发电机失磁危害及处理方法
发电机失磁保护
![发电机失磁保护](https://img.taocdn.com/s3/m/aa62e76bf11dc281e53a580216fc700abb6852a4.png)
发电机失磁保护本文主要介绍发电机失磁产生的影响、发电机失步爱护、发电机逆功率爱护以及发电机过电压爱护。
一、发电机失磁产生的影响需要从电网中汲取很大的无功功率以建立发电机的磁场,所需无功功率的大小主要取决于发电机的参数以及实际运行的转差率。
由于从电力系统中汲取无功功率将可能引起电力系统电压下降,假如电力系统的容量较小或无功功率的储备不足,可能使失磁发电机的机端电压、升压变压器高压侧的母线电压或其它邻近点的电压低于允许值,从而破坏了负荷与各电源间的稳定运行,甚至可能因电压崩溃而使系统瓦解。
由于失磁发电机汲取了大量的无功功率,因此为了防止其定子绕组的过电流,发电机所能发出的有功功率将较同步运行时有不同程度的降低,汲取的无功功率越大,则降低越多。
失磁后发电机的转速超过同步转速,因此,在转子励磁回路中将产生差频电流,因而形成附加损耗,使发电机转子和励磁回路过热。
明显,当转差率越大时,所引起的过热也越严峻。
失磁后会引起发电机组的振动,凸极机振动更厉害。
二、发电机失步爱护这部分主要介绍什么是发电机失步爱护、失步爱护要求、失步爱护构成原理和出口方式。
定义:当系统受到大的扰动后,发电机或发电机群可能与系统不能保持同步运行,即发生不稳定振荡,称失步。
失步爱护要求:①失步爱护装置应能鉴别短路故障和不稳定振荡,发生短路故障时,失步爱护装置不应动作。
②失步爱护装置应能尽快检出失步故障,通常要求失步爱护装置在振荡的第一个振荡周期内能够检出失步故障。
③检出失步故障实行跳闸时,从断路器本身的性能动身,不应在发电机电动势与系统电动势夹角为180°时跳闸。
④失步爱护装置应能鉴别不稳定振荡和稳定振荡(通常发电机电动势与系统电动势间相角摆开最大不超过120°时为稳定振荡,即是可恢复同步的振荡),在稳定振荡的状况下,失步爱护不应误动作。
失步爱护构成原理:利用两个阻抗继电器先后动作挨次反应发电机机端测量阻抗的变化。
出口方式:推断为减速失步时,发减速脉冲;推断为加速失步时,发加速脉冲;经过处理仍旧处于失步状态时,就动作于解列灭磁。
发电机失磁跳闸原因分析及防止对策(最新版)
![发电机失磁跳闸原因分析及防止对策(最新版)](https://img.taocdn.com/s3/m/2494b4061ed9ad51f11df206.png)
( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改发电机失磁跳闸原因分析及防止对策(最新版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes发电机失磁跳闸原因分析及防止对策(最新版)〔摘要〕叙述了大武口发电厂相继投入运行的JLQ-500-3000型交流励磁机(主励磁机)、YJL-100-3000交流永磁机(付励磁机)和GLT-S型励磁调节器,在运行期间,其发电机低励磁失磁保护先后动作跳闸了11次,严重危及西北电网及宁夏电网的稳定运行的情况,分析了失磁保护动作的原因,制定了相应的防止对策。
1发电机失磁跳闸的典型事例(1)1987年9月14日19:23,发现3号机主励磁机炭刷冒火,电气运行值班人员在处理过程中,由于维护经验不足,调整电刷弹簧压力时将正、负极同时提起,使运行中的发电机励磁电流中断,造成失磁保护动作,3号机出口208开关跳闸。
(2)1987年11月28日,全厂2,3,4号机组运行,1号机组停运,总负荷280MW,4号机组带80MW负荷运行。
8:15,4号机励磁系统各表计指示摆动,随之出现“励磁异常”、“强励限制”、“保护动作”等光字。
4号机210开关跳闸,励磁调节B柜DZB开关联动,经查低励失步保护动作,励磁回路未发现异常情况。
8:21,将4号机并入系统,当负荷加至80MW时,4号机再次出现上述现象,210开关跳闸。
经分析认为励磁调节器有隐蔽性故障,故启动备用励磁机运行。
4号机励磁调节柜停运后,经检查发现A柜综合放大器和电压反馈的R15电阻、C3滤波电容焊点孔位偏移,接头开焊脱落引起反馈电压波形畸变,导致励磁运行参数摆动,造成瞬间失磁。
发电机失磁应急预案
![发电机失磁应急预案](https://img.taocdn.com/s3/m/b0eb8a5ac4da50e2524de518964bcf84b8d52d53.png)
发电机失磁应急预案发电机失磁应急预案(一)随着电力需求的增加,发电机作为一种重要的电力设备,被广泛应用于各个领域。
然而,由于各种原因,发电机有时会出现失磁的情况,这将导致发电机无法正常工作,严重影响到电力供应。
因此,建立一套有效的发电机失磁应急预案显得尤为重要。
一、发电机失磁的原因1. 温度过高:高温环境下,发电机铁磁材料的磁化能力会下降,造成失磁现象。
