线粒体和叶绿体的比较
【高中生物】线粒体与叶绿体知识归纳与例析
【高中生物】线粒体与叶绿体知识归纳与例析线粒体与叶绿体是真核细胞内两种重要的细胞器,也是重点考点之一。
常涉及到细胞呼吸、光合作用、细胞质遗传、生物膜等知识点。
1.知识归纳线粒体与叶绿体都是真核细胞内具有双层膜结构的细胞器,都与细胞内的能量代谢有关,都含有少量dna和rna。
二者在结构和功能上有着明显地区别和联系。
1.1分配线粒体普遍存在于动、植物细胞等真核细胞内。
在正常的细胞中,一般在需要能量较多的部位比较密集:细胞的新陈代谢越旺盛的部位,线粒体的含量就越多。
而哺乳动物成熟的红细胞、蛔虫等寄生虫,细菌等原核生物没有线粒体。
叶绿体只存在于绿色植物细胞中,如叶肉细胞。
叶绿体在细胞中的分布与光照强度有关:在强光下,叶绿体通常从侧面面对光源,以避免被强光灼伤;在弱光下,它均匀地分布在细胞质基质中,正面朝向光源(最大面积),以吸收更多光能。
光合原核生物和蓝藻等植物的根细胞没有叶绿体。
1.2 形态与结构线粒体一般呈球形、颗粒状和杆状,不同的细胞类型和生理条件下线粒体有很大差异。
叶绿体通常是扁平的球形或椭圆形。
线粒体大致有外膜、内膜和基质(线粒体基质)三部分构成。
外膜平整无折叠,内膜向内折叠凹陷而形成突起的嵴,从而扩大了化学反应的膜面积。
叶绿体被外膜和内膜覆盖,包含数个到几十个基粒。
每个基粒由许多类囊体(囊性结构)堆积而成,基粒中充满叶绿体基质。
1.3 成分(1)线粒体基质和叶绿体基质都含有少量的DNA和RNA,这与线粒体和叶绿体的细胞质遗传有关。
⑵线粒体内膜和线粒体基质中含有大量与有氧呼吸有关的酶,所以线粒体内膜比线粒体外膜上蛋白质的含量最高。
与光合作用有关的酶主要分布在叶绿体基粒和叶绿体基质中。
(3)光合作用所需的各种色素主要分布在叶绿体的基粒类囊体膜上,可以吸收、传递和转化光能。
⑷正常情况下,在叶绿体内叶绿体基质(暗反应场所)中磷酸含量最多,叶绿体基粒上磷脂含量最多;而在线粒体内,线粒体内膜上磷酸含量最少而磷脂含量最多。
植物细胞核DNA、叶绿体DNA和线粒体DNA的比较
植物细胞核DNA、叶绿体DNA和线粒体DNA的比较近年来,随着基因克隆和DNA序列分析技术的发展,叶绿体DNA和线粒体DNA 的研究有了长足的进步。
植物一般都有三套遗传信息指导它的整个生命活动,即核染色体DNA(nDNA)、叶绿体DNA(cpDNA)和线粒体DNA(mtDNA),它们在组织结构、遗传方式、表达调控等方面互有差别,又协同作用共同控制着植物的生长和发育。
1 组织结构植物细胞的大部分DNA是在核内,并与组蛋白稳定结合组成染色体,控制着大部分性状,起着主导作用。
高等植物nDNA含量大约在0.5~200pg之间,不同植物相差很大。
植物nDNA中很大比例的胞嘧啶由5-甲基胞嘧啶取代,有40%~90%是由重复的DNA组成。
植物的大多数nDNA的浮力密度在1.69~1.71g/cm3范围内,G+C的含量为30%~51%左右。
在高等植物中,cpDNA一般以共价、闭合、环形双链(cccDNA)的形式存在,是多拷贝的。
cpDNA比nDNA和mtDNA有较强的保守性,其大小在各种植物中相近,一般在120~190kb之间。
它与nDNA不同,分子较小,不含有5-甲基胞嘧啶,而且不与组蛋白结合成复合体,是裸露的,容易复性,存在为数极少的重复顺序,与原核生物的DNA类似。
cpDNA的浮力密度约为1.697g/cm3,G+C的含量为36%~40%。
cpDNA在结构上最突出的特点是有一对22kb的反向重复顺序(inverted repeat sequence),将环形的cpDNA分割成大单拷贝区和小单拷贝区。
植物mtDNA较大,大小范围为200~2500kb,其复杂性远大于其它生物,在同一科植物中(如葫芦科)基因组大小差异可达7~8倍。
植物mtDNA通常呈环状,是双链的。
植物mtDNA的浮力密度约1.706g/cm3,这相当于大约47%的G+C。
