数据结构(C语言版)题集答案 第七章_图

合集下载

严蔚敏《数据结构(c语言版)习题集》答案第七章 图

严蔚敏《数据结构(c语言版)习题集》答案第七章 图

严蔚敏《数据结构(c语言版)习题集》答案第七章图第七章图7.14Status Build_AdjList(ALGraph &G)//输入有向图的顶点数,边数,顶点信息和边的信息建立邻接表{InitALGraph(G);scanf("%d",&v);if(v<0) return ERROR; //顶点数不能为负G.vexnum=v;scanf("%d",&a);if(a<0) return ERROR; //边数不能为负G.arcnum=a;for(m=0;m<v;m++)G.vertices[m].data=getchar(); //输入各顶点的符号for(m=1;m<=a;m++){t=getchar();h=getchar(); //t为弧尾,h为弧头if((i=LocateVex(G,t))<0) return ERROR;if((j=LocateVex(G,h))<0) return ERROR; //顶点未找到p=(ArcNode*)malloc(sizeof(ArcNode));if(!G.vertices.[i].firstarc) G.vertices[i].firstarc=p;else{for(q=G.vertices[i].firstarc;q->nextarc;q=q->nextarc);q->nextarc=p;}p->adjvex=j;p->nextarc=NULL;}//whilereturn OK;}//Build_AdjList7.15//本题中的图G均为有向无权图,其余情况容易由此写出Status Insert_Vex(MGraph &G, char v)//在邻接矩阵表示的图G上插入顶点v {if(G.vexnum+1)>MAX_VERTEX_NUM return INFEASIBLE;G.vexs[++G.vexnum]=v;return OK;}//Insert_VexStatus Insert_Arc(MGraph &G,char v,char w)//在邻接矩阵表示的图G上插入边(v,w) {if((i=LocateVex(G,v))<0) return ERROR;if((j=LocateVex(G,w))<0) return ERROR;if(i==j) return ERROR;if(!G.arcs[i][j].adj){G.arcs[i][j].adj=1;G.arcnum++;}return OK;}//Insert_ArcStatus Delete_Vex(MGraph &G,char v)//在邻接矩阵表示的图G上删除顶点v{n=G.vexnum;if((m=LocateVex(G,v))<0) return ERROR;G.vexs[m]<->G.vexs[n]; //将待删除顶点交换到最后一个顶点for(i=0;i<n;i++){G.arcs[i][m]=G.arcs[i][n];G.arcs[m][i]=G.arcs[n][i]; //将边的关系随之交换}G.arcs[m][m].adj=0;G.vexnum--;return OK;}//Delete_Vex分析:如果不把待删除顶点交换到最后一个顶点的话,算法将会比较复杂,而伴随着大量元素的移动,时间复杂度也会大大增加.Status Delete_Arc(MGraph &G,char v,char w)//在邻接矩阵表示的图G上删除边(v,w) {if((i=LocateVex(G,v))<0) return ERROR;if((j=LocateVex(G,w))<0) return ERROR;if(G.arcs[i][j].adj){G.arcs[i][j].adj=0;G.arcnum--;}return OK;}//Delete_Arc7.16//为节省篇幅,本题只给出Insert_Arc算法.其余算法请自行写出.Status Insert_Arc(ALGraph &G,char v,char w)//在邻接表表示的图G上插入边(v,w) {if((i=LocateVex(G,v))<0) return ERROR;if((j=LocateVex(G,w))<0) return ERROR;p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=j;p->nextarc=NULL;if(!G.vertices[i].firstarc) G.vertices[i].firstarc=p;else{for(q=G.vertices[i].firstarc;q->q->nextarc;q=q->nextarc)if(q->adjvex==j) return ERROR; //边已经存在q->nextarc=p;}G.arcnum++;return OK;}//Insert_Arc7.17//为节省篇幅,本题只给出较为复杂的Delete_Vex算法.其余算法请自行写出. Status Delete_Vex(OLGraph &G,char v)//在十字链表表示的图G上删除顶点v { if((m=LocateVex(G,v))<0) return ERROR;n=G.vexnum;for(i=0;i<n;i++) //删除所有以v为头的边{if(G.xlist[i].firstin->tailvex==m) //如果待删除的边是头链上的第一个结点{q=G.xlist[i].firstin;G.xlist[i].firstin=q->hlink;free(q);G.arcnum--;}else //否则{for(p=G.xlist[i].firstin;p&&p->hlink->tailvex!=m;p=p->hlink);if(p){q=p->hlink;p->hlink=q->hlink;free(q);G.arcnum--;}}//else}//forfor(i=0;i<n;i++) //删除所有以v为尾的边{if(G.xlist[i].firstout->headvex==m) //如果待删除的边是尾链上的第一个结点{q=G.xlist[i].firstout;G.xlist[i].firstout=q->tlink;free(q);G.arcnum--;}else //否则{for(p=G.xlist[i].firstout;p&&p->tlink->headvex!=m;p=p->tlink);if(p){q=p->tlink;p->tlink=q->tlink;free(q);G.arcnum--;}}//else}//forfor(i=m;i<n;i++) //顺次用结点m之后的顶点取代前一个顶点{G.xlist[i]=G.xlist[i+1]; //修改表头向量for(p=G.xlist[i].firstin;p;p=p->hlink)p->headvex--;for(p=G.xlist[i].firstout;p;p=p->tlink)p->tailvex--; //修改各链中的顶点序号}G.vexnum--;return OK;}//Delete_Vex7.18//为节省篇幅,本题只给出Delete_Arc算法.其余算法请自行写出.Status Delete_Arc(AMLGraph &G,char v,char w)////在邻接多重表表示的图G上删除边(v,w){if((i=LocateVex(G,v))<0) return ERROR;if((j=LocateVex(G,w))<0) return ERROR;if(G.adjmulist[i].firstedge->jvex==j)G.adjmulist[i].firstedge=G.adjmulist[i].firstedge->ilink;else{for(p=G.adjmulist[i].firstedge;p&&p->ilink->jvex!=j;p=p->ilink);if (!p) return ERROR; //未找到p->ilink=p->ilink->ilink;} //在i链表中删除该边if(G.adjmulist[j].firstedge->ivex==i)G.adjmulist[j].firstedge=G.adjmulist[j].firstedge->jlink;else{for(p=G.adjmulist[j].firstedge;p&&p->jlink->ivex!=i;p=p->jlink);if (!p) return ERROR; //未找到q=p->jlink;p->jlink=q->jlink;free(q);} //在i链表中删除该边G.arcnum--;return OK;}//Delete_Arc7.19Status Build_AdjMulist(AMLGraph &G)//输入有向图的顶点数,边数,顶点信息和边的信息建立邻接多重表{InitAMLGraph(G);scanf("%d",&v);if(v<0) return ERROR; //顶点数不能为负G.vexnum=v;scanf(%d",&a);if(a<0) return ERROR; //边数不能为负G.arcnum=a;for(m=0;m<v;m++)G.adjmulist[m].data=getchar(); //输入各顶点的符号for(m=1;m<=a;m++){t=getchar();h=getchar(); //t为弧尾,h为弧头if((i=LocateVex(G,t))<0) return ERROR;if((j=LocateVex(G,h))<0) return ERROR; //顶点未找到p=(EBox*)malloc(sizeof(EBox));p->ivex=i;p->jvex=j;p->ilink=NULL;p->jlink=NULL; //边结点赋初值if(!G.adjmulist[i].firstedge) G.adjmulist[i].firstedge=p;else{q=G.adjmulist[i].firstedge;while(q){r=q;if(q->ivex==i) q=q->ilink;else q=q->jlink;}if(r->ivex==i) r->ilink=p;//注意i值既可能出现在边结点的ivex域中, else r->jlink=p; //又可能出现在边结点的jvex域中}//else //插入i链表尾部if(!G.adjmulist[j].firstedge) G.adjmulist[j].firstedge=p;else{q=G.adjmulist[i].firstedge;while(q){r=q;if(q->jvex==j) q=q->jlink;else q=q->ilnk;}if(r->jvex==j) r->jlink=p;else r->ilink=p;}//else //插入j链表尾部}//forreturn OK;}//Build_AdjList7.20int Pass_MGraph(MGraph G)//判断一个邻接矩阵存储的有向图是不是可传递的,是则返回1,否则返回0{for(x=0;x<G.vexnum;x++)for(y=0;y<G.vexnum;y++)if(G.arcs[x][y]){for(z=0;z<G.vexnum;z++)if(z!=x&&G.arcs[y][z]&&!G.arcs[x][z]) return 0;//图不可传递的条件}//ifreturn 1;}//Pass_MGraph分析:本算法的时间复杂度大概是O(n^2*d).7.21int Pass_ALGraph(ALGraph G)//判断一个邻接表存储的有向图是不是可传递的,是则返回1,否则返回0{for(x=0;x<G.vexnum;x++)for(p=G.vertices[x].firstarc;p;p=p->nextarc){y=p->adjvex;for(q=G.vertices[y].firstarc;q;q=q->nextarc){z=q->adjvex;if(z!=x&&!is_adj(G,x,z)) return 0;}//for}//for}//Pass_ALGraphint is_adj(ALGraph G,int m,int n)//判断有向图G中是否存在边(m,n),是则返回1,否则返回0{for(p=G.vertices[m].firstarc;p;p=p->nextarc)if(p->adjvex==n) return 1;return 0;}//is_adj7.22int visited[MAXSIZE]; //指示顶点是否在当前路径上int exist_path_DFS(ALGraph G,int i,int j)//深度优先判断有向图G中顶点i到顶点j是否有路径,是则返回1,否则返回0{if(i==j) return 1; //i就是jelse{visited[i]=1;for(p=G.vertices[i].firstarc;p;p=p->nextarc){k=p->adjvex;if(!visited[k]&&exist_path(k,j)) return 1;//i下游的顶点到j有路径}//for}//else}//exist_path_DFS7.23int exist_path_BFS(ALGraph G,int i,int j)//广度优先判断有向图G中顶点i到顶点j是否有是则返回1,否则返回0 路径,{int visited[MAXSIZE];InitQueue(Q);EnQueue(Q,i);while(!QueueEmpty(Q)){DeQueue(Q,u);visited[u]=1;for(p=G.vertices[i].firstarc;p;p=p->nextarc){k=p->adjvex;if(k==j) return 1;if(!visited[k]) EnQueue(Q,k);}//for}//whilereturn 0;}//exist_path_BFS7.24void STraverse_Nonrecursive(Graph G)//非递归遍历强连通图G { int visited[MAXSIZE];InitStack(S);Push(S,GetVex(S,1)); //将第一个顶点入栈visit(1);visited =1;while(!StackEmpty(S)){while(Gettop(S,i)&&i){j=FirstAdjVex(G,i);if(j&&!visited[j]){visit(j);visited[j]=1;Push(S,j); //向左走到尽头}}//whileif(!StackEmpty(S)){Pop(S,j);Gettop(S,i);k=NextAdjVex(G,i,j); //向右走一步if(k&&!visited[k]){visit(k);visited[k]=1;Push(S,k);}}//if}//while}//Straverse_Nonrecursive 分析:本算法的基本思想与二叉树的先序遍历非递归算法相同,请参考6.37.由于是强连通图,所以从第一个结点出发一定能够访问到所有结点. 7.25见书后解答.7.26Status TopoNo(ALGraph G)//按照题目要求顺序重排有向图中的顶点 { int new[MAXSIZE],indegree[MAXSIZE]; //储存结点的新序号n=G.vexnum;FindInDegree(G,indegree);InitStack(S);for(i=1;i<G.vexnum;i++)if(!indegree[i]) Push(S,i); //零入度结点入栈count=0;while(!StackEmpty(S)){Pop(S,i);new[i]=n--; //记录结点的拓扑逆序序号count++;for(p=G.vertices[i].firstarc;p;p=p->nextarc){k=p->adjvex;if(!(--indegree[k])) Push(S,k);}//for}//whileif(count<G.vexnum) return ERROR; //图中存在环for(i=1;i<=n;i++) printf("Old No:%d New No:%d\n",i,new[i])return OK;}//TopoNo分析:只要按拓扑逆序对顶点编号,就可以使邻接矩阵成为下三角矩阵. 7.27 int visited[MAXSIZE];int exist_path_len(ALGraph G,int i,int j,int k)//判断邻接表方式存储的有向图G的顶点i到j是否存在长度为k的简单路径{if(i==j&&k==0) return 1; //找到了一条路径,且长度符合要求else if(k>0){visited[i]=1;for(p=G.vertices[i].firstarc;p;p=p->nextarc){l=p->adjvex;if(!visited[l])if(exist_path_len(G,l,j,k-1)) return 1; //剩余路径长度减一}//forvisited[i]=0; //本题允许曾经被访问过的结点出现在另一条路径中}//elsereturn 0; //没找到}//exist_path_len7.28int path[MAXSIZE],visited[MAXSIZE]; //暂存遍历过程中的路径 intFind_All_Path(ALGraph G,int u,int v,int k)//求有向图G中顶点u到v之间的所有简单路径,k表示当前路径长度{path[k]=u; //加入当前路径中visited[u]=1;if(u==v) //找到了一条简单路径{printf("Found one path!\n");for(i=0;path[i];i++) printf("%d",path[i]); //打印输出}elsefor(p=G.vertices[u].firstarc;p;p=p->nextarc){l=p->adjvex;if(!visited[l]) Find_All_Path(G,l,v,k+1); //继续寻找}visited[u]=0;path[k]=0; //回溯}//Find_All_Pathmain(){...Find_All_Path(G,u,v,0); //在主函数中初次调用,k值应为0...}//main7.29int GetPathNum_Len(ALGraph G,int i,int j,int len)//求邻接表方式存储的有向图G的顶点i到j之间长度为len的简单路径条数{if(i==j&&len==0) return 1; //找到了一条路径,且长度符合要求else if(len>0){sum=0; //sum表示通过本结点的路径数visited[i]=1;for(p=G.vertices[i].firstarc;p;p=p->nextarc){l=p->adjvex;if(!visited[l])sum+=GetPathNum_Len(G,l,j,len-1)//剩余路径长度减一}//forvisited[i]=0; //本题允许曾经被访问过的结点出现在另一条路径中}//elsereturn sum;}//GetPathNum_Len7.30int visited[MAXSIZE];int path[MAXSIZE]; //暂存当前路径int cycles[MAXSIZE][MAXSIZE]; //储存发现的回路所包含的结点 int thiscycle[MAXSIZE]; //储存当前发现的一个回路 int cycount=0; //已发现的回路个数void GetAllCycle(ALGraph G)//求有向图中所有的简单回路 {for(v=0;v<G.vexnum;v++) visited[v]=0;for(v=0;v<G.vexnum;v++)if(!visited[v]) DFS(G,v,0); //深度优先遍历}//DFSTraversevoid DFS(ALGraph G,int v,int k)//k表示当前结点在路径上的序号 {visited[v]=1;path[k]=v; //记录当前路径for(p=G.vertices[v].firstarc;p;p=p->nextarc){w=p->adjvex;if(!visited[w]) DFS(G,w,k+1);else //发现了一条回路{for(i=0;path[i]!=w;i++); //找到回路的起点for(j=0;path[i+j];i++) thiscycle[j]=path[i+j];//把回路复制下来if(!exist_cycle()) cycles[cycount++]=thiscycle;//如果该回路尚未被记录过,就添加到记录中for(i=0;i<G.vexnum;i++) thiscycle[i]=0; //清空目前回路数组}//else}//forpath[k]=0;visited[k]=0; //注意只有当前路径上的结点visited为真.