采用 的方法之一。但系统存在堵塞以及脱硫后 的烟气温度低于酸露点,易产生腐蚀问题 。湿法的流程和设备相对比较复杂,所需 费用也较高。为了避免二次污染,必须对 污水进行处理,运行成本也较高。
喷雾干燥脱硫工艺流程
炉内喷钙-炉后增湿活化脱硫技术
• 它是在炉内喷钙的基础上发展起来的。由 于在锅炉的预热器和除尘器之间加装一个 活化反应器,并进行喷水增湿,使脱硫效 率达到70%以上 。
循环流化床烟气脱硫技术
• 它的主要吸收剂制备系统、二氧化硫吸收系统、除尘
系统、吸收剂在循环系统、自控和在线监测等系统组成 。
• (1)反应原理
碱性硫酸铝-石膏法
• 吸收
Al2(SO4)3.Al2O3=Al2(SO4)3.Al(SO3)3
• 氧化 • 中和
Al2(SO4)3.Al2(SO3)3+3/2O2=2Al2(SO4)3
2Al2(SO4)3+3CaCO3+6H2O=Al2(SO4)3.Al2o3 +CaSO4.2H2O+3CO2
•
石灰石/石灰-石膏法脱硫的基本原理是用石灰或石灰 石浆液吸收烟气中的SO2 ,先生成亚硫酸钙,然后将 亚硫酸钙氧化为硫酸钙。
大气污染控制技术
第五章 气态污染物控制技术
---5.2 烟气脱硫技术
5.2 烟气脱硫技术
烟气脱硫技术
湿法烟气脱硫 半干法烟气脱硫 干法烟气脱硫
烟气脱硫后的 生成物是否回收?
脱硫技术
净化原理
抛弃法
回收法
吸收法
吸附法、 催化法
5.2.1 湿法烟气脱硫
•
烟气脱硫技术是采用含有吸收剂的溶液 或浆液在湿润状态下洗涤烟气以除去SO2 。由于是气态反应,脱硫反应速度快、效 率高、脱硫剂利用率高,是目前广泛采用 的方法之一。但系统存在堵塞以及脱硫后 的烟气温度低于酸露点,易产生腐蚀问题 。湿法的流程和设备相对比较复杂,所需 费用也较高。为了避免二次污染,必须对 污水进行处理,运行成本也较高。
喷雾干燥脱硫工艺流程
炉内喷钙-炉后增湿活化脱硫技术
• 它是在炉内喷钙的基础上发展起来的。由 于在锅炉的预热器和除尘器之间加装一个 活化反应器,并进行喷水增湿,使脱硫效 率达到70%以上 。
循环流化床烟气脱硫技术
• 它的主要吸收剂制备系统、二氧化硫吸收系统、除尘
系统、吸收剂在循环系统、自控和在线监测等系统组成 。
• (1)反应原理
碱性硫酸铝-石膏法
• 吸收
Al2(SO4)3.Al2O3=Al2(SO4)3.Al(SO3)3
• 氧化 • 中和
Al2(SO4)3.Al2(SO3)3+3/2O2=2Al2(SO4)3
2Al2(SO4)3+3CaCO3+6H2O=Al2(SO4)3.Al2o3 +CaSO4.2H2O+3CO2
•
石灰石/石灰-石膏法脱硫的基本原理是用石灰或石灰 石浆液吸收烟气中的SO2 ,先生成亚硫酸钙,然后将 亚硫酸钙氧化为硫酸钙。
气态污染物控制[1]
气态污染物控制[1]
2、分类:气体吸收可分为物理吸收和化学 吸收。
①物理吸收:溶解的气体不与溶剂中的 某成分发生化学反应。
②化学吸收:溶解的气体与溶剂中的某 种成分发生化学反应,导致气体平衡压降低。
PPT文档演模板
气态污染物控制[1]
3、吸收过程的相平衡 (1)气液相平衡
a.气体在液体中的溶解度
a、吸收液的选择应从下类因素考虑: ①增大对有害组分的吸收,减少吸收液的用量; ②减少吸收液的损失,使其蒸汽压尽量降低; ③粘度小,比热不大,不起泡; ④尽可能无毒、难燃、化学稳定性好; ⑤来源充足,价格低廉,易再生可重复使用; ⑥有利于有害组分的回收利用; ⑦尽可能不采用腐蚀性介质,以延长设备寿命。
捕集效率高、设备简单、一次性投资低。 广泛地用于气态污染物的处理,例如:SO2、H2S、HF、NOx等。 物理吸收;化学吸收。
吸附净化
使气体混合物与适当的多孔性固体接触,利用固体表面存在的未平 衡的分子引力或化学键力,把混合物中某一组分或某些组分吸留在固 体表面上,达到气体混合物分离的目的。
