分形几何图形图像欣赏
《分形几何学实践》课件
汇报人:
目录
添加目录标题
分形几何学概述
分形几何学的基 本概念
分形几何学的常 见类型
分形几何学在实 践中的应用
分形几何学的未 来发展
添加章节标题
分形几何学概述
分形几何学是 一种研究不规 则、复杂形状
的数学方法
分形几何学中 的形状具有自 相似性,即局 部与整体相似
分形几何学中 的形状具有尺 度不变性,即 无论放大或缩 小,形状保持
应用领域:分形几何在生物、医学、工程等领域的应用研究
理论研究:分形几何的理论基础、性质和定理的研究
计算方法:分形几何的计算方法和算法的研究
交叉学科:分形几何与其他学科的交叉研究,如分形几何与混沌理论、分形几何与量 子力学等
数学:分形几何学与数学中的拓扑 学、微分几何等学科有密切联系, 可以应用于解决数学问题。
生物学:描述生 物形态和生长过
程ቤተ መጻሕፍቲ ባይዱ
物理学:描述物 理现象和过程
计算机科学:用 于图像处理、动
画制作等领域
数学:用于研究 几何学、拓扑学
等领域
艺术:用于创作 分形艺术作品
建筑学:用于设 计建筑和城市规
划
分形几何学的基本 概念
定义:在任意 尺度下,具有 相同或相似的
形状或结构
特点:自相似 性是分形几何 学的核心概念
之一
应用:在自然 界、数学、物 理学等领域都
有广泛应用
例子:雪花、 海岸线、山脉 等自然现象都 具有自相似性
定义:通过重复应用同一种操 作或规则,生成复杂结构的方 法
特点:自相似性、精细结构、 无限复杂性
应用:分形几何学、计算机图 形学、图像处理等领域
例子:曼德布罗特集合、谢尔 宾斯基三角形等
分形理论简介ppt
进一步对形成的9条子线段作分割和“日” 字型折线框形构造,便形成81条子折线,而 每条折线的长度为1/9; 如此分割构造下去便得到了皮亚诺曲线。
分割次数越多,得到的皮亚诺曲线就越密。
由于皮亚诺曲线最终可以穿行(遍历)一个 平面上的每一个点,因此它也被称作空间填 充曲线。
例子6:谢尔宾斯基三角垫
Nr A 1/ r d
则称d为A的盒计数维数
盒维数为d,当且仅当存在一个正数k使得 lim r 0
lim log Nr A d log r log k
r 0
N r A k 1 rd
d lim
log k log N r A log N r A lim r 0 r 0 log r log r
自仿射性
ቤተ መጻሕፍቲ ባይዱ
自仿射性是自相似性的一种拓展和延伸,如果局部到整体在各个方向上的变换比率是相同的, 那么就是自相似性变换;而当局部到整体在不同方向上的变换比率不一定相同时,就称为自仿 射性变换。自相似性变换是自仿射性变换的特例。
分形几何与欧氏几何的区别
11
两种几何学 欧氏几何
描述对象 人类创造的简单标 准物体(连续、光 滑、规则、可微) 大自然创造的复杂 的真实物体(不连 续、粗糙、不规则、 不可微)
N×r3=1
小正方体的测量数目为N(r)=r -3
分形维数:相似维数
14
线、面、体的维数为1、2、3,归纳为 N (r ) r D
两边取对数 D
log N r 1 log r
相似维数的定义:如果一个分形对象 A(整体)可以划分为 N(A,r) 个 同等大小的子集(局部单元),每个子集以相似比 r 与原集合相似, 则分形集 A 的相似维数 Ds 定义为
分形几何学.ppt
当我们画一根直线,如果我们用 0维的点来量它,其结果为无 穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它, 其结果是 0,因为直线中不包含平面。那么,用怎样的尺度来量 它才会得到有限值哪?看来只有用与其同维数的小线段来量它才 会得到有限值,而这里直线的维数为 1。
基于传统欧几里得几何学的各门自然科学总是把研究对象 想象成一个个规那么的形体,而我们生活的世界竟如此不规 那么和支离破碎,与欧几里得几何图形相比,拥有完全不同 层次的复杂性。分形几何那么提供了一种描述这种不规那么 复杂现象中的秩序和结构的新方法。