因此一旦遍历中发现当前结点visited为真,即表示发现了一条回路}//DFSint exist_cycle()//判断thiscycle数组中记录的回路在cycles的记录中是否已经存在 {int temp[MAXSIZE];for(i=0;i<cycount;i++) //判断已有的回路与thiscycle是否相同{ //也就是,所有结点和它们的顺序都相同j=0;c=thiscycle&#0;; //例如,142857和857142是相同的回路for(k=0;cycles[i][k]!=c&&cycles[i][k]!=0;k++);//在cycles的一个行向量中寻找等于thiscycle第一个结点的元素if(cycles[i][k]) //有与之相同的一个元素{for(m=0;cycles[i][k+m];m++)temp[m]=cycles[i][k+m];for(n=0;n<k;n++,m++)temp[m]=cycles[i][n]; //调整cycles中的当前记录的循环相位并放入temp 数组中if(!StrCompare(temp,thiscycle)) //与thiscycle比较return 1; //完全相等for(m=0;m<G.vexnum;m++) temp[m]=0; //清空这个数组}}//forreturn 0; //所有现存回路都不与thiscycle完全相等}//exist_cycle分析:这个算法的思想是,在遍历中暂存当前路径,当遇到一个结点已经在路径之中时就表明存在一条回路;扫描路径向量path可以获得这条回路上的所有结点.把结点序列(例如,142857)存入thiscycle中;由于这种算法中,一条回路会被发现好几次,所以必须先判断该回路是否已经在cycles中被记录过,如果没有才能存入cycles的一个行向量中.把cycles的每一个行向量取出来与之比较.由于一条回路可能有多种存储顺序,比如142857等同于285714和571428,所以还要调整行向量的次序,并存入temp数组,例如,thiscycle为142857第一个结点为1,cycles的当前向量为857142,则找到后者中的1,把1后部分提到1前部分前面,最终在temp中得到142857,与thiscycle比较,发现相同,因此142857和857142是同一条回路,不予存储.这个算法太复杂,很难保证细节的准确性,大家理解思路便可.希望有人给出更加简捷的算法.7.31int visited[MAXSIZE];int finished[MAXSIZE];int count; //count在第一次深度优先遍历中用于指示finished数组的填充位置 void Get_SGraph(OLGraph G)//求十字链表结构储存的有向图G的强连通分量 {count=0;for(v=0;v<G.vexnum;v++) visited[v]=0;for(v=0;v<G.vexnum;v++) //第一次深度优先遍历建立finished数组if(!visited[v]) DFS1(G,v);for(v=0;v<G.vexnum;v++) visited[v]=0; //清空visited数组for(i=G.vexnum-1;i>=0;i--) //第二次逆向的深度优先遍历{v=finished(i);if(!visited[v]){printf("\n"); //不同的强连通分量在不同的行输出DFS2(G,v);}}//for}//Get_SGraphvoid DFS1(OLGraph G,int v)//第一次深度优先遍历的算法{visited[v]=1;for(p=G.xlist[v].firstout;p;p=p->tlink){w=p->headvex;if(!visited[w]) DFS1(G,w);}//forfinished[++count]=v; //在第一次遍历中建立finished数组}//DFS1void DFS2(OLGraph G,int v)//第二次逆向的深度优先遍历的算法 {visited[v]=1;printf("%d",v); //在第二次遍历中输出结点序号for(p=G.xlist[v].firstin;p;p=p->hlink){w=p->tailvex;if(!visited[w]) DFS2(G,w);}//for}//DFS2分析:求有向图的强连通分量的算法的时间复杂度和深度优先遍历相同,也为O(n+e). 7.32void Forest_Prim(ALGraph G,int k,CSTree &T)//从顶点k出发,构造邻接表结构的有向图G的最小生成森林T,用孩子兄弟链表存储{for(j=0;j<G.vexnum;j++) //以下在Prim算法基础上稍作改动if(j!=k){closedge[j]={k,Max_int};for(p=G.vertices[j].firstarc;p;p=p->nextarc)if(p->adjvex==k) closedge[j].lowcost=p->cost;}//ifclosedge[k].lowcost=0;for(i=1;i<G.vexnum;i++){k=minimum(closedge);if(closedge[k].lowcost<Max_int){Addto_Forest(T,closedge[k].adjvex,k); //把这条边加入生成森林中closedge[k].lowcost=0;for(p=G.vertices[k].firstarc;p;p=p->nextarc)if(p->cost<closedge[p->adjvex].lowcost)closedge[p->adjvex]={k,p->cost};}//ifelse Forest_Prim(G,k); //对另外一个连通分量执行算法}//for}//Forest_Primvoid Addto_Forest(CSTree &T,int i,int j)//把边(i,j)添加到孩子兄弟链表表示的树T中 {p=Locate(T,i); //找到结点i对应的指针p,过程略q=(CSTNode*)malloc(sizeof(CSTNode));q->data=j;if(!p) //起始顶点不属于森林中已有的任何一棵树{p=(CSTNode*)malloc(sizeof(CSTNode));p->data=i;for(r=T;r->nextsib;r=r->nextsib);r->nextsib=p;p->firstchild=q;} //作为新树插入到最右侧else if(!p->firstchild) //双亲还没有孩子p->firstchild=q; //作为双亲的第一个孩子else //双亲已经有了孩子{for(r=p->firstchild;r->nextsib;r=r->nextsib);r->nextsib=q; //作为双亲最后一个孩子的兄弟}}//Addto_Forestmain(){...T=(CSTNode*)malloc(sizeof(CSTNode)); //建立树根T->data=1;Forest_Prim(G,1,T);...}//main分析:这个算法是在Prim算法的基础上添加了非连通图支持和孩子兄弟链表构建模块而得到的,其时间复杂度为O(n^2).7.33typedef struct {int vex; //结点序号int ecno; //结点所属的连通分量号} VexInfo; VexInfo vexs[MAXSIZE]; //记录结点所属连通分量号的数组void Init_VexInfo(VexInfo &vexs[ ],int vexnum)//初始化 { for(i=0;i<vexnum;i++)vexs[i]={i,i}; //初始状态:每一个结点都属于不同的连通分量 }//Init_VexInfoint is_ec(VexInfo vexs[ ],int i,int j)//判断顶点i和顶点j是否属于同一个连通分量{if(vexs[i].ecno==vexs[j].ecno) return 1;else return 0;}//is_ecvoid merge_ec(VexInfo &vexs[ ],int ec1,int ec2)//合并连通分量ec1和ec2{for(i=0;vexs[i].vex;i++)if(vexs[i].ecno==ec2) vexs[i].ecno==ec1;}//merge_ecvoid MinSpanTree_Kruscal(Graph G,EdgeSetType &EdgeSet,CSTree &T)//求图的最小生成树的克鲁斯卡尔算法{Init_VexInfo(vexs,G.vexnum);ecnum=G.vexnum; //连通分量个数while(ecnum>1){GetMinEdge(EdgeSet,u,v); //选出最短边if(!is_ec(vexs,u,v)) //u和v属于不同连通分量{Addto_CSTree(T,u,v); //加入到生成树中merge_ec(vexs,vexs[u].ecno,vexs[v].ecno); //合并连通分量ecnum--;}DelMinEdge(EdgeSet,u,v); //从边集中删除}//while}//MinSpanTree_Kruscalvoid Addto_CSTree(CSTree &T,int i,int j)//把边(i,j)添加到孩子兄弟链表表示的树T中 {p=Locate(T,i); //找到结点i对应的指针p,过程略q=(CSTNode*)malloc(sizeof(CSTNode));q->data=j;if(!p->firstchild) //双亲还没有孩子p->firstchild=q; //作为双亲的第一个孩子else //双亲已经有了孩子{for(r=p->firstchild;r->nextsib;r=r->nextsib);r->nextsib=q; //作为双亲最后一个孩子的兄弟}}//Addto_CSTree分析:本算法使用一维结构体变量数组来表示等价类,每个连通分量所包含的所有结点属于一个等价类.在这个结构上实现了初始化,判断元素是否等价(两个结点是否属于同一个连通分量),合并等价类(连通分量)的操作.7.34Status TopoSeq(ALGraph G,int new[ ])//按照题目要求给有向无环图的结点重新编号,并存入数组new中{int indegree[MAXSIZE]; //本算法就是拓扑排序FindIndegree(G,indegree);Initstack(S);for(i=0;i<G.vexnum;i++)if(!indegree[i]) Push(S,i);count=0;while(!stackempty(S)){Pop(S,i);new[i]=++count; //把拓扑顺序存入数组的对应分量中for(p=G.vertices[i].firstarc;p;p=p->nextarc){k=p->adjvex;if(!(--indegree[k])) Push(S,k);}}//whileif(count<G.vexnum) return ERROR;return OK;}//TopoSeq7.35int visited[MAXSIZE];void Get_Root(ALGraph G)//求有向无环图的根,如果有的话{for(v=0;v<G.vexnum;v++){for(w=0;w<G.vexnum;w++) visited[w]=0;//每次都要将访问数组清零DFS(G,v); //从顶点v出发进行深度优先遍历for(flag=1,w=0;w<G.vexnum;w++)if(!visited[w]) flag=0; //如果v是根,则深度优先遍历可以访问到所有结点if(flag) printf("Found a root vertex:%d\n",v);}//for}//Get_Root,这个算法要求图中不能有环,否则会发生误判void DFS(ALGraph G,int v){visited[v]=1;for(p=G.vertices[v].firstarc;p;p=p->nextarc){w=p->adjvex;if(!visited[w]) DFS(G,w);}}//DFS7.36void Fill_MPL(ALGraph &G)//为有向无环图G添加MPL域 {FindIndegree(G,indegree);for(i=0;i<G.vexnum;i++)if(!indegree[i]) Get_MPL(G,i);//从每一个零入度顶点出发构建MPL域 }//Fill_MPLint Get_MPL(ALGraph &G,int i)//从一个顶点出发构建MPL域并返回其MPL 值 {if(!G.vertices[i].firstarc){G.vertices[i].MPL=0;return 0; //零出度顶点}else{max=0;for(p=G.vertices[i].firstarc;p;p=p->nextarc){j=p->adjvex;if(G.vertices[j].MPL==0) k=Get_MPL(G,j);if(k>max) max=k; //求其直接后继顶点MPL的最大者}G.vertices[i]=max+1;//再加一,就是当前顶点的MPLreturn max+1;}//else}//Get_MPL7.37int maxlen,path[MAXSIZE]; //数组path用于存储当前路径 intmlp[MAXSIZE]; //数组mlp用于存储已发现的最长路径 voidGet_Longest_Path(ALGraph G)//求一个有向无环图中最长的路径 { maxlen=0;FindIndegree(G,indegree);for(i=0;i<G.vexnum;i++){for(j=0;j<G.vexnum;j++) visited[j]=0;if(!indegree[i]) DFS(G,i,0);//从每一个零入度结点开始深度优先遍历}printf("Longest Path:");for(i=0;mlp[i];i++) printf("%d",mlp[i]); //输出最长路径 }//Get_Longest_Pathvoid DFS(ALGraph G,int i,int len) {visited[i]=1;path[len]=i;if(len>maxlen&&!G.vertices[i].firstarc) //新的最长路径{for(j=0;j<=len;j++) mlp[j]=path[j]; //保存下来maxlen=len;}else{for(p=G.vertices[i].firstarc;p;p=p->nextarc){j=p->adjvex;if(!visited[j]) DFS(G,j,len+1);}}//elsepath[i]=0;visited[i]=0;}//DFS7.38void NiBoLan_DAG(ALGraph G)//输出有向无环图形式表示的表达式的逆波兰式 {FindIndegree(G,indegree);for(i=0;i<G.vexnum;i++)if(!indegree[i]) r=i; //找到有向无环图的根PrintNiBoLan_DAG(G,i);}//NiBoLan_DAGvoid PrintNiBoLan_DAG(ALGraph G,int i)//打印输出以顶点i为根的表达式的逆波兰式 {c=G.vertices[i].data;if(!G.vertices[i].firstarc) //c是原子printf("%c",c);else //子表达式{p=G.vertices[i].firstarc;PrintNiBoLan_DAG(G,p->adjvex);PrintNiBoLan_DAG(G,p->nexarc->adjvex);printf("%c",c);}}//PrintNiBoLan_DAG7.39void PrintNiBoLan_Bitree(Bitree T)//在二叉链表存储结构上重做上一题 { if(T->lchild) PrintNiBoLan_Bitree(T->lchild);if(T->rchild) PrintNiBoLan_Bitree(T->rchild);printf("%c",T->data);}//PrintNiBoLan_Bitree7.40int Evaluate_DAG(ALGraph G)//给有向无环图表示的表达式求值 { FindIndegree(G,indegree);for(i=0;i<G.vexnum;i++)if(!indegree[i]) r=i; //找到有向无环图的根return Evaluate_imp(G,i); }//NiBoLan_DAGint Evaluate_imp(ALGraph G,int i)//求子表达式的值{if(G.vertices[i].tag=NUM) return G.vertices[i].value;else{p=G.vertices[i].firstarc;v1=Evaluate_imp(G,p->adjvex);v2=Evaluate_imp(G,p->nextarc->adjvex);return calculate(v1,G.vertices[i].optr,v2);}}//Evaluate_imp分析:本题中,邻接表的vertices向量的元素类型修改如下: struct { enum tag{NUM,OPTR};union {int value;char optr;};ArcNode * firstarc;} Elemtype;7.41void Critical_Path(ALGraph G)//利用深度优先遍历求网的关键路径 { FindIndegree(G,indegree);for(i=0;i<G.vexnum;i++)if(!indegree[i]) DFS1(G,i); //第一次深度优先遍历:建立vefor(i=0;i<G.vexnum;i++)if(!indegree[i]) DFS2(G,i); //第二次深度优先遍历:建立vlfor(i=0;i<=G.vexnum;i++)if(vl[i]==ve[i]) printf("%d",i); //打印输出关键路径}//Critical_Pathvoid DFS1(ALGraph G,int i) {if(!indegree[i]) ve[i]=0;for(p=G.vertices[i].firstarc;p;p=p->nextarc) {dut=*p->info;if(ve[i]+dut>ve[p->adjvex])ve[p->adjvex]=ve[i]+dut;DFS1(G,p->adjvex);}}//DFS1void DFS2(ALGraph G,int i) {if(!G.vertices[i].firstarc) vl[i]=ve[i]; else{for(p=G.vertices[i].firstarc;p;p=p->nextarc) {DFS2(G,p->adjvex);dut=*p->info;if(vl[p->adjvex]-dut<vl[i])vl[i]=vl[p->adjvex]-dut;}}//else}//DFS27.42void ALGraph_DIJ(ALGraph G,int v0,Pathmatrix &P,ShortestPathTable &D)//在邻接表存储结构上实现迪杰斯特拉算法{for(v=0;v<G.vexnum;v++)D[v]=INFINITY;for(p=G.vertices[v0].firstarc;p;p=p->nextarc)D[p->adjvex]=*p->info; //给D数组赋初值for(v=0;v<G.vexnum;v++){final[v]=0;for(w=0;w<G.vexnum;w++) P[v][w]=0; //设空路径if(D[v]<INFINITY){P[v][v0]=1;P[v][v]=1;}}//forD[v0]=0;final[v0]=1; //初始化for(i=1;i<G.vexnum;i++){min=INFINITY;for(w=0;w<G.vexnum;w++)if(!final[w])if(D[w]<min) //尚未求出到该顶点的最短路径{v=w;min=D[w];}final[v]=1;for(p=G.vertices[v].firstarc;p;p=p->nextarc){w=p->adjvex;if(!final[w]&&(min+(*p->info)<D[w])) //符合迪杰斯特拉条件{D[w]=min+edgelen(G,v,w);P[w]=P[v];P[w][w]=1; //构造最短路径}}//for}//for}//ALGraph_DIJ分析:本算法对迪杰斯特拉算法中直接取任意边长度的语句作了修改.由于在原算法中,每次循环都是对尾相同的边进行处理,所以可以用遍历邻接表中的一条链来代替.。