效率高,能回收有用组分,设备简单,操作方便,易于实现自动控 制。
磺燃烧的富含 SO2的尾气
始 度3进%的气尾SO气2 浓
水
含有约为初
始浓度进0气.3%S的O2
尾气
水
预除尘 和水分
段间冷却 的四层催
化床
填充 床吸 收塔
第二级 催化床
填充 床吸 收塔
PPT文档演模板
单级吸收工艺 二级吸收工艺
SO2单级和二级净化工艺的流程图 催化反应:420~550℃
气态污染物控制[1]
xi----摩尔分数
Ci---平衡浓度
Hi……i气体在溶液中的溶解度系数,mol/(m3·Pa)
气态污染物的治理技术.ppt
职业教育环境监测与治理技术专业教学资源库《清洁生产》课程
5.冷凝法
• 在不同温度下具有不同的饱和蒸汽压,采用降低废气 温度或提高废气压力的方法,使一些易于凝结的有害 气体或蒸汽态的污染物冷凝成液体并从废气中分离出 来。
• 冷凝法对废气的净化程度与冷却温度有关,冷却温度 愈低,对易凝结组分的清除程度愈高。
职业教育环境监测与治理技术专业教学资源库《清洁生产》课程
③助催化剂
• 是改善催化剂活性及热稳定等性能的填加 物。
职业教育环境监测与治理技术专业教学资源库《清洁生产》课程
催化方法的特点
• 净化效率较高,受废气中污染物浓度影响 较小,无需将污染物与主气流分离,避免 了二次污染。但催化剂价格较贵,操作要 求较高,废气中的有害物质很难作为有用 物质进行回收等。
吸附剂、吸附质
• 具有吸附作用的固体物质称为吸附剂,被 吸附的气体组分称为吸附质。
职业教育环境监测与治理技术专业教学资源库《清洁生产》课程
吸附平衡
• 吸附过程是可逆过程,在吸附质被吸附的同时,部分 已被吸附的吸附质分子还可因分子的热运动而脱离固 体表面回到气相中去,这种现象称为脱附。当吸附速 度与脱附速度相等时,就达到了吸附平衡,达到平衡 时,吸附剂丧失了吸附能力。
石灰石/石膏烟气脱硫工艺示意图
职业教育环境监测与治理技术专业教学资源库《清洁生产》课程
B、曾经遇到的困难 • (1)腐蚀,Cl的腐蚀引出一部分外排,减少腐蚀。
(2)Ca的结垢,沉积CaSO4加入添加剂。 (3)除雾器堵塞,有雾沫夹带造成。 (4)低的利用率。 (5)气固分离。 (6)脱硫渣的利用。 (7)控制pH,需碱量大。
二 气态污染物的治理技术
(一)气态污染物的治理方法
大气污染控制工程课件——4 气态污染物净化技术
大气污染控制技术
4 气态污染物净化技术
9
3.设备、管道的结垢和堵塞
• 吸收净化过程产生一些固体物质,导致结垢和堵塞。
• 解决方法:
• 工艺操作上,控制水分蒸发量,控制溶液pH值,严
格控制进入吸收系统的粉尘量等;
• 设备选择上,选择不易结垢和堵塞的吸收器,减少吸
收器内部构件,增加其内部的光滑度;
• 操作上,提高流体的流动性和冲击性。
双膜理论示意图
大气污染控制技术
4 气态污染物净化技术
5
• 气相主体流中的吸收质先以湍流扩散到气膜表面,
然后再以分子扩散流通过气膜到相界面,继而进
入液膜,吸收质仍以分子扩散方式通过液膜再进
入液相主体流中。
• 吸收质量传递的同时,相反的质量传递也存在,
达到动平衡状态为止。
• 吸收速率:气体吸收质在单位时间内通过单位相
行表面吸收。
大气污染控制技术
4 气态污染物净化技术
13
填 料 塔 结 构
大气污染控制技术
4 气态污染物净化技术
14
1)填料塔按气、液流向分类 • 逆向流、同向流、错流式。 • 逆向流填料塔优点:气液接触效果好; • 各截面推动力大,操作性能稳定; • 缺点:不适于处理含尘气流,填料层易堵塞。 2)填料 • 填料主要作用:气液接触提供条件。 • 要求具备特征:比表面积大、良好的润湿性; • 有较高的孔隙率(45%~95%); • 填料尺寸适当,对气流阻力小; • 耐腐蚀、机械强度大、造价低、稳定性好。 • 工业用填料多用实体填料,如拉西环、鲍尔环、