2. 外部磁场干扰:发电机周围存在强磁场或电磁干扰时,会影响发电机内部的磁场分布,导致失磁。
3. 线圈损坏:线圈在长时间运行中,可能因为绝缘老化、短路等原因,导致线圈受损,进而引起失磁。
二、发电机失磁的危害1. 无法提供电力:发电机失磁后,将无法产生电流,无法正常供电,给生产和生活带来极大不便。
2. 设备损坏:失磁将导致发电机运行异常,产生大量的过电压和过电流,可能会损坏发电机内部的电路和部件。
3. 火灾风险:失磁后,发电机内部可能会出现电弧和火花,引发火灾事故,带来严重的安全隐患。
三、发电机失磁应急预案1. 日常维护保养:定期对发电机进行检查和维护,确保其正常运行。
特别是要注意发电机温度的控制,避免过高温度。
2. 增强绝缘保护措施:定期检查发电机线圈绝缘情况,对老化的绝缘进行更换,确保线圈的正常运行。
3. 防止外部磁场干扰:在发电机周围设置较为严密的屏蔽措施,避免外部强磁场对发电机磁场的干扰。
4. 定期检测磁场强度:通过专业的检测仪器,定期检测发电机内部磁场的强度,及时发现并处理失磁问题。
5. 预留备用发电机:在关键场所,如医院、大型工厂等,应设置备用发电机,以备不时之需,保证电力供应的连续性。
6. 建立应急通讯机制:在发生发电机失磁的紧急情况下,及时与相关单位进行沟通,寻求帮助和支持。
7. 员工培训和演练:定期组织员工进行应急演练,提高员工应对发电机失磁事故的能力和应变能力。
8. 及时报警和排查:如果发现发电机失磁的迹象,应立即报警,并组织专业人员进行排查和修复。
预防发电机失磁、失步措施
![预防发电机失磁、失步措施](https://img.taocdn.com/s3/m/968bebf09b89680203d8252c.png)
预防发电机失磁、失步措施发电机失磁、失步是发电机运行中常见的故障形式,一旦保护拒动将对发电机及系统造成较大影响。
为防止此故障发生,特制定本措施。
一、失磁、失步定义:失磁:发电机失磁是指发电机的励磁电流突然全部消失或部分消失。
失步:发电机失磁后造成震荡,震荡幅度变大,功角增大,直至脱出稳定运行,使发电机失去同步,进入异步运行。
二、失磁的原因:1、转子绕组故障2、励磁机故障3、自动灭磁开关误跳闸4、及回路发生故障三、失磁的危害:对自身危害:1、使转子和励磁回路过热,严重时可使转子烧毁。
2、失磁后吸收无功使定子过热。
3、机组振动增大、铁芯过热。
对系统危害:1、从系统吸收无功,威胁系统稳定运行,严重时导致系统瓦解。
2、强励可能动作,引起过电流。
四、失磁处理:1、检查厂用电是否切换,如果未切换作相应处理。
2、发电机失磁,而失磁保护没有动作,系统电压低至极限值时应立即手动打闸停机。
3、如果系统电压低应联系值长增加其它发电机的无功出力,防止电网瓦解。
五、失步处理:1、在发电机电压允许的前提下尽可能增加发电机的无功。
2、如果系统频率正常可适当降低发电机的有功。
3、采取上述措施后仍不能恢复同步,失步保护不动作时如威胁设备安全时,应将失步的发电机与系统解列。
4、如由于发电机失磁引起系统振荡而失磁保护不动作时,应立即将失磁的发电机解列。
六、防止失磁、失步措施:1、各值做好发电机失磁、失步的事故预想,防止事故扩大。
2、巡检时注意检查各保护装置工作正常。
3、巡检时检查励磁系统各保险、开关正常,系统无异常报警。
4、运行中加强励磁碳刷的检查。
5、励磁系统操作严格执行监护制度。
6、机组大小修中做励磁系统相关试验及发变组保护传动试验正常。
7、定期核对保护装置定值正确。
8、定期试验柴油发电机正常。
发电机失磁运行分析及处理
![发电机失磁运行分析及处理](https://img.taocdn.com/s3/m/912924fe52ea551811a68722.png)
发电机失磁运行分析及处理摘要:发电机失磁运行是常见的故障形式。
发电机运行时发生失磁对发电机本身和电力系统造成影响,一旦保护拒动其将破坏电力系统的稳定运行、威胁发电机的自身平安。
我们要从认识发电机失磁原理、失磁后工况变化,制定发电机失磁防范措施,防止发电机失磁运行和失磁后快速切除故障发电机运行。
关键词:失磁措施处理1、发电机失磁工况介绍发电机是一种将机械能转变为电能的工具,简单的从原理方面说,它是由转子和定子线圈组成的,转子绕组由励磁系统提供电流,在原动机的拖动下旋转,即产生了旋转磁场,旋转磁场切割定子线圈,在定子回路产生感应电势,当发电机带上负载后,就产生了三相交流电,因三相定子绕组依次相差120°电角度布置,三相电流产生的磁场组合成一个磁场,即产生了定子旋转磁场。
发电机正常运行中,转子的旋转磁场与定子的旋转磁场方向、速度一样,转差为零,即发电机为同步运行方式。
当发电机励磁系统故障后,失去了励磁电流,也就是平常所说的发电机失磁。
发电机失磁后,转子旋转磁场消失,电磁力矩减少,而原动力矩不变,出现了过剩力矩,使转子转速增加,转子与定子的旋转磁场有了相对速度,出现了转差,定子磁场以转差速度切割转子外表,使转子外表感应出电流来,这个电流与定子旋转磁场作用就产生了一个力矩,称为异步力矩,它的制动作用限制了转子转速无限升高,转速越高,异步力矩越大,从而降低了转差,这时的发电机进入了异步运行状态。