《数据结构(C语言版 第2版)》(严蔚敏 著)第七章练习题答案

《数据结构(C语言版 第2版)》(严蔚敏 著)第七章练习题答案

《数据结构(C语言版第2版)》(严蔚敏著)第七章练习题答案第7章查找1.选择题(1)对n个元素的表做顺序查找时,若查找每个元素的概率相同,则平均查找长度为()。

A.(n-1)/2B.n/2C.(n+1)/2D.n答案:C解释:总查找次数N=1+2+3+…+n=n(n+1)/2,则平均查找长度为N/n=(n+1)/2。

(2)适用于折半查找的表的存储方式及元素排列要求为()。

A.链接方式存储,元素无序B.链接方式存储,元素有序C.顺序方式存储,元素无序D.顺序方式存储,元素有序答案:D解释:折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。

(3)如果要求一个线性表既能较快的查找,又能适应动态变化的要求,最好采用()查找法。

A.顺序查找B.折半查找C.分块查找D.哈希查找答案:C解释:分块查找的优点是:在表中插入和删除数据元素时,只要找到该元素对应的块,就可以在该块内进行插入和删除运算。

由于块内是无序的,故插入和删除比较容易,无需进行大量移动。

如果线性表既要快速查找又经常动态变化,则可采用分块查找。

(4)折半查找有序表(4,6,10,12,20,30,50,70,88,100)。

若查找表中元素58,则它将依次与表中()比较大小,查找结果是失败。

A.20,70,30,50B.30,88,70,50C.20,50D.30,88,50答案:A解释:表中共10个元素,第一次取⎣(1+10)/2⎦=5,与第五个元素20比较,58大于20,再取⎣(6+10)/2⎦=8,与第八个元素70比较,依次类推再与30、50比较,最终查找失败。

(5)对22个记录的有序表作折半查找,当查找失败时,至少需要比较()次关键字。

A.3B.4C.5D.6答案:B解释:22个记录的有序表,其折半查找的判定树深度为⎣log222⎦+1=5,且该判定树不是满二叉树,即查找失败时至多比较5次,至少比较4次。

(6)折半搜索与二叉排序树的时间性能()。

数据结构第七章习题答案

数据结构第七章习题答案

第七章图1.下面是一个图的邻接表结构,画出此图,并根据此存储结构和深度优先搜索算法写出从C开始的深度优先搜索序列。

0 A 1 3 ^1 B 3 5 ^2 C3 0 ^3 D4 ^4 E ^5 F 4 ^【解答】A B FC D EC开始的深度优先搜索序列:CDEABF(唯一的结果)2.假定要在某县所辖六个镇(含县城)之间修公路,若镇I和镇J之间有可能通过道路连接,则Wij表示这条路的长度。

要求每个镇都通公路且所修公路总里程最短,那么应选择哪些线路来修。

I11112233445 J23564546566 1239102626474 Wij(1).画出该图。

(2).用C语言描述该图的数组表示法存储结构,并注明你所使用变量的实际含义。

(3).图示你所定义的数据结构。

(4).标识出你选择的线路。

【解答】(1)(2)#define MAX 6 typedef struct {char vexs[MAX]; // 顶点信息int arcs[MAX][MAX]; // 边的信息 int vexnum, arcnum; // 顶点数,边数 } MGraph; (3)略(4){(1,3), (3,4), (2,4), (4,5), (5,6)}3.图G 如下所示。

(1).给出该图的所有强连通分量。

(2).在图中删除弧<2,1>,然后写出从顶点1开始的拓扑有序序列。

【解答】(1) 共4个强连通分量:(2) 1,3,2,6,5,4一、选择题1、有6个结点的有向完全图有()条弧。

A 、36 B 、28 C 、30 D 、152、用邻接表表示图进行广度优先遍历时,通常采用()来实现算法。

5 461 324 1510 215 20 30 410 10A、栈B、队列C、树D、图3、用邻接表表示图进行深度优先遍历时,通常采用()来实现算法。

A、栈B、队列C、树D、图4、任何一个无向连通图的最小生成树()A、只有一棵B、一棵或多棵C、一定有多棵D、可能不存在5、在一个图中,所有顶点的度数之和等于所有边数和的()倍。

数据结构课后习题答案第七章

数据结构课后习题答案第七章

第七章图(参考答案)7.1(1)邻接矩阵中非零元素的个数的一半为无向图的边数;(2)A[i][j]= =0为顶点,I 和j无边,否则j和j有边相通;(3)任一顶点I的度是第I行非0元素的个数。

7.2(1)任一顶点间均有通路,故是强连通;(2)简单路径V4 V3 V1 V2;(3)0 1 ∞ 1∞ 0 1 ∞1 ∞ 0 ∞∞∞ 1 0邻接矩阵邻接表(2)从顶点4开始的DFS序列:V5,V3,V4,V6,V2,V1(3)从顶点4开始的BFS序列:V4,V5,V3,V6,V1,V27.4(1)①adjlisttp g; vtxptr i,j; //全程变量② void dfs(vtxptr x)//从顶点x开始深度优先遍历图g。

在遍历中若发现顶点j,则说明顶点i和j间有路径。

{ visited[x]=1; //置访问标记if (y= =j){ found=1;exit(0);}//有通路,退出else { p=g[x].firstarc;//找x的第一邻接点while (p!=null){ k=p->adjvex;if (!visited[k])dfs(k);p=p->nextarc;//下一邻接点}}③ void connect_DFS (adjlisttp g)//基于图的深度优先遍历策略,本算法判断一邻接表为存储结构的图g种,是否存在顶点i //到顶点j的路径。

设 1<=i ,j<=n,i<>j.{ visited[1..n]=0;found=0;scanf (&i,&j);dfs (i);if (found) printf (” 顶点”,i,”和顶点”,j,”有路径”);else printf (” 顶点”,i,”和顶点”,j,”无路径”);}// void connect_DFS(2)宽度优先遍历全程变量,调用函数与(1)相同,下面仅写宽度优先遍历部分。

数据结构第七章参考答案

数据结构第七章参考答案

习题71.填空题(1)由10000个结点构成的二叉排序树,在等概率查找的条件下,查找成功时的平均查找长度的最大值可能达到(___________)。

答案:5000.5(2)长度为11的有序序列:1,12,13,24,35,36,47,58,59,69,71进行等概率查找,如果采用顺序查找,则平均查找长度为(___________),如果采用二分查找,则平均查找长度为(___________),如果采用哈希查找,哈希表长为15,哈希函数为H(key)=key%13,采用线性探测解决地址冲突,即d i=(H(key)+i)%15,则平均查找长度为(保留1位小数)(___________)。

答案:6,3,1.6(3)在折半查找中,查找终止的条件为(___________)。

答案:找到匹配元素或者low>high?(4)某索引顺序表共有元素275个,平均分成5块。

若先对索引表采用顺序查找,再对块元素进行顺序查找,则等概率情况下,分块查找成功的平均查找长度是(___________)。

答案:31(5)高度为8的平衡二叉树的结点数至少是(___________)。

答案: 54 计算公式:F(n)=F(n-1)+F(n-2)+1(6)对于这个序列{25,43,62,31,48,56},采用的散列函数为H(k)=k%7,则元素48的同义词是(___________)。

答案:62(7)在各种查找方法中,平均查找长度与结点个数无关的查找方法是(___________)。

答案:散列查找(8)一个按元素值排好的顺序表(长度大于2),分别用顺序查找和折半查找与给定值相等的元素,平均比较次数分别是s和b,在查找成功的情况下,s和b的关系是(___________);在查找不成功的情况下,s和b的关系是(___________)。

答案:(1)(2s-1)b=2s([log2(2s-1)]+1)-2[log2(2s-1)]+1+1(2)分两种情况考虑,见解答。

课件c语言:数据结构第七章图

课件c语言:数据结构第七章图

含有 e=n(n-1) 条弧的有向图称作 有 向完全图;
若边或弧的个数 e<nlogn,则称作
稀疏图,
13
1
1
4
2
3
4
2
3
无向完全图 有向完全图
15 A 9
11
B 7 21
E
3
C2 F
权:与图的边或 弧相关的数。
网:带权的图。
有两个图G=(V,{E}) 和
图 G=(V,{E}),
245
无向完全图 5
3
6
1
3
6
图与子图 例

245
1 57
1
3
6
32
46
G2
顶点5的度:3 顶点2的度:4
G1
顶点2入度:1 出度:3 顶点4入度:1 出度:0

路径:1,2,3,5,6,3 路径长度:5
245
简单路径:1,2,3,5
回路:1,2,3,5,6,3,1
1
3
6
简单回路:3,5,6,3
G1
31.12.2020
h
6
7.1 图的定义和术语

7.2 图的存储结构(***)

7.3 图的遍历(***)
内 容
7.4 图的连通性问题 最小生成树(***)
7.5 有向无环图及其应用
拓扑排序 关键路径
7.6 最短路径
图的结构定义:
图是由一个顶点集 V 和一个弧集 R构成的 数据结构。
Graph = (V , R ) 其中,VR={<v,w>| v,w∈V 且 P(v,w)}
C D
E
A F