较快,达到吸附平衡时间短; • 是放热反应,吸附热较小(液化热或汽化热); • 吸附没有选择性,往往是多层的,具有可逆性; • 化学吸附特点: • 进行缓慢,达到平衡时间长; • 吸附时发生化学反应,并在吸附剂表面生成新物质; • 吸附为放热过程,放热量较大,相当于化学反应热; • 吸附有选择性,常常不可逆,一般为单层吸附。 • 实际中同时存在,低温时主要是物理吸附,高温时主
大气污染控制技术ppt课件
二氧 化硫 控制 技术
湿法 烟气 脱硫
氧法:回收硫铵法、回收石膏 法、回收硫磺法
钙法:石灰石-石膏法 钠法:中和法、直接利用法、
回收亚硫酸钠法、回收石膏法、 回收硫磺法 镁法 碱式硫酸铝法 磷铵肥法
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
烟尘 粉尘
沉降室
旋风除尘器 湿法除尘器
布袋除尘器
静电除尘器
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
大气 污染 控制 技术
二氧 化硫
烟气脱硫:从烟气中脱除二 氧化硫的技术
一般分类:抛弃法,回收法 按控制技术分类 (1)干法烟气脱硫 (2)湿法烟气脱硫 (3)洁净煤燃烧技术
处理效率,求出 CoCi(1)
口浓度,并判断
C o C s 达标
是否满足排放标
C o C s 不达标
准
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
控制 技术
大纲 要求
熟悉二氧化硫、氮氧化 物尘(烟尘、粉尘)控 制的主要方法
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
主要 大气 污染 控制 技术
主要大气污染物 二氧化硫 氮氧化物 烟(粉)尘
大气污染控制技术 清洁煤燃烧技术 高烟囱排放技术 烟气脱硫、脱硝、除尘技术
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
湿法 烟气 脱硫
氧法:回收硫铵法、回收石膏 法、回收硫磺法
钙法:石灰石-石膏法 钠法:中和法、直接利用法、
回收亚硫酸钠法、回收石膏法、 回收硫磺法 镁法 碱式硫酸铝法 磷铵肥法
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
烟尘 粉尘
沉降室
旋风除尘器 湿法除尘器
布袋除尘器
静电除尘器
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
大气 污染 控制 技术
二氧 化硫
烟气脱硫:从烟气中脱除二 氧化硫的技术
一般分类:抛弃法,回收法 按控制技术分类 (1)干法烟气脱硫 (2)湿法烟气脱硫 (3)洁净煤燃烧技术
处理效率,求出 CoCi(1)
口浓度,并判断
C o C s 达标
是否满足排放标
C o C s 不达标
准
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
控制 技术
大纲 要求
熟悉二氧化硫、氮氧化 物尘(烟尘、粉尘)控 制的主要方法
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
主要 大气 污染 控制 技术
主要大气污染物 二氧化硫 氮氧化物 烟(粉)尘
大气污染控制技术 清洁煤燃烧技术 高烟囱排放技术 烟气脱硫、脱硝、除尘技术
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
第07章 气态污染物控制技术108.ppt
气态污染物
气
液
气相 界 液相
面
气体扩散
气体在气相中的扩散系数(Gilliland 方程)
DAB
1.8
104
[V
T 0.5
0.5
A V
0.5 B
]2
MA
A
[1 MA
1 ]0.5 MB
