平行线教学课件

合集下载

平行线的性质ppt课件

平行线的性质ppt课件
(3) 移: 以关键点为起点作与移动方向平行且与移动距离相
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=



BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .

平行线的判定课件(共16张PPT)浙教版数学七年级下册

平行线的判定课件(共16张PPT)浙教版数学七年级下册



(3)如果∠DEC=∠BCF,则 ∥
.
典例精讲
解:l1 // l2,理由如下: ∵直线l1,l2被直线l3所 ∴∠2+∠3截=180° ∵∠2=135° ∴∠3=180°-∠2=180°-135°=45° ∵∠1=45° ∴∠1=∠3 ∴l1 // l2(同位角相等,两直线平行)
典例精讲
解:AB // CD,理由如下: ∵AB⊥EF,CD⊥EF,E,F分别为垂足 ∴∠1=90°,∠2=90° ∴∠1=∠2 ∴AB // CD(同位角相等,两直线平行)
拓展提升
拓展提升
拓展提升
浙教版七年级下册
第一章 平行线
1.3.1 平行线的判定
目标领学
情境引入
回顾画平行线的方法
一放
二靠
三推
a
四画
思考:在这个过程中什么元素没有改变?
探究新知
一般的,判断两条直线平行有下面的方法:
两条直线被第三条直线所截,如果同 位角相等,那么两直线平行. 简单的说:同位角相等,两直线平行 几何语言: ∵∠1=∠2
∴ a∥b(同位角相等,两直线平行)
理解新知
1.如图,下列说法正确的是( B ) A.因为∠1=∠3,所以EF∥GH B.因为∠1=∠2,所以AB∥CD C.因为∠2=∠3,所以AB∥CD D.因为∠2=∠4,所以EF∥GH
理解新知
2.如图
(1)如果∠ADE=∠ABC,则 ∥

(2)如果∠ACD=∠F,则
c
a 一般到特殊 b
推论: 在同一平面内,垂直于同一条直线的两条直线互相平行 议一议:为什么要在同一平面内?
应用新知
你能说出木工师傅用图中的角尺工具画平行线的道理吗? 方法1:同位角相等,两直线平行. 方法2:在同一平面内,垂直于同一条直线的两条直线互相平行Fra bibliotek应用新知

平行线的性质 课件(共22张PPT)

平行线的性质  课件(共22张PPT)

3
∴∠2=∠3(两直线平行,同位角相等),
∵∠1=∠3(对顶角相等),
∴∠1=∠2(等量代换).
你发现了什么?
两条平行直线被第三条直线所截,内错角相等. 简写成:两直线平行,内错角相等. 表达方式:如图,
∵a∥b(已知),
∴∠1=∠2(两直线平行,内错角相等).
如图,直线a∥b,直线a、b被直线c所截
试一试
翻开你的数学练习横格本,每一页上都有许多如图所示的互 相平行的横线条,随意画一条斜线与这些横线条相交, 找出其中 任意一对同位角.观察或用量角器度量这对同位角,你有什么发现?
∠1=∠2
那么,一般情况下,如图,如果直线a与直线b平行,直线l与 直线a、b分别交于点O和点P,其中的同位角∠1与∠2也必定相等吗?
A.65°
B.55°
C.45°
D.35°
课堂小结
知识点 平行线的性质
1.两直线平行,同位角 相等 . 2.两直线平行,内错角 相等 . 3.两直线平行,同旁内角 互补 .
已知
同位角相等 内错角相等 同旁内角互补
得到
判定 性质
得到 两直线平行
已知
(2)从∠1=110o可以知道 ∠3是多少度?为什么?
(3)从 ∠1=110 o可以知道∠4 是多少度?为什么?B
D
解:(1)∠2=110o 理由:两直线平行,内错角相等;
(2)∠3=110o 理由:两直线平行,同位角相等;
(3)∠4=70o 理由:两直线平行,同旁内角互补.
C 2E 43
2.如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为 ( B )
例3 将如左图所示的方格图中的图形向右平行移动4格,再向上 平行移动3格,画出平行移动后的图形.