普通几何学研究的对象,一般都具有整数的维数。比方,零维 的点、一维的线、二维的面、三维的立体、乃至四维的时空。但是 现实生活中象弯弯曲曲的海岸线这些对象就不能用传统欧几里德几 何学的整数维描述或者说测量了。要描述这一大类复杂无规的几何 对象,就引入了分形理论,把维数视为分数维数。这是几何学的新 突破,引起了数学家和自然科学者的极大关注。
Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。 如果计算机的精度是不受限制的话,可以无限地放大它的边界。 图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大 某个区域,它的结构就在变化,展现出新的结构元素。这正如 “蜿蜒曲折的一段海岸线〞,无论怎样放大它的局部,它总是曲 折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我 们的生活中是很少见的。所以说,Mandelbrot集合是向传统几 何学的挑战。
分形几何表达了复杂与简单的统一: 分形几何的主要价值在于它在极端有序和真正混沌之间提供
了一种可能性。分形最显著的性质是:本来看来十分复杂的事物, 事实上大多数均可用仅含很少参数的简单公式来描述。其实简单 并不简单,它蕴含着复杂。分形几何中的迭代法为我们提供了认 识简单与复杂的辩证关系的生动例子。分形高度复杂,又特别简 单。无穷精致的细节和独特的数学特征〔没有两个分形是一样的〕 是分形的复杂性一面。连续不断的,从大尺度到小尺度的自我复 制及迭代操作生成,又是分形简单的一面.
各种有趣的分形
各种有趣的分形各种有趣的分形我们看到正方形,圆,球等物体时,不仅头脑里会迅速反映出它是什么,同时,只要我们有足够的数学知识,我们头脑中也反映出它的数学概念,如正方形是每边长度相等的四边形,圆是平面上与某一点距离相等的点的集合,等等。
但是,当我们看到一个山的形状时,我们会想到什么?"这是山",没错,山是如此的不同于其他景象,以至于你如果绘画水平不高,根本画不出象山的东西。
可是,山到底是什么?它既不是三角形,也不是球,我们甚至不能说明山具有怎样的几何轮廓,但为什么我们却有如此直观而又强烈的山的印象?分形的创始人是曼德布洛特思考了这个问题。
让图中的风景图片又是说明分形的另一很好的例子。
这张美丽的图片是利用分形技术生成的。
在生成自然真实的景物中,分形具有独特的优势,因为分形可以很好地构建自然景物的模型。
这是一棵厥类植物,仔细观察,你会发现,它的每个枝杈都在外形上和整体相同,仅仅在尺寸上小了一些。
而枝杈的枝杈也和整体相同,只是变得更加小了。
Sierpinski三角形具有严格的自相似特性Kohn雪花具有严格的自相似特性分维及分形的定义分维概念的提出对于欧几里得几何所描述的整形来说,可以由长度、面积、体积来测度。
但用这种办法对分形的层层细节做出测定是不可能的。
曼德尔布罗特放弃了这些测定而转向了维数概念。
分形的主要几何特征是关于它的结构的不规则性和复杂性,主要特征量应该是关于它的不规则性和复杂性程度的度量,这可用“维数”来表征。
维数是几何形体的一种重要性质,有其丰富的内涵。
整形几何学描述的都是有整数维的对象:点是零维的,线是一维的,面是二维的,体是三维的。
这种几何对象即使做拉伸、压缩、折叠、扭曲等变换,它们的维数也是不变的;这种维数称为“拓扑维”,记为d。
例如当把一张地图卷成筒,它仍然是一个二维信息载体;一根绳子团成团,仍然是一维结构。
但曼德尔布罗特认为,在分形世界里,维数却不一定是整数的。
分形几何 ppt课件
❖ f(z) = |z2|
分形几何
28
分形几何 ❖可以看到,这一操作让模的变化更剧烈了,
等高线变得更加密集了。外面浩瀚的蓝色空 间,就对应着那些模已经相当大了的复数。
29
分形几何
❖如果对上图中的每个点再加上某个数,比如 0.3 , 那么整个图会怎样变化呢?
