第1章 储层伤害
第1章-水力压裂
作用: Ø传递压力; Ø起裂和延伸裂缝; Ø携砂。
前置液
起缝、延伸裂缝、冷却
按
作
携砂液
延伸裂缝、悬砂
用
分
顶替液
顶替砂浆
对压裂液的要求: Ø与地层配伍; Ø有效悬浮和输送支撑剂; Ø滤失少; Ø摩阻低; Ø低残渣; Ø易返排; Ø热稳定性; Ø抗剪切稳定性。
一、压裂液类型
各种压裂液所占的比例
增能气 体, 25%
第一章 水力压裂
内容提要
Ø水力压裂造缝机理 Ø压裂液 Ø支撑剂 Ø水力压裂延伸模拟 Ø支撑剂输送 Ø水力压裂评价与设计 Ø压裂工艺技术
压裂:
hydraulic
分类: fracturing
水力压裂:利用地面高压泵组,以超过地层吸收能力 的排量将高粘压裂泵入井内而在井底产生高压,当 压力克服井壁附近地应力并达到岩石抗张强度时, 就在地层产生裂缝。继续泵注带有支撑剂的压裂液, 使裂缝继续延伸并在其中充填支撑剂。停泵后,由 于支撑剂对裂缝的支撑作用,在地层中形成足够长 的、有一定导流能力的填砂裂缝,从而实现油气井 增产和水井增注。
' w
0.5m A
修正:
cw
cw'
p f pa
1 2
用途:静态滤失系数 用于筛选评价压裂液
用途:动态滤 失系数为压裂 设计提供参数
2.受压裂液粘度控制的滤失系数
假设条件: Ø侵入符合达西定律; Ø活塞驱动
压裂液的实际滤失速度:
va
dL0.058Kp
dt
f L
积分求L,回代达西定律
12
v0.05K 8 f Lp0.17K ftp
牛顿型:
圆管稠度系数:
Kp
油气田开发概论第1章、油层物理基础
>0.920
>0.95 >0.98
热采
热采 热采
(二)地层原油的高压物性 1、地层油的密度
地下原油的密度随温度的增加
而下降。 随压力变化的关系比较复杂:
以饱和压力为界,当压力小于饱和
压力时,随压力的增加,地层原油 的密度变小;当压力高于饱和压力 时,随压力的增加,密度增加。 地层油的密度一般采用高压PVT实验测定,有时也借 助某些分析资料和有关图表进行计算。
(一)原油的物理性质与分类 5、原油的闪点 闪点(闪火点)是指可燃液体的蒸气同 空气的混合物在临近火焰时能短暂闪火时的 温度。 6、原油的荧光性
原油的荧光性指原油在紫外线照射下发 出一种特殊光亮的特征,原油发荧光是一种 冷发光现象。
(一)原油的物理性质与分类 7、地面原油的分类
(1)根据原油中硫的含量分类
油气开采概论
第一章
油层物理基础
第一节 油藏流体的物理性质
在勘探或开发设计阶段,必须根据油藏流体
的物理性质进行油气田科学预测,如判断油藏类
型、油藏有无气顶、是否会出现凝析气等。
在油田开发过程中,必须了解地下流体的动、
静态参数,如体积系数、溶解系数、压缩系数、 粘度等,这样才能进行油藏工程研究与生产管理。
第一章钻井液
(二)钻井液的流变性能
粘度和切力随流速变化的性能。包括静切力、动切力、表观粘度、塑 性粘度、流性指数、稠度系数等参数。
(三)钻井液的造壁性能及滤失量
1、滤失和造壁过程
钻井液中的液体(刚开始也有钻井液)在压差的作用下向地层内渗
滤的过程称为钻井液的滤失。 钻井液中的固相颗粒附着在井壁上形成滤饼的过程称为造壁过程。
(二)防塌措施
1.钻井液中加入K+、NH+4等无机阳离子
(1) K+的固定作用
K+进入晶层之间并嵌入到相邻两层硅氧四面体氧原子组成的六角环中, 把带负电荷的粘土晶片紧紧联结在一起,阻止水化膨胀。 •
• • •
(2) K+的水化较弱,抑制粘土水化膨胀。
K+离子的未水化直径(0.266nm)比Na+离子未水化直径
2、几种不同的滤失情况
(1) 瞬时滤失
在钻头破碎岩石形成新的井眼而滤饼尚未形成的一段时间内,钻 井液迅速向地层渗滤,此时的滤失称为瞬时滤失。瞬时滤失量有利 于提高钻速,但严重损害油气层。
(2) 动滤失
在已形成的井眼内,随着钻井液的渗滤,在井壁上形成一层滤 饼,并不断增厚、密实。同时,形成的滤饼又受到钻井液的冲刷和 钻柱的碰撞、刮挤而遭到破坏。最终,滤饼形成速度等于破坏速度
通过静电引力或者化学键合力,将微粒桥接到地层表面,增强对粘土 微粒的束缚力。
3.储层内粘土水化膨胀引起孔喉堵塞
预防措施:
(1)减少入井流体的滤夫量,提高滤液的矿化度(提高滤液的抑制性) (2)粘土防膨剂,防膨机理分为三大类: 减小粘土表面负电性: 盐(KCl、NH4Cl)、阳离子聚合物、阳离子型表面活性剂; 使粘土表面羟基化: 变粘土表面为亲油性和增强晶层间联结。羟基氯代硅 烷等。 转变粘土矿物类型: 如硅酸钾、氢氧化钾等可将蒙脱石转化为非膨胀型钾硅铝酸盐。
油气井增产技术-酸化
绪论第1章酸化基本原理第2章油井酸化工艺技术第3章酸化设计第4章酸化过程中的储层伤害及评价第5章酸化技术发展现状1绪论第1章酸化基本原理第2章油井酸化工艺技术第3章酸化设计第4章酸化过程中的储层伤害及评价第5章酸化技术发展现状2绪论油层酸化是利用酸液能溶解岩石中所含盐类物质(岩石胶结物或地层孔隙(裂缝)内堵塞物等)的特性,扩大近井地带油层的孔隙度,提高地层渗透率,改善油、气流动状况,增加油气产量的一种增产措施。
目前国内的油气储层酸化分为砂岩储层酸化和碳酸盐岩储层酸化。