T-绝对温度,K DAB-扩散系数,cm2/s M-气体的摩尔质量 V -气体在沸点下呈液态时的摩尔体积,cm3/mol
相平衡方程
在工业计算中因气体和液体的量都随吸收过程 进行而不断变化,因此常用X液相中溶质与吸 收剂的摩尔分数和Y气相中溶质与惰性组分的 摩尔分数表示。
Y
1
mX
1 mX
Y y /(1 y) X x /(1 x)
相平衡方程式在吸收操作上的作用
确定了传质的方向: 如某混合气体中某组分的摩尔分率为y,而溶液中该 组分的摩尔分率为x1,当两者混合时,首先确定在该 温度下的m值,然后求出与x1相平衡的y1*=mx1来, 如果y>y1*该组分将被溶液吸收,反之解吸。
时间内的吸收速率是变
化的
液体主相
吸收机理
3.表面更新模型
➢假定:
各表面微元具有不同的暴露时间,t=0~
各表面元的暴露时间(龄期)符合正态分布
4. 其它模型
➢表面更新模型的修正
气液界面 流体微元
➢基于流体力学的传质模型
➢界面效应模型
液体主相
双膜理论
双膜模型
➢ 气相分传质速率
NA k y ( y A yAi )
x1 1 x1
)
500 ( 0.005
0.1 0 ) /(
0.0027
气态污染物控制技术3
PPT文档演模板
气态污染物控制技术3
l 活性组分:是催化剂主体,单独对化学反应起 催化作用,可作为催化剂单独使用。
l 助催化剂:本身无活性,但具有提高活性组分 活性的作用。
l 载体:起承载活性组分作用,使催化剂具有合 适形状与粒度,大的比表面积,增大活性、减 少用量,增加机械强度,延长寿命等。
PPT文档演模板
气态污染物控制技术3
3 催化剂的性能
l 活性:是衡量催化剂效能大小的指标。
W-产品质量 WR-催化剂质量 t-反应时间
PPT文档演模板
气态污染物控制技术3
催化剂的性能
l 稳定性:催化剂在化学反应过程中保持活性的能力。
Ø 热稳定性、机械稳定性和化学稳定性 Ø 表示方法:寿命 Ø 老化
l 活性组分的流失、烧结、积炭结焦、机械粉碎等 Ø 中毒: Ø 暂时性和永久性中毒
l 球形催化剂 中组分A的 浓度分布
PPT文档演模板
气态污染物控制技术3
催化剂反应动力学
PPT文档演模板
气态污染物控制技术3
催化剂反应动力学
例:A+B
R+S
•表面反应控制
•A的吸附: •B的吸附: •表面反应: •R的脱附: •S的脱附:
吸附或脱附控制
•反应速度取决于带 ^ 反应(最慢反应),其它都达到平衡
l 数学模型法
l 转化率较高的工业反应器,温度分布具有明显的 轴向温差
l 轴向等温分布计算
PPT文档演模板
气态污染物控制技术3
固定床反应器
l 最主要的气固相催化反应器
Ø 优点: l 流体接近于平推流,返混小,反应速度较快; l 固定床中催化剂不易磨损,可长期使用; l 停留时间可严格控制,温度分布可适当调节,高选择性和转化率。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作线、平衡线和吸收推动力
物理吸收
最小液气比
(
LS GB
)
m in
Y1 Y2
X
* 1
X
2
(
LS GB
)
m in
Y1 Y2 X 1max X 2
(平衡线上凸)
吸收塔的最小液气比
物理吸收
填料塔高度计算
zT dz (
G
)
y1
dy
0
k ya y2 (1 y )( y yi )
zT dz (
难 溶 气 体 ( 稀 碱 溶 液 吸 收 C O 2 , 水 吸 收 O 2 )
➢ 气 膜 控 制 ( 1 m , 1 1)
k y k x K y k y
易 溶 气 体 ( 碱 或 氨 液 吸 收 S O 2 )
传质过程
吸收系数的影响因素
➢ 吸收质与吸收剂 ➢ 设备、填料类型 ➢ 流动状况、操作条件
c H p* x p*/E y* m x
参数换算
H c/(x E)
H S /(MS E)
吸收系数
➢ 吸收系数的不同形式
传质阻力
➢ 传质阻力-吸收系数的倒数