大多数植物mtDNA具有多基因组结构,由一个主基因组和通过重组由它衍生的一系列大小不同的分子组成。
线粒体和叶绿体的结构和功能
叶绿体
C3植物主要叶肉细胞 C4植物主要叶肉细胞, 维管束鞘细胞
椭球形或球形
与周围细胞质基质分开
内膜光滑,无光合作用 有关的酶
圆柱状,由囊状结构 堆叠而成,分布有与光 反应有关色素、酶 液态,含有暗反应有关 酶,少量DNA
(1)没有线粒体的活细胞:
原核细胞(如细菌) 哺乳动物成熟的红细胞 厌氧型真核细胞(蛔虫细胞)
CH3COCOOH+6H2O 酶 6CO2+[H]+少量ATP 24[H]+6O2 酶 12H2O+大量ATP
O2
功能: 线粒体是有氧呼吸的主要场所 (1)分解丙酮酸的细胞器 (2)消耗O2的细胞器 (3)生成H2O、CO2的细胞器 (4)产生大量ATP的细胞器 (5)DNA的次要载体 进行场所:线粒体
2H2O 光 4H++4e+O2源自NADP++H++2e 酶 NADPH CO2+C3
酶
C4
ADP+Pi+E 酶 ATP
维管束鞘细胞
C4 CO2+C5 酶 2C3 2C3NAD酶PH ATP (CH2O)+C5
功能
叶绿体是进行光合作用的场所
(1)将CO2、H2O合成有机物的细胞器 (2)吸收CO2、释放O2的细胞器 (3)把光能转变成化学能储存在有机物
问题:
(1)叶绿体中合成ATP的能量来源是
,合成的ATP用于
,
释放的氧气的来源是
, CO2除来自大气外,还来光源能
于
。
(2)线粒体中合成ATP的CO能2量的来还源原是
,合成的AT水P用的于分解
,吸收的氧气除来自大气外,还来源
于
。
线粒体的呼吸作用
有机物的分解
生命活动
用高倍镜观察叶绿体和线粒体
用高倍镜观察线粒体和叶绿体同学们,在这节课之前我们已经学习过线粒体和叶绿体这两种细胞器,现在我请问:线粒体和叶绿体分布分布在哪些细胞中呢?(叶绿体分布在叶肉细胞中,线粒体普遍存在于动物细胞和植物细胞中)。
今天我们的实验是用高倍镜观察线粒体和叶绿体,目的是为了观察它们的形态和分布。
首先我们来看一下实验原理。
1、叶绿体的辨认依据:叶绿体是绿色的,呈扁平的椭圆球形或球形。
我们可以直接在高倍镜下观察它的形态和分布。
2、线粒体的辨认依据:线粒体的形态多样,有短棒状、圆球状、线形、哑铃型等。
3、健那绿染液是专一性染线粒体的活细胞染料,可以使活细胞中线粒体呈现蓝绿色。
线粒体形态多样,无色,而细胞质接近无色。
线粒体能在健那绿染液中维持活性数小时,通过染色,可以在高倍镜下观察到生活状态的线粒体的形态和分布。
接下来我们来看一下实验材料。
观察叶绿体时我们可以选择新鲜的藓类的叶(或菠菜叶、黑藻叶等)。
若是藓类的叶,镊子取其一片小叶即可;若用菠菜的叶,在撕取下表皮时,一定要稍带些叶肉,因为我们所观察的叶绿体就分布在叶肉细胞中,表皮细胞不含叶绿体,否则很难如愿以偿。
(至于为什么是撕取下表皮和叶肉细胞而不是上表皮是因为上表皮受光照强,叶绿体小而多(小,保护自己不被灼伤。
多,保证光合速率足够大)下表皮的叶绿体大而少。
大叶绿体观察方便。
苔藓类植物叶子薄而小,直接取一个小叶片即可;菠菜叶下表皮是菠菜叶的背阳面,叶绿体大而少,撕取时要少带些叶肉。
当然,实验时应首选葫芦藓、墙藓的叶为宜。
我们实验室是用韭菜做实验,它的好处就在于取材容易,不受季节限制,观察到的叶绿体多而清晰。
生理盐水是指生理学实验或临床上常用的渗透压与动物或人体血浆的渗透压相等的氯化钠溶液。
生理学或临床上常用的渗透压与动物或人体血浆相等的氯化钠溶液,其浓度用于两栖类时是0.67~0.70%,用于哺乳类和人体时是0.85~0.9%生理盐水的作用:能够避免细胞破裂,它的渗透压和细胞外的一样,所以不会让细胞脱水或者过度吸水,所以各种医疗操作中需要用液体的地方很多都用它至于显微镜,在之前我们也已经很详细的学过它的使用方法,我今天就不过多的介绍,我就先简单的介绍它的使用方法:1.低倍镜的使用方法(1)取镜和放置:显微镜平时存放在柜或箱中,用时从柜中取出,右手紧握镜臂,左一手托住镜座,将显微镜放在自己左肩前方的实验台上,镜座后端距桌边1-2寸为宜,便于坐着操作。