3绪论第1章酸化基本原理第2章油井酸化工艺技术第3章酸化设计第4章酸化过程中的储层伤害及评价第5章酸化技术发展现状4第1章酸化基本原理1.1 油气层伤害机理1.2 酸化增产原理5一、油气层伤害源1、钻井伤害钻井过程中的伤害是由钻井液中的颗粒及侵入地层的滤液引起的。
钻井液中的颗粒伤害可能是比较严重的。
2、完井伤害完井伤害是由完井液侵入地层、注水泥、射孔或增产措施等引起的。
完井液中的固体成分完井液与地层流体的不配伍6一、油气层伤害源3、生产伤害生产期间的地层伤害是由于地层中的微粒运移或沉淀引起的。
原因:井筒附件孔隙介质中的高速流动。
4、注入伤害注入水与地层水的不配伍性、注入水中的固体颗粒、注入水中细菌的生长等。
7二、油气层伤害机理固体颗粒对孔隙空间的堵塞、孔隙介质的结构性破坏或物理风化、乳状液的生长或相对渗透率的变化等流体效应,都可引起地层的伤害。
其中,固体颗粒对孔隙的堵塞是最常见的,包括将颗粒注入地层、岩石粘土的分散、沉淀及细菌的生长等。
8油气层伤害的主要表现1、颗粒对孔隙空间的堵塞2、化学沉淀3、流体伤害流体自身的变化而不是岩石渗透率的变化,如流体粘度的变化、相对渗透率的变化等。
这些伤害是暂时的,可以从近井地带排除。
4、机械伤害(物理破碎、压实作用)5、生物伤害注入水中的细菌在地层中与有机物作用生产沉淀第一节完91.2 酸化增产原理一、砂岩储层酸化增产的基本原理1、表皮效应(增产第3版P1-11图)假定地层未受伤害区的渗透率为k,受伤害区为k d ,伤害半径为rd。
A01井控的基本概念-第一章
第1章井控的基本概念油气田勘探开发井下作业,涉及试油、大修、作业、测试、酸化、压裂等工作,随着油田稳产增产的需要,维修及措施作业的油(气、水)井也逐渐增多,行业多、知识广;井下作业过程中不确定因素很多,无论油(气、水)井井底压力的高低,都有发生井喷或失控的可能,井控难度大,一旦发生井喷及井喷失控事故,造成的人员伤害、环境污染、设备和油气井损坏及其损失,触目惊心,骇人听闻。
为保护油气资源确保井下作业安全,集团公司先后出台了《中国石化集团公司石油与天然气井井控管理规定》、《油气水井井下作业井控技术规程》等标准和规定,不断地规范和完善井下作业井控技术管理工作。
1.1 井控相关概念井下作业是实施石油天然气勘探开发的重要手段,井下作业井控是一项牵涉到施工设计、装备配套、生产组织、现场管理、员工培训等多个环节系统工程,必须把不断提高员工的井控意识、技术素质和管理水平作为一项重要工作来抓,才能保证安全、优质、高效的完成井下作业施工。
1.1.1 名词解释1.1.1.1井控(Well Control):井控是实施油气井压力控制的简称。
在井下作业过程中,只有控制地层压力,保持井内压力平衡,才能保证作业施工的顺利进行。
1.1.1.2井侵(Influx):当地层压力大于井底压力时,地层孔隙中的流体(油、气、水)将侵入井内,通常称为井侵。
最常见的井侵为气侵、水侵和油侵等。
1.1.1.3溢流(Overflow):井侵发生后,井口返出的压井液量大于泵入液量,停泵后井口压井液自动外溢,这种现象称为溢流。
1.1.1.4井涌(Well kick):溢流进一步发展,井液涌出井口的现象称为井涌。
1.1.1.5井喷(Well Blowout):当井底压力远小于地层压力时,地层流体大量涌入井筒并喷出地面的现象称为井喷。
1.1.1.6井喷失控(Out of Control for Blowout):井喷发生后,无法用常规方法控制井口而出现井口敞喷的现象称为井喷失控。
A01井控的基本概念-第一章
第1章井控的基本概念油气田勘探开发井下作业,涉及试油、大修、作业、测试、酸化、压裂等工作,随着油田稳产增产的需要,维修及措施作业的油(气、水)井也逐渐增多,行业多、知识广;井下作业过程中不确定因素很多,无论油(气、水)井井底压力的高低,都有发生井喷或失控的可能,井控难度大,一旦发生井喷及井喷失控事故,造成的人员伤害、环境污染、设备和油气井损坏及其损失,触目惊心,骇人听闻。
为保护油气资源确保井下作业安全,集团公司先后出台了《中国石化集团公司石油与天然气井井控管理规定》、《油气水井井下作业井控技术规程》等标准和规定,不断地规范和完善井下作业井控技术管理工作。
1.1 井控相关概念井下作业是实施石油天然气勘探开发的重要手段,井下作业井控是一项牵涉到施工设计、装备配套、生产组织、现场管理、员工培训等多个环节系统工程,必须把不断提高员工的井控意识、技术素质和管理水平作为一项重要工作来抓,才能保证安全、优质、高效的完成井下作业施工。
1.1.1 名词解释1.1.1.1井控(Well Control):井控是实施油气井压力控制的简称。
在井下作业过程中,只有控制地层压力,保持井内压力平衡,才能保证作业施工的顺利进行。
1.1.1.2井侵(Influx):当地层压力大于井底压力时,地层孔隙中的流体(油、气、水)将侵入井内,通常称为井侵。
最常见的井侵为气侵、水侵和油侵等。
1.1.1.3溢流(Overflow):井侵发生后,井口返出的压井液量大于泵入液量,停泵后井口压井液自动外溢,这种现象称为溢流。
1.1.1.4井涌(Well kick):溢流进一步发展,井液涌出井口的现象称为井涌。
1.1.1.5井喷(Well Blowout):当井底压力远小于地层压力时,地层流体大量涌入井筒并喷出地面的现象称为井喷。