❖对于模相同的复数来说,给实数部分加上 0.3 , 这对实数部分本来就较大的数影响会更大一些。 因此,上图将会变得更扁,整个图形会在水平方 向上拉伸。这也就是 f(z) = |z2 + 0.3| 的等高线地 形图。见下图(为便于观察,对图像进行了旋 转)。
36
分形几何
❖ 我们照这个思路(加0.2然 后平方)迭代12次后,可 得到右图图形。可以看见 整个图形已经具有了分形 图形的复杂程度(图形的 “黑边”其实是密集的等 高线)。
37
分形几何
❖ 上图中,大部分区域内的数都变得越来越大,直 达无穷。而原点附近这个四叶草形区域内的数, 至少目前还不算太大。
8
分形几何
9
分形几何 ❖康托三分集中有无穷多个点,所有的点处于
非均匀分布状态。此点集具有自相似性,其 局部与整体是相似的,所以是一个分形系统。
10
分形几何
4. Mandelbrot集合 曼德博集合可以用复二次多项式来定义: fc(z)=z2+C; 其中 c 是一个复数参数。
➢ 从 z = 0 开始对 fc(z) 进行迭代:
① 将线段分成三等份(AC,CD,DB); ② 以CD为底,向外(内外随意)画一个等边三角
形DMC ; ③ 将线段CD移去; ④ 分别对AC,CM,MD,DB重复1~3。
5
分形几何
6
数学拓展课——分形图
分维的概念我们可以从两方面建立起来:一方面,
我们首先画一个线段、正方形和立方体,它们的 边长都是1。将它们的边长二等分,此时,原图的 线度缩小为原来的1/2,而将原图等分为若干个相 似的图形。其线段、正方形、立方体分别被等分 为2^1、2^2和2^3个相似的子图形,其中的指数1、 2、3,正好等于与图形相应的经验维数。一般说 来,如果某图形是由把原图缩小为1/a的相似的b 个图形所组成,有:a^D=b的关系成立,则指数D 称为相似性维数,从这个角度来看,D应该是整 数。
图3中的阴影部分的面积的变化有什么规律?
图4中的图形的周长的变化有什么规律?
分形图的特点
1.从整体上看,分形几何图形是处处不规则的。例如 海岸线,从远距离观察,其形状是极不规则的。 2.在不同尺度上,图形的规则性又是相同的。从近距 离观察海岸线,其局部形状又和整体形态相似,它们 从整体到局部,都是自相似的。当然,也有一些分形 几何图形,它们并不完全是自相似的。
这是Koch曲线,它可以从一 个等边三角形开始来画:把一个 等边三角形的每边分成相同的 三段,再在每边中间一段上向外 画出一个等边三角形,这样一来 就做成了一个六角星.然后在六 角星的各边上用同样的方法向 外画出更小的等边三角形,出现 了一个有关18个尖角的图形.如 此继续下去,就能得到分支越来 越多的曲线.继续重复上面的过 程,图形的外边界逐渐变得越来 越曲折、越来越长、图案变得 越来越细致,越来越像ห้องสมุดไป่ตู้花、越 来越美丽了。
分形动画演示
分维
在欧氏空间中,人们习惯把空间看成三维的, 平面看成二维,而把直线或曲线看成一维。也 可以稍加推广,认为点是零维的,还可以引入 高维空间,但通常人们习惯于整数的维数。分 形理论把维数视为分数,这类维数是物理学家 在研究混沌吸引子等理论时需要引入的重要概 念。为了定量地描述客观事物的“非规则”程 度,1919年,数学家从测度的角度引入了维 数概念,将维数从整数扩大到分数,从而突破 了一般拓扑集维数为整数的界限。
《分形几何学》课件
分形风险管理:评 估和管理金融市场 的风险
分形投资策略:基 于分形理论的投资 策略,如分形交易 策略、分形投资组 合管理等
分形在物理学中的应用
分形几何学的未来 展望
分形几何学的发展趋势
应用领域:分形几何学在计算机图形学、图像处理、生物医学等领域的应用将越来越广泛
理论研究:分形几何学的理论研究将更加深入,包括分形维数的计算、分形几何的拓扑性质等
添加标题
添加标题
添加标题
添加标题
特点:具有自相似性,即无论放大 或缩小,其形状保持不变
性质:具有无限长度,但面积却为 零,是一种典型的分形图形
分形几何学的应用 实例