发电机从系统吸收无功,供定子、转子产生磁场,向系统输送有功功率。
2、发电机失磁运行的危害、由于发电机失磁后,转子与定子出现了转差,在转子外表感应出转差频率的电流,该电流在转子中产生损耗,使转子发热增大,转差越大电流越大,严重时可使转子烧损;特别是直接冷却高利用率的大型机组,热容量裕度相对降低,转子容量过热。
失磁后,发电机转入异步运行,发电机的等效电抗降低,从系统吸收的无功功率增大。
失磁前的有功越大,转差越大,等效电抗就越小,吸收的无功也越大,因此在大负荷下失磁,由于定子绕组过电流将使定子过热。
发电机失磁现象及处理方法
![发电机失磁现象及处理方法](https://img.taocdn.com/s3/m/0a451b70777f5acfa1c7aa00b52acfc789eb9fc0.png)
发电机失磁现象及处理方法一、引言1.1 任务背景发电机作为一种重要的发电设备,广泛应用于各个领域。
然而,发电机在运行过程中可能会出现失磁现象,导致发电机无法产生正常的电能输出,给生产和生活带来一系列问题。
因此,研究发电机失磁现象及其处理方法对于保障电力供应的稳定性具有重要意义。
1.2 文章目的本文旨在全面、详细、完整地探讨发电机失磁现象及其处理方法,通过对失磁原因和解决方案的研究,帮助读者深入了解发电机失磁的机理,提供有效的处理方法,以减少失磁带来的损失。
二、发电机失磁原因2.1 电源故障1.电源电压过低或过高2.电源电压波动较大3.电源频率异常2.2 发电机过载1.发电机超负荷运行2.短时间内大电流冲击2.3 发电机绝缘失效1.绝缘材料老化2.绝缘层受潮或受污染3.发电机运行温度过高2.4 外界磁场干扰1.强磁场干扰2.发电机周围有强磁性物体存在三、发电机失磁的表现3.1 发电机输出电压下降1.输出电压波动较大2.输出电压偏低3.2 发电机电流异常1.输出电流波动较大2.输出电流偏高3.3 发电机无输出1.无法输出任何电能2.机械部分运转正常3.4 发电机噪音增加1.异常噪音的产生2.噪音频率、幅度异常四、发电机失磁处理方法4.1 重新充磁处理1.通过外部电源重新充磁2.确保电源参数符合要求3.适度提高充磁电流4.2 检修绝缘部分1.检查绝缘材料的老化程度2.清洁绝缘层并除去潮湿或污染3.加强绝缘部分的散热措施4.3 消除外界磁场干扰1.避开强磁场区域运行2.在发电机周围安装磁屏蔽器4.4 检测与调整发电机负载1.合理规划负载,避免过载运行2.控制瞬时动作电流的大小结论本文对发电机失磁现象及其处理方法进行了全面、详细、完整地探讨。
失磁原因方面,电源故障、发电机过载、绝缘失效和外界磁场干扰是主要因素;失磁表现方面,发电机输出电压下降、电流异常、无输出和噪音增加是常见现象。
针对发电机失磁问题,重新充磁处理、检修绝缘部分、消除外界磁场干扰和检测与调整发电机负载是常用的处理方法。
发电机失磁现象及处理方法
![发电机失磁现象及处理方法](https://img.taocdn.com/s3/m/e22fad6fbf23482fb4daa58da0116c175e0e1e7d.png)
发电机失磁现象及处理方法一、发电机失磁现象的定义及原因发电机失磁是指在运行中,由于某些原因,发电机磁场消失或减弱,导致输出电压降低或完全没有输出电压的现象。
常见的原因有以下几种:1.励磁系统故障:励磁系统是维持发电机正常运转的关键部件之一。
如果励磁系统出现故障,如励磁电源故障、调节器损坏等,就会导致发电机失去励磁而失磁。
2.外界干扰:在工业生产中,有时会出现外界干扰的情况,如雷击、高压线路、强电场等都可能导致发电机失去励磁而失磁。
3.绕组故障:发电机绕组是由铜线绕成的,在长期运行中容易出现断线、接触不良等故障。
如果绕组出现故障,就会导致发电机失去励磁而失磁。
二、处理方法1.检查励磁系统对于励磁系统故障造成的失磁问题,需要首先检查励磁系统是否正常。
具体方法如下:(1)检查励磁电源是否正常。
可以使用万用表检测励磁电源的电压和电流是否正常,如果不正常则需要修理或更换。
(2)检查调节器是否损坏。
如果调节器损坏,就需要进行维修或更换。
(3)检查励磁线路是否接触良好。
如果发现接触不良,就需要重新接好或更换。
2.消除外界干扰对于外界干扰造成的失磁问题,需要采取以下措施:(1)加强防雷措施,如安装避雷针、接地线等。
(2)减少高压线路和强电场对发电机的影响,可以采用隔离、屏蔽等措施。
3.修复绕组故障对于绕组故障造成的失磁问题,需要进行以下处理:(1)检查绕组是否有断线、接触不良等情况。
如果有,则需要重新焊接或更换铜线。
(2)对于绕组出现过热或烧毁现象,需要进行局部修复或更换整个绕组。
4.其他处理方法如果以上方法都无法解决失磁问题,则可能是因为发电机内部元件损坏或老化,需要进行更换或维修。
此时需要将发电机拆开检查,并根据具体情况进行维修或更换。