平行线ppt课件

平行线ppt课件

02
平行线判定方法的 误用
提醒学生注意不同判定方法的使 用条件和限制,避免误用或混淆。
03
忽略平行线的存在 性
提醒学生在解题时,不要忽略题 目中可能存在的平行线,否则可 能导致解题错误。
拓展延伸内容推荐
平行线与相似三角形的关系
探讨平行线与相似三角形之间的联系,以及如 何利用平行线的性质解决相似三角形的问题。
交通信号灯
交通信号灯中的红灯、绿灯、黄灯等灯光的排列 也遵循平行线的原则,使得驾驶员和行人能够清 晰地辨认交通信号。
导向标志 道路两侧的导向标志牌上的文字、图案等也采用 平行线排列,方便驾驶员快速获取道路信息。
日常生活用品设计美学体现
家居用品
家居用品中的桌子、椅子、床等家具的设计中经常运用到平行线, 使得家具外观简洁大方,符合现代审美。
图形示例
判定步骤
首先确定两条被截直线和截线,然后 找出同旁内角并测量其角度之和是否 为180度,如果是,则两条直线平行。
在图形中,画出两条被第三条直线所 截的直线,并标出同旁内角。
实际应用场景分析
建筑设计中
在建筑设计中,平行线的概念经常被用来确保建筑物的稳定性和美观性。例如,在设计墙壁、 地板和天花板时,需要确保它们是平行的,以避免出现倾斜或不平整的情况。
在物理学中,平行线的概念被广泛应用于光 学、力学等领域的研究中,如光的反射、折 射等现象都与平行线密切相关。
计算机图形学
工程测量与建设
在计算机图形学中,平行线的绘制和处理是 图形渲染、图像处理等任务中的重要环节之 一。
在工程测量与建设中,平行线的运用可以确 保建筑物的精确度和稳定性,提高工程质量。
05
预备工作
建议学生提前预习相关知识点,回顾平行线的定义、性质及判 定方法,并尝试思考一些与平行线相关的实际问题,为下一讲 的学习做好准备。

认识平行线课件

认识平行线课件

认识平行线课件•平行线的定义•平行线的性质•平行线的判定目录•平行线的应用•总结与回顾CATALOGUE平行线的定义平行的定义平行线的定义平行的定义用符号“//”或“||”表示两条直线平行,也可以在图形中用一条虚线表示两条平行线。

平行线的定义平行线的表示方法平行线的定义CATALOGUE平行线的性质平行线的定义平行线的性质定理平行线的传递性030201平行线的内错角平行线的同位角平行线的推论平行线的判定方法平行线的实际应用平行线的性质定理的推论CATALOGUE平行线的判定总结词详细描述一组对边平行的判定详细描述两直线平行的判定是利用同位角相等或内错角相等的性质来判定的。

详细描述根据平行线的性质定理,如果两条直线平行,那么它们所对的同位角或内错角相等。

因此,如果两个角相等,那么对应的两条直线平行。

CATALOGUE平行线的应用交通标志在建造房屋时,为了使房间有更好的采光和通风,通常会使用平行线设计窗户和门。

房屋建筑家居装饰平行线在生活中的应用四边形平行四边形是两组对边分别平行的四边形,这种图形在几何学中有着重要的应用。

三角形在三角形中,平行线可以用来证明角相等、边相等,以及求解角度等问题。

圆形在圆形中,通过平行线的概念可以轻松求解出圆的周长和面积。

平行线在几何图形中的应用平行线在解题中的应用代数方程平面几何CATALOGUE 总结与回顾01020304平行线的判定总结判定2:内错角相等,两直线平行。

THANKS 感谢观看。

《平行线的判定定理》课件

《平行线的判定定理》课件

平行线的同旁内角互补定理
总结词
同旁内角互补是判断两直线平行的关键条件。
详细描述
当两条直线被第三条直线所截,如果同旁内角互补,则这两条直线平行。具体来 说,如果同旁内角之和等于180度,则这两条直线平行。
平行线的内错角相等定理
总结词
内错角相等是判断两直线平行的又一 重要条件。
详细描述
当两条直线被第三条直线所截,如果 内错角相等,则这两条直线平行。具 体来说,如果内错角相等,则这两条 直线平行。
平行线表示方法
用“//”表示两条直线平行。
平行线性质符号表示
同位角相等(∠1=∠2),内错角相等(∠3=∠4),同旁内角互补( ∠5+∠6=180°)。
平行线的性质
平行线的性质
同位角相等、内错角相等、同旁内角 互补。
平行线性质的应用
证明两直线平行、计算角度大小、解 决几何问题。
02
平行线的判定定理
键之一。
04
练习题与解析
基础练习题
01
基础练习题1:题目1 、2、3
02
基础练习题2:题目4 、5、6
03
基础练习题3:题目7 、8、9
进阶练习题
1 2
3
进阶练习题1
题目10、11、12
进阶练习题2
题目13、14、15
进阶练习题3
题目16、17、18
综合练习题
综合练习题1 综合练习题2 综合练习题3
题。
角的度量与计算
02
介绍角的度量单位和方法,以及如何进行角的计算。
复习与巩固
03
对本单元所学知识进行复习巩固,强化学生对平行线和相交线
知识的掌握。
THANKS