分形在图像压缩中的应用
分形压缩算法:基于分形几何学的图像压缩算法 压缩效果:提高压缩比,降低图像质量损失 应用场景:适用于图像传输、存储和显示等领域 技术挑战:如何平衡压缩比和图像质量损失,提高压缩算法的效率和稳定性
发展:1977年,数学家哈肯提出分形几何学的基本理论
应用:分形几何学在物理学、生物学、经济学等领域得到广泛应用 现状:分形几何学已成为现代数学的一个重要分支,对科学研究和实际应 用具有重要意义
分形几何学的应用领域
分形几何学的基本 概念
自相似性
定义:在任意 尺度下,具有 相同或相似的
结构或模式
特点:自相似 性是分形几何 学的核心概念
科赫曲线的生成过程: 将一条线段分为三等份, 去掉中间一段,然后将 剩下的两段分别替换为 两个新的科赫曲线
科赫曲线的应用:在计 算机图形学、动画制作 等领域有广泛应用
科赫曲线的性质:具有 自相似性、无限长度和 面积、分形维数等性质
皮亚诺曲线
定义:由意大利数学家皮亚诺提出 的一种分形图形
分形几何概述(课件)阮火军共49页文档
6
、
露
凝
无
游
氛
,
天
高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
1
0
、
倚
南
窗
以寄ຫໍສະໝຸດ 傲,审容
膝
之
易
安
。
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
几何里的艺术家——分形几何
几何里的艺术家——分形几何分形几何是一门研究非整数维度图形的数学学科,它的核心理论是分形,分形意为“自相似的”,即一幅图形包含自身的缩小版本,且无限重复。
分形几何在物理、生物、经济、社会等领域都有着广泛的应用,也是艺术中的一个重要领域。
许多艺术家利用分形几何创建出独一无二的作品。
其中一个知名的分形艺术家是美国数学家和计算机科学家,珍妮弗·佩克。
她在20世纪80年代开始研究分形几何,使用计算机程序创建出了大量独特的艺术作品。
佩克的作品通常都是由充满规律的图案组成的,这些图案又以同样的规律进行重复和变形,从而创建出复杂优美、自然流畅的形态。
佩克研究的一个分形形态是由一条直线分割成三条相等长的线段,再将中间一条线段上放一个相似的形状,然后无限重复这个过程。
最终形成的图形看似复杂又规律,似乎有着自然的美感,这种形态被称为科赫雪花(Koch snowflake,也叫科赫曲线)。
科赫雪花虽然由简单的线段构成,但它却是一种非整数维度的图形,具有完整的分形特征。
佩克的另一种分形形态是曼德博集合(Mandelbrot set),该形态是由一组复数所构成,但这组复数所形成的图形却是非常奇妙的分形形态。
曼德博集合是由一些和其他数学公式类似的公式组成的,“mandelbrot(曼德博)”使用了自己的姓作为这个图像命名的依据。
曼德博集合的图像其形态非常多变,包含了数量无穷的分形形态,从科学角度上来看,曼德博集合也含有大量的有趣的讯息和规律。
利用分形几何的原理,现在还有许多艺术家基于计算机程序制作出优美的图案,他们往往通过自相似的不断演变的图形来展示出分形几何的神奇之处。
总之,分形几何是一门神奇的数学学科。
它的原理被广泛应用于艺术创作,成为了许多艺术家表现自己创意的手段之一。
分形几何形成的图形无论是具有几何美学的规律图案,还是含有神秘色彩的曼德博集合,都能让人们领略到分形几何的独特魅力,同时这种美学也在启示着更多创意的可能性。
几何里的艺术家——分形几何
几何里的艺术家——分形几何分形几何是一门结合数学和艺术的学科,它研究自相似性和无限重复的图形。
分形是一种可以通过递归运算生成的图形,其每个部分都与整体具有相似的形状和属性。
分形几何广泛应用于自然界、科学、艺术和计算机图形学等领域。
分形几何的概念最早由波兰数学家曼德博勒特·曼德博勒特于20世纪70年代提出。
他通过迭代运算生成了一种被称为“曼德博集合”的分形图形,该图形具有无限复杂的细节和自相似性。
曼德博勒特的研究成果开创了分形几何的研究领域,吸引了许多科学家和艺术家的关注。