数据结构(C语言版)_第7章 图及其应用

数据结构(C语言版)_第7章 图及其应用
(1)创建有向图邻接表 (2)创建无向图的邻接表
实现代码详见教材P208
7.4 图的遍历
图的遍历是对具有图状结构的数据线性化的过程。从图中任 一顶点出发,访问输出图中各个顶点,并且使每个顶点仅被访 问一次,这样得到顶点的一个线性序列,这一过程叫做图的遍 历。
图的遍历是个很重要的算法,图的连通性和拓扑排序等算法 都是以图的遍历算法为基础的。
V1
V1
V2
V3
V2
V3
V4
V4
V5
图9.1(a)

图7-2 图的逻辑结构示意图
7.2.2 图的相关术语
1.有向图与无向图 2.完全图 (1)有向完全图 (2)无向完全图 3.顶点的度 4.路径、路径长度、回路、简单路径 5.子图 6.连通、连通图、连通分量 7.边的权和网 8.生成树
2. while(U≠V) { (u,v)=min(wuv;u∈U,v∈V-U); U=U+{v}; T=T+{(u,v)}; }
3.结束
7.5.1 普里姆(prim)算法
【例7-10】采用Prim方法从顶点v1出发构造图7-11中网所对 应的最小生成树。
构造过程如图7-12所示。
16
V1
V1
V2
7.4.2 广度优先遍历
【例7-9】对于图7-10所示的有向图G4,写出从顶点A出发 进行广度优先遍历的过程。
访问过程如下:首先访问起始顶点A,再访问与A相邻的未被 访问过的顶点E、F,再依次访问与E、F相邻未被访问过的顶 点D、C,最后访问与D相邻的未被访问过的顶点B。由此得到 的搜索序列AEFDCB。此时所有顶点均已访问过, 遍历过程结束。
【例7-1】有向图G1的逻辑结构为:G1=(V1,E1) V1={v1,v2,v3,v4},E1={<v1,v2>,<v2,v3>,<v2,v4>,<v3,v4>,<v4,v1>,<v4,v3>}

数据结构(C语言版)习题解答(DOC)

数据结构(C语言版)习题解答(DOC)

1.3设n是正整数。

试写出下列程序段中用记号“△”标注的语句的频度:(2) i=1; k=0;do {△k+=10*i;i++;}while(i<=n-1)当n=1时,执行1;当n>=2时,执行n-1次;(3)i=1; k=0;do {△k+ = 10*i; i++;}while(i==n);当n=2时,执行2次;当n!=2时,执行1次;(4) i=1; j=0;while(i+j≤n) {△if(i<j) i++; else j++;}执行n次;(5) x=n; y=0; //n是不小于1的常数while(x>=(y+1)*(y+1)){△y++;}执行向下取整)(6) x=91; y=100;while ( y>0 )△if(x>100) { x-=10; y--; }else x++ ;}If语句执行100次(7) for( i=0; i<n; i++)for( j=i; j<n; j++)for( k=j; k<n; k++)△x+=2;过程:n1n1i0j in(n1)(n2) (n j)6--==++ -=∑∑第二章2.3 已知顺序表La中数据元素按非递减有序排列。

试写一个算法,将元素x插到La的合适位置上,保持该表的有序性。

思路:先判断线性表的存储空间是否满,若满返回Error;否则从后向前先移动数据,找到合适的位置插入。

Status Insert_SqList(SqList &La,int x)//把x 插入递增有序表La 中{if(La.length==La.listsize) return ERROR;for(i=La.length-1;La.elem[i]>x&&i>=0;i--)La.elem[i+1]=La.elem[i];La.elem[i+1]=x;La.length++;return OK;}//Insert_SqList2.5 试写一个算法,实现顺序表的就地逆置,即在原表的存储空间将线性表(a1,a2, ..., an-1,an)逆置为(an,an-1, ..., a2,a1)//思路就是两个指示变量i,j同时分别从顺序表的开始和结尾处相向改变void reverse(SqList &A)//顺序表的就地逆置{ElemType p;for(i=1,j=A.length;i<j;i++,j--){//A.elem[i]<->A.elem[j];p=A.elem[i];A.elem[i[=A.elem[j];A.elem[j]=p;}}//reverse2.7 已知线性表L采用顺序存储结构存放,对两种不同情况分别写出算法,删除L中多余的元素,使得L中没有重复元素:(1)L中数据元素无序排列;(2)L中数据元素非递减有序排列。

数据结构第七章考试题库(含答案)

数据结构第七章考试题库(含答案)