1.1.1.6井喷失控(Out of Control for Blowout):井喷发生后,无法用常规方法控制井口而出现井口敞喷的现象称为井喷失控。
(完整版)油层物理
(完整版)油层物理油层物理第⼀章()⼀、掌握下述基本概念及基本定律1. 粒度组成:构成砂岩的各种⼤⼩不同颗粒的重量占岩⽯总重量的百分数。
2. 不均匀系数:累积分布曲线上累积质量60%所对应的颗粒直径d60 与累积质量10%所对应的颗粒直径d10。
3. 分选系数:⽤累积质量20%、50%、75%三个特征点将累积曲线划分为4 段,分选系数S=(d75/d 25)^(1/2)4. 岩⽯的⽐⾯(S、S p、S s):S:单位外表体积岩⽯内孔隙总内表⾯积。
Ss:单位外表体积岩⽯内颗粒⾻架体积。
Sp:单位外表体积岩⽯内孔隙体积。
5. 岩⽯孔隙度(φa、φe、φf):φa:岩⽯总孔隙体积与岩⽯总体积之⽐。
φe:岩⽯中烃类体积与岩⽯总体积之⽐。
φf:在含油岩中,流体能在其内流动的空隙体积与岩⽯总体积之⽐。
6. 储层岩⽯的压缩系数:油层压⼒每降低单位压⼒,单位体积岩⽯中孔隙体积的缩⼩值。
7. 地层综合弹性压缩系数:地层压⼒每降低单位压降时,单位体积岩⽯中孔隙及液体总的体积变化。
8. 储层岩⽯的饱和度(S0、S w、S g):S0:岩⽯孔隙体积中油所占体积百分数。
S g;孔隙体积中⽓所占体积百分数。
S w:孔隙体积中⽔所占体积百分数9.原始含油、含⽔饱和度(束缚⽔饱和度)S pi、S wi :s p i :在油藏储层岩⽯微观孔隙空间中原始含油、⽓、⽔体积与对应岩⽯孔隙体积的⽐值。
S wi: 油层过渡带上部产纯油或纯⽓部分岩⽯孔隙中的⽔饱和度。
10. 残余油饱和度:经过注⽔后还会在地层孔隙中存在的尚未驱尽的原油在岩⽯孔隙中所占的体积百分数。
11. 岩⽯的绝对渗透率:在压⼒作⽤下,岩⽯允许流体通过的能⼒。
12. ⽓体滑脱效应:⽓体在岩⽯孔道壁处不产⽣吸附薄层,且相邻层的⽓体分⼦存在动量交换,导致⽓体分⼦的流速在孔道中⼼和孔道壁处⽆明显差别13. 克⽒渗透率:经滑脱效应校正后获得的岩样渗透率。
14. 达西定律:描述饱和多孔介质中⽔的渗流速度与⽔⼒坡降之间的线性关系的规律。
2017《煤矿安全规程》
《煤矿安全规程》(2016)二〇一六年三月目录第一编总则 (1)第二编地质保障 (4)第三编井工煤矿 (6)第一章矿井建设 (6)第一节一般规定 (6)第二节井巷掘进与支护 (6)第三节井塔、井架及井筒装备 (11)第四节建井期间生产及辅助系统 (12)第二章开采 (15)第一节一般规定 (15)第二节回采和顶板控制 (17)第三节采掘机械 (23)第四节建(构)筑物下、水体下、铁路下及主要井巷煤柱开采 (25)第五节井巷维修和报废 (25)第六节防止坠落 (26)第三章通风、瓦斯和煤尘爆炸防治 (26)第一节通风 (26)第二节瓦斯防治 (33)第三节瓦斯和煤尘爆炸防治 (37)第四章煤(岩)与瓦斯(二氧化碳)突出防治 (37)第一节一般规定 (37)第二节区域综合防突措施 (40)第三节局部综合防突措施 (41)第五章冲击地压防治 (43)第一节一般规定 (43)第二节冲击危险性预测 (44)第三节区域与局部防冲措施 (45)第四节冲击地压安全防护措施 (45)第六章防灭火 (46)第一节一般规定 (46)第二节井下火灾防治 (48)第三节井下火区管理 (50)第七章防治水 (51)第一节一般规定 (51)第二节地面防治水 (52)第三节井下防治水 (53)第四节井下排水 (55)第五节探放水 (56)第八章爆炸物品和井下爆破 (57)第一节爆炸物品贮存 (57)第二节爆炸物品运输 (60)第三节井下爆破 (61)第九章运输、提升和空气压缩机 (66)第一节平巷和倾斜井巷运输 (66)第二节立井提升 (73)第三节钢丝绳和连接装置 (77)第四节提升装置 (82)第五节空气压缩机 (86)第十章电气 (87)第一节一般规定 (87)第二节电气设备和保护 (90)第三节井下机电设备硐室 (91)第四节输电线路及电缆 (91)第五节井下照明和信号 (93)第六节井下电气设备保护接地 (94)第七节电气设备、电缆的检查、维护和调整 (95)第八节井下电池电源 (96)第十一章监控与通信 (97)第一节一般规定 (97)第二节安全监控 (97)第三节人员位置监测 (101)第四节通信与图像监视 (101)第四编露天煤矿 (103)第一章一般规定 (103)第二章钻孔爆破 (104)第一节一般规定 (104)第二节钻孔 (104)第三节爆破 (104)第三章采装 (107)第一节一般规定 (107)第二节单斗挖掘机采装 (107)第三节破碎 (109)第四节轮斗挖掘机采装 (109)2第五节拉斗铲作业 (109)第四章运输 (110)第一节铁路运输 (110)第二节公路运输 (111)第三节带式输送机运输 (112)第五章排土 (112)第六章边坡 (114)第七章防治水和防灭火 (115)第一节防治水 (115)第二节防灭火 (115)第八章电气 (115)第一节一般规定 (115)第二节变电所(站)和配电设备 (116)第三节架空输电线和电缆 (116)第四节电气设备保护和接地 (117)第五节电气设备操作、维护和调整 (118)第六节爆炸物品库和炸药加工区安全配电 (119)第七节照明和通信120第九章设备检修 (120)第五编职业病危害防治 (122)第一章职业病危害管理 (122)第二章粉尘防治 (122)第三章热害防治 (124)第四章噪声防治 (125)第五章有害气体防治 (125)第六章职业健康监护 (125)第六编应急救援 (127)第一章一般规定 (127)第二章安全避险 (128)第三章救援队伍 (129)第四章救援装备与设施 (130)第五章救援指挥 (130)第六章灾变处理 (131)附则 (134)附录主要名词解释 (135)3第一编总则 (3)第一条 (3)第二十一条 (8)第二编地质保障 (9)第二十二条 (9)第三十三条 (11)第三编井工煤矿 (12)第一章矿井建设 (12)第三十四条 (12)第八十五条 (26)第二章开采 (26)第八十六条 (26)第一百三十四条 (42)第三章通风、瓦斯和煤尘爆炸防治 (42)第一百三十五条 (42)第一百八十八条 (59)第四章煤(岩)与瓦斯(二氧化碳)突出防治 (59)第一百八十九条 (59)第二百二十四条 (67)第五章冲击地压防治 (67)第二百二十五条 (68)第二百四十五条 (72)第六章防灭火 (72)第二百四十六条 (72)第二百八十一条 (81)第七章防治水 (81)第二百八十二条 (81)第三百二十五条 (91)第八章爆炸物品和井下爆破 (91)第三百二十六条 (92)第三百七十三条 (104)第九章运输、提升和空气压缩机 (104)第三百七十四条 (104)第四百三十四条 (131)第十章电气 (132)第四百三十五条 (132)第四百八十六条 (145)第十一章监控与通信 (146)第四百八十七条 (146)第五百零九条 (153)第四编露天煤矿 (154)第一章一般规定 (154)第五百一十条 (154)1第五百二十条 (156)第二章钻孔爆破 (156)第五百二十一条 (156)第五百三十八条 (160)第三章采装 (160)第五百三十九条 (160)第五百五十八条 (165)第四章运输 (165)第五百五十九条 (165)第五百七十三条 (169)第五章排土 (169)第五百七十四条 (169)第五百八十二条 (171)第六章边坡 (171)第五百八十三条 (171)第五百八十八条 (172)第七章防治水和防灭火 (173)第五百八十九条 (173)第五百九十六条 (174)第八章电气 (174)第五百九十七条 (174)第六百二十八条 (181)第九章设备检修 (181)第六百二十九条 (182)第六百三十六条 (183)第五编职业病危害防治 (184)第一章职业病危害管理 (184)第六百三十七条 (184)第六百三十九条 (184)第二章粉尘防治 (184)第六百四十条 (184)第六百五十四条 (188)第三章热害防治 (188)第六百五十五条 (188)第六百五十六条 (188)第四章噪声防治 (189)第六百五十七条 (189)第六百五十八条 (189)第六百五十九条 (189)第五章有害气体防治 (189)第六百六十条 (189)第六百六十一条 (190)第六百六十二条 (190)第六章职业健康监护 (190)2第六百六十三条 (190)第六百七十一条 (192)第六编应急救援 (193)第一章一般规定第六百七十二条 (193)第六百八十二条 (195)第二章安全避险第六百八十三条 (195)第六百九十二条 (197)第三章救援队伍第六百九十三条 (197)第六百九十八条 (198)第四章救援装备与设施第六百九十九条 (198)第七百零二条 (198)第五章救援指挥第七百零三条 (199)第七百零七条 (200)第六章灾变处理第七百零八条 (200)第七百一十九条 (203)附则 (204)第七百二十条 (204)第七百二十一条 (204)第一编总则第一条为保障煤矿安全生产和从业人员的人身安全与健康,防止煤矿事故与职业病危害,根据《煤炭法》《矿山安全法》《安全生产法》《职业病防治法》《煤矿安全监察条例》和《安全生产许可证条例》等,制定本规程。
《石油工业概论》教案(附件五)
第三节21世纪中国能源、环境与石油工业发展
一.中国能源发展基本原则
二.石油、天然气开发过程中的环境影响
三.我国的环境保护目标和改善能源结构的对策
四. 21世纪前半时中国油气供应展望
多媒体中重点部分用图、表、录像片加深学生印象。
本章思考
题和习题
教材第64页:思考题1-5
主要
参考资料
西安石油大学教案(首页)
院(系):石油工程学院教研室(系):油气田开发工程
课程名称
石油工业概论
课程类别
必修课()限选课()公共任选课()
总学时
28
学分
讲授
学时
28
上机
学时
实验
学时
专业
班级
任课教师
职称
教学目的和要求
本门课程是初步了解石油工业全行业基本内容的一门专业基础课。该课程主要针对的是石油工程专业新生及一些非石油专业学生。课程内容概括性地介绍了石油工业的上游——石油的勘探、开发到石油工业的下游——石油的储运、石油炼制和石油化工中的一些基本的概念、理论和过程,同时还介绍了石油工业在国民经济中的地位与作用、石油工业的发展史及石油工业的发展趋势等。通过这门课程的学习使石油工程专业一年级新生和非石油专业学生对石油工业有一初步了解,培养学生对石油行业的兴趣和投身石油行业的热情,同时为后续相关课程的学习奠定一定的基础。