三、预防措施为了避免发电机失磁问题的发生,可以采取以下预防措施:1.定期检查励磁系统和绕组状态,及时发现并修复故障。
2.加强对外界干扰的防范,如加装避雷针、接地线等。
3.定期对发电机进行保养和维护,延长使用寿命。
发电机常见故障处理方法
![发电机常见故障处理方法](https://img.taocdn.com/s3/m/5a8d633a5901020207409c62.png)
发电机常见故障处理方法发电机在使用过程中会常出现的故障有以下这些:发电机失磁;漏油;输出功率不足;机油压力过低;冷却液温度过高;发动机冒白烟;发动机空载时冒黑烟;转速不稳定;发动机不着火;发动机不能起动等。
具体故障原因处理方法如下:1、发电机失磁故障原因:发电机长时间不用,导致出厂前含在铁芯中的剩磁失去,励磁线圈建立不起应有的磁场,这时发动机运转正常但发不出电,此类现象在新机、存放于潮湿环境或长期不用的机组较多。
处理方法:对发电机主输出回路进行检查,防止输出端存在短路造成励磁无法建立;有励磁充磁按钮的按一下励磁充磁按钮;无励磁按钮的,用电瓶对其充磁。
2、漏油故障原因:由于发动机内有多处采用压力密封的形式,如汽缸套-活塞-活塞环间,增压器-增压器转子轴间,这种密封一般在发动机有约1/3负荷时,才充分发挥作用,而负荷小时便有可能出现轻微的渗漏现象,否则可能出现以下故障:1)活塞-汽缸套密封不好,机油上窜,进入燃烧室燃烧,排气冒蓝烟;2)对于增压式柴油机,由于低载、空载,增压压力低。
容易导致增压器油封(非接触式)的密封效果下降,机油窜入增压室,随同进气进入汽缸;3)上窜至汽缸的一部分机油参与燃烧,一部分机油不能完全燃烧,在气门、进气道、活塞顶、活塞环等处形成积炭,还有一部分则随排气排出,在排气管道内聚集或形成积炭,当聚集的机油和积炭到一定程度就会从排气歧管的接口处流出;4)增压器的增压室内机油积聚到一定程度,就会从增压器的结合面处渗漏出;5)长期小负荷运行,将会更严重导致运动部件磨损加剧,发动机燃烧环境恶化等导致大修期提前的后果。
处理方法:使用时应尽量减少低载/空载运行时间,并规定最小负荷不能低于机组额定功率的25%-30%;3、输出功率不足故障原因:燃油滤清器发生堵塞造成供油不畅;燃油输油管道漏气,有空气渗入进油管;发动机空气滤清器发生堵塞造成进气不畅;燃油温度过高;发动机排气被压过高;机油油面过高,对曲轴产生了阻力导致发动机功率亏损;发动机增压器后端与发动机进气歧管之间可能存在漏气现象导致进气压力不足;故障处理:检查燃油滤清器滤芯,如发生堵塞或存在大量杂质,请更换燃油滤清器;检查燃油供油管道,如有渗漏情况存在,进行处理,防止发动机运行时空气进入供油管;检查空气滤清器滤芯,使用压缩空气对其进行清洁或更换滤芯;测量燃油温度,如果燃油温度超过50℃,请对燃油进行降温或补充燃油降低其温度;检查发动机排气管道,确保排气管到畅通,保证排气被压小于90mmhg;在冷机状态或停机5-10分钟后,通过油标尺检查油底壳机油液面高度,如果机油液面已超过"H"位,请排出多余的机油,液面保持在"L"与"H"位之间靠近"H"位为宜;在运行状态下,借助必要的工具对增压器后端至进气歧管之间的气管进行检查(注意防止高温高压气体造成的烫伤),对存在漏气的部位进行紧固;4、发动机机油压力过低故障原因:曲轴箱机油油位太低或无机油;发动机冷却液温度总是维持在一个较高的温度值上,导致机油油粘度偏低所致;机油压力传感器故障或传感器信号可能对地短路;机油滤清器发生堵塞,造成油道供油不足;所使用的润滑油粘度级别不符合使用环境的要求;其他故障。
发电机组失磁
![发电机组失磁](https://img.taocdn.com/s3/m/a5066ef74693daef5ef73db5.png)
一、失磁保护:发电机失磁不仅使定子端部发热,力矩超过允许值,发电机由送出无功变为吸收无功,严重时造成电压崩溃。
为防止事故的发生,发电机装有失磁保护,一旦失磁,直接跳闸。
大机组满载时失磁突然跳闸,从保电网的角度看,虽失去部分有功功率,但可避免电压崩溃危险。
通过大量研究并试验,证明容量不超过800MW的二级汽轮发电机若失磁机组快速减载到允许水平,只要电网有相应无功储备,可确保电网电压,失磁机组的厂用电保持正常工作的情况,失磁机组可不跳闸,尽快恢复励磁。
由于失磁异常运行受到机组设计特点、电网条件等限制,要根据本身机组特点及电网中所处的条件而决定。
发电机失磁危害:发电机失磁通常是指发电机励磁异常下降或励磁完全消失的故障。
励磁异常下降是指发电机励磁电流的降低超过了静态稳定极限所允许的程度,使发电机稳定运行遭到破坏。
失磁可能是由于励磁开关误跳闸,励磁调节器故障,转子回路某处断线等原因引起。
失磁后果:对发电机本身的影响:1)发电机输出同步电磁功率下降:发电机的同步功率是励磁电流建立的磁场所传递的有功功率,随励磁电流的减小,同步功率将相应地减小。
而定子磁场与转子电流相互作用产生的转矩称为异步转矩,它们之间所传递的功率称为异步功率。