叶绿体与线粒体的区别是什么
叶绿体与线粒体的区别是什么
对于学理科的学生来说,物理是公认最难学的,其次是化学,相比较前两者而言,生物就容易多了。
小编整理了生物学中叶绿体与线粒体的区别,希望能帮助到你。
高中生物必修三知识点总结最牛高考生物答题技巧有哪些怎样区分减数分裂的各个时期高考生物必背知识点总结
1叶绿体的定义叶绿体是植物细胞中由双层膜围成,含有叶绿素能进行光合作用的细胞器。
叶绿体基质中悬浮有由膜囊构成的类囊体,内含叶绿体DNA。
是一种质体。
质体有圆形、卵圆形或盘形3种形态。
叶绿体含有的叶绿素a、b吸收绿光最少,绿光被反射,故叶片呈绿色。
容易区别于另类两类质体──无色的白色体和黄色到红色的有色体。
叶绿素a、b的功能是吸收光能,少数特殊状态下的叶绿素a能够传递电子,通过光合作用将光能转变成化学能。
叶绿体扁球状,厚约2.5微米,直径约5微米。
具双层膜,内有间质,间质中含呈溶解状态的酶和片层。
片层由闭合的中空盘状的类囊体垛堆而成,类囊体是形成高能化合物三磷酸腺苷(ATP)所必需。
是植物的“养料制造车间”和“能量转换站”。
能发生碱基互补配对。
1线粒体的定义线粒体(mitochondrion)[1]是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所,被称为”powerhouse”。
其直径在0.5到1.0微米左右。
除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有。
第6章 线粒体和叶绿体09
叶绿体的增殖
从原质体分化而来。以幼龄叶绿体分裂繁 殖。分裂受环境因素影响较大。
线粒体的间壁分裂 出芽增殖
线粒体的收缩分裂
5. The proliferation and origin of Mit and Chl.
A. Organelle growth and division determine the number of Mitochondria and Plastids in a cell
碳 同 化
The ห้องสมุดไป่ตู้tructure and function in C4 plants
景天酸代谢途径 (CAM途径)
CAM途径与C4 途径有许多 相似之处, 只是将CO2 的固定和还 原在时间上 分开了。 景天科、仙人 掌科、凤梨 科、兰科
第三节 线粒体和叶绿体 是半自主性细胞器
一、线粒体和叶绿体是半自主性细胞器
++eH→H e
氧化能 能级逐渐 降低,释 放出来的 自由能部 分转化为 ATP,其 余以热能 释放
ADP+Pi
O2是呼吸链 的最后一环!
呼 吸 链
1/2 O2
H2O ATP
A. Molecular basis of oxidation: Electron-transport chain
氧化磷酸化作用与电子传递的偶联
叶绿体的个体发生
线粒体和叶绿体的起源
内共生起源学说
认为线粒体来源于细菌、叶绿体来源于蓝藻,即细菌被真核生 物吞噬后,在长期的共生过程中,通过演变,形成了线粒体。 革兰氏阴性菌
非共生起源学说
又称细胞内分化学说。认为线粒体的发生是质膜内陷的结果。
2023年高考生物一轮复习(新人教新高考) 第2单元 第2课时 细胞器之间的分工
第2课时细胞器之间的分工课标要求阐明细胞内具有多个相对独立的结构,担负着物质运输、合成与分解、能量转换和信息传递等生命活动。
考点一主要细胞器的结构和功能1.细胞器的分离方法差速离心法:主要是采取逐渐提高离心速率分离不同大小颗粒的方法。
2.细胞器的结构和功能(1)细胞器的辨析(请根据图示填写各细胞器名称及功能)①溶酶体:细胞内的“消化车间”,分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或细菌。