分形几何的魅力在于它展现了自然界中许多复杂的形态和规律。
分形几何可以用来描述云朵、山脉、树木、海岸线等自然景观的形状和纹理。
这些自然景观往往具有层次分明、规则重复的结构,正是分形几何的特点所能很好地解释和模拟这种现象。
在艺术领域,分形几何为艺术家们提供了一种新的创作方式和表现手法。
艺术家可以使用分形生成软件来创作出具有分形特征的艺术作品。
这些作品通常具有随机性、复杂性和自相似性,给观者带来一种与众不同的观感和感官体验。
分形艺术常常被赋予一种神秘、浪漫和超现实的风格,使人沉浸其中。
分形几何的应用还扩展到计算机图形学和图像处理领域。
分形图形可以被用来生成真实感模拟、虚拟现实和特效动画。
通过分形算法,计算机可以生成具有高度精细化和无限细节的图像,使得图像更加逼真、生动,并且可以实现无尽的变化。
除了在科学、艺术和计算机图形学中的应用,分形几何还对理解自然界的一些现象和规律具有重要意义。
分形几何揭示了许多自然界中的分形结构,如闪电、河流、植物的分枝、肺部的支气管等。
了解并研究这些自然现象的分形特征,对于深入理解它们的内在规律和运行机制具有重要意义。
分形几何是一门有着深厚学术背景和广泛应用前景的学科。
它不仅仅是一门数学理论,更是一门艺术表现和探索自然界的工具。
通过分形几何的研究和应用,人们可以更好地理解自然现象、创造艺术作品、设计复杂图形和模拟现实世界。
分形几何学.ppt
一、什么是分形几何学
通俗一点说就是研究无限复杂但具有一定意义下的 自相似图形和结构的几何学。 分形几何学的基本思想是:客观事物具有自相似的层 次结构,局部与整体在形态、功能、信息、时间、空间等方 面具有统计意义上的相似性,称为自相似性。例如,一块磁 铁中的每一部分都像整体一样具有南北两极,不断分割下去, 每一部分都具有和整体磁铁相同的磁场。这种自相似的层次 结构,适当的放大或缩小几何尺寸,整个结构不变。 又如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上 没什么大的区别,大树与树枝这种关系在几何形状上称之为自相 似关系;一片树叶,仔细观察一下叶脉,它们也具备这种性质; 动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛 的全部生长信息;还有高山的表面,无论怎样放大其局部,它都 如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何 揭示了世界的本质,分形几何是真正描述大自然的几何学。
随机康托尔集都是随机分形,著名的随机分形还有布朗 (R.Brown)粒子运动的轨迹
(2)Sierpinski地毯: 三分康托尔集等数学怪物的出现,使相当一部分传统数学 家感到“直觉的危机”的同时,也引起了一些数学家的兴 趣.1915~1916年,波兰数学家谢尔宾斯基(W.Sierpinski)将三 分康托尔集的构造思想推广到二维平面,构造出谢尔宾斯基 “垫片”:设E0是边长为1的等边三角形区域,将它均分成四个 小等边三角形,去掉中间一个得E1,对E1的每个小等边三角形 进行相同的操作得E2,……,这样的操作不断继续下去直到无 穷,所得图形F称为谢尔宾斯基“垫片”(图).它被用作超导 现象和非晶态物质的模型
⑴ 康托尔三分集 1883年,德国数学家康托尔(G.Cantor)构造了一个奇异集合: 取一条长度为1的直线段E0,将它三等分,去掉中间一段,剩下 两段记为E1,将剩下的两段再分别三等分,各去掉中间一段, 剩下更短的四段记为E2,……,将这样的操作一直继续下去, 直至无穷,得到一个离散的点集F(图),称为康托尔三分集. 在康托尔三分集的构造过程中,如果每一步都用掷骰子的方法 来决定去掉被分成的三段中的哪一段,或来选择子区间的长度, 就会得到很不规则的随机康托尔集(如图),它被当时在美国 IBM公司任职的曼德尔布罗特用作描述通讯线路中噪声分布的 数学模型,如今在现代非线性动力学的理论研究中有重要地位.