第七章图一、选择题1.图中有关路径的定义是〔〕.[北方交通大学 2001 一、24 〔2分〕] A.由顶点和相邻顶点序偶构成的边所形成的序列 B.由不同顶点所形成的序列C.由不同边所形成的序列 D.上述定义都不是2.设无向图的顶点个数为n,则该图最多有〔〕条边.A.n-1 B.n<n-1>/2 C. n<n+1>/2 D.0 E.n2[清华大学 1998 一、5 〔2分〕][西安电子科技大 1998 一、6 〔2分〕][航空航天大学 1999 一、7 〔2分〕]3.一个n个顶点的连通无向图,其边的个数至少为〔〕.[##大学 1999 四、4 <4分>] A.n-1 B.n C.n+1 D.nlogn;4.要连通具有n个顶点的有向图,至少需要〔〕条边.[航空航天大学 2000 一、6<2分〕] A.n-l B.n C.n+l D.2n5.n个结点的完全有向图含有边的数目〔〕.[中山大学 1998 二、9 〔2分〕] A.n*n B.n〔n+1〕 C.n/2 D.n*〔n-l〕6.一个有n个结点的图,最少有〔〕个连通分量,最多有〔〕个连通分量.A.0 B.1 C.n-1 D.n[邮电大学 2000 二、5 〔20/8分〕]7.在一个无向图中,所有顶点的度数之和等于所有边数〔〕倍,在一个有向图中,所有顶点的入度之和等于所有顶点出度之和的〔〕倍.[哈尔滨工业大学 2001 二、3 〔2分〕] A.1/2 B.2 C.1 D.48.用有向无环图描述表达式<A+B>*〔〔A+B〕/A〕,至少需要顶点的数目为< >.[中山大学1999一、14]A.5 B.6 C.8 D.99.用DFS遍历一个无环有向图,并在DFS算法退栈返回时打印相应的顶点,则输出的顶点序列是< >.A.逆拓扑有序 B.拓扑有序 C.无序的 [中科院软件所1998]10.下面结构中最适于表示稀疏无向图的是〔〕,适于表示稀疏有向图的是〔〕.A.邻接矩阵 B.逆邻接表 C.邻接多重表 D.十字链表 E.邻接表[工业大学 2001 一、3 <2分>]11.下列哪一种图的邻接矩阵是对称矩阵?〔〕[北方交通大学 2001 一、11 〔2分〕] A.有向图 B.无向图 C.AOV网 D.AOE网12.从邻接阵矩可以看出,该图共有〔①〕个顶点;如果是有向图该图共有〔②〕条弧;如果是无向图,则共有〔③〕条边.[中科院软件所 1999 六、2〔3分〕]①.A.9 B.3 C.6 D.1 E.以上答案均不正确②.A.5 B.4 C.3 D.2 E.以上答案均不正确③.A.5 B.4 C.3 D.2 E.以上答案均不正确13.当一个有N个顶点的图用邻接矩阵A表示时,顶点Vi的度是〔〕.[南京理工大学1998一、4<2分〕]A. B. C. D.+14.用相邻矩阵A表示图,判定任意两个顶点Vi和Vj之间是否有长度为m 的路径相连,则只要检查〔〕的第i行第j列的元素是否为零即可.[武汉大学 2000 二、7] A.mA B.A C.A m D.Am-115. 下列说法不正确的是〔〕.[青岛大学 2002 二、9 〔2分〕]A.图的遍历是从给定的源点出发每一个顶点仅被访问一次 C.图的深度遍历不适用于有向图B.遍历的基本算法有两种:深度遍历和广度遍历 D.图的深度遍历是一个递归过程16.无向图G=<V,E>,其中:V={a,b,c,d,e,f},E={<a,b>,<a,e>,<a,c>,<b,e>,<c,f>,<f,d>,<e,d>},对该图进行深度优先遍历,得到的顶点序列正确的是〔〕.[南京理工大学 2001 一、14 〔1.5分〕] A.a,b,e,c,d,f B.a,c,f,e,b,d C.a,e,b,c,f,d D.a,e,d,f,c,b 17. 设图如右所示,在下面的5个序列中,符合深度优先遍历的序列有多少?〔〕[南京理工大学 2000 一、20 〔1.5分〕]a eb d fc a c fde b a e df c b a e f d c b a e f d b cA.5个 B.4个 C.3个 D.2个第17题图第18题图18.下图中给出由7个顶点组成的无向图.从顶点1出发,对它进行深度优先遍历得到的序列是< ① >,而进行广度优先遍历得到的顶点序列是〔②〕.[中科院软件所 1999 六、2-〔1〕〔2分〕]①.A.1354267 B.1347652 C.1534276 D.1247653 E.以上答案均不正确②.A.1534267 B.1726453 C.l354276 D.1247653 E.以上答案均不正确19.下面哪一方法可以判断出一个有向图是否有环〔回路〕:[东北大学 2000 4、2〔4分〕] A.深度优先遍历 B. 拓扑排序 C. 求最短路径 D. 求关键路径20. 在图采用邻接表存储时,求最小生成树的 Prim 算法的时间复杂度为< >.A. O<n>B. O<n+e>C. O<n2>D. O<n3>[合肥工业大学 2001 一、2 〔2分〕]21. 下面是求连通网的最小生成树的prim算法:集合VT,ET分别放顶点和边,初始为〔 1 〕,下面步骤重复n-1次: a:〔 2 〕;b:〔 3 〕;最后:〔 4 〕.[南京理工大学 1997 一、11_14 〔8分〕]〔1〕.A.VT,ET为空 B.VT为所有顶点,ET为空C.VT为网中任意一点,ET为空 D.VT为空,ET为网中所有边〔2〕.A. 选i属于VT,j不属于VT,且〔i,j〕上的权最小B.选i属于VT,j不属于VT,且〔i,j〕上的权最大C.选i不属于VT,j不属于VT,且〔i,j〕上的权最小D.选i不属于VT,j不属于VT,且〔i,j〕上的权最大〔3〕.A.顶点i加入VT,〔i,j〕加入ET B. 顶点j加入VT,〔i,j〕加入ET C. 顶点j加入VT,〔i,j〕从ET中删去 D.顶点i,j加入VT,〔i,j〕加入ET〔4〕.A.ET 中为最小生成树 B.不在ET中的边构成最小生成树 C.ET中有n-1条边时为生成树,否则无解 D.ET中无回路时,为生成树,否则无解22. <1>. 求从指定源点到其余各顶点的迪杰斯特拉〔Dijkstra〕最短路径算法中弧上权不能为负的原因是在实际应用中无意义;<2>. 利用Dijkstra求每一对不同顶点之间的最短路径的算法时间是O<n3> ;〔图用邻接矩阵表示〕<3>. Floyd求每对不同顶点对的算法中允许弧上的权为负,但不能有权和为负的回路.上面不正确的是〔〕.[南京理工大学 2000 一、21 〔1.5分〕]A.<1>,<2>,<3> B.<1> C.<1>,<3> D.<2>,<3>23.当各边上的权值< >时,BFS算法可用来解决单源最短路径问题.[中科院计算所2000一、3 <2分〕]A.均相等 B.均互不相等 C.不一定相等24. 求解最短路径的Floyd算法的时间复杂度为< >.[合肥工业大学 1999 一、2 〔2分〕]A.O〔n〕 B. O〔n+c〕 C. O〔n*n〕 D. O〔n*n*n〕25.已知有向图G=<V,E>,其中V={V1,V2,V3,V4,V5,V6,V7},E={<V1,V2>,<V1,V3>,<V1,V4>,<V2,V5>,<V3,V5>,<V3,V6>,<V4,V6>,<V5,V7>,<V6,V7>},G的拓扑序列是〔〕.A.V1,V3,V4,V6,V2,V5,V7 B.V1,V3,V2,V6,V4,V5,V7C.V1,V3,V4,V5,V2,V6,V7 D.V1,V2,V5,V3,V4,V6,V7[航空航天大学 2000 一、7 〔2分〕]26.若一个有向图的邻接距阵中,主对角线以下的元素均为零,则该图的拓扑有序序列〔〕.A.存在 B.不存在[中科院计算所1998 二、6 <2分〕][中国科技大学 1998二、6〔2分〕]27.一个有向无环图的拓扑排序序列〔〕是唯一的.[邮电大学 2001 一、3 〔2分〕] A.一定 B.不一定28. 在有向图G的拓扑序列中,若顶点Vi在顶点Vj之前,则下列情形不可能出现的是〔〕.A.G中有弧<Vi,Vj> B.G中有一条从Vi到Vj的路径C.G中没有弧<Vi,Vj> D.G中有一条从Vj到Vi的路径[南京理工大学 2000 一、9 〔1.5分〕]29. 在用邻接表表示图时,拓扑排序算法时间复杂度为< >.A. O<n>B. O<n+e>C. O<n*n>D. O<n*n*n>[合肥工业大学 2000 一、2 〔2分〕][南京理工大学 2001 一、9 〔1.5分〕][青岛大学 2002 二、3 〔2分〕]30. 关键路径是事件结点网络中〔〕.[西安电子科技大学 2001应用一、4 〔2分〕]A.从源点到汇点的最长路径 B.从源点到汇点的最短路径C.最长回路 D.最短回路31. 下面关于求关键路径的说法不正确的是〔〕.[南京理工大学 1998 一、12 〔2分〕] A.求关键路径是以拓扑排序为基础的B.一个事件的最早开始时间同以该事件为尾的弧的活动最早开始时间相同C.一个事件的最迟开始时间为以该事件为尾的弧的活动最迟开始时间与该活动的持续时间的差D.关键活动一定位于关键路径上32.下列关于AOE网的叙述中,不正确的是〔〕.A.关键活动不按期完成就会影响整个工程的完成时间B.任何一个关键活动提前完成,那么整个工程将会提前完成C.所有的关键活动提前完成,那么整个工程将会提前完成D.某些关键活动提前完成,那么整个工程将会提前完成[北方交通大学 1999 一、7 〔3分〕][工业大学 1999 一、1 <2分>]二、判断题1.树中的结点和图中的顶点就是指数据结构中的数据元素.〔〕[青岛大学 2001 四、1 〔1分〕]2.在n个结点的无向图中,若边数大于n-1,则该图必是连通图.〔〕[中科院软件所1997一、4<1分〕]3.对有n个顶点的无向图,其边数e与各顶点度数间满足下列等式e=.〔〕[南京航空航天大学 1996 六、4 〔1分〕]4. 有e条边的无向图,在邻接表中有e个结点.〔〕[南京理工大学 1998 二、5 〔2分〕]5. 有向图中顶点V的度等于其邻接矩阵中第V行中的1的个数.〔〕[合肥工业大学2001二、7<1分〕]6.强连通图的各顶点间均可达.〔〕[邮电大学 2000 一、3 〔1分〕]7.强连通分量是无向图的极大强连通子图.〔〕[邮电大学 2002 一、7 〔1分〕]8.连通分量指的是有向图中的极大连通子图.〔〕[燕山大学 1998 二、4 〔2分〕] 9.邻接多重表是无向图和有向图的链式存储结构.〔〕[南京航空航天大学 1995 五、5 〔1分〕]10. 十字链表是无向图的一种存储结构.〔〕[青岛大学 2001 四、7 〔1分〕]11. 无向图的邻接矩阵可用一维数组存储.〔〕[青岛大学 2000 四、5 〔1分〕]12.用邻接矩阵法存储一个图所需的存储单元数目与图的边数有关.〔〕[东南大学 2001 一、4 〔1分〕] [中山大学 1994 一、3 〔2分〕]13.有n个顶点的无向图, 采用邻接矩阵表示, 图中的边数等于邻接矩阵中非零元素之和的一半.〔〕[邮电大学 1998 一、5 〔2分〕]14. 有向图的邻接矩阵是对称的.〔〕[青岛大学 2001 四、6 〔1分〕]15.无向图的邻接矩阵一定是对称矩阵,有向图的邻接矩阵一定是非对称矩阵.〔〕[东南大学 2001 一、3 〔1分〕][哈尔滨工业大学 1999 三、4]16. 邻接矩阵适用于有向图和无向图的存储,但不能存储带权的有向图和无向图,而只能使用邻接表存储形式来存储它.〔〕[##海运学院 1995 一、9〔1分〕 1997 一、8〔1分〕 1998一、9〔1分〕]17. 用邻接矩阵存储一个图时,在不考虑压缩存储的情况下,所占用的存储空间大小与图中结点个数有关,而与图的边数无关.〔〕[##海运学院 1996 一、8 〔1分〕 1999 一、9 〔1分〕]18.一个有向图的邻接表和逆邻接表中结点的个数可能不等.〔〕[##交通大学 1998 一、12]19.需要借助于一个队列来实现DFS算法.〔〕[南京航空航天大学 1996 六、8 〔1分〕]20. 广度遍历生成树描述了从起点到各顶点的最短路径.〔〕[合肥工业大学 2001 二、8 〔1分〕]21.任何无向图都存在生成树.〔〕[邮电大学 2000 一、1 〔1分〕]22. 不同的求最小生成树的方法最后得到的生成树是相同的.〔〕[南京理工大学 1998二、3 〔2分〕]23.带权无向图的最小生成树必是唯一的.〔〕[南京航空航天大学 1996 六、7 〔1分〕] 24. 最小代价生成树是唯一的.〔〕[##大学 2001 一、5 〔1分〕]25.一个网〔带权图〕都有唯一的最小生成树.〔〕[大连海事大学 2001 一、14 〔1分〕]26.连通图上各边权值均不相同,则该图的最小生成树是唯一的.〔〕[哈尔滨工业大学1999 三、3]27.带权的连通无向图的最小〔代价〕生成树〔支撑树〕是唯一的.〔〕[中山大学 1994一、10〔2分〕]28. 最小生成树的KRUSKAL算法是一种贪心法〔GREEDY〕.〔〕[华南理工大学 2002 一、6〔1分〕]29. 求最小生成树的普里姆<Prim>算法中边上的权可正可负.〔〕[南京理工大学 1998二、2 〔2分〕]30.带权的连通无向图的最小代价生成树是唯一的.〔〕[东南大学 2001 一、5〔1分〕] 31. 最小生成树问题是构造连通网的最小代价生成树.〔〕[青岛大学 2001 四、10〔1分〕]32. 在图G的最小生成树G1中,可能会有某条边的权值超过未选边的权值.〔〕[合肥工业大学 2000 二、7〔1分〕]33. 在用Floyd 算法求解各顶点的最短路径时,每个表示两点间路径的path k-1[I,J]一定是path k [I,J]的子集<k=1,2,3,…,n>.〔〕[合肥工业大学 2000 二、6 〔1分〕]34.拓扑排序算法把一个无向图中的顶点排成一个有序序列.〔〕[南京航空航天大学1995五、8〔1分〕]35.拓扑排序算法仅能适用于有向无环图.〔〕[南京航空航天大学 1997 一、7 〔1分〕] 36. 无环有向图才能进行拓扑排序.〔〕[青岛大学 2002 一、7 〔1分〕2001 一、8 〔1分〕]37. 有环图也能进行拓扑排序.〔〕[青岛大学 2000 四、6 〔1分〕]38.拓扑排序的有向图中,最多存在一条环路.〔〕[大连海事大学 2001 一、6〔1分〕] 39.任何有向图的结点都可以排成拓扑排序,而且拓扑序列不唯一.〔〕[##交通大学1998一、13]40. 既使有向无环图的拓扑序列唯一,也不能唯一确定该图.〔〕[合肥工业大学 2001二、6〔1分〕]41.若一个有向图的邻接矩阵对角线以下元素均为零,则该图的拓扑有序序列必定存在.〔〕[中科院软件所 1997 一、5 〔1分〕]42.AOV网的含义是以边表示活动的网.〔〕[南京航空航天大学 1995 五、7 〔1分〕] 43.对一个AOV网,从源点到终点的路径最长的路径称作关键路径.[南京航空航天大学1995五、9<1分〕]44. 关键路径是AOE网中从源点到终点的最长路径.〔〕[青岛大学 2000 四、10〔1分〕]45. AOE网一定是有向无环图.〔〕[青岛大学 2001 一、9 〔1分〕]46. 在表示某工程的AOE网中,加速其关键路径上的任意关键活动均可缩短整个工程的完成时间.〔〕[长沙铁道学院 1997 一、2 <1分>]47.在AOE图中,关键路径上某个活动的时间缩短,整个工程的时间也就必定缩短.〔〕[大连海事大学 2001 一、15 〔1分〕]48.在AOE图中,关键路径上活动的时间延长多少,整个工程的时间也就随之延长多少.〔〕[大连海事大学 2001 一、16 〔1分〕]49.当改变网上某一关键路径上任一关键活动后,必将产生不同的关键路径.[##交通大学1998 一、14]三、填空题1.判断一个无向图是一棵树的条件是______.2.有向图G的强连通分量是指______.[科技大学 1997 一、7]3.一个连通图的______是一个极小连通子图.[重庆大学 2000 一、1]4.具有10个顶点的无向图,边的总数最多为______.[华中理工大学 2000 一、7 〔1分〕] 5.若用n表示图中顶点数目,则有_______条边的无向图成为完全图.[燕山大学1998 一、6〔1分〕]6. 设无向图 G 有n 个顶点和e 条边,每个顶点Vi 的度为di〔1<=i<=n〉,则e=______[福州大学 1998 二、2 <2分>]7.G是一个非连通无向图,共有28条边,则该图至少有______个顶点.[西安电子科技大 2001软件一、8 〔2分〕]8. 在有n个顶点的有向图中,若要使任意两点间可以互相到达,则至少需要______条弧.[合肥工业大学 2000 三、8 〔2分〕]9.在有n个顶点的有向图中,每个顶点的度最大可达______.[武汉大学 2000 一、3] 10.设G为具有N个顶点的无向连通图,则G中至少有______条边.[长沙铁道学院 1997 二、2 <2分>]11.n个顶点的连通无向图,其边的条数至少为______.[哈尔滨工业大学 2000 二、2〔1分〕] 12.如果含n个顶点的图形形成一个环,则它有______棵生成树.[西安电子科技大学 2001软件一、2 〔2分〕]13.N个顶点的连通图的生成树含有______条边.[中山大学 1998 一、9 〔1分〕]14.构造n个结点的强连通图,至少有______条弧.[轻工业学院 2000 一、4〔2分〕] 15.有N个顶点的有向图,至少需要量______条弧才能保证是连通的.[西南交通大学 2000 一、3]16.右图中的强连通分量的个数为〔〕个.[邮电大学 2001 二、5 〔2分〕]17.N个顶点的连通图用邻接矩阵表示时,该矩阵至少有_______个非零元素.[中科院计算所1998 一、6〔1分〕][中国科技大学1998 一、6〔15/6分〕]18.在图G的邻接表表示中,每个顶点邻接表中所含的结点数,对于无向图来说等于该顶点的______;对于有向图来说等于该顶点的______.[燕山大学 2001 二、5 〔3分〕]19. 在有向图的邻接矩阵表示中,计算第I个顶点入度的方法是______.[青岛大学 2002三、7 〔2分〕]20. 对于一个具有n个顶点e条边的无向图的邻接表的表示,则表头向量大小为______,邻接表的边结点个数为______.[青岛大学 2002 三、8 〔2分〕]21. 遍历图的过程实质上是______,breath-first search遍历图的时间复杂度______;depth-first search遍历图的时间复杂度______,两者不同之处在于______,反映在数据结构上的差别是______.[厦门大学1999一、3]22. 已知一无向图G=〔V,E〕,其中V={a,b,c,d,e } E={<a,b>,<a,d>,<a,c>,<d,c>,<b,e>}现用某一种图遍历方法从顶点a开始遍历图,得到的序列为abecd,则采用的是______遍历方法.