②中心体:与细胞的有丝分裂有关,由两个互相垂直排列的中心粒及周围物质组成。
③核糖体:是“生产蛋白质的机器”,有的游离在细胞质基质中,有的附着在粗面内质网上。
④高尔基体:主要是对来自内质网的蛋白质进行加工、分类和包装的“车间”及“发送站”,在植物细胞中与细胞壁的形成有关。
⑤内质网:是蛋白质等大分子物质的合成、加工场所和运输通道,分为粗面内质网和光面内质网。
⑥线粒体:进行有氧呼吸的主要场所,是细胞的“动力车间”。
⑦叶绿体:能进行光合作用的绿色植物细胞所特有,是“养料制造车间”和“能量转换站”。
⑧液泡:内有细胞液,可调节植物细胞内的环境,使植物细胞保持坚挺。
(2)线粒体和叶绿体的比较3.多角度比较各种细胞器4.细胞骨架(1)结构:由蛋白质纤维组成的网架结构。
(2)功能:维持着细胞的形态,锚定并支撑着许多细胞器,与细胞运动、分裂、分化以及物质运输、能量转化、信息传递等生命活动密切相关。
考向一细胞器的分布、结构与功能1.溶酶体是细胞中进行“细胞内消化”的细胞器,溶酶体膜也承担着重要的物质运输功能。
如溶酶体膜上存在一种具有A TP水解酶活性的载体蛋白——质子泵,有助于维持溶酶体内酸性环境(pH约为5.0),另外,台-萨氏综合征的病因是患者神经细胞的溶酶体中积累了大量的神经节苷脂(GM2),不能被分解运出,从而造成精神呆滞。
下列有关说法错误的是() A.质子泵能将细胞质中的H+运入溶酶体内B.台-萨氏综合征患者溶酶体内可能缺乏水解GM2的酶C.与肠道消化不同,“细胞内消化”反应都需消耗ATPD.营养缺乏时,溶酶体会加强自身物质的分解答案 C解析溶酶体内存在水解酶将物质水解不消耗A TP,C错误。
(细胞生物学基础)第五章线粒体和叶绿体
体
$number {01}
目 录
• 引言 • 线粒体概述 • 线粒体的生物学特性 • 叶绿体概述 • 叶绿体的生物学特性 • 线粒体和叶绿体的比较与联系 • 结论
01 引言
主题概述
01
线粒体和叶绿体是细胞内的两个 重要细胞器,分别负责细胞的呼 吸和光合作用。
02
线粒体和叶绿体在细胞中的相互作用和影响
能量转换的协同作用
线粒体和叶绿体在能量转换过程中相互协调,共同维持细胞的能 量平衡。
代谢调节的相互作用
线粒体和叶绿体的代谢过程相互影响,可以通过信号转导途径相互 调控。
细胞生长和分化的影响
线粒体和叶绿体的数量和功能在细胞生长和分化过程中发生变化, 影响细胞的生长和分化过程。
04
叶绿体概述
叶绿体的定义和功能
总结词
叶绿体是植物细胞中负责光合作用的细胞器,主要功能是利用光能将二氧化碳 和水转化为有机物和氧气。
详细描述
叶绿体是绿色植物细胞中重要的细胞器,主要负责光合作用。光合作用是将光 能转化为化学能的过程,通过这一过程,植物能够将二氧化碳和水转化为葡萄 糖,并释放氧气。叶绿体含有绿色的叶绿素,因此得名。
线粒体和叶绿体的差异
功能不同
线粒体的主要功能是氧化磷酸化,为细胞提供能量;而叶绿体的 主要功能是光合作用,将光能转换为化学能。
分布不同
线粒体存在于动物细胞和部分植物细胞中;而叶绿体仅存在于植 物细胞中,特别是绿色植物细胞。
成分不同
线粒体中含有丰富的酶和蛋白质,而叶绿体中含有大量的叶绿素 和蛋白质。
线粒体的形态和结构
总结词
线粒体具有多种形态和结构,包括圆形、杆状、螺旋形等,其结构由外膜、内膜、基质 和嵴组成。
线粒体和叶绿体的比较
线粒体和叶绿体的比较线粒体和叶绿体是两种不同的细胞质器,它们在细胞的代谢过程中发挥着至关重要的作用。
它们都具有自主复制和自主繁殖的功能,且都具备着自己的遗传信息。
虽然两者在细胞功能上存在着相似之处,但是它们之间依然存在着很多的差异和不同之处。
第一,线粒体和叶绿体的位置是不同的。
线粒体主要分布在细胞的质壁上,参与细胞的氧化代谢和能量供应等重要功能。
而叶绿体则分布在植物细胞的叶片和茎干等绿色组织中,参与光合作用和碳素循环等重要功能。
这也说明了它们在细胞中的不同作用和位置。