见教案首页1~8
备注
西安石油大学教案(章节备课)
学时:6
章节
第二章石油地质
知识点和分析方法
主要知识点:沉积岩、地质构造、石油的成因、油气藏、地质年龄等。
分析方法:以讲授石油的生成、运移、储集为主线,讲授相关的主要概念、方法和过程。
10第十章 储层敏感性解析
储集层损害是由储集层内部潜在损害因素及 外部条件共同作用的结果。 内部潜在损害因素主要指储集层的岩性、物 性、孔隙结构、敏感性及流体性质等储集层固 有的特性。 外部条件主要指施工作业过程中引起储集层 孔隙结构及物性的变化,使储集层受到损害的 各个外界因素。
一、岩石成分及孔隙结构对储集层损害 的影响 1、敏感性矿物的影响 2、孔隙结构的影响
可能损害地层的几类敏感性矿物
2、孔隙结构的影响
孔隙结构也是影响储集层损害的一个重 要因素,特别是喉道的大小、几何形状对 储集层的伤害最为敏感。
二、外来流体与储集层相互作用导致 储集层的损害
1、外来流体中固相颗粒的侵入
固相颗粒可分为两大类: 一类是为了达到流体某种性质而加入的添加剂;
另一类是混入流体中的矿物或其它杂质的碎屑。
1、敏感性矿物的影响
敏感性矿物的概念
指储集层中与流体接触易发生物理、化学或物理化 学反应并导致渗透率大幅度下降的一类矿物。
常见的敏感性矿物可分为水敏性矿物、酸敏性矿物 、碱敏性矿物、盐敏性矿物及速敏性矿物。矿物当与水溶液作用时,将产生晶 格膨胀或分散破碎,从而堵塞孔隙或喉道,使储集层 渗透率下降,此类矿物称之为水敏性矿物,通常具有 阳离子交换容量大的特点。
2、储集层内部颗粒运移
储集层中的细小矿物颗粒在外来流体的流速过大或 存在压力激烈波动时,在流体冲刷作用下,未胶结或胶 结疏松的颗粒发生运移,至狭窄的喉道处,形成堵塞。 有时还会形成“油井出砂”。
3、储集层内部化学沉淀或结垢
外来流体与组成储集岩的矿物或储集岩中流体相接 触时,在地层条件下,经物理、化学、生物作用,将在 孔隙壁上形成化学沉淀或结垢,使孔隙缩小、吼道堵塞 ,储集层物性变差。 乳化物、有机结垢、无机结垢、某些化 学沉淀物
第1章 储层表征概论
一、油藏评价阶段
A 2•
•1
•4 A’
探明油气藏 评价油气藏 开发可行性评价
•6
A 2• •3
•1
•4 A’
5•
2 A
1
4
A’
231
4
A
A’
282280200000
284000
282680600000
实 例
544000 544000
400 200
0
200 400 m
400 200 0 200 400
1. 储层系统的层次性与复杂性
地层层次
据Van Wagoner(1990)
106 104
102
1
储层层次
多砂体规模
(层序-层组)
单砂体规模
(层)
纹层组规模 纹层规模 孔隙规模
据Pettijion(1973)
储层层次界面 与层次结构
界面分级
Miall(1985,1988,1991,1996)
主要分为6级
具自然产能,储层敏感性一般较强
(2)特低渗储层(10-1)
微孔隙发育,束缚水饱和度高,测井解释有难度; 自然产能一般达不到工业标准,需压裂投产
(3)低渗近致密储层(1-0.1)
孔喉半径小,接近油层下限;
几无自然产能,需大型压裂投产
标准致密储层(0.1-0.01)
(4) 低渗致密储层 (<0.1)
只能作为储气层(非常规气层),
544000 544000
•构造图 •砂体分布图(岩性边界) •油水界面 •井眼油气水干层解释
油水界面
546000 546000
548000 548000
550000 550000
油气井增产技术-酸化
绪论 第1章 酸化基本原理 第2章 油井酸化工艺技术 第3章 酸化设计 第4章 酸化过程中的储层伤害及评价
1
第二部分 酸化酸压技术
绪论 第1章 酸化基本原理 第2章 油井酸化工艺技术 第3章 酸化设计 第4章 酸化过程中的储层伤害及评价
2
绪论
油层酸化是利用酸液能溶解岩石中所含盐类物质 (岩石胶结物或地层孔隙(裂缝)内堵塞物等)的特 性,扩大近井地带油层的孔隙度,提高地层渗透率, 改善油、气流动状况,增加油气产量的一种增产措 施。
13
一、砂岩储层酸化增产的基本原理
未污染油井酸化前后的采油指数之比:
Js
1
J
1
1 xs
1
ln(rs ln(re
/ /
rw rw
) )
xs ks / k (范围为1~20)
对于这样未污染的井,如果井筒周围的渗透率增加20 倍,表皮系数只能从0下降到-1.3,采油指数也只能增加 20%左右。即使渗透率变为无穷大(无流动阻力),产能 也只能增加20%左右。
14
一、砂岩储层酸化增产的基本原理
未污染油井与污染油井采油指数之比:
J Jd
1
1 xd
1
ln(rd ln(re
/ /
rw rw
) )
xd kd / k (范围为0.5~1)
对于严重污染井,xd 5% ,表皮系数26,J 4.5Jd ;
15
一、砂岩储层酸化增产的基本原理
基本结论: (1)地层存在严重污染时,基质酸化处理可以大幅
(2)溶蚀孔道或天然裂缝中的堵塞物质,破坏泥浆、 水泥及岩石碎屑等堵塞物的结构,使之与残酸液一起 排出地层,起到疏通流动通道的作用,解除堵塞物的 影响,恢复地层原有的渗流能力。