[南京理工大学 1996 二、2 〔2分〕]23. 一无向图G〔V,E〕,其中V〔G〕={1,2,3,4,5,6,7},E〔G〕={〔1,2〕,<1,3〕,〔2,4〕,〔2,5〕,〔3,6〕,〔3,7〕,〔6,7〕〔5,1〕},对该图从顶点3开始进行遍历,去掉遍历中未走过的边,得一生成树G’<V,E’〕,V〔G’〕=V〔G〕,E〔G’〕={〔1,3〕,〔3,6〕,〔7,3〕,〔1,2〕,〔1,5〕,〔2,4〕},则采用的遍历方法是______.[南京理工大学 1997 三、6 〔1分〕]24. 为了实现图的广度优先搜索,除了一个标志数组标志已访问的图的结点外,还需______存放被访问的结点以实现遍历.[南京理工大学 1999 二、9 〔2分〕]25. 按下图所示,画出它的广度优先生成树______和深度优先生成树______.[西安电子科技大学 1998 三、6 〔5分〕]26.构造连通网最小生成树的两个典型算法是______.[科技大学 1998 一、5]27.求图的最小生成树有两种算法,______算法适合于求稀疏图的最小生成树.[南京理工大学 2001 二、6〔2分〕]28. Prim〔普里姆〕算法适用于求______的网的最小生成树;kruskal〔克鲁斯卡尔〕算法适用于求______的网的最小生成树.[厦门大学1999 一、4]29.克鲁斯卡尔算法的时间复杂度为______,它对______图较为适合.[中科院计算所 1999 二、3 〔2分〕]30.对于含N个顶点E条边的无向连通图,利用Prim算法生成最小代价生成树其时间复杂度为______,利用Kruskal算法生成最小代价生成树其时间复杂度为______.[长沙铁道学院1998 二、2 <4分>]31.下面描述的是一种构造最小生成树算法的基本思想.设要处理的无向图包括n个节点V1,V2,...,Vn,用相邻矩阵A表示,边的权全是正数.请在下列划线处填上正确叙述. 〔1〕.若〔Vi,Vj〕是边,则A〔i,j〕的值等于______,若〔Vi,Vj〕不是边,则A〔i,j〕的值是一个比任何边的权______, 矩阵的对角线元素全为0.〔2〕.构造最小生成树过程中,若节点Vi已包括进生成树,就把相邻矩阵的对角线元素A 〔i,i〕置成______,若〔Vi,Vj〕已包括进生成树,就把矩阵元素A〔i,j〕置成______. 〔3〕.算法结束时,相邻矩阵中_____的元素指出最小生成树的_____.[##工业大学1998二、4<6分〕]32. 有一个用于n个顶点连通带权无向图的算法描述如下:〔1〕.设集合T1与T2,初始均为空;〔2〕.在连通图上任选一点加入T1;〔3〕.以下步骤重复n-1次:a.在i属于T1,j不属于T1的边中选最小权的边;b.该边加入T2.上述算法完成后,T2中共有______条边,该算法称______算法,T2中的边构成图的______.[南京理工大学 1999 二、7 〔4分〕]33. 有向图G可拓扑排序的判别条件是______.[长沙铁道学院 1998 二、9<2分>]34. Dijkstra最短路径算法从源点到其余各顶点的最短路径的路径长度按______次序依次产生,该算法弧上的权出现______情况时,不能正确产生最短路径.[南京理工大学 1999 二、8〔4分〕]35. 求从某源点到其余各顶点的Dijkstra算法在图的顶点数为10,用邻接矩阵表示图时计算时间约为10ms,则在图的顶点数为40,计算时间约为______ms.[南京理工大学 2000 二、3 〔1.5分〕]36.求最短路径的Dijkstra算法的时间复杂度为______.[哈尔滨工业大学 2001 一、5 〔2分〕]37.有向图G=<V,E>,其中 V<G>={0,1,2,3,4,5},用<a,b,d>三元组表示弧<a,b>与弧上的权d.E<G>为{<0,5,100>,<0,2,10><1,2,5><0,4,30><4,5,60><3,5,10><2,3,50><4,3,20>},则从源点0到顶点3的最短路径长度是______,经过的中间顶点是______.[南京理工大学 1998三、6 〔4分〕]38. 上面的图去掉有向弧看成无向图则对应的最小生成树的边权之和为______.[南京理工大学 1998 三、7〔4分〕]39.设有向图有n个顶点和e条边,进行拓扑排序时,总的计算时间为______.[西安电子科技大学 1999软件一、7 〔2分〕][武汉大学 2000 一、7] 40.AOV网中,结点表示______,边表示______.AOE网中,结点表示______,边表示______.[理工大学 2001 七、3 〔2分〕]41.在AOE网中,从源点到汇点路径上各活动时间总和最长的路径称为______.[重庆大学2000一、2]42.在 AOV网中,存在环意味着______,这是______的;对程序的数据流图来说,它表明存在______.[厦门大学1999一、2]43. 当一个AOV网用邻接表表示时,可按下列方法进行拓扑排序.〔1〕.查邻接表中入度为______的顶点,并进栈;〔2〕.若栈不空,则①输出栈顶元素Vj,并退栈;②查Vj的直接后继Vk,对Vk入度处理,处理方法是______;〔3〕.若栈空时,输出顶点数小于图的顶点数,说明有______,否则拓扑排序完成.[南京理工大学 1996 二、3 〔6分〕]44.已知图的邻接表结构为:CONST vtxnum={图的顶点数}TYPE vtxptr=1..vtxnum;arcptr=^arode;arode=RECORD adjvex:vtxptr; nextarc:arcptr END;vexnode=RECORD vexdata:{和顶点相关的信息};firstarc:arcptr END;adjlist=ARRAY[vtxptr]OF vexnode;本算法是实现图的深度优先遍历的非递归算法.其中,使用一个顺序栈stack.栈顶指针为top.visited为标志数组.PROC dfs<g:adjlist;v0:vtxptr>;top=0; write<v0>; visited[v0]:=ture; p:=g[v0].firstarc;WHILE <top<>0>OR<p<>NIL>DO[WHILE<1>_______DO[v:=p^.adjvex;IF<2>_______ THEN p:=p^.nextarcELSE [write<v>; visited[v]:=true; top:=top+1; stack[top]:=p;<3>_______] ]IF top<>0 THEN[p:=stack[top]; top:=top-1; <4>_______]]ENDP.同济大学 2000 二、2 <10分>]45.下面的算法完成图的深度优先遍历,请填空.PROGRAM graph_traver;CONST nl=max_node_number;TYPE vtxptr=1..nl; vtxptr0=0..nl;arcptr=^arode;arode=RECORD vexi ,vexj: vtxptr; nexti, nextj: arcptr; END;;vexnode=RECORD vexdata: char; firstin,firstout: arcptr; END;graph=ARRAY[vtxptr0] OF vexnode ;VAR ga:graph; n: integer;visited: ARRAY[vtxptr0] OF boolean ;FUNC order <g: graph; v: char>: vtxptr;<1>_______; i:=n;WHILE g[i].vexdata<>v DO i:=i-1;order:=i;ENDF;PROC creat<var g: graph>;readln<n,e>;FOR i:= 1 TO n DO [readln<g[i].vexdata>; g[i].firstin :=NIL ;g[i].firstout:=NIL;]FOR k:= 1 TO e DO [readln <vt,vh>;i:=order <g,vt>; j:=order <g,vh>; new <p>; p^.vexi:=i ; p^.vexj:=j p^.nextj:= ____<2>____; ___<3>____ :=p;p^.nexti:=: ____<4>____; ___<5>____ :=p;]ENDP;FUNC firstadj<g:graph; v:char>: vtxptr0;i:=order<g,v>; p:=g[i].firstout;IF p<>NIL THEN firstadj:=<6>_______ELSE firstadj:=0;ENDF;FUNC nextadj<g:graph; v:char; w:char>: vtxptr0;i:=order<g,v>; j:=order<g,w>; p:=<7>_______;WHILE<p<>NIL > AND <p^.vexj<>j> DO<8>______;IF <9>______AND<10>______THEN nextadj:=p^.nexti^.vexj ELSE nextadj:=0;ENDF;PROC dfs<g:graph; v0:char>;write<v0:2>; visited[order<g,v0>]:=true; w:=<11>_______;WHILE w<>0 DO[IF <12>______ THEN dfs<g,g[w].vexdata>;w:=<13>_______;]ENDP;PROC traver<g:graph>;FOR i:=1 TO n DO visited[i]:=false;FOR i:=1 TO n DO IF NOT visited[i] THEN dfs<g,g[i].vexdata>;ENDP;BEGINcreat<ga>; traver<ga>;END. [北方交通大学 1999 三〔20分〕]46.n个顶点的有向图用邻接矩阵array表示,下面是其拓扑排序算法,试补充完整.注:〔1〕.图的顶点号从 0开始计;〔2〕.indegree 是有n个分量的一维数组,放顶点的入度;〔3〕.函数 crein 用于算顶点入度;〔4〕.有三个函数push<data>,pop< >,check< >其含义为数据 data进栈,退栈和测试栈是否空〔不空返回1,否则0〕.crein< array ,indegree,n>{ for <i=0;i<n;i++> indegree[i]= <<1>_______>for<i=0,i<n;i++>for <j=0;j<n; j++> indegree[i]+=array[<2>_______][<3>_______];}topsort <array,indegree,n>{ count= <<4>_______>for <i=0;i<n;i++> if <<5>_______> push<i>while <check< >>{ vex=pop< >; printf<vex>; count++;for <i=0;i<n;i++>{ k=array<6>_______if <<7>_______ > { indegree[i]--; if <<8>_______ > push<i>; }}}if< count<n> printf<""图有回路〞>;} [南京理工大学 2000 三、4 〔6分〕]47.假设给定的有向图是用邻接表表示,作为输入的是图中顶点个数n和边的个数m, 以与图的m条边.在下面的程序中,我们用readdata程序过程输入图的信息,并建立该图的邻接表;利用topol程序过程获得图中顶点的一个拓扑序列.PROGRAM topol_order<input , output> ;CONST maxn=20 ;TYPE nodeptr=^nltype ;nltype=RECORD num : integer ; link : nodeptr END ;chtype=RECORD count : integer ; head : nodeptr END ;VAR ch : ARRAY [1 .. maxn] OF chtype ; m , n , top : integer ;PROCEDURE readdata ;VAR i , j , u , v : integer ; p : nodeptr ;BEGINwrite <′input vertex number n= ′>; readln <n> ;write <′input edge number m= ′>; readln<m> ;FOR i:=1 TO n DO BEGIN ch[i].count:= 0; ch[i].head:=NIL END;writeln<′input edges :′>;FOR j:= 1 TO m DOBEGIN write< j :3 , ′: ′> ; readln< u , v > ; new< p > ;ch[v].count:=ch[v].count+1; p^.num:=v; <1> ___ ; <2> __; ENDEND ;PROCEDURE topol ;VAR i, j, k: integer; t: nodeptr ;BEGINtop:= 0 ;FOR i := 1 TO n DOIF ch[i].count=0 THEN BEGIN ch[i].count := top ;top := i END;i:= 0 ;WHILE <3> ___ DOBEGIN <4> __; <5> __ ; write<j : 5> ;i:= i + 1 ;t:=ch[j].head ;WHILE t<>NIL DOBEGIN k := t^.num ; ch[k].count:=ch[k].count–1 ;IF ch[k].count=0 THEN BEGIN ch[k].count:=top; top:=k END;<6> ______ ; ENDEND ; writeln;IF i<n THEN writeln <′the network has a cycle!′>END;BEGINreaddata ; writeln <′output topol order : ′>; topolEND. [复旦大学 1995 三〔18分〕]48.如下为拓扑排序的C程序, Array〔1〕.列出对右图执行该程序后的输出结果.〔2〕.在程序空白处填上适当语句.void topsort<hdnodes graph [],int n>{int i,j,k,top; node_pointer ptr ;top=-1;for <i=0; i<n; i++>if <!graph[i].count>{graph[i].count=top; top=i; }for <i=0; i<n; i++>if<1>____ {fprintf<stderr, "\ngraph has a cycle \n">; exit<1>; } else {j=top;<2>_____; printf< "v%d, " ,j> ;for <ptr=graph[j].link; ptr; ptr=ptr->link>{k=ptr->vertex; graph[k].count--;if<<3>_____> {graph[k].count=top; top=k; } } }} [##大学 2000 六<15分>]四、应用题1.〔1〕.如果G1是一个具有n个顶点的连通无向图,那么G1最多有多少条边?G1最少有多少条边?〔2〕.如果G2是一个具有n个顶点的强连通有向图,那么G2最多有多少条边?G2最少有多少条边?〔3〕.如果G3是一个具有n个顶点的弱连通有向图,那么G3最多有多少条边?G3最少有多少条边?[复旦大学 1997 一〔9分〕]2.n个顶点的无向连通图最少有多少条边?n个顶点的有向连通图最少有多少条边?[##大学 2000 一、3 <4分>]3.一个二部图的邻接矩阵A是一个什么类型的矩阵?[科技大学 1999 一、8〔2分〕] 4.证明:具有n个顶点和多于n-1条边的无向连通图G一定不是树.[东南大学 1993 四〔10分〕]5.证明对有向图的顶点适当的编号,可使其邻接矩阵为下三角形且主对角线为全0的充要条件是该图为无环图.[邮电大学 2002 三〔10分〕]6.用邻接矩阵表示图时,矩阵元素的个数与顶点个数是否相关?与边的条数是否有关?[西安电子科技大学 2000计应用一、6〔5分〕]7.请回答下列关于图<Graph>的一些问题:〔每题4分〕〔1〕.有n个顶点的有向强连通图最多有多少条边?最少有多少条边?〔2〕.表示有1000个顶点、l000条边的有向图的邻接矩阵有多少个矩阵元素?是否稀疏矩阵?〔3〕.对于一个有向图,不用拓扑排序,如何判断图中是否存在环?[清华大学2000一<12分〕]8.解答问题.设有数据逻辑结构为:B = <K, R>, K = {k1, k2, …, k9}R={<k1, k3>, <k1, k8>, <k2, k3>,<k2, k4>, <k2, k5>, <k3, k9>,<k5, k6>, <k8, k9>, <k9, k7>, <k4, k7>, <k4, k6>}〔1〕.画出这个逻辑结构的图示.〔3分〕〔2〕.相对于关系r, 指出所有的开始接点和终端结点.〔2分〕〔3〕.分别对关系r中的开始结点,举出一个拓扑序列的例子.〔4分〕〔4〕.分别画出该逻辑结构的正向邻接表和逆向邻接表.〔6分〕[##工业大学 1999 三〔15分〕]9.有向图的邻接表存储如下:〔1〕.画出其邻接矩阵存储;〔2〕.写出图的所有强连通分量;〔3〕.写出顶点a到顶点i的全部简单路径.[东北大学 1997 一、5 <5分>]10.试用下列三种表示法画出网G 的存储结构,并评述这三种表示法的优、缺点:〔1〕.邻接矩阵表示法; 〔2〕.邻接表表示法; 〔3〕.其它表示法.[华中理工大学2000 三〔12分〕]11.已知无向图G,V〔G〕={1,2,3,4},E〔G〕={〔1,2〕,〔1,3〕,〔2,3〕,〔2,4〕,〔3,4〕}试画出G的邻接多表,并说明,若已知点I,如何根据邻接多表找到与I相邻的点j?[东南大学 1994 一、2 〔8分〕 1998 一、6〔8分〕]12.如何对有向图中的顶点号重新安排可使得该图的邻接矩阵中所有的1都集中到对角线以上?[清华大学 1999 一、5 〔2分〕]13.假定G=〔V,E〕是有向图,V={1,2,...,N},N>=1,G以邻接矩阵方式存储,G的邻接矩阵为A,即A是一个二维数组,如果i到j有边,则A[i,j]=1,否则A[i,j]=0,请给出一个算法,该算法能判断G是否是非循环图〔即G中是否存在回路〕,要求算法的时间复杂性为O<n*n>.[##大学 1998 三<16分>]。