第二,线粒体和叶绿体在结构上存在差异。
线粒体呈长椭球形,可以看做一个半自主的小器官。
它有两层膜结构,内膜上有许多的褶皱,增加了表面积,方便了线粒体内的化学反应。
而叶绿体则呈扁平片状,有一个外膜和内膜,内膜有许多的穿孔结构,称为叶绿体基粒。
这些基粒像是小孔板,可以让物质在细胞膜之间快速交换。
第三,线粒体和叶绿体的代谢功能是不同的。
线粒体主要参与葡萄糖的氧化分解和三羧酸循环,产生ATP。
这些ATP可以储存成能量,也可以在细胞代谢过程中直接使用。
而叶绿体则是通过光合作用来合成有机物质和氧气。
它可以光合合成葡萄糖等有机物质,也可以产生ATP,但是它产生的ATP数量相对较少,主要是提供能量和产生氧气等生命活动的必需物质。
第四,线粒体和叶绿体的基因组大小和结构也有所不同。
线粒体的基因组大小约为16kb,有37个基因,主要编码线粒体内的蛋白质和RNA。
而叶绿体则是大小约为160kb,有100多个基因,其中大部分是编码光合作用相关的蛋白质和RNA。
叶绿体的基因组更加复杂,受到多个因素的影响,其中很多和气候环境相关。
最后,线粒体和叶绿体的遗传方式也有所不同。
线粒体遵循母系遗传,母亲传递给子女的线粒体基因保持不变。
而叶绿体遵循父母双亲遗传,父母的叶绿体基因都可以继承给子女。
不同的继承方式也意味着线粒体和叶绿体的灵活性和遗传稳定性有所不同。
综合来看,线粒体和叶绿体在细胞代谢和生命活动中都具有着不可或缺的作用。
线粒体与叶绿体
线粒体和叶绿体是细胞内能量转换的主要场所。
线粒体大小不一,形状大多为棒状,细丝状或球状颗粒,长1~2纳米。
线粒体超微结构可大致分为外膜,内膜,膜间隙与基质。
外膜通透性较高,含孔蛋白,是线粒体的通道蛋白,允许较大的分子通过,如蛋白质,rRNA等。
内膜具有高度不通透性,向内折叠形成嵴。
含有与能量转换相关的蛋白,如ATP合成酶,线粒体内膜转运蛋白等,是执行氧化反应的电子传递链所在地。
膜间隙含许多可溶性酶,底物及辅助因子。
基质含三羧酸循环酶系、线粒体基因表达酶系等以及线粒体DNA, RNA,核糖体。
核糖体主要由蛋白质与脂质组成,蛋白质占线粒体干重的65~70%,脂类占线粒体干重的25~30%,磷脂占3/4以上,外膜主要是卵磷脂,内膜主要是心磷脂。
在内膜上,脂类与蛋白质的比值为0.3:1,在外膜上为1:1。
在线粒体的不同部位含有不同数量不同种类的酶,外膜上含有单胺氧化酶,NADH-细胞色素c还原酶等;内膜上含有细胞色素b,c,c1,a,a3氧化酶,ATP合成酶系等;膜间隙上含有腺苷酸激酶,二磷酸激酶等;基质上含有柠檬酸合成酶,苹果酸脱氢酶等。
线粒体主要功能是进行氧化磷酸化,合成ATP,为细胞生命活动提供直接能量;与细胞中氧自由基的生成、细胞凋亡、细胞的信号转导、细胞内多种离子的跨膜转运及电解质稳态平衡的调控有关。
线粒体ATP合成系统的解离与重建实验证明电子传递与ATP合成是由两个不同的结构体系执行, F1颗粒具有ATP 酶活性,ATP合成酶是可逆性复合酶,即既能利用质子电化学梯度储存的能量合成ATP, 又能水解ATP将质子从基质泵到膜间隙,这是ATP合成酶磷酸化的分子基础。
化学渗透假说:电子传递链各组分在线粒体内膜中不对称分布,当高能电子沿其传递时,所释放的能量将H+从基质泵到膜间隙,形成H+电化学梯度。
在这个梯度驱使下,H+穿过ATP合成酶回到基质,同时合成ATP,电化学梯度中蕴藏的能量储存到ATP高能磷酸键。
简述线粒体和叶绿体的结构与功能
线粒体和叶绿体都是细胞内的细胞器,它们具有不同的结构和功能。
线粒体是细胞内的能量中心,它们是由双层膜包裹的椭圆形或长条形的结构。
线粒体内部包含许多细胞色素和酶,这些细胞色素和酶协同作用以产生细胞所需的三磷酸腺苷(ATP)能量。
线粒体在细胞代谢中发挥重要作用,例如:葡萄糖分解过程中的三羧酸循环和氧化磷酸化。
叶绿体是植物细胞中的特殊细胞器,它们也是由双层膜包裹的结构,具有类似于细胞核的圆形形状。