发电机在正常运行时,从汽轮机传过来的主力矩与同步力矩相平衡。
当某种原因造成励磁电流中断时,由于磁场不会消失,在短暂的时间内,转子磁场将逐渐衰减,使同步力矩逐渐减小,所出现的过剩力矩就会使转子加速,而使转子转速与定子旋转磁场的转速变得不一致。
与此同时,发电机变为欠励,从电网吸收感性无功功率,以维持气隙磁场。
由于定子旋转磁场与转子间有相对速度,即有了转差率S,于是在闭路的励磁绕组、阻尼绕组和转子的其它金属构件中感应出频率与转差率相应的交变电流。
该电流和定子旋转磁场作用产生异步力矩。
主力矩克服异步力矩过程中作功,亦可以继续向电网送出有功。
异步力矩是随S增大而增大的,而汽机又因转速升高使调速器动作而减少输给发电机的机械功率,所以当主力矩和异步力矩相等时,即达到新的异步运行平衡状态。
发电机失磁保护介绍
![发电机失磁保护介绍](https://img.taocdn.com/s3/m/5938aa9bac51f01dc281e53a580216fc700a53f1.png)
发电机失磁保护介绍随着电力系统的发展,发电机作为电力系统的重要组成部分扮演着不可或缺的角色。
然而,在发电机运行过程中,可能会出现失磁故障,其后果将导致发电机失去输出功率,严重时甚至会对电力系统的稳定性和安全性产生不可逆的影响。
因此,为了保护发电机免受失磁故障的损害,失磁保护系统成为了一个非常重要的研究方向。
本文将着重介绍发电机失磁保护的相关知识。
一、发电机失磁的原因及危害发电机失磁是指发电机磁场因某种原因突然中断或减弱,导致发电机无法产生输出电压。
发电机失磁的原因主要包括以下几个方面:1. 励磁系统故障:励磁系统是发电机产生磁场的关键部分,当励磁系统出现故障,如励磁电源故障、励磁接触器故障等,将会导致发电机失磁。
2. 绕组短路:绕组短路是另一个常见的造成发电机失磁的原因。
绕组短路可能由于绕组绝缘老化、电压突变引起,当短路出现时,将导致发电机失去输出功率。
3. 动转子故障:动转子故障也会导致发电机失磁,例如转子线圈断线、转子绝缘老化等情况。
发电机失磁后,将会产生以下危害:1. 无法输出电能:发电机失磁后,无法正常输出电能,会导致供电系统的供电能力下降,给用户的生活和工作带来不便。
2. 发电机损坏:失磁会引起发电机内部产生过大电流,导致绕组过热,严重时可能损坏绕组。
3. 电力系统稳定性下降:发电机是电力系统的重要组成部分,失磁将导致电力系统的短缺,会对系统的稳定性和安全性造成不可逆的影响。
二、发电机失磁保护的基本原理为了避免发电机失磁及其带来的危害,失磁保护系统应运而生。
发电机失磁保护系统的基本原理是监测发电机磁场的状态,在磁场丧失或减弱时,立即采取措施使发电机进入保护状态,避免其继续运行。
发电机失磁保护系统的核心是失磁保护装置,其主要功能如下:1. 实时监测电磁场:失磁保护装置通过传感器实时监测发电机的磁场强度,一旦检测到磁场中断或减弱,将启动保护措施。
2. 警告与切断信号:失磁保护装置在检测到磁场异常时,会产生警告信号以提醒操作人员,并发送切断信号以阻止发电机继续运行。
发电机失磁危害及处理方法
![发电机失磁危害及处理方法](https://img.taocdn.com/s3/m/68217f2d376baf1ffd4fad06.png)
发电机失磁危害及处理方法[摘要]分析了发电机失磁的原因及对电力系统和发电机本身的危害,提出了切实可行的处理方法及预防措施。
【关键词】发电机;失磁保护;判据1、发电机失磁的原因引起发电机失去励磁的原因很多,一般在同轴励磁系统中,常由于励磁回路断线(转子回路断线、励线机电枢回路断线励磁机励磁绕组断线等)、自动灭磁开关误碰或误掉闸、磁场变阻器接头接触不良等而使励磁回路开路,以及转子回路短路和励磁机与原动机在连接对轮处的机械脱开等原因造成失磁。
大容量发电机半导体静止励磁系统中,常由于晶闸管整流元件损坏、晶体管励磁调节器故障等原因引起发电机失磁。
2、发电机失磁对发电机本身影响(1)发电机失去励磁后,由送出无功功率变为吸收无功功率,且滑差越大,发电机的等效电抗越小,吸收的无功功率越大,致使失磁发电机的定子绕组过电流。
(2)转子的转速和定子绕组合成的旋转磁场的转速出现转差后,转子表面(包括本体、槽楔、护环等)将感应出滑差频率电流,造成转子局部过热,这对发电机的危害最大。
(3)异步运行时,其转矩发生周期性变化,使定、转子及其基础不断受到异常的机械力矩的冲击,机组振动加剧,威胁发电机的安全运行。
(4)当失磁适度严重时,如果有关保护不及时动作,发电机及汽轮机转子将马上超速,后果不堪设想。
3、发电机失磁对电力系统影响(1)当一台发电机发生失磁后,由于电压下降,电力系统中的其它发电机,在自动调整励磁装置的作用下,将增加其无功输出,从而使某些发电机、变压器或线路过电流,其后备保护可能因过流而误动,使事故波及范围扩大。
(2)低励和失磁的发电机,从系统中吸收无功功率,引起电力系统的电压降低,如果电力系统中无功功率储备不足,将使电力系统中邻近的某些点的电压低于允许值,破坏了负荷与各电源间的稳定运行,甚至使电力系统电压崩溃而瓦解。