5.2.1平行线(新人教版七年级下)PPT课件

5.2.1平行线(新人教版七年级下)PPT课件
❖ (2)平行线指的是“两条直线”,而不是 两条射线或线段;
❖ (3)“不相交”,就是说两条直线没有交 点。
❖ (4)平行线是指在同一平面内的具有特殊 位置关系的两条直线,- 特殊在这两条直线 8
平行线的表示:
我们通常用“//”表示平行。
· · A
B
AB ∥ CD
· · C
D
CD ∥AB
m∥n m
n ∥m -
n
9
做一做
给你一条直线AB,如何画出它的平行线呢?
A
B
可以画多少条平行线呢?
-
10
平行线的画法:
一、放 二、靠 三、推
四、画
-
11
做一做
A
B
可以画多少条平行线呢? 无数条
-
12
(1)经过点P能画出几条直 线与直线AB平行?
.P
A
BB
① 性质:(平行公理)
经过直线外一点,有且只有一条直 线与这条直线平行。
如果两条直线都和第三条直线平行,那么这两条
直线也互相平行
-
19
1、判断正误:
(1)两条不相交的直线叫做平行线。
(×)
(2)有且只有一个公共点的两直线
是相交直线。
( √)
(3)在同一平面内的两条直线一定
平行。
(× )
(4)一个平面内的两条直线,必把
这个平面分为四部分。 ( × )
-
20
2.下列命题:其中正确的个数是( C ) (1)长方形的对边所在的直线平行;
E
因为AB//EF,CD//EF 于是过点P就有两条直线AB CD都与EF平行。 根据平行公理,这是不可能的
也就是说,AB与CD不能相交,

认识平行线课件

认识平行线课件

认识平行线课件汇报人:日期:•平行线的定义与性质•平行线的应用•平行线的作法与技巧目录•平行线的判定方法与证明•平行线的应用题解析•总结与回顾01平行线的定义与性质两条直线在同一平面内不相交。