➢ 传 质 总 阻 力 = 气 相 传 质 阻 力 + 液 相 传 质 阻 力 ➢ 液 膜 例 控 : 制 ( k m x k 1 y K , 1 yK 1 y k 1 yk m xk m ) x
扩散系数的测量
Stephan过程
D AB
RT P ln( pB1 /
pB2 )
A1 MA
L
2 2
L
2 1
2t
A1- 液 体 A 的 密 度 , g/m 3
L1- 液 体 的 初 始 高 度 , cm L2 - 液 体 的 最 终 高 度 , cm
p B1 、p B 2 - 分 别 为 L 1、 L 2时 空 气 分 压
L
)
x1
dx
0
kxa x2 (1 x)( xi x)
水吸收SO2的平衡线和操作线
化学吸收
化学吸收的优点
➢ 溶质进入溶剂后因化学反应消耗掉,溶剂容纳的 溶质量增多
➢ 液膜扩散阻力降低 ➢ 填料表面的停滞层仍为有效湿表面
化学吸收
两分子反应中相界面附近液相内A与B的浓度分布
化学吸收的气液平衡
平衡浓度计算
➢ 总传质速率方程
NAKy(yAyA *) NAKA g(pAp* A)
NAKx(xA *xA) NAKA l(c* AcA)
气液平衡
平衡-吸收过程的传质速率等于解吸过程
溶解度
➢ 每100kg水中溶解气体的kg数
气液平衡
常见气体的平衡溶解度
亨利定律
亨利定律
➢ 一定温度下,稀溶液中溶质的溶解度与气相中溶 质的平衡分压成正比
水 吸 收 SO 2( 中 等 溶 解 气 体 吸 收 )
kga9.81104G0.7L0.25;klaaL0.82
界面浓度的计算
作图法
NA ky(yA yAi) kx(xAi xA)
yA yAi kx
xA xAi
ky
解析法
➢稀溶液亨利定律+传质方程
物理吸收
操作线方程
YG L S BX (Y 1G L S BX 1 )G LX (Y 1G LX 1 )
1 ]0.5 MB
T-绝对温度,K DAB-扩散系数,cm2/s M-气体的摩尔质量 V -气体在沸点下呈液态时的摩尔体积,cm3/molA-气体密Βιβλιοθήκη ,g/cm3气体在气相中的扩散
扩散系数
➢ 物质的特性常数之一 ➢ 影响因素:
介质的种类 温度 压强 浓度
气体在气相中的扩散
部分气体在空气中的扩散系数(0oC,101.33kPa)
➢ y1、y2—入塔、出塔气体的SO2摩尔分率
4. 其它模型
➢表面更新模型的修正 ➢基于流体力学的传质模型 ➢界面效应模型
气液界面 流体微元
液体主相
双膜理论
双膜模型
➢ 气相分传质速率
NA ky ( y A yAi )
➢ 液相分传质速率 NA kg( p A pAi )
NA kx(x Ai xA)
NA kl(cAi cA)
xAL
吸收系数的获取
➢ 实验测定;经验公式计算;准数关联计算
常用吸收系数经验式
水 吸 收 氨 ( 易 溶 气 体 吸 收 ) k g a 6 .0 7 1 0 4 G 0 .9 L 0 .3 9 G 、 L - 气 、 液 相 空 塔 流 量
水 吸 收 C O 2 ( 难 溶 气 体 吸 收 ) k l a 2 .5 7 U 0 .9 6 U - 喷 淋 密 度 , m 3 / ( m 2 · h )
t- 变 化 时 间 , s
气体在液相中的扩散
在液相中的扩散系数
➢ 估算方程
DAB
7.41010
(MB)0.5T 0.5
BVA
B-液体的粘度,cP -溶剂的缔结因数,水2.6,甲醇1.9,乙醇1.5,
非缔结如苯、乙醚为1.0
➢ 扩散系数随溶液浓度变化很大 ➢ 上式只适用于稀溶液
气体在液相中的扩散
某些物质在水中的扩散系数(20oC,稀溶液)
第二节 气体吸收
吸收机理
1.双膜模型(应用最广)
➢假定: 界面两侧存在气膜和液膜,膜内 为层流, 传质阻力只在膜内 气膜和液膜外湍流流动,无浓度 梯度, 即无扩散阻力 气液界面上,气液达溶解平衡 即:CAi=HPAi 膜内无物质积累,即达稳态.