(3)一台发电机失磁后,由于该发电机有功功率的摇摆,以及系统电压的下降,将可能导致相邻的正常运行发电机与系统之间,或电力系统各部分之间失步,使系统发生振荡。
发电机失磁危害及其保护措施
![发电机失磁危害及其保护措施](https://img.taocdn.com/s3/m/73ba47d6647d27284a73512a.png)
发电机失磁危害及其保护措施一、前言作者在二期发电机组失磁保护校验时,发现失磁保护下抛边界阻抗圆总是抢先失磁异步边界阻抗圆出口,造成异步阻抗圆保护失去作用,鉴于发电机失磁对发电机及系统的危害,由此引出失磁保护分析应用事宜。
二、发电机失磁危害发电机失磁后,发电机转子和定子磁场间出现了速度差,则在转子回路中感应出差频电流,引起转子局部过热,甚至灼伤,同时发电机受交变异步电磁力矩冲击而发生振动,尤其在重负荷下失磁将发生剧烈振动,直接威胁机组安全运行。
此外,发电机从系统吸收无功功率引起系统电压下降,如果系统无功储备不足则可能使系统电压低于允许值,甚至电压崩溃而瓦解系统。
三、失磁保护配置大唐韩城第二发电有限责任公司二期装机容量为2×600MVA,发变组采用单元接线,发电机保护采用美国通用公司G60微机保护装置,均为双重化配置,发变组保护A、B屏各设置一台。
该装置硬件由多功能模块组成,软件按模块化外加灵活逻辑设计,由用户根据需要配置。
该失磁保护为两段阻抗圆外加灵活逻辑配件共同组成。
3.1失磁保护逻辑图1 失磁保护逻辑3.2失磁保护定值二期发电机失磁判据采用类似静稳极限阻抗圆的下抛阻抗圆及异步边界阻抗圆主判据。
a、下抛圆阻抗设置:圆心:(稍偏坐标原点)半径:出口时间:t1=0.5sb、异步边界阻抗圆设置:圆心:-半径:出口时间:t2=1sc、机端低电压定值设置:Uop=0.85pu,即三相电压低于85%额定电压时开放失磁保护。
d、失磁保护出口方式设置:失磁两段式阻抗保护动作后分别经延时动作于全停。
四、失磁保护判据分析4.1常见失磁保护判据a、常见失磁保护主判据有:①、静稳极限励磁电压判据;②、静稳极限阻抗判据;③、异步边界阻抗判据;④、系统或发电机三相低电压判据等。
b、常见辅助判据有:①ueop≤0.8ueo其中,ueop:励磁实际电压,ueo:空载励磁电压。
②u2op≤(0.05~0.06)ugn,I2op≤(1.2~1.4)I2∞其中,u2op:发电机实际负序电压,ugn:发电机额定电压,I2op:发电机实际负序电流,I2∞:发电机长期允许负序电流。
最简单发电机失磁的处理方法
![最简单发电机失磁的处理方法](https://img.taocdn.com/s3/m/872fe3120812a21614791711cc7931b765ce7b26.png)
最简单发电机失磁的处理方法
发电机失磁通常是指发电机的励磁磁场突然消失或变弱,导致输出电压降低或无法输出电流。
最简单的处理方法是重新励磁。
下面我将更详细地解释这个过程。
发电机的励磁是指在转子上通电来产生磁场,这个磁场会与定子线圈产生电磁感应,从而产生电能。
如果励磁磁场突然消失或变弱,那么发电机就会失去输出电压或电流。
处理失磁的方法有很多种,但最简单的方法是重新励磁。
具体步骤如下:
1. 关闭发电机的输出开关,断开负载电路。
2. 确认发电机是否正常工作,检查发电机绕组和励磁线圈是否损坏。
3. 打开励磁开关,让励磁电流流过励磁线圈,产生磁场。
4. 检查发电机的输出电压是否已经恢复正常。
5. 如果输出电压已经恢复正常,可以重新连接负载电路。
需要注意的是,重新励磁时需要先关闭发电机的输出开关,避免输出电流对电路和设备造成损坏。
另外,如果励磁线圈或发电机绕组受损,可能需要更换或维修,以确保发电机正常工作。
总之,最简单的发电机失磁的处理方法是重新励磁。
但是如果问题持续存在或发电机有其他损坏,需要及时检修或更换设备。
发电机失磁原因及处理
![发电机失磁原因及处理](https://img.taocdn.com/s3/m/b5688fc9112de2bd960590c69ec3d5bbfd0adad2.png)
发电机失磁原因及处理
什么是发电机失磁?
发电机失磁是指发电机剩磁消失。
剩磁指的是铁磁材料磁化过程中外加磁场消失后铁磁材料还保留的磁场。
发电机剩磁指的是停机后定转子铁心保留的剩磁。
为什么发电机里必须要有剩磁?
对于自励式发电机,靠剩磁发电,发出的电再向转子绕组供电,加强转子磁场,通过正反馈使发电机输出电压逐渐升高,最后达到额定电压。
如果没有剩磁,发电机就没法发电了。
发电机失磁原因?
1)发电机长时间不用,导致出厂前含在铁心中的剩磁失去,励磁绕组建立不起应有的磁场,这时发电机运转正常但不发电,此类现象在长期不用的机组较多;
2)发电机停机时,先停原动机(柴油机、汽油机等),再断负载(用电器),这样会消耗铁心中的剩磁,从而导致发电机失磁。
如何处理发电机失磁?