同一平面内两条直线永远不会相交。

永不相交两条直线相互平行。

相互平行如果两条直线都与第三条直线平行,那么这两条直线也相互平行。

传递性对角线性质相似三角形平行线之间的对角线性质,即两条平行线被一条横截线所截,它们之间的对角线长度相等。

平行线之间的三角形是相似的,即它们的对应角相等,对应边成比例。

030201当两条直线被第三条直线所截,如果它们的同位角相等,则这两条直线平行。

同位角相等当两条直线被第三条直线所截,如果它们的内错角相等,则这两条直线平行。

内错角相等当两条直线被第三条直线所截,如果它们的同旁内角互补,则这两条直线平行。

同旁内角互补平行线的判定方法02平行线的应用平行线的定义和性质在几何图形中,平行线是同一平面内不相交的两条直线。

它们具有一些重要的性质,如传递性、同位角相等、内错角相等等。

平行线的判定方法在几何图形中,可以通过不同的方法来判定两条直线是否平行,如同位角相等、内错角相等、同旁内角互补等。

平行线的应用实例在几何图形中,平行线有着广泛的应用,如平行四边形的性质和判定、梯形的性质和判定、三角形的中位线等。

在城市规划和建设中,为了确保道路和铁路的行车安全,通常会使用平行线来指示车辆和行人的行驶方向。

道路和铁路在家具和建筑设计中,平行线也被广泛使用,如门、窗户、墙壁等的设计,以确保建筑物的稳定性和美观性。

家具和建筑在艺术和设计中,平行线也经常被用来创造对称和平衡的视觉效果,如绘画、摄影、平面设计等。

艺术和设计工程学在工程学中,平行线被用来确定物体的位置和方向,如建筑物的定位、机械零件的安装等。

物理学在物理学中,平行线被用来描述光线的传播路径和方向,如光的反射、折射等现象。

计算机科学在计算机科学中,平行线被用来描述图形的边界和方向,如计算机图形学中的二维图形、三维模型等。

《平行线的性质》课件(共33张PPT)000

《平行线的性质》课件(共33张PPT)000

如图,是举世闻名的三星堆考古中发掘出 的一个梯形残缺玉片,工作人员从玉片上已经 量得∠A=115°,∠D=110°。已知梯形的两底 AD//BC,请你求出另外两个角的度数。
A
D
115° 110°
B
C
苹果
草莓
梨子
桃子
香蕉
桔子
西瓜
桃子题:
如图,梯子的各条横档互相平行, ∠1=1000,求∠2的度数。
解:∠1=∠3; ∠2 =∠4 理由如下:
∵AB∥DE (已知) A
DC
F
∴∠1=∠3(两直线平行, 同位角相等) ∵ ∠1=∠2 ,∠3=∠4
1
23
4
B
E
∴ ∠2=∠4 (等量代换)
(2 )反射光线BC与EF也平行吗?
平行:∵ ∠2=∠4 ∴ BC∥EF(同位角相等,两直
线平行)
比一比 、乐一乐:(分组比赛)
4
31
56
8
7
∠1=∠5
a b
探索新知
①已知直线a,画直线b,使b∥a,c
②任画截线c,使它与a、
11718°25°8°b
b都相交,则图中∠1与 ∠2是什么角?它们的 大小有什么关系?
21185728°° a
③旋转截线c,同位角
∠1与∠2的大小关系又
如何? ∠1=∠2
通过上面的实验测量,可以得到性质1(公理):
3 2
目前,它与 地面所成的 较小的角
为∠1=85º
1
苹果
草莓
梨子
桃子
香蕉
桔子
西瓜
杨梅
草莓题:
1 A
D
B
C
1、如果AD//BC,根据___________ 可得∠B= _______

七年级数学(浙教版)下册教学课件:1.1 平行线(共23张PPT)

七年级数学(浙教版)下册教学课件:1.1 平行线(共23张PPT)

平行线的表示
A· B·
C· D·
我们通常用“//”表示平 行
AB ∥ CD
读作: “AB 平行于 CD”
m
m∥n
n
读作: “ m平行于n ”
试一试
1、用符号“//”表示图中平行四边形的两
组对边分别平行。A
D
B
C
AD∥BC 或 BC∥AD AB∥CD 或 CD∥AB
观 知察 直一个下线长图的方体, 平如你图你 行会,知 线和找A道 吗A平1平怎 ?行行么的线棱画有吗几出?条已?和AB
A
B
结论:一般地,经过直线外一点,
有且只有一条直线与这条直线平行。

A
BB
例:如图,点M,N代表两个城市,MA,MB是
已建的两条公路。现规划建造两条经N市的公路, 这两条路分别与MA,MB平行,并在与MB,MA 的交汇处分别建一座立交桥,问立交桥应建在 何处?请画出示意图。
B
P
N
M
A
Q
∴如图P、Q为所求
lP
Q
l 1.任意画一条直线 ,使 l AB
l 2. 画直线PQ
A
B
则PQ ∥ AB,PQ就是所要画的直线 。
画法二:
一、贴 二、靠 三、推
四、画
能画几条直线和已知直线AB平行呢? 无数条
你会画平行线吗?
已知直线AB和直线外一点P,过点P画 一条直线和已知直线AB平行。
P
你能借助三角尺和直
Hale Waihona Puke 尺画出平行线吗?•
11、人总是珍惜为得到。2021/4/3020 21/4/30 2021/4 /30Apr-2130-A pr-21

平行线ppt课件

平行线ppt课件

a
于是过点S就有两条直线b
和c都与a平行。
根据平行公理,这是不可能的
也就是说,b与c不能相交,
只能平行。
2平行公理的推论:
如果两条直线都和第三条直线平行, 那么这两条直线也互相平行
几何语言表达:
bac
∵b∥a, c∥a (已知) ∴b∥c(平行公理的推论)
课堂练习5:完成下列推理,并在括号内注明理由。
(1)放 C
·
D
(2)靠 (3)移
A
B
(4)画
动手实践
过直线a外一点P作直线a的平行线,看 看你能作出吗?能作出几条?
·P
b
A
a
三、平行公理和推论 1平行公理
经过直线外一点,有且只有一条直线 与这条直线平行.
说明:人们在长期实践中总结出来的结论叫基本 事实,也称为公理,它可以作为以后推理的依据.
D
C
A
B
2)A1B1与BC所在的直线是两条不相交的直线,他们 _不_是__平行线(填“是”或“不是”)。由此可知,
只有在_同__一__平__面__内__,两条不相交的直线才能叫平行
线。
3)在同一平面内,两条不重合的直线位置关系只有 ___2__种,即__相__交__和__平__行___。
课堂练习2: 判断正误
D′
C ′
它们表示出来。
A′
B′
和AA′平行的棱有3条:
BB′∥AA′,CC′∥AA′,DD′∥AA′。
和AB平行的棱有3条:
ቤተ መጻሕፍቲ ባይዱ
A′B′∥AB,C′D′∥AB,CD∥AB。
判定两直线平行的方法
1定义
同一平面内,不相交的两条直线互相 平行