储层地质
2、论述扇三角洲与辫状三角洲在古地理背景条件、岩石学特征和储集体形态三个 方面的主要区别。
扇三角洲是从邻近高地直接进入到稳定水体中的冲积扇。辫状河三角洲是 辫状冲积平原体系或辫状河进入稳定水体而形成的粗粒三角洲。这两类三 角洲都发育有陆上和水下的部分,其水下部分沉积特征类似,水上沉积特 征具有明显的区别。 扇三角洲发育的自然地理环境为断块、山前和火山高地,也就是在湖盆边 缘邻近高差大、坡度陡的隆起区,同时常与同沉积期大型断裂带相伴。 辫状河三角洲发育的自然地理环境为辫状河、辫状平原和冰川外冲积平原。 从岩石学特征上来看,扇三角洲沉积物分选差,可见砾岩、角砾岩、砂岩 和泥岩,常见巨砾和大砾,且粒序性不常见,颗粒为棱角和次圆状,说明 结构成熟度较低;辫状河三角洲主要为砾岩和砂岩沉积,分选性中—好、 粒序性常见,颗粒为次圆—圆状,成熟度相对较高。 从储集体形态来看,扇三角洲侧向连续性差,纵向上楔状,横向上为透镜 状,规模常较小,数十平方公里或更小;辫状河三角洲侧向连续性中—好, 平面上呈现席状,规模较大,可达几百平方公里。
《储层地质学》
第一章 绪论 1、储集岩:具有孔隙空间并能储渗流体的岩石。 2、储层:是地层的一部分,是能储存和产出流体的那一部分岩层组或层段。 3、储层地质学:是研究储层成因类型、特征、形成、演化、几何形态、分 布规律,还涉及储层的研究方法和描述技术以及储层评价和预测的综合性地 质学科。 石油天然气储层地质学的主要研究内容。 储层地质学是研究油气储层成因类型、特性、形成、演化、几何形态、分布规律, 还涉及储层的研究方法和描述技术以及储层评价和预测的综合性地质学科。 其主要研究内容有:(1)储集岩的岩石类型;(2)储集岩的岩石学特征;(3) 储集岩的主要含油物性;(4)成岩作用与孔隙演化研究;(5)储集岩的微观特 征研究;(6)储集岩体的形态、分布及连续性研究;(7)储层形成条件;(8) 储集岩非均质性研究;(9)储层综合研究方法及储层描述技术;(10)储层伤 害的地质因素探讨;(11)储层评价与预测;(12)储层地质建模。
第024章:储层敏感性及其评价
储层敏感性
油气储层与外来流体发生各种物理或 化学作用而使储层孔隙结构和渗透性 发生变化的性质
(一) 储层损害的原因和类型
外来颗粒的侵入和堵塞 外来固相颗粒的侵入和堵塞 外来微粒的侵入和堵塞 外来流体与岩石的相互作用 粘土矿物的水化膨胀 地层内部微粒迁移 酸化过程中的化学沉淀 外来流体与储层流体的不配伍性 乳化堵塞 无机结垢 有机结垢 铁锈与腐蚀产物的堵塞 微生物作用 细菌堵塞
(二) 储层敏感性机理
储层的水敏性 储层速敏性 储层酸敏性
1、储层水敏性
(1) 概念 当与地层不配伍的外来流体进入地层 后,引起粘土矿物的水化、膨胀、分散、 迁移,从而导致渗透率下降的现象
(2) 粘土矿物的膨胀性 水敏性矿物:蒙脱石、伊蒙混层 (3) 外来流体性质与临界盐度
2、储层速敏性
(1)概念 储层因外来流体流动速度的变化引 起地层内部微粒迁移,堵塞喉道,造成 渗透率下降的现象。
(2)水敏性流动实验与评价
水敏指数: Iw = (KL- K*w)/ KL
(3)盐敏性流动实验与评价
(4)酸敏性实验与评价
酸敏指数: Ia = (Kw - Kwa)/ Kw
(5) 正反向流动试验
运移敏感指数:
Im = (Kmax - Kmin)/ K反
(6) 体积流量评价试验
(胶结物的稳定性)
(2)速敏矿物与地层微粒
储层中的速敏矿物:高岭石、毛发状伊利石 膨胀后的水敏矿物:蒙脱石、伊蒙混层 胶结不坚固的碎屑微粒 油层酸化处理后释放的碎屑微粒
(3)流体性质对速敏性的影响
低盐度:水敏矿物膨胀 高PH值:使地层微粒增加 分散剂:释放地层微粒
3、储层酸敏性
酸化液进入地层后,与地层中的 酸敏矿物发生反应,产生沉淀或释放 微粒,使地层渗透率下降的现象。 酸敏矿物:
A01井控的基本概念-第一章讲解
第1章井控的基本概念油气田勘探开发井下作业,涉及试油、大修、作业、测试、酸化、压裂等工作,随着油田稳产增产的需要,维修及措施作业的油(气、水)井也逐渐增多,行业多、知识广;井下作业过程中不确定因素很多,无论油(气、水)井井底压力的高低,都有发生井喷或失控的可能,井控难度大,一旦发生井喷及井喷失控事故,造成的人员伤害、环境污染、设备和油气井损坏及其损失,触目惊心,骇人听闻。
为保护油气资源确保井下作业安全,集团公司先后出台了《中国石化集团公司石油与天然气井井控管理规定》、《油气水井井下作业井控技术规程》等标准和规定,不断地规范和完善井下作业井控技术管理工作。
1.1 井控相关概念井下作业是实施石油天然气勘探开发的重要手段,井下作业井控是一项牵涉到施工设计、装备配套、生产组织、现场管理、员工培训等多个环节系统工程,必须把不断提高员工的井控意识、技术素质和管理水平作为一项重要工作来抓,才能保证安全、优质、高效的完成井下作业施工。
1.1.1 名词解释1.1.1.1井控(Well Control):井控是实施油气井压力控制的简称。
在井下作业过程中,只有控制地层压力,保持井内压力平衡,才能保证作业施工的顺利进行。
1.1.1.2井侵(Influx):当地层压力大于井底压力时,地层孔隙中的流体(油、气、水)将侵入井内,通常称为井侵。