1)断开自动电压调节器(AVR)同励磁机定子绕组的连接;
2)将一个电压为24V的直流电源(如蓄电池)与励磁机定子绕组连接(注意两者的正负极要相互对应);
3)启动机组将转速调至额定转速运行一段时间即可。
发电机失磁危害
![发电机失磁危害](https://img.taocdn.com/s3/m/b932cae79b89680203d825ae.png)
发电机失磁危害发电机低励和失磁是常见的故障形式。
造成低励、失磁的原因,主要是励磁回路的部件发生故障、自动励磁调节装置发生故障以及操作不当或由于系统事故造成的。
对各种失磁故障综合起来看,有以下几种形式:励磁绕组开路引起的失磁、励磁绕组短路引起的失磁、励磁绕组经失磁电阻(自同期电阻、异步电阻)引起的闭路失磁以及励磁绕组经电枢或整流器闭路失磁。
不论是哪种形式,失磁的发电机将会过渡到异步运行,使转子出现转差、定子电流增大、定子电压降低、有功输出将下降。
电气量的这些变化,在一定条件下,将破坏电力系统的稳定运行、威胁发电机的自身安全。
失磁的危害主要表现在以下几个方面:(1)低励或失磁的发电机,从电力系统吸收无功功率,引起电力系统电压下降。
若电压下降幅度太大,将可能会导致电力系统电压崩溃而瓦解。
(2)对于大型发电机组,在失磁后系统将要向其输送大量的无功电流,这将可能会引起电力系统的震荡。
(3)失磁后,由于出现转差,在发电机转子回路中出现差频电流。
差频电流在转子回路中产生的损耗,如果超出允许值,将使转子过热。
特别是直接冷却高利用率的大型机组,其热容量的裕度相对降低,转子更易过热。
而流过转子表层的差频电流,还可能在转子本体与槽楔、护环的接触面上发生严重的局部过热。
(4)低励或失磁的发电机进入异步运行之后,由机端观测的发电机等效电抗降低,从电力系统中吸收的无功功率增大。
低励或失磁前带的有功功率越大,转差就越大,等效电抗就越小,所吸收的无功功率就越大。
因此,在重负荷下失磁进入异步运行后,若不采取措施,发电机将因过电流使定子过热。
(5)对于直接冷却、高利用率的大型汽轮发电机,其平均异步转矩的最大值较小、惯性常数也相对降低、转子在纵轴和横轴方面也呈现较明显的不对称。
由于这些原因,在重负荷下失磁后,这种发电机的转矩、有功功率要发生周期性摆动。
在这种情况下,将有很大的超过额定值的电磁转矩周期性变化,其最大值可能达到4%~5%,使发电机周期性地严重超速。
发电机转子失磁处理
![发电机转子失磁处理](https://img.taocdn.com/s3/m/e7626e1152d380eb62946d0e.png)
二、引起失磁的原因1.励磁机或励磁回路发生故障。
2.转子绕组或励磁回路开路,或转子绕组严重短路。
3.励磁调节器或副励磁机系统发生故障。
4.转子集电环电刷环火或烧断。
5.大容量的汽轮发电机由于采用可控硅整流的交流励磁机系统比直流励磁机复杂,故障的概率更大。
五、失磁的危害1.发电机失磁后,转入异步运行,要从系统吸收大量的无功功率,如系统无功储备不足,将引起系统电压下降,甚至造成电压崩溃,从而瓦解系统。
2.失磁后,发电机转入低滑差异步运行,在转子及励磁回路中将产生脉动电流,因而增加了附加损耗,使转子和励磁回路过热。
六、失磁导致异步运行时的处理发电机失磁异步运行时,一般处理原则:1.对于不允许无励磁运行的发电机应立即从电网解列,以免损坏设备或造成系统事故。
2.对于允许无励磁运行的发电机应按无励磁运行规定执行以下操作:① 迅速降低有功功率到允许值(本厂失磁规定的功率值与表计摆动的平均值相符合),此时定子电流将在额定电流左右摆动。
② 手动断开灭磁开关,退出自动电压调节装置和发电机强行励磁装置。
③ 注意其它正常运行的发电机定子电流和无功功率值是否超出规定,必要时按发电机允许过负荷规定执行。
④ 对励磁系统进行迅速而细致的检查,如属工作励磁机的问题,应迅速启动备用励磁几恢复励磁。
⑤ 注意厂用分支电压水平,必要时可倒至备用电源接带。
⑥ 在规定无励磁运行的时间内,仍不能使机组恢复励磁,则应将发电机自系统解列。
发电机失磁后短时间内采用异步运行方式,继续与电网并列且发出一定有功功率,对于保证机组和电网安全、减少负荷损失均具有重要意义。
在实际的机组运行过程中,运行人员应结合失磁时的各种现象作出准确判断和果断处理,确保机组的安全、稳定、经济地运行。
七、发电机失磁保护由于发电机失磁对系统和发电机都有影响,在电力系统中对于大、中型发电机都配有相应的失磁保护,其原理大多利用发电机失磁后,机端测量阻抗变化的轨迹构成保护主判据,如:定子判据:(1)失磁的机端测量阻抗进入静稳边界圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发电机失磁危害及处理方法
[摘要]分析了发电机失磁的原因及对电力系统和发电机本身的危害,提出了切实可行的处理方法及预防措施。
【关键词】发电机;失磁保护;判据
1、发电机失磁的原因
引起发电机失去励磁的原因很多,一般在同轴励磁系统中,常由于励磁回路断线(转子回路断线、励线机电枢回路断线励磁机励磁绕组断线等)、自动灭磁开关误碰或误掉闸、磁场变阻器接头接触不良等而使励磁回路开路,以及转子回路短路和励磁机与原动机在连接对轮处的机械脱开等原因造成失磁。
大容量发电机半导体静止励磁系统中,常由于晶闸管整流元件损坏、晶体管励磁调节器故障等原因引起发电机失磁。
2、发电机失磁对发电机本身影响
(1)发电机失去励磁后,由送出无功功率变为吸收无功功率,且滑差越大,发电机的等效电抗越小,吸收的无功功率越大,致使失磁发电机的定子绕组过电流。