叶绿体的主要功能是进行光合作用,将阳光能转化为化学能,并产生植物所需的有机物质,例如葡萄糖。
叶绿体内含有叶绿素和其他色素,可以吸收太阳能,并将其转化为电子和能量。
总的来说,线粒体和叶绿体都是细胞内重要的能量转换中心,分别负责细胞内的不同代谢过程和光合作用。
新课标高中生物人教版必修第一册第二册生物世界〖叶绿体和线粒体的结构与功能〗
叶绿体和线粒体的结构与功能(1)叶绿体的结构与功能叶绿体是植物进行光合作用的细胞器。
具有叶绿体的植物除高等植物外,还有真核藻类。
叶绿体的形状因物种的不同而有所差异。
藻类的叶绿体形态差异较大,可以是板状、带状、杯状、囊状、星状等。
高等植物的叶绿体一般形状比较固定,多为扁平的椭球形,平均直径为4~6 μm,厚2~3 μm。
叶绿体由双层膜包被,每层膜厚6~8 nm,外膜与内膜之间有10~2021m宽的膜间隙。
两层膜均由单位膜(由脂质双层及嵌合蛋白质构成的一层生物膜)组成,具有选择透过性。
叶绿体膜内的基础物质称为基质。
基质中悬浮着复杂的膜片层系统,其基本单位是由单位膜封闭形成的扁平小囊,称为类囊体(也称片层)。
类囊体有规律地垛叠在一起形成好似一摞硬币的结构被称为基粒类囊体。
贯穿在两个或两个以上基粒之间没有发生垛叠的类囊体,称为基质类囊体。
相邻基粒由基质类囊体链接在一起,使类囊体腔之间彼此相通,因而,一个叶绿体内的全部类囊体实际上是一个连续的封闭的三维结构。
类囊体膜上有多种蛋白复合体,包括光合电子传递体和光合色素蛋白质复合体,是光合作用中进行光反应的结构。
类囊体膜上的光合色素负责在光合作用中吸收光能,这种膜片层系统极大地增加了光合作用中的受光面积,提升了光合作用的效率。
叶绿体的基质中有可溶性的蛋白(酶)以及其他活跃的代谢物质,其中包括光合作用中催化碳固定的酶系统,因此,光合作用中二氧化碳的固定、还原是在叶绿体基质中完成的。
基质中还存在叶绿体自身的DNA、RNA和核糖体,能够自主进行遗传物质的传递以及蛋白质的合成。
(2)线粒体的结构与功能与叶绿体相比,线粒体要小一些,直径05~1 μm,长1~2 μm,通常呈椭球状或圆柱体。
线粒体也由内外两层单位膜包裹,内外膜之间有腔。
外膜平整光滑,内膜内折形成嵴。
内膜上分布有许多规律排列的带柄的球状小体,即ATP合酶,它利用电子传递过程中形成的质子跨膜电化学势梯度合成ATP。
细胞生物学翟中和第四版-06-线粒体与叶绿体
(一)ATP合酶(ATP synthase)
ATP合酶分子结构模式图
ATP 合酶的分子由球形的头部和 基部组成,头部朝向线粒体基质, 规则性地排布在内膜下并以基部 与内膜相连。
ATP合酶的头部被称为偶联因子1 (F1),由5 种类型的9个亚基组 成,形成一个“橘瓣”状结构,其 中只有β 亚基具有催化ATP合成或 水解的活性。 F1 的功能是催化ATP合成,γ 亚 基的一个结构域构成穿过F1的中 央轴。ε 亚基协助γ 亚基附着到 ATP合酶的基部结构F0上。γ 与ε 亚基结合形成“转子”,旋转于 α 3β 3的中央,调节3个β 亚基催 化位点的开放和关闭。
第二节 叶绿体
• 光合作用是地球上有机体生存和发展的根本源泉。 • 绿色植物年产干物质达1014公斤。
一、叶绿体的基本形态及动态特征
(一)叶绿体的形态、分布及数目
• 在高等植物的叶肉细胞中,叶 绿体呈凸透镜或铁饼状,直径
为5~10 μm,厚2~4 μm。
• 分布在细胞质膜与液泡间薄层 的细胞质中,呈平层排列。 • 通常情况下,高等植物的叶肉 细胞含20~200 个叶绿体。
一、线粒体的融合与分裂
• 动、植物细胞中均可观察到频繁的线粒体融合与 分裂现象,这被认为是线粒体形态调控的基本方 式,也是线粒体数目调控的基础。 • 细胞中所有的线粒体构成一个不连续的动态整体。
线粒体融合与分裂的分子基础:
• 融合与分裂依赖于特定的基因和蛋白质的调控。融合所必需
的基因最早发现于果蝇,取名Fzo(fuzzy onion 模糊洋葱头) Fzo基因编码一跨膜的GTPase(鸟苷三磷酸酶),定位在线粒 体外膜上,介导线粒体的融合。