最常见的井侵为气侵、水侵和油侵等。
1.1.1.3溢流(Overflow):井侵发生后,井口返出的压井液量大于泵入液量,停泵后井口压井液自动外溢,这种现象称为溢流。
1.1.1.4井涌(Well kick):溢流进一步发展,井液涌出井口的现象称为井涌。
1.1.1.5井喷(Well Blowout):当井底压力远小于地层压力时,地层流体大量涌入井筒并喷出地面的现象称为井喷。
1.1.1.6井喷失控(Out of Control for Blowout):井喷发生后,无法用常规方法控制井口而出现井口敞喷的现象称为井喷失控。
油层物理最新习题 有答案 第一章
1第一章油层物理判断题1.不均匀系数愈大,则粒度组成愈均匀。
(错)2.三种不同基准体积的比面之间的关系Sp >Ss>Sb。
(正确)3.三种不同孔隙度之间的关系应为流动<有效<绝对。
4.平均压力愈大,则滑动效应愈显著。
(错)5.平均孔道半径愈小,则对滑动效应愈显著。
(正确)6.储层埋藏愈深,则孔隙度愈大。
(错)7.粒度组成分布曲线尖峰愈高,则粒度组成愈均匀。
(正)8.地层水矿化度愈高,则粘土膨胀能力愈强。
(错)9.颗粒平均直径愈大,则岩石比面愈大。
(错)10.胶结物含量愈大,则岩石比面愈大。
(错)11.粒度组成愈均匀,则岩石孔隙度愈大。
(正确)12.离心法测出的岩石孔隙度是有效孔隙度。
(错)13.饱和煤油法测出的岩石孔隙度是流动孔隙度。
(错)14.岩石比面愈大,则岩石的绝对渗透率愈小。
(正确)15.平行于层理面的渗透率小于垂直于层理面的渗透率。
(错)16.同一岩样的气测渗透率必定大于其液测渗透率。
(正确)17.分选系数愈大,则粒度组成愈均匀。
(错)18.绝对渗透率在数值上等于克氏渗透率。
(正确)19.粘土矿物中蒙脱石的膨胀能力是最强的。
(正确)20.油藏总弹性能量中流体弹性能量一定大于岩石骨架的弹性能量。
(错)2 第一章油层物理选择题1-1 若某岩样的颗粒分布愈均匀,即意味着不均匀系数愈,或者说其分选系数愈。
A、大,大;B、大,小;C、小,大;D、小,小答案为D1-2 岩石比面愈大,则岩石的平均颗粒直径愈,岩石对流体的吸附阻力愈。
A、大,大;B、大,小;C、小,大;D、小,小答案为C1-3 若Sf 、Sp、Ss分别为以岩石的外表体积、孔隙体积、骨架体积为基准面的比面,则三者的关系为。
A、Sf >Sp>SsB、Ss>Sp>SfC、Sp>Ss>SfD、Sf>Ss>Sp答案为C1-4 若a 、e、d分别为岩石的绝对孔隙度、有效孔隙度、流动孔隙度,则三者的关系为。
长江大学油藏物理第一章(地层油水的 性质)
1 地层油的密度和相对密度 2 地层原油的溶解气油比 3 地层原油的体积系数 4 地层原油的压缩系数 5 地层原油的粘度 6 原油凝固点
地层原油的特点: 地层原油处于高温高压状态,油中溶解有大量的天然气。
一. 地层油的密度和相对密度
1、地下原油由于溶解有大量的天然气。其密度通常要比地面脱气原油密度小。 2、地下原油密度随温度的增加而下降。 3、当压力小于饱和压力时,由于随压力增加,溶解的天然气量增加,因而原油
4、压力对地层原油粘度的影响
(1)当P>Pb 时,粘度随压力的降低而减小。
(2)当P<Pb时,粘度随压力降低而增大。(这是由于随地层压力的降低,
溶解气量减小。) (3)当P=Pb时,粘度最小。
六、原油凝固点
原油的凝固点是指原油冷却由流动态到失去流动性的临界温度点。 石蜡的初始结晶温度,随溶解气量的增加而降低。
收缩率表示:
(1)定义收缩系数为原油体积系数的倒数,即δo=1/B o =Vos/Vf。用收缩系数乘以地层条件下的体积,可求得地
面脱气油体积;反之,用体积系数乘以地面脱气油体积,
也可求得地层油体积。这样很方便地进行地面油体积与地
层油体积的换算。 (2)收缩率定义为 (V f Vos ) /V f (Bo 1) / Bo 。从
成因系数
水型
Na Cl
SO
2 4
1
硫酸钠型
Na Cl
SO
2 4
1
重碳酸钠型
Cl Na 1 Mg 2
氯化镁型
Cl Na 1 Mg 2
氯化钙型
环
境
大陆冲刷环境
(地面水)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地层伤害
一、储层伤害类型(可能因素)
二、储层伤害预防 三、储层伤害确定方法
储层伤害
储层伤害
降低地层孔隙度渗透率,降低油藏产能 污染浅(井筒壁面),易于解除;污染深,难于解除 原因:钻井,完井,修井,注水,生产,增产作业
一、储层伤害的可能因素
一、储层伤害的可能因素
1.固体颗粒堵塞孔隙
氯化物 scales
温度降低 水蒸发
酸中溶解度小 通常用水能清除
2.流体污染
常见垢
Silica scales
Finely crystallized deposits of chalcedony or amorphous opal玉髓蛋白石 Usually from dissolution of siliceous minerals by
2.流体污染
垢
水不溶化学物质沉淀产生 形成原因
条件改变,打破溶液平衡 与不配伍水混合 压力下降, 温度, 溶解气, 粘度, 成核位置, and metal type
条件改变可能原因