平行线的性质ppt课件

平行线的性质ppt课件

如图1,若AB∥DE , AC∥DF,请说出∠A和∠D之间的数量关系,
并说明理由.
F
解: ∠A =∠D.理由:
C
∵ AB∥DE( 已知 )
∴∠A=_∠_C__P_E__ ( 两直线平行,同位角相等)
∵AC∥DF( 已知 )
P
D
E
∴∠D=_∠_C_P_E__ ( 两直线平行,同位角相等 )
A
B
∴∠A=∠D (等量代换 )
1.如图,已知平行线AB、CD被直线AE所截 (1)从∠1=110o可以知道∠2 是多少度?为什么? (2)从∠1=110o可以知道∠3是多少度?为什么? (3)从∠1=110o可以知道∠4 是多少度?为什么?
A
2C E
1
43
B D
2. 如图,一条公路两次拐弯前后两条路互相平行.第一次拐的 角∠B是142o,第二次拐的角∠C是多少度?为什么?
∠3,∠4的度数吗?为什么?
解:∵DE∥BC(已知),
∴∠4=∠1=65°(两直线平行,内错角相等), ∠2+∠1=180°(两直线平行,同旁内角互 补). ∴∠2=180°-∠1=180°-65°=115°.
又∵DF∥AB(已知),
∴∠3=∠2(两直线平行,同位角相等). ∴∠3=115°(等量代换).
E P
∴∠A+∠D=180o( 等量代换

B
A
图2
归纳小结
两直线平行
性质 判定
同位角相等 内错角相等 同旁内角互补
1
3 2
c
探究三
三、平行线的基本性质3 思考:类似的,已知两直线平行,能否可以得到同旁内角之间的数 量关系?
如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?