(一)叶绿体的形态、分布及数目
• 叶绿体通过位移避开强光 的行为称为躲避响应
细胞生物学第七章线粒体叶绿体习题及答案 done
第七章线粒体和叶绿体1.比较线粒体和叶绿体在基本结构上的异同点。
答:相同点:他们都是双层膜结构的细胞器,都有外膜、内膜、膜间隙、基质等结构。
不同点:线粒体的内膜向内凹陷形成众多的脊,上面结合有ATP合成酶;叶绿体的内膜是一层光滑的膜,没有脊结构。
除了内膜外膜之外,叶绿体还有存在于其基质之中的类囊体结构。
(具体的一些细节结构还要参考教材)2.比较线粒体氧化磷酸化和叶绿体光合磷酸化的异同点。
氧化磷酸化:(1)电子从高能位经电子传递链跃迁至低能位(NADH->NAD)(2)一对电子跨膜3次,向膜内转移6个质子(3)质子浓度是内低外高(4)质子流由线粒体内膜外穿过F0-F1进入基质(5) 2个质子的跨膜产生1分子的ATP(6)形成H2O,利用O2,放出CO2(7)化学能—>高能键能光和磷酸化:(1)电子从低能位经电子传递链跃迁至高能位(NADP->NADPH) (2)一对电子跨膜2次,向膜内转移4个质子(3)质子浓度是内高外低(4)质子流由类囊体膜内穿过CF0-CF1进入基质(5) 3个质子的跨膜产生1分子的ATP(6)分解H2O,放出O2,固定CO2(暗反应)(7)光能—>高能键能(—>化学能)3.概述ATP酶复合体的分子结构及ATP合成酶的作用机制。
答: ATP酶复合体由F1头部和F0基部以及两者共同形成的柄部组成。
F1是ATP酶的活性部位,由α3β3γδε五种亚基组成,3个α和3个β亚基聚在一起形成橘瓣状的结构,β亚基是ATP的结合位点;γ和ε亚基结合形成转子。
F是嵌入内膜的疏水性蛋白质,由a、b、c三种亚基组成,是跨膜质子通道(质子通过产生扭力让转子转动)。
柄部实质上是F1δ亚基与F的a、b亚基共同构成的起固定作用的“定子”。
ATP合成酶的作用机制:质子通过跨膜通道产生扭力让“转子”逆时针转动,而顺序调节三个β亚基上催化位点依次开启和关闭,三个β亚基分别随即发生和核苷酸紧密结合(T态)、松散结合(L态)和定置状态(O态)三种构象的交替变化,“转子”每旋转1200就与一个β亚基结合就会使该β亚基变成L态,从而释放ATP分子。
叶绿体与线粒体功能、结构的比较
叶绿体与线粒体功能、结构的比较作者:谢季霖来源:《当代旅游(下旬)》2017年第08期摘要:进行高中生物学习的过程中,常常会遇到有关叶绿体与线粒体功能和结构相关的问题,这是高中生物学习的重点和难点,还是高考热点之一。
因此,作为高中生,必须要充分了解叶绿体和线粒体功能与结构,将两者进行比较学习,可以促使自身生物解题效率的提升。
关键词:叶绿体;线粒体;功能;结构;比较由于动植物生命活动所需要的能力,多数是由线粒体所提供的,而通常情况下这部分能量均直接以及间接地来源于叶绿体中固定的太阳能,所以,叶绿体与线粒体是真核生物细胞里面的两个特别重要的细胞器,这是高中考试的核心内容。
再者,由于叶绿体与线粒体在功能和结构上有一定的区别与联系,所以也是高中生物学习的难点。
以下就针对叶绿体与线粒体功能和结构上的比较展开了深入分析。
一、叶绿体和线粒体相同点(一)叶绿体与线粒体在功能反应中都可以生成水在线粒体之中开展有氧呼吸第三阶段,将氧气当成是有氧呼吸前两个阶段产生的H受体,当其反应以后在生成水的时候产生很多的能量,在第三阶段中产生的能量在有氧呼吸这几个阶段中是最高的。
可是叶绿体在其基质中经过三样化合物以及暗反应被还原成糖类等有机物的时候,继而生成水。
(二)叶绿体与线粒体在功能反应中都可以消耗水线粒体经过有氧呼吸第二階段将水消耗掉,与此同时经过一定的变化生成二氧化碳、水域很少的能量。
而叶绿体经过光反应将水消耗掉,将水当成是电子的最后供体,经过水的光解产生氧气,其反应化学方程式就是:2H2O→4H++4e+O2。