(2)转子的转速和定子绕组合成的旋转磁场的转速出现转差后,转子表面(包括本体、槽楔、护环等)将感应出滑差频率电流,造成转子局部过热,这对发电机的危害最大。
(3)异步运行时,其转矩发生周期性变化,使定、转子及其基础不断受到异常的机械力矩的冲击,机组振动加剧,威胁发电机的安全运行。
(4)当失磁适度严重时,如果有关保护不及时动作,发电机及汽轮机转子将马上超速,后果不堪设想。
3、发电机失磁对电力系统影响
(1)当一台发电机发生失磁后,由于电压下降,电力系统中的其它发电机,在自动调整励磁装置的作用下,将增加其无功输出,从而使某些发电机、变压器或线路过电流,其后备保护可能因过流而误动,使事故波及范围扩大。
(2)低励和失磁的发电机,从系统中吸收无功功率,引起电力系统的电压降低,如果电力系统中无功功率储备不足,将使电力系统中邻近的某些点的电压低于允许值,破坏了负荷与各电源间的稳定运行,甚至使电力系统电压崩溃而瓦解。
(3)一台发电机失磁后,由于该发电机有功功率的摇摆,以及系统电压的下降,将可能导致相邻的正常运行发电机与系统之间,或电力系统各部分之间失步,使系统发生振荡。
(4)发电机的额定容量越大,在低励磁和失磁时,引起无功功率缺额越大,电力系统的容量越小,则补偿这一无功功率缺额的能力越小。
因此,发电机的单机容量与电力系统总容量之比越大时,对电力系统的不利影响就越严重。
4、发电机失磁保护原理
(1)低电压判据
为了避免发电机失磁导致系统电压崩溃同时对厂用电的安全构成了威胁,因此设置了低电压判据。
一般电压取自主变高压母线三相电压,也可选择发电机机端三相电压。
三相同时低电压判据:UppPzd
失磁导致发电机失步后,发电机输出功率在一定范围内波动,P取一个振荡周期内的平均值。
(4)转子侧判据
转子低电压判据:Ur<Urlzd
失磁故障时如Ur突然下降到零或负值,励磁低电压判据迅速动作(在发电机实际抵达静稳极限之前)。
失磁故障将导致机组失步,失步后Ur和发电机输出功率作大幅度波动,通常会使励磁低电压判据周期性地动作与返回,因此励磁电压元件在失步后(进入静稳边界)延时返回。
一般情况下阻抗整定边界为静稳边界圆。
转子低电压动作方程
其中:Vfd——转子电压
Vfl.dz——转子低电压动作值
Vfdo——发电机空载转子电压
SN——发电机额定功率
Kf——转子低电压系数
P——发电机出力
Pt——发电机反应功率
下面以静稳边界判据为例说明失磁保护原理构成。
转子低电压判据满足时发失磁信号,并输出切换励磁命令。
此判据可以预测发电机是否因失磁而失去稳定,从而在发电机尚未失去稳定之前及早地采取措施(切换励磁等),防止事故的扩大。
对于无功储备不足的系统,当发电机失磁后,有可能在发电机失去静稳之前,高压侧电压就达到了系统崩溃值。
所以转子低电压判据满足并且高压侧低电压判据满足时,说明发电机的失磁已造成了对电力系统安全运行的威胁,经“与2”电路发出跳闸命令,迅速切除发电机。
转子低电压判据满足并且静稳边界判据满足,经“与3”电路发出失稳信号。
此信号表明发电机由失磁导致失去了静稳。
当转子低电压判据在失磁中拒动(如转子电压检测点到转子绕组之间发生开路时),失稳信号由静稳边界判据产生。
汽轮机在失磁时允许异步运行一段时间,此间过流判据监测汽轮机的有功功率。
若定于电流大于1.05倍的额定电流,表明平均异步功率超过0.5倍的额定功率,发出压出力命令,压低发电机的出力,使汽轮机继续作稳定异步运行。
稳定异步运行一般允许2~15分钟(t1),所以经过t1之后再发跳闸命令。
在t1期间运行人员可有足够的时间去排除故障,重新恢复励磁,这样就避免了跳闸,这对经济运行具有很大意义。
如果出力在t2内不能压下来,而过电流判据又一直满足,则发跳闸命令以保证发电机本身的安全。
当失稳信号发出后立即经过一个短延时t1发跳闸命令。
保护方案体现了这样一个原则:发电机失磁后,电力系统或发电机本身的安全运行遭到威胁时,将故障的发电机切除,以防止故障的扩大。
在发电机失磁而对电力系统或发电机的安全不构成威胁时(短期内),则尽可能推迟切机,运行人员可及时排除故障,避免切机。
阻抗元件电压取自发电机机端TV;电流取自发电机机端或中性点TA。
高压侧电压取自主变高压侧TV。
励磁电压取自发电机转子。
5、发电机失磁的处理
(1)立即减至额定有功功率50%运行,使发电机定子电流不得超限,增加未失磁机组的无功功率,以稳定厂用及系统电压。
(2)应将厂用电源倒为备用。
(3)若人为误动引起励磁开关跳闸,发电机出口开关跳闸,汽机应重新冲转,然后合上励磁开关零起升压,发电机经出口开关同期并列。
(4)若励磁调节器故障引起发电机失磁如未“自动”切为“手动”,则人为切“手动”增加无功,发电机若A、B套励磁调节装置转换不成功,则转为“手动”若以上处理无效,应立即减有功负荷到零,解列发电机,联系电气检修人员处理励磁调节器,处理好后重新并列。
(5)检查永磁机输出是否正常,一次保险是否熔断。
(6)发电机失磁运行的允许负荷和持续时间,应通过试验和根据系统稳定的要求,验算确定。
未经试验,一般不得无励磁运行。
(7)经过试验可以无励磁运行的发电机,失去励磁时,即变为异步运行状态;从试验看,中小型机组运行时间不得超过30分钟,大型机组不得超过15分钟。
目前,我国小型电厂的发电机一般是不允许无励磁运行的。
6、防范措施
电气运行人员应加强对励磁回路的巡回检查和维护工作,是防止发电机失磁现象发生的最有效方法。
同时电气检修人员对于励磁开关锁扣及操作机构要加强检修,使其可靠动作,防止拒动。
检修时必须测量励磁回路的电阻,由此判断励磁回路是否断路,接触是否良好。