吸收机理
气态污染物控制技术
第一节 气体扩散
气态污染物脱除过程的单元操作
➢ 流体输送 ➢ 热量传递 ➢ 质量传递
气体扩散过程
➢分子扩散-分子运动引起 ➢湍流扩散-流体质点运动引起
气体扩散
在气相中的扩散(Gilliland 方程)
DAB
1.8104
T0.5
0.5
[VA
V0B.5]2
MA [ 1
A MA
2.渗透模型
➢ 假定:
气液界面上的液体微元不断被液 相主体中浓度为CAL的微元置换 每个微表面元与气体接触时间都
为 界面上微表面元在暴露时间内的
吸收速率是变化的
气液界面 流体微元
液体主相
吸收机理
3.表面更新模型
➢假定:
各表面微元具有不同的暴露时间,t=0- 各表面元的暴露时间(龄期)符合正态分布
化学吸收速率
吸收速率
➢ 物理吸收时 NA kA(CAi CAl) ➢ 化学吸收时 NA K1(cAi cAl )
K1-未发生化学反应时的液相传质分系数
-由于化学反应使吸收速率增强的系数
➢ 相当于选取相同的推动力C, 选用不同的传质系数 -引入增强系数
例:SO2化学吸收计算
主要参数
➢ G1—入塔气体的总摩尔流量,kmol/(m2•h)
物理吸收
最小液气比
(
LS GB
)
m in
Y1 Y2
X
* 1
X
2
(
LS GB
)
m in
Y1 Y2 X 1max X 2
(平衡线上凸)
吸收塔的最小液气比
物理吸收
填料塔高度计算
zT dz (
G
)
y1
dy
0
k ya y2 (1 y )( y yi )
zT dz (
难 溶 气 体 ( 稀 碱 溶 液 吸 收 C O 2 , 水 吸 收 O 2 )
➢ 气 膜 控 制 ( 1 m , 1 1)
k y k x K y k y
易 溶 气 体 ( 碱 或 氨 液 吸 收 S O 2 )
传质过程
吸收系数的影响因素
➢ 吸收质与吸收剂 ➢ 设备、填料类型 ➢ 流动状况、操作条件
c H p* x p*/E y* m x
参数换算
H c/(x E)
H S /(MS E)
吸收系数
➢ 吸收系数的不同形式
传质阻力
➢ 传质阻力-吸收系数的倒数
➢ 传 质 总 阻 力 = 气 相 传 质 阻 力 + 液 相 传 质 阻 力 ➢ 液 膜 例 控 : 制 ( k m x k 1 y K , 1 yK 1 y k 1 yk m xk m ) x
扩散系数的测量
Stephan过程
D AB
RT P ln( pB1 /
pB2 )
A1 MA
L
2 2
L
2 1
2t
A1- 液 体 A 的 密 度 , g/m 3
L1- 液 体 的 初 始 高 度 , cm L2 - 液 体 的 最 终 高 度 , cm
p B1 、p B 2 - 分 别 为 L 1、 L 2时 空 气 分 压
L
)
x1
dx
0
kxa x2 (1 x)( xi x)
水吸收SO2的平衡线和操作线
化学吸收
化学吸收的优点
➢ 溶质进入溶剂后因化学反应消耗掉,溶剂容纳的 溶质量增多
➢ 液膜扩散阻力降低 ➢ 填料表面的停滞层仍为有效湿表面
化学吸收
两分子反应中相界面附近液相内A与B的浓度分布
化学吸收的气液平衡
平衡浓度计算
➢ 总传质速率方程
NAKy(yAyA *) NAKA g(pAp* A)
NAKx(xA *xA) NAKA l(c* AcA)
气液平衡
平衡-吸收过程的传质速率等于解吸过程
溶解度
➢ 每100kg水中溶解气体的kg数
气液平衡
常见气体的平衡溶解度
亨利定律
亨利定律
➢ 一定温度下,稀溶液中溶质的溶解度与气相中溶 质的平衡分压成正比
水 吸 收 SO 2( 中 等 溶 解 气 体 吸 收 )