数据结构(c语言版)课后习题答案完整版资料

数据结构(c语言版)课后习题答案完整版资料

.第1章绪论5.选择题: CCBDCA6.试分析下面各程序段的时间复杂度。

(1) O( 1)(2) O( m*n )(3) O( n2)(4) O( log 3 n)( 5)因为 x++ 共执行了n-1+n-2+ ⋯⋯+ 1= n(n-1)/2 ,所以执行时间为O( n2)( 6) O( n )第2章线性表1.选择题babadbcabdcddac2.算法设计题( 6)设计一个算法,通过一趟遍历在单链表中确定值最大的结点。

ElemType Max (LinkList L ){if(L->next==NULL) return NULL;pmax=L->next; // 假定第一个结点中数据具有最大值p=L->next->next;..while(p != NULL ){// 如果下一个结点存在if(p->data > pmax->data) pmax=p;p=p->next;}return pmax->data;(7)设计一个算法,通过遍历一趟,将链表中所有结点的链接方向逆转,仍利用原表的存储空间。

void inverse(LinkList &L) {// 逆置带头结点的单链表Lp=L->next; L->next=NULL;while ( p) {q=p->next; // q 指向 *p 的后继p->next=L->next;L->next=p; // *p 插入在头结点之后p = q;}}( 10)已知长度为n 的线性表A 采用顺序存储结构,请写一时间复杂度为O(n) 、空间复杂度为 O(1) 的算法,该算法删除线性表中所有值为item 的数据元素。

[题目分析 ] 在顺序存储的线性表上删除元素,通常要涉及到一系列元素的移动(删第i..个元素,第 i+1 至第 n 个元素要依次前移)。

本题要求删除线性表中所有值为item 的数据元素,并未要求元素间的相对位置不变。

《数据结构(C语言版 第2版)》(严蔚敏 著)第七章练习题答案

《数据结构(C语言版 第2版)》(严蔚敏 著)第七章练习题答案

《数据结构(C语言版第2版)》(严蔚敏著)第七章练习题答案第7章查找1.选择题(1)对n个元素的表做顺序查找时,若查找每个元素的概率相同,则平均查找长度为()。

A.(n-1)/2B.n/2C.(n+1)/2D.n答案:C解释:总查找次数N=1+2+3+…+n=n(n+1)/2,则平均查找长度为N/n=(n+1)/2。

(2)适用于折半查找的表的存储方式及元素排列要求为()。

A.链接方式存储,元素无序B.链接方式存储,元素有序C.顺序方式存储,元素无序D.顺序方式存储,元素有序答案:D解释:折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。

(3)如果要求一个线性表既能较快的查找,又能适应动态变化的要求,最好采用()查找法。

A.顺序查找B.折半查找C.分块查找D.哈希查找答案:C解释:分块查找的优点是:在表中插入和删除数据元素时,只要找到该元素对应的块,就可以在该块内进行插入和删除运算。

由于块内是无序的,故插入和删除比较容易,无需进行大量移动。

如果线性表既要快速查找又经常动态变化,则可采用分块查找。

(4)折半查找有序表(4,6,10,12,20,30,50,70,88,100)。

若查找表中元素58,则它将依次与表中()比较大小,查找结果是失败。

A.20,70,30,50B.30,88,70,50C.20,50D.30,88,50答案:A解释:表中共10个元素,第一次取⎣(1+10)/2⎦=5,与第五个元素20比较,58大于20,再取⎣(6+10)/2⎦=8,与第八个元素70比较,依次类推再与30、50比较,最终查找失败。

(5)对22个记录的有序表作折半查找,当查找失败时,至少需要比较()次关键字。

A.3B.4C.5D.6答案:B解释:22个记录的有序表,其折半查找的判定树深度为⎣log222⎦+1=5,且该判定树不是满二叉树,即查找失败时至多比较5次,至少比较4次。

(6)折半搜索与二叉排序树的时间性能()。

数据结构(C语言版CHAP7(2)

数据结构(C语言版CHAP7(2)

V1
AOE网
a0
a7
V2 V6
a2 a3
V3
a5
a8
V4
V5
a1
V7 a 6 V 8 a4
结束
第 15 页
7.4
有向无环图的应用
为计算完成整个工程至少需要多少时间,需将每一子工程所需的时 间作为权值赋给AOE网的各边(就象哈夫曼树给结点赋权值一样)。 AOE网与关键路径部分,不作为课程要求。
V1
a0
V0
V1
V3
V4
V5
V6
结束
第 3 页
7.4
有向无环图的应用
2 AOE网( activity on edge net ) 用边表示活动,顶点表示事件的有向图称为AOE网。 事件发生表示以 该事件为起点的活动可以开始,以该事件为终点的活动已经结束。
a1 a2 a3 a4 a5 a6 分别表示例1中的7个子工程V0、V1、V2、V3、V4、V5、V6。a7 a8
结束
第 14 页
7.4
三 AOE网与关键路径
对工程人们关心两类问题:
有向无环图的应用
1)工程能否顺序进行,即工程流程是否“合理” 2)完成整项工程至少需要多少时间,哪些子工程是影响工程进度的关键 子工程? 为解决第二类问题,通常可用称为AOE网的有向图表示工程流程 用边表示活动,顶点表示事件。 事件发生表示以该事件为起点的活动可 以开始,以该事件为终点的活动已经结束。
结束
第 12 页
7.4
有向无环图的应用
4)拓扑排序算法 Status TopologicalSort(ALGraph G) { //有向图G采用邻接表存储结构。 //若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则ERROR。 FindInDegree(G, indegree); //求各顶点入度indegree[0..vernum-1] InitStack(S); For(i=0; i<G. vexnum; ++i) //建入度为0的顶点栈S indegree 0 0 if (! Indegree[i]) Push(S, i); //入度为0顶点的编号进栈 1 0 6 2 1 5 V3 3 2 4 4 2 3 V1 V4 V6 5 3 S.top 2 6 2 1 1 V2 V5 V7 S.base 0 0

数据结构 习题 第七章 图 答案

数据结构 习题 第七章  图 答案

第7章图二.判断题部分答案解释如下。

2. 不一定是连通图,可能有若干连通分量 11. 对称矩阵可存储上(下)三角矩阵14.只有有向完全图的邻接矩阵是对称的 16. 邻接矩阵中元素值可以存储权值21. 只有无向连通图才有生成树 22. 最小生成树不唯一,但最小生成树上权值之和相等26. 是自由树,即根结点不确定35. 对有向无环图,拓扑排序成功;否则,图中有环,不能说算法不适合。

42. AOV网是用顶点代表活动,弧表示活动间的优先关系的有向图,叫顶点表示活动的网。

45. 能求出关键路径的AOE网一定是有向无环图46. 只有该关键活动为各关键路径所共有,且减少它尚不能改变关键路径的前提下,才可缩短工期。

48.按着定义,AOE网中关键路径是从“源点”到“汇点”路径长度最长的路径。

自然,关键路径上活动的时间延长多少,整个工程的时间也就随之延长多少。

三.填空题1.有n个顶点,n-1条边的无向连通图2.有向图的极大强连通子图3. 生成树9. 2(n-1) 10. N-1 11. n-1 12. n 13. N-1 14. n15. N16. 3 17. 2(N-1) 18. 度出度 19. 第I列非零元素个数 20.n 2e21.(1)查找顶点的邻接点的过程 (2)O(n+e) (3)O(n+e) (4)访问顶点的顺序不同 (5)队列和栈22. 深度优先 23.宽度优先遍历 24.队列25.因未给出存储结构,答案不唯一。

本题按邻接表存储结构,邻接点按字典序排列。

25题(1) 25题(2) 26.普里姆(prim )算法和克鲁斯卡尔(Kruskal )算法 27.克鲁斯卡尔28.边稠密 边稀疏 29. O(eloge ) 边稀疏 30.O(n 2) O(eloge) 31.(1)(V i ,V j )边上的权值 都大的数 (2)1 负值 (3)为负 边32.(1)n-1 (2)普里姆 (3)最小生成树 33.不存在环 34.递增 负值 35.16036.O(n 2) 37. 50,经过中间顶点④ 38. 75 39.O(n+e )40.(1)活动 (2)活动间的优先关系 (3)事件 (4)活动 边上的权代表活动持续时间41.关键路径 42.(1)某项活动以自己为先决条件 (2)荒谬 (3)死循环 43.(1)零 (2)V k 度减1,若V k 入度己减到零,则V k 顶点入栈 (3)环44.(1)p<>nil (2)visited[v]=true (3)p=g[v].firstarc (4)p=p^.nextarc45.(1)g[0].vexdata=v (2)g[j].firstin (3)g[j].firstin (4)g[i].firstout (5)g[i].firstout (6)p^.vexj (7)g[i].firstout (8)p:=p^.nexti (9)p<>nil (10)p^.vexj=j(11)firstadj(g,v 0) (12)not visited[w] (13)nextadj(g,v 0,w)46.(1)0 (2)j (3)i (4)0 (5)indegree[i]==0 (6)[vex][i] (7)k==1 (8)indegree[i]==047.(1)p^.link:=ch[u ].head (2)ch[u ].head:=p (3)top<>0 (4)j:=top (5)top:=ch[j].count(6)t:=t^.link48.(1)V1 V4 V3 V6 V2 V5(尽管图以邻接表为存储结构,但因没规定邻接点的排列,所以结果是不唯一的。

数据结构 C语言版(严蔚敏版)第7章 图

数据结构 C语言版(严蔚敏版)第7章 图
data Fout
1
2
4
1
e6 2 4
2016/11/7
29
7.3 图的遍历



从已给的连通图中某一顶点出发,沿着一 些边访遍图中所有的顶点,且使每个顶点 仅被访问一次,就叫做图的遍历 ( Graph Traversal )。 图中可能存在回路,且图的任一顶点都可 能与其它顶点相通,在访问完某个顶点之 后可能会沿着某些边又回到了曾经访问过 的顶点。 为了避免重复访问,可设置一个标志顶点 是否被访问过的辅助数组 visited [ ]。
2
1 2
V2
V4
17
结论:



无向图的邻接矩阵是对称的; 有向图的邻接矩阵可能是不对称的。 在有向图中, 统计第 i 行 1 的个数可得顶点 i 的出度,统计第 j 行 1 的个数可得顶点 j 的入度。 在无向图中, 统计第 i 行 (列) 1 的个数可得 顶点i 的度。
2016/11/7

18

2
邻接表 (出度表)
adjvex nextarc
data firstarc
0 A 1 B 2 C
2016/11/7
1 0 1
逆邻接表 (入度表)
21

网络 (带权图) 的邻接表
6 9 0 2 1 C 2 8 3 D
data firstarc Adjvex info nextarc
2016/11/7
9



路径长度 非带权图的路径长度是指此路径 上边的条数。带权图的路径长度是指路径 上各边的权之和。 简单路径 若路径上各顶点 v1,v2,...,vm 均不 互相重复, 则称这样的路径为简单路径。 回路 若路径上第一个顶点 v1 与最后一个 顶点vm 重合, 则称这样的路径为回路或环。

数据结构第7章-答案

数据结构第7章-答案

一、单选题C01、在一个图中,所有顶点的度数之和等于图的边数的倍。

A)1/2 B)1 C)2 D)4B02、在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的倍。

A)1/2 B)1 C)2 D)4B03、有8个结点的无向图最多有条边。

A)14 B)28 C)56 D)112C04、有8个结点的无向连通图最少有条边。

A)5 B)6 C)7 D)8C05、有8个结点的有向完全图有条边。

A)14 B)28 C)56 D)112B06、用邻接表表示图进行广度优先遍历时,通常是采用来实现算法的。

A)栈 B)队列 C)树 D)图A07、用邻接表表示图进行深度优先遍历时,通常是采用来实现算法的。

A)栈 B)队列 C)树 D)图A08、一个含n个顶点和e条弧的有向图以邻接矩阵表示法为存储结构,则计算该有向图中某个顶点出度的时间复杂度为。

A)O(n) B)O(e) C)O(n+e) D)O(n2)C09、已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是。

A)0 2 4 3 1 5 6 B)0 1 3 6 5 4 2 C)0 1 3 4 2 5 6 D)0 3 6 1 5 4 2B10、已知图的邻接矩阵同上题,根据算法,则从顶点0出发,按广度优先遍历的结点序列是。

A)0 2 4 3 6 5 1 B)0 1 2 3 4 6 5 C)0 4 2 3 1 5 6 D)0 1 3 4 2 5 6D11、已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是。

A)0 1 3 2 B)0 2 3 1 C)0 3 2 1 D)0 1 2 3A12、已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是。

A)0 3 2 1 B)0 1 2 3 C)0 1 3 2 D)0 3 1 2A13、图的深度优先遍历类似于二叉树的。

A)先序遍历 B)中序遍历 C)后序遍历 D)层次遍历D14、图的广度优先遍历类似于二叉树的。

数据结构与算法(C语言篇)第7章 习题答案[2页]

数据结构与算法(C语言篇)第7章 习题答案[2页]

习题答案1.思考题(1)首先采用循环的方式对单向循环链表进行遍历,然后寻找需要删除元素的上一个元素与下一个元素,最后将这两个元素进行连接,即可实现指定元素的删除。

每一次删除元素,单向循环链表都会重新连接为一个新的环。

然后继续指定元素进行删除,重复步骤,直到环中的元素全部删除完为止。

(2)回溯法,即确定了解空间的组织结构后,就可以从开始结点开始,以深度优先的方式对整个解空间进行搜索。

这个开始的结点就成为活结点,同时也是当前的扩展结点。

在此结点向下进行纵深搜索移动的一个新的结点,那么这个新借贷就会成为新的活结点和拓展结点,但是如果当前的扩展结点不能再向纵深移动,那么此活结点就会变为死结点,此时就要进行回溯移动,移动到最近的活结点,并将此活结点变为当前的扩展结点。

这就是回溯的工作方式,也是其工作的基本思想。

(3)动态规划法与分治法类似,其基本的思想是将规模较大的问题分解为较小的子问题,先求解子问题,然后通过这些子问题的解得到原问题的解,但是与分治法不同的是,经过分解后得到的子问题之间并不是相互独立的。