二、叶绿体和线粒体功能与结构比较(一)叶绿体和线粒体结构上的比较第一,线粒体内膜是向内腔突起构成嵴,线粒体基粒分布于内膜,是颗粒性形状的。
线粒体里面没有色素,并且其中和呼吸作用相关的酶分布于线粒体的内膜、基质、嵴中。
再者,线粒体参加有氧呼吸过程第二阶段与第三阶段。
第二,叶绿体的内膜并未有向内腔突起,叶绿体的内膜是非常平滑的并且不折叠,不会构成嵴。
线粒体和叶绿体
线粒体和叶绿体与细胞核的相互作用
线粒体与细胞核的相互作 用
线粒体和细胞核之间的相互作用涉及到了复 杂的信号转导途径。线粒体会释放信号分子 ,如细胞色素c,与细胞核进行交互,影响 细胞核的基因表达。
叶绿体与细胞核的相互作 用
叶绿体和细胞核之间的相互作用也涉及到了 复杂的信号转导途径。叶绿体会释放信号分 子,如atp/adp比值,与细胞核进行交互,
线粒体和叶绿体的遗传和 调控
线粒体和叶绿体的基因组特点
线粒体基因组
线粒体基因组是独立于细胞核的,具有自 己的DNA序列,且具有母系遗传的特点 。其包含编码线粒体蛋白质的基因和非编 码RNA。
VS
叶绿体基因组
叶绿体基因组也是独立于细胞核的,具有 自己的DNA序列。它编码与光合作用相 关的蛋白质和酶,以及一些核糖体蛋白和 RNA。
酶则参与脂肪酸、氨基酸、核苷酸等物质的合成和分 解
基质蛋白涉及氧化呼吸链、脂肪酸合成、核苷酸代谢 等过程
核酸则参与DNA和RNA的合成和降解等过程
03
叶绿体的结构和组成
叶绿体的基本结构
叶绿体由双层膜包裹,内部含有多种酶和蛋白质。
叶绿体内含有基质、类囊体和间质等结构。
叶绿体内膜的结构和功能
叶绿体内膜具有高度选择性的通透性,能够控制物质进出叶绿体。
线粒体和叶绿体的比较
01
结构
线粒体和叶绿体在结构上都有两层膜,内膜向内突起形成嵴,嵴上有
基粒。但是线粒体内膜向内折叠形成嵴较多,而叶绿体内膜形成的嵴
较少。
02
功能
线粒体和叶绿体在功能上也有所不同。线粒体是细胞进行有氧呼吸的
主要场所,为细胞代谢提供能量;而叶绿体主要进行光合作用,吸收
线粒体和叶绿体的功能
线粒体和叶绿体的功能线粒体和叶绿体是两个特殊的细胞器,它们都承担着细胞代谢的重要功能。
线粒体主要参与细胞的能量代谢,而叶绿体则参与光合作用。
以下将分别介绍线粒体和叶绿体的功能及其在细胞中的作用。
首先,我们来讨论线粒体。
线粒体是细胞内最重要的能量生产中心,它在细胞呼吸过程中合成并储存能量分子——三磷酸腺苷(ATP)。
线粒体内含有特殊的线粒体DNA,可以进行自我复制。
线粒体的功能主要包括三个方面:1. 呼吸链:线粒体是呼吸链的主要组成部分之一。
在线粒体内,通过氧化磷酸化反应将有机物(如葡萄糖)中的化学能转化为ATP分子,同时产生二氧化碳和水。
这个过程需要氧气参与,被称为有氧呼吸。
呼吸链中,线粒体内膜上的电子传递过程产生的能量被用来推动腺苷二磷酸(ADP)转化为ATP,为细胞提供能量。
2. 脂肪酸和碳水化合物代谢:线粒体是细胞中脂肪酸和碳水化合物的主要代谢组织。
在线粒体内,脂肪酸被氧化成乙酰辅酶A,并进一步通过三羧酸循环进行代谢。
此外,线粒体还可以通过某些途径合成胆固醇等重要物质,并参与胆固醇代谢。
3. 钙离子平衡:线粒体在细胞内钙离子(Ca2+)平衡中发挥重要作用。
它可以吸收和储存细胞内的钙离子,维持细胞内钙离子浓度的稳定,对于细胞的正常功能和信号传导至关重要。
接下来,我们来讨论叶绿体。
叶绿体是植物细胞和一些原生生物细胞中存在的特殊细胞器,它是光合作用的主要场所。
叶绿体具有以下功能:1. 光合作用:叶绿体是光合色素的储存和光合作用的主要场所。
光合作用是叶绿体利用光能将水和二氧化碳转化为有机物质(如葡萄糖)和氧气的过程。
叶绿体内的叶绿素等色素可以吸收光能,并将其转化为化学能,通过一系列的光合反应,最终生成葡萄糖,并释放氧气。
2. 淀粉合成:叶绿体不仅可以合成葡萄糖,还可以将多余的葡萄糖合成淀粉储存在叶绿体中。
当当地植物需要能量时,可以通过淀粉的分解来满足需求。
3. 蛋白质合成和修饰:叶绿体也参与合成细胞中的一些重要蛋白质。