spss卡方检验与相关分析报告

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


在Analyze的下拉菜单Correlate命令项中 有三个相关分析功能子命令Bivariate过程 (二变量相关分析)、Partial过程(偏相关分 析)、 Distances过程(距离分析)。
(二)相关分析类型
Bivariate过程用于进行两个或多个变量间的 相关分析,如为多个变量,给出两两相关的 分析结果。 Partial过程,当进行相关分析的两个变量的 取值都受到其他变量的影响时,就可以利用 偏相关分析对其他变量进行控制,输出控制 其他变量影响后的相关系数。 Distances过程用于对同一变量各观察单位间 的数值或各个不同变量间进行相似性或不相 似性分析,一般不单独使用,而作为因子分 析等的预分析。
发生变化。
比较边缘百分比和条件百分比的差别。

卡方测量用来考察两变量是否独立(无关)。
Pij Pi. P. j
二、相关分析(Correlate)
(一)简介

相关分析用于描述两个变量间联系的密切 程度,其特点是变量不分主次,被置于同 等的地位。检验的原假设为相关系数为0。 可选择是单尾检验还是双尾检验。
定距 Eta 系数
定距
Spearman Spearman 相 相关系数 关系数 同 序 - 异 序 对测量 Pearson 相 关系数
相关分析之三——关系性质
直线相关与曲线相关 正相关与负相关 完全相关与完全不相关
一、列联相关(第四章已讲)
(一)列联分析的基本原理 自变量发生变化,因变量取值是否也
定序
列联 cross-tabulate 积差相关 spearman correlation
积差相关 spearman correlation 积矩相关 pearson correlation 积矩相关 pearson correlation 回归 regression
定距
相关分析之二——关系强度

变量关系强度的含义:指两个变量相关程度 的高低。统计学中是以准实验的思想来分 析变量相关的。通常从以下的角度分析: A)两变量是否相互独立。 B)两变量是否有共变趋势。 C)一变量的变化多大程度上能由另一变量 的变化来解释。
变量关系强度测量的主要指标
定类 定类 定序
卡方类测量 Lamda 等来自百度文库
定序
卡方类测量 Lamda 等

Flag significant correlations 用于确定是否在结果中用星号标记有统计 学意义的相关系数,一般选中。此时 P<0.05的系数值旁会标记一个*,P<0.01的 则标记两个**。

Options 对话框
对每一个变量 输出均值、标准 差和无缺省值的 观测数。 对每一个变量 输出交叉距阵和 协方差距阵。
可以画散点图先进行判断。
Graphs-legacy-scatter
自变量
1 男性 2 女性 总计
每月工资平均 数 752.40 601.97 680.95
N 452 409 861
因变量
统计结果显示,当性别取值不同时,收入变量 的取值发生了变化,因此性别与月收入有关。
变量关系的统计类型
定类 定类 列联 cross-tabulate 定序 列联 cross-tabulate 定距 方差分析 (分组平均数) compare means

Bivariate Correlations 对话框

Pearson复选框 选择进行积差相关分析, 即最常用的相关分析,其计算连续变量或 等间隔测度变量间的相关系数。计算该相 关系数时,不仅要求两相关变量均为正态 变量,而且样本数(N)一般不应少于30。
Kendall‘s tau-b复选框 计算Kendall’s等级相 关系数,其计算定序变量间的线性相关关系。 (有打结现象时) Spearman复选框 计算Spearman相关系数。 也是计算等级相关系数(定序与定序)。最 常用的非参数相关分析(秩相关),适用于 连续等级资料。 (无打结现象) 以上三种相关分析可以选择其中之一,也可 以同时多选。如果参与分析的变量是连续变 量,选择Kendall's tau-b或Spearman相关, 则系统自动对连续变量的值先求秩,再计算 其秩分数间的相关系数。

(三)Bivariate相关分析
在进行相关分析时,散点图是重要的工具, 分析前应先做散点图,以初步确定两个变 量间是否存在相关趋势,该趋势是否为直 线趋势,以及数据中是否存在异常点。否 则可能得出错误结论。 Bivariate相关分析的步骤:输入数据后,依 次单击Analyze—Correlate—Bivariate, 打开Bivariate Correlations对话框
第五章
相关分析与检验
相关分析之一——有关与无关
寻找变量间的关系是科学研究的首要目
的。变量间的关系最简单的划分即:有关 与无关。
在统计学上,我们通常这样判断变量之
间是否有关:如果一个变量的取值发生 变化,另外一个变量的取值也相应发生 变化,则这两个变量有关。如果一个变 量的变化不引起另一个变量的变化则二 者无关。
计算某个统计量时,在这一对变量 中排除有缺省值的观测值。 对于任何分析,有缺省值的观测值 都会被排除。

一般,如果r的绝对值大于0.8,则认为两变 量之间具有较强的线性相关关系;如果r小 于0.3,则认为两变量之间具有较弱的线性 相关关系。 当然,相关关系的程度与样本的容量大小 也有很大的关系。
例1:为研究高等院校人文社会科学研究中 立项课题数会受哪些因素影响,收集1999 年31个省市自治区部分高校有关社科方面 的数据,研究立项课题数(当年)与投入 的具有高级职称的人年数(上年)、发表 论文数(上年)之间是否具有较强的线性 关系。
性别与四级英语考试通过率的相关统计
1 通过考试 1 男性 2 女性 总计 40% 40% 40% 2 未通过考试 60% 60% 60%
表述:统计结果显示,当性别取值不同时,通过率变量 的取值并未发生变化,因此性别与考试通过率无关。 自变量的不同取值在因变量上无差异,两变量无关。 自变量的不同取值在因变量上有差异,两变量有关。
相关文档
最新文档