第六章 无标度网络
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 无标度网络是度分布服从幂律分布的网络
• 无标度网络具有少量高度节点、大量低度 节点。
• Scale-free网络的特性: • 度分布呈幂率分布 • 中枢节点出现 • 稳健性 • 脆弱性
6.1 生成一个无标度网络
6.1.1 barabasi albert(ba)网络 6.1.2 生成ba网络 6.1.3 无标度网络幂律分布
6.3 无标度网络中的导航
6.3.1 最大度导航与密度对应关系 6.3.2 最大度导航与hub度的对应关系 6.3.3 在无标度pointville网络中的弱联系
最大度导航与密度、hub度的对应关系
无标度pointville网络中的弱联系
• 随机:D=3.18, R=2.77, Close=0.427(P.84);
目录
• 第1章 网络科学的起源 • 第2章 图 • 第3章 规则网络 • 第4章 随机网络 • 第5章 小世界网络 • 第6章 无标度网络 • 第7章 涌现 • 第8章 传染病 • 第9章 同步 • 第10章 影响网络 • 第11章 脆弱性 • 第12章 NetGain网络 • 第13章 生物学 • 第14章 最新动态
P(k)
P(ki (t) k
k)
m1/ t (m0
t)
1 k11/
P(k ) m 1 1/ k (11/ )
1 P(k) 2m2k 3
2
• Newman, M. E. J., The structure and function of complex networks, SIAM Rev. Soci. Industr. Appl. Math. 45(2):167–256 (2003).
6.2 无标度网络的属性
• 6.2.1 ba网络熵 6.2.2 hub度与密度对应关系 6.2.3 ba网络平均路径长度 6.2.4 ba网络紧度 6.2.5 无标度源自文库络聚类系数
6.2.1 ba网络熵
6.2.2 hub度与密度对应关系
6.2.3 ba网络平均路径长度
6.2.4 ba网络紧度
有大量连接的节点上。
• 增长和择优连接这两种要素激励了Barabási-Albert模型的 提出,该模型首次导出度分布按幂函数规律变化的网络。
• 模型的算法如下:
(1)增长:开始于较少的节点数量(m0),在每个时间间 隔增添一个具有m(≤m0)条边的新节点,连接这个新节 点到m个不同的已经存在于系统中的节点上。
6.1.1 barabasi albert(ba)网络
• 无标度模型由Albert-László Barabási和Réka Albert在1999年首先提出,现实网络的无标 度特性源于众多网络所共有的两种生成机 制:
• (ⅰ)网络通过增添新节点而连续扩张; • (ⅱ)新节点择优连接(偏好连接)到具
第6章 无标度网络
6.1 生成一个无标度网络 6.1.1 barabasi albert(ba)网络 6.1.2 生成ba网络 6.1.3 无标度网络幂律分布 6.2 无标度网络的属性 6.2.1 ba网络熵 6.2.2 hub度与密度对应关系 6.2.3 ba网络平均路径长度 6.2.4 ba网络紧度 6.2.5 无标度网络聚类系数 6.3 无标度网络中的导航 6.3.1 最大度导航与密度对应关系 6.3.2 最大度导航与hub度的对应关系 6.3.3 在无标度pointville网络中的弱联系 6.4 分析 6.4.1 熵 6.4.2 路径长度和通信 6.4.3 聚类系数 6.4.4 hub度 练习
6.1.2 生成ba网络
6.1.3 无标度网络幂律分布
• A.-L. Barabási, R. Albert. Emergence of scaling
in random networks. Science 286, 509–512
(1999)
• 可参考《复杂网络度分布的研究》文。
• BA模型构造的网络度符合幂指形式的证明
(2)择优连接:在选择新节点的连接点时,假设新节点连 接到节点i的概率p取决于节点i的度数即
p(ki )
ki jk j
• 经过t时间间隔后,该算法程序产生一具有 N=t+m0个节点,mt条边的网络。
• 数量模拟表明具有k条边的节点的概率服从 指数为r=3的幂指数分布。
P(k) ~k-3
A.-L.Barabási, R. Albert, Science 286, 509 (1999)
• 6.1.3 Scale-Free Network Power Law(p.186189)(中文p.122-123)
• 运行网络平台之scalefree.m(参考“基于 Matlab的无标度网络仿真.pdf ”),取教材 图6-2之参数。可得网络的邻接矩阵。
• 然后用Ucinet绘图。
• 用Degree_Distribution.m给出度分布图。
•
Density No. of Ties
• 6-2 0.0579 562.0000
• clustering coefficient: 0.168
• Average distance
= 2.577
• 可对此网络的度分布拟合给出幂律分布表 达式。
• 关于无标度网络的进一步认识,可参考: • 《无标度网络的争议》 • 《复杂网络的随机刻画和演化规律》 • 等网络教学平台文献。
• SW:
L=2.17, Close=0.30(P.112);
• SF:
L=1.75, Close=0.07(P.135);
6.2.5 无标度网络聚类系数
• scale-free networks have large hubs and small clustering. Small-world networks have large clusters and small hubs.
• Scale-free network structure is vested in highdegree hubs, while small world structure is vested in high-degree clustering.