位置:油管,射孔,或地层 常见垢:calcium carbonate, calcium sulfate, and barium(钡) sulfate Water-formed scales are most troublesome
可能难于去除且作业费用昂贵 最好的办法是预防 钻井、完井和生产作为一个整体预防污染
包括计划、实施与质量保证. 任何阶段的实施、质量控制和材料都可能影响整个过 程的效果,即使设计和实施很好
1. 固体颗粒侵入预防
减轻固体颗粒污染方法:
固体颗粒尺寸大于孔隙尺寸,固体颗粒桥塞在井壁上而不进入 孔隙中 杀菌 注水质量控制 微粒运移:临界流速一下 射孔穿透污染带或酸化
三、污染确定方法
钻井伤害实验
岩心编号
初始标准盐水渗透率(md) S3-6H() 19.40 下游出液先是清彻,之后微浑,呈淡 黄色,有少许棕红色岩粉细粒,出液 泥浆污染24h 量达13ml(13ml滤液大概产生泥饼) 之后不再出液。取出岩心观察:岩心 端部被泥饼堵死。 标准盐水渗透率(md) 钻井液对渗透率伤害率(%) 泥浆再污染24h 正向:2.44 反向:3.79 80.5 YK1() 31.67 下游一直出液,出液呈淡黄褐色,澄 清,24h内出液大约16.1ml(约产生
降低水敏措施
足够一价离子浓度,至少 2 wt% of KCl 足够二价离子比例:至少10%的阳离子为二价离子
2.流体污染
乳化
乳化:两种互不相溶的液体形成 乳化形成原因
机械混合油水 引入表面活性剂或微粒,使小液体稳定 pH 改变使乳化稳定
乳化液表观粘度远高于油
通常为non-Newtonian,需要足够的力克服屈服应力才 能流动
注入的固体
2)
固体附着于孔隙表面:
注入固体,微粒运移,不容物沉淀,细菌
3)
中等尺寸颗粒桥塞孔喉
注入固体,微粒运移,不容物沉淀,细菌
1.固体颗粒堵塞
微粒堵塞模式
cake formation by large particles
surface deposition of adhering particles
plugging by depositing particles
1.固体颗粒堵塞
外来固体颗粒
1. 钻、完井、作业 2. 注水
1.固体颗粒堵塞
微粒运移
1. 改变水化学成分 • 隙间水盐度变化,水敏 • 离子组成 2. 流体流动,剪切力变化
微粒运移
pore filling smectite(蒙脱石)
Arrangement of clays Chemical state at movement of contact Location of clay with respect to fluid 最常见的膨胀粘土 体积可增加 60% 如果在大的孔隙及孔喉里,膨胀更严重
蒙脱石及其混合物
细菌污染
细菌能快速生长 堵塞孔隙
细菌本身 细菌生物活动产生沉淀
来源于注入水 能大大降低渗透率 用杀菌剂处理注入水
2.流体污染
通过改变以下因素污染地层
油相表观粘度 相对渗透率
Could be considered temporary as mobile phase 有时难于去除
微粒运移取决于:
微粒表面积:取决于晶体结构 微粒所在位置:孔隙空间,为基质一部分或胶结物
Scanning electron microscopy (SEM) Focused dispersive X-ray analysis Core flow tests Kaolinite(高岭石), smectite (montmorillonite) (蒙脱石), illite(伊利石), and chlorite(绿泥石)
Ca+2 + 2HCO3- ↔ CaCO3 (s) + H2O + CO2 (g)
注入液高含钙(如 CaCl2)使反应向右,生成 CaCO3)沉淀 降低压力释放 CO2 (如降低 CO2 浓度)产生 CaCO3 沉淀
1.固体颗粒堵塞
有机沉淀
最常见的是石蜡 waxes (paraffins) 和沥青质asphaltenes 石蜡:
2.流体污染
常见垢
Calcium carbonate or calcite (CaCO3)
Gypsum (CaSO4 . 2H2O)石膏
富含 calcium or bicarbonate ions(碳酸氢根)的水,压力下降, 产生垢,受CO2 析出影响。
石油工业里最常见的 sulfate scale 较不常见的硫酸盐沉淀 能引起广泛的问题 难于去除,溶剂或酸中难溶。 通常形成于与不配伍水混合,压力下降、气析出和紊流加剧形 成。 barium 与 sulfate 离子混合就会产生沉淀。 Some are naturally occurring radioactive material scales
Rate of filtrate invasion depends on:
Formation of filter cake Erosion of filter cake
C uf 3600b t
uf : filtrate flux C : dynamic fluid loss coefficient for filter cake (from laboratory dynamic fluid loss test) t : exposure time (hr