为了达到这一目的,可以用一个表来记录所有已经解决的子问题,这样不管计算过的子问题的答案在后面的求解过程中是否被用到都会被记录,这就是动态规划法的思想。

4.编程题(1)1int g[N][N] //表示无向图对应的矩阵2#define M (1 << (N-1))34int dp[N][M];56void TSP(){7 //初始化dp[i][0]8 int i = 0, j, k;9 for(i = 0; i < N; i++){10 dp[i][0] = g[i][0];11 }12 //求解dp[i][j],先更新列再更新行13 for(j = 1; j < M; j++){14 for(i = 0; i < N; i++){15 dp[i][j] = INF;16 //如果集合j(或状态j)中包含顶点i,则不符合条件退出17 //判断方法为:判断j对应的二进制数的第i位是否为118 if(((j >> (i - 1)) & 1) == 1){19 continue;20 }21 for(k = 1; k < N; k++){22 //跳过不合理的路径选择23 if(((j >> (k - 1)) & 1) == 0){24 continue;25 }26 //更新dp[i][j]的值27 //计算从i开始经过状态j回到起始点的最短距离28 if(dp[i][j] > g[i][k] + dp[k][j ^ (1 << (k - 1))]){29 dp[i][j] = g[i][k] + dp[k][j ^ (1 << (k - 1))];30 }31 }32 }33 }34}35。

数据结构第7章习题答案

数据结构第7章习题答案

第7章 《图》习题参考答案一、单选题(每题1分,共16分)( C )1. 在一个图中,所有顶点的度数之和等于图的边数的倍。

A .1/2 B. 1 C. 2 D. 4 (B )2. 在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的倍。

A .1/2 B. 1 C. 2 D. 4 ( B )3. 有8个结点的无向图最多有条边。

A .14 B. 28 C. 56 D. 112 ( C )4. 有8个结点的无向连通图最少有条边。

A .5 B. 6 C. 7 D. 8 ( C )5. 有8个结点的有向完全图有条边。

A .14 B. 28 C. 56 D. 112 (B )6. 用邻接表表示图进行广度优先遍历时,通常是采用来实现算法的。

A .栈 B. 队列 C. 树 D. 图 ( A )7. 用邻接表表示图进行深度优先遍历时,通常是采用来实现算法的。

A .栈 B. 队列 C. 树 D. 图( C )8. 已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是( D )9. 已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按深度优先遍历的结点序列是A . 0 2 4 3 1 5 6 B. 0 1 3 5 6 4 2 C. 0 4 2 3 1 6 5 D. 0 1 23465 ( D )10. 已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是( A )11. 已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是A .0 2 4 3 1 5 6B. 0 1 3 6 5 4 2C. 0 1 3 4 2 5 6D. 0 3 6 1 5 4 2⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡0100011101100001011010110011001000110010011011110A .0 1 3 2 B. 0 2 3 1 C. 0 3 2 1 D. 0 1 2 3A.0 3 2 1 B. 0 1 2 3C. 0 1 3 2D. 0 3 1 2(A)12. 深度优先遍历类似于二叉树的A.先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历(D)13. 广度优先遍历类似于二叉树的A.先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历(A)14. 任何一个无向连通图的最小生成树A.只有一棵 B. 一棵或多棵 C. 一定有多棵 D. 可能不存在(注,生成树不唯一,但最小生成树唯一,即边权之和或树权最小的情况唯一)二、填空题(每空1分,共20分)1. 图有邻接矩阵、邻接表等存储结构,遍历图有深度优先遍历、广度优先遍历等方法。

数据结构第七章课后习题答案

数据结构第七章课后习题答案

7_1对于图题7.1(P235)的无向图,给出:(1)表示该图的邻接矩阵。

(2)表示该图的邻接表。

(3)图中每个顶点的度。

解:(1)邻接矩阵:0111000100110010010101110111010100100110010001110(2)邻接表:1:2----3----4----NULL;2: 1----4----5----NULL;3: 1----4----6----NULL;4: 1----2----3----5----6----7----NULL;5: 2----4----7----NULL;6: 3----4----7----NULL;7: 4----5----6----NULL;(3)图中每个顶点的度分别为:3,3,3,6,3,3,3。

7_2对于图题7.1的无向图,给出:(1)从顶点1出发,按深度优先搜索法遍历图时所得到的顶点序(2)从顶点1出发,按广度优先法搜索法遍历图时所得到的顶点序列。

(1)DFS法:存储结构:本题采用邻接表作为图的存储结构,邻接表中的各个链表的结点形式由类型L_NODE规定,而各个链表的头指针存放在数组head中。

数组e中的元素e[0],e[1],…..,e[m-1]给出图中的m条边,e中结点形式由类型E_NODE规定。

visit[i]数组用来表示顶点i是否被访问过。

遍历前置visit各元素为0,若顶点i被访问过,则置visit[i]为1.算法分析:首先访问出发顶点v.接着,选择一个与v相邻接且未被访问过的的顶点w访问之,再从w 开始进行深度优先搜索。

每当到达一个其所有相邻接的顶点都被访问过的顶点,就从最后访问的顶点开始,依次退回到尚有邻接顶点未曾访问过的顶点u,并从u开始进行深度优先搜索。

这个过程进行到所有顶点都被访问过,或从任何一个已访问过的顶点出发,再也无法到达未曾访问过的顶点,则搜索过程就结束。

另一方面,先建立一个相应的具有n个顶点,m条边的无向图的邻接表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

} }//else }//for for(i=m;i{ G.xlist[i]=G.xlist[i+1]; //修改表头向量 for(p=G.xlist[i].firstin;p;p=p->hlink) p->headvex--; for(p=G.xlist[i].firstout;p;p=p->tlink) p->tailvex--; //修改各链中的顶点序号 } G.vexnum--; return OK; }//Delete_Vex 7.18 //为节省篇幅,本题只给出 Delete_Arc 算法.其余算法请自行写出. Status Delete_Arc(AMLGraph &G,char v,char w)////在邻接多重表表示的图 G 上删除边(v,w) { if((i=LocateVex(G,v))<0) return ERROR; if((j=LocateVex(G,w))<0) return ERROR; if(G.adjmulist[i].firstedge->jvex==j) G.adjmulist[i].firstedge=G.adjmulist[i].firstedge->ilink; else { for(p=G.adjmulist[i].firstedge;p&&p->ilink->jvex!=j;p=p->ilink); if (!p) return ERROR; //未找到 p->ilink=p->ilink->ilink; } //在 i 链表中删除该边 if(G.adjmulist[j].firstedge->ivex==i) G.adjmulist[j].firstedge=G.adjmulist[j].firstedge->jlink; else { for(p=G.adjmulist[j].firstedge;p&&p->jlink->ivex!=i;p=p->jlink); if (!p) return ERROR; //未找到 q=p->jlink; p->jlink=q->jlink; free(q); } //在 i 链表中删除该边 G.arcnum--; return OK; }//Delete_Arc 7.19 Status Build_AdjMulist(AMLGraph &G)//输入有向图的顶点数,边数,顶点信息和边的信息建 立邻接多重表
第七章 图
7.14 Status Build_AdjList(ALGraph &G)//输入有向图的顶点数,边数,顶点信息和边的信息建立邻 接表
{ InitALGraph(G); scanf("%d",&v); if(v<0) return ERROR; //顶点数不能为负 G.vexnum=v; scanf("%d",&a); if(a<0) return ERROR; //边数不能为负 G.arcnum=a; for(m=0;mG.vertices[m].data=getchar(); //输入各顶点的符号 for(m=1;m<=a;m++) { t=getchar();h=getchar(); //t 为弧尾,h 为弧头 if((i=LocateVex(G,t))<0) return ERROR; if((j=LocateVex(G,h))<0) return ERROR; //顶点未找到 p=(ArcNode*)malloc(sizeof(ArcNode)); if(!G.vertices.[i].firstarc) G.vertices[i].firstarc=p; else { for(q=G.vertices[i].firstarc;q->nextarc;q=q->nextarc); q->nextarc=p; } p->adjvex=j;p->nextarc=NULL; }//while return OK; }//Build_AdjList 7.15 //本题中的图 G 均为有向无权图,其余情况容易由此写出 Status Insert_Vex(MGraph &G, char v)//在邻接矩阵表示的图 G 上插入顶点 v { if(G.vexnum+1)>MAX_VERTEX_NUM return INFEASIBLE; G.vexs[++G.vexnum]=v; return OK; }//Insert_Vex Status Insert_Arc(MGraph &G,char v,char w)//在邻接矩阵表示的图 G 上插入边(v,w) { if((i=LocateVex(G,v))<0) return ERROR; if((j=LocateVex(G,w))<0) return ERROR; if(i==j) return ERROR; if(!G.arcs[i][j].adj) {
ቤተ መጻሕፍቲ ባይዱ
q->nextarc=p; } G.arcnum++; return OK; }//Insert_Arc 7.17 //为节省篇幅,本题只给出较为复杂的 Delete_Vex 算法.其余算法请自行写出. Status Delete_Vex(OLGraph &G,char v)//在十字链表表示的图 G 上删除顶点 v { if((m=LocateVex(G,v))<0) return ERROR; n=G.vexnum; for(i=0;i{ if(G.xlist[i].firstin->tailvex==m) //如果待删除的边是头链上的第一个结点 { q=G.xlist[i].firstin; G.xlist[i].firstin=q->hlink; free(q);G.arcnum--; } else //否则 { for(p=G.xlist[i].firstin;p&&p->hlink->tailvex!=m;p=p->hlink); if(p) { q=p->hlink; p->hlink=q->hlink; free(q);G.arcnum--; } }//else }//for for(i=0;i{ if(G.xlist[i].firstout->headvex==m) //如果待删除的边是尾链上的第一个结点 { q=G.xlist[i].firstout; G.xlist[i].firstout=q->tlink; free(q);G.arcnum--; } else //否则 { for(p=G.xlist[i].firstout;p&&p->tlink->headvex!=m;p=p->tlink); if(p) { q=p->tlink; p->tlink=q->tlink; free(q);G.arcnum--;
G.arcs[i][j].adj=1; G.arcnum++; } return OK; }//Insert_Arc Status Delete_Vex(MGraph &G,char v)//在邻接矩阵表示的图 G 上删除顶点 v { n=G.vexnum; if((m=LocateVex(G,v))<0) return ERROR; G.vexs[m]<->G.vexs[n]; //将待删除顶点交换到最后一个顶点 for(i=0;i{ G.arcs[i][m]=G.arcs[i][n]; G.arcs[m][i]=G.arcs[n][i]; //将边的关系随之交换 } G.arcs[m][m].adj=0; G.vexnum--; return OK; }//Delete_Vex 分析:如果不把待删除顶点交换到最后一个顶点的话,算法将会比较复杂,而伴随着大量元素 的移动,时间复杂度也会大大增加. Status Delete_Arc(MGraph &G,char v,char w)//在邻接矩阵表示的图 G 上删除边(v,w) { if((i=LocateVex(G,v))<0) return ERROR; if((j=LocateVex(G,w))<0) return ERROR; if(G.arcs[i][j].adj) { G.arcs[i][j].adj=0; G.arcnum--; } return OK; }//Delete_Arc 7.16 //为节省篇幅,本题只给出 Insert_Arc 算法.其余算法请自行写出. Status Insert_Arc(ALGraph &G,char v,char w)//在邻接表表示的图 G 上插入边(v,w) { if((i=LocateVex(G,v))<0) return ERROR; if((j=LocateVex(G,w))<0) return ERROR; p=(ArcNode*)malloc(sizeof(ArcNode)); p->adjvex=j;p->nextarc=NULL; if(!G.vertices[i].firstarc) G.vertices[i].firstarc=p; else { for(q=G.vertices[i].firstarc;q->q->nextarc;q=q->nextarc) if(q->adjvex==j) return ERROR; //边已经存在
}//Build_AdjList 7.20 int Pass_MGraph(MGraph G)//判断一个邻接矩阵存储的有向图是不是可传递的,是则返回 1, 否则返回 0 { for(x=0;xfor(y=0;yif(G.arcs[x][y]) { for(z=0;zif(z!=x&&G.arcs[y][z]&&!G.arcs[x][z]) return 0;//图不可传递的条件 }//if return 1; }//Pass_MGraph 分析:本算法的时间复杂度大概是 O(n^2*d). 7.21 int Pass_ALGraph(ALGraph G)//判断一个邻接表存储的有向图是不是可传递的,是则返回 1, 否则返回 0 { for(x=0;xfor(p=G.vertices[x].firstarc;p;p=p->nextarc) { y=p->adjvex; for(q=G.vertices[y].firstarc;q;q=q->nextarc) { z=q->adjvex; if(z!=x&&!is_adj(G,x,z)) return 0; }//for }//for }//Pass_ALGraph int is_adj(ALGraph G,int m,int n)//判断有向图 G 中是否存在边(m,n),是则返回 1,否则返回 0 { for(p=G.vertices[m].firstarc;p;p=p->nextarc) if(p->adjvex==n) return 1; return 0; }//is_adj 7.22 int visited[MAXSIZE]; //指示顶点是否在当前路径上 int exist_path_DFS(ALGraph G,int i,int j)//深度优先判断有向图 G 中顶点 i 到顶点 j 是否有路 径,是则返回 1,否则返回 0 { if(i==j) return 1; //i 就是 j else { visited[i]=1; for(p=G.vertices[i].firstarc;p;p=p->nextarc) { k=p->adjvex;
相关文档
最新文档