《平行线的性质》课件

《平行线的性质》课件

反向平行线的性质
• 反向平行线具有相反的斜率。 • 反向平行线之间的距离保持不变。
三、平行线的特殊角度
同位角及其性质
• 同位角是两条平行线 之间的对应角,它们
• 相同等 位。 角具有相等的补 角、余角。
内错角及其性质
• 内错角是两条平行线 之间的相交角,它们
• 互内补错。角具有相等的对 顶角。
相关角及其性质
《平行线的性质》PPT课 件
这是一份关于平行线的精彩课件,通过介绍平行线的基本定义、性质、应用、 证明,并进行综合练习,帮助大家深入理解和应用平行线的知识。
一、基本定义
平行线的概念
平行线是永远不会相交的两条直线。
平行线的符号表示
用“//”表示两条线段平行。
二、平行线的性质
同向平行线的性质
• 同向平行线具有相等的斜率。 • 同向平行线之间的距离保持不变。
对平行线的思考与感悟
通过学习平行线的性质,反思几何学对我们日常生活的影响和意义。
• 相关角是两条平行线 之间的内角与外角。
• 相关角之和等于180°。
四、平行线的应用
1
平行线的实际应用
2
例如,在城市规划中,平行线可用于 规划马路的设计和建设。
平行线的应用场景
平行线的应用广泛,如建筑设计、地 图制作等。
五、平行线的证明
平行线的证明方法
通过等角、等比和等边等多种证明方法来证明平行线。
平行线证明例题
通过实例演示如何在几何问题中使用平行线的证明。
六、综合练习
பைடு நூலகம்
1
综合运用平行线的知识解题
通过题目练习,提升对平行线性质的理解和应用能力。
2
平行线的综合练习题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、下列说法正确的个数是( B ) (1)两条直线不相交就平行。 (2)在同一平面内,两条平行的直线有且只有一个交点 (3)过一点有且只有一条直线与已知直线平行 (4)平行于同一直线的两条直线互相平行 (5)两直线的位置关系只有相交与平行 A、0 B、1 C、2 D、4
4、下列推理正确的是( C )
5.2.1 平行线
执教:南昌一中
罗文英
引入新课 如图,分别将木条a、b与木条c钉在一起, 并把它们想象成两端可以无限延伸的三条直线。 转动a,直线a从在c的左侧与直线b相交逐步变 为在右侧与b相交。想象一下,在这个过程中, 有没有直线a与直线b不相交的位置呢? c a b c a b c a
b
在木条转动过程中,存在一个 直线a与直线b不相交的位置,这
也就是说:如 果b∥a,c∥a, 那么b∥c。
c b a
本书中所说的 基本是事实是人们 在长期实践中总结 出来的结论,基本 事实也称为公理, 它可以作为以后推 理的依据.
巩固练习
教科书第13页练习
巩固练习
1.同一平面内,三条直线的交点 可以有 0或1或2或3 个.
2.对于同一平面内的直线a、b、c, 如果a∥b,c与a相交,那么c与b是什 么位置关系? 相交
P17页第8题。
2.相应练习册
如何用几何语 言描述平行呢?
A B
a
b
C
D
A C
B
D
平行用符号“∥” 表示,如:直线AB 与直线CD平行,记 作:AB∥CD,读作 “AB平行于CD”。
注意:平行线是相互的,使用平行
符号“∥”时,可写成AB∥CD,也 可以写成:CD∥AB。
a
b
如果用a、b表示这 两条直线,那么直 线a与直线b平行, 记作:a∥b.也可 以写成: b ∥ a 。
C
B
a
1.如图:经过点B能画几条直线与直 线a平行? B b a 通过观察和画图,可以体验一个 基本事实(平行公理):
经过直线外一点,有且只有一 条直线和已知直线平行
2.过点C画一条直线与直线a平行,它 与上题中所画的直线b平行吗?平行
C
B
b a
3.通过画图,你发现了什么? 如果两条直线都与第三条直线平行, 那么这两条直线互相平行.
时直线a与b互相平行。
平行线在生活中是很常见的,
你还能举出其他一些例子吗?
荷兰国旗
俄罗斯国旗
阿根廷国旗
比利时国旗
100米跑道
教室门窗? 在同一平面内, 不相交的两条直线叫 平行线.
平行线的定义包含三层意思: (1)“在同一平面内”是前提条 件,(2)“不相交”就是说两条 直线没有交点,(3)平行线指的 是“两条直线”而不是两条射线 或两条线段.
A、因为a // d,b // c,所以c // d; B、因为a // c,b // d,所以c // d; C、因为a // b,a // c,所以b // c; D、因为a // b,c // d,所以a // c。
5、完成下列推理,并在括号内注明理由。 (1)如图1所示,因为AB // DE,BC // DE(已知)。所以 在同一直线上 A,B,C三点___________( 经过直线外一点,有且只有一 ) 条直线与这条直线平行 (2)如图2所示,因为AB // CD,CD // EF(已知),所以 AB EF ________ // _________( 如果两条直线都和第三条直线平行, ) 那么这两条直线也互相平行


D B
F O
C
课堂小结 通过这堂课学习,你有什么收获 ? 1、认识了平行线及其表示方法 2、同一平面内两直线的位置关系:相交与平行 3、学会了画平行线 4、经过直线外一点,有且只有一条直线与这条 直线平行 5、如果两条直线都和第三条直线平行,那么这 两条直线也互相平行
作业布置
1.教科书P16页第3题。
A
·· ·
D 图1 E
B
C
A C E 图2
B D F
6.画∠AOB,在OB上取一点C, 过点C画CD平行于OA,在OA上任取 一点E,过点E画EF∥OB交CD于F, 分别量得∠AOB、∠EFC,可得: ___________;再测量∠AOB和 ∠AOB=∠EFC ∠AOB+∠OEF=180° ∠OEF,可得__________________.
在同一平面内,两条直线有 几种位置关系?动手画一画?
同一平面内两直线的位置关系: a 平行 a ∥b b 垂直 a a⊥b b 相交 a 相交但不垂直 b
一放 二靠 三推

四画
怎样画平行线?动 手画一画吧! 这种方法你会 了吗?
在转动木条a的过程中,有几个 位置使得a与b平行?如图,过点B画 直线a的平行线,能画出几条?再过 点C画直线a的平行线,它和前面过 点B画出的直线平行吗?
相关文档
最新文档