kga9.81104G0.7L0.25;klaaL0.82
界面浓度的计算
作图法
NA ky(yA yAi) kx(xAi xA)
yA yAi kx
xA xAi
ky
解析法
➢稀溶液亨利定律+传质方程
物理吸收
操作线方程
YG L S BX (Y 1G L S BX 1 )G LX (Y 1G LX 1 )
1 ]0.5 MB
T-绝对温度,K DAB-扩散系数,cm2/s M-气体的摩尔质量 V -气体在沸点下呈液态时的摩尔体积,cm3/molA-气体密Βιβλιοθήκη ,g/cm3气体在气相中的扩散
扩散系数
➢ 物质的特性常数之一 ➢ 影响因素:
介质的种类 温度 压强 浓度
气体在气相中的扩散
部分气体在空气中的扩散系数(0oC,101.33kPa)
➢ y1、y2—入塔、出塔气体的SO2摩尔分率
4. 其它模型
➢表面更新模型的修正 ➢基于流体力学的传质模型 ➢界面效应模型
气液界面 流体微元
液体主相
双膜理论
双膜模型
➢ 气相分传质速率
NA ky ( y A yAi )
➢ 液相分传质速率 NA kg( p A pAi )
NA kx(x Ai xA)
NA kl(cAi cA)
xAL
吸收系数的获取
➢ 实验测定;经验公式计算;准数关联计算
常用吸收系数经验式
水 吸 收 氨 ( 易 溶 气 体 吸 收 ) k g a 6 .0 7 1 0 4 G 0 .9 L 0 .3 9 G 、 L - 气 、 液 相 空 塔 流 量
水 吸 收 C O 2 ( 难 溶 气 体 吸 收 ) k l a 2 .5 7 U 0 .9 6 U - 喷 淋 密 度 , m 3 / ( m 2 · h )
t- 变 化 时 间 , s
气体在液相中的扩散
在液相中的扩散系数
➢ 估算方程
DAB
7.41010
(MB)0.5T 0.5
BVA
B-液体的粘度,cP -溶剂的缔结因数,水2.6,甲醇1.9,乙醇1.5,
非缔结如苯、乙醚为1.0
➢ 扩散系数随溶液浓度变化很大 ➢ 上式只适用于稀溶液
气体在液相中的扩散
某些物质在水中的扩散系数(20oC,稀溶液)
第二节 气体吸收
吸收机理
1.双膜模型(应用最广)
➢假定: 界面两侧存在气膜和液膜,膜内 为层流, 传质阻力只在膜内 气膜和液膜外湍流流动,无浓度 梯度, 即无扩散阻力 气液界面上,气液达溶解平衡 即:CAi=HPAi 膜内无物质积累,即达稳态.
吸收机理
气态污染物控制技术
第一节 气体扩散
气态污染物脱除过程的单元操作
➢ 流体输送 ➢ 热量传递 ➢ 质量传递
气体扩散过程
➢分子扩散-分子运动引起 ➢湍流扩散-流体质点运动引起
气体扩散
在气相中的扩散(Gilliland 方程)
DAB
1.8104
T0.5
0.5
[VA
V0B.5]2
MA [ 1
A MA
2.渗透模型
➢ 假定:
气液界面上的液体微元不断被液 相主体中浓度为CAL的微元置换 每个微表面元与气体接触时间都
为 界面上微表面元在暴露时间内的
吸收速率是变化的
气液界面 流体微元
液体主相
吸收机理
3.表面更新模型
➢假定:
各表面微元具有不同的暴露时间,t=0- 各表面元的暴露时间(龄期)符合正态分布
化学吸收速率
吸收速率
➢ 物理吸收时 NA kA(CAi CAl) ➢ 化学吸收时 NA K1(cAi cAl )
K1-未发生化学反应时的液相传质分系数
-由于化学反应使吸收速率增强的系数
➢ 相当于选取相同的推动力C, 选用不同的传质系数 -引入增强系数
例:SO2化学吸收计算
主要参数
➢ G1—入塔气体的总摩尔流量,kmol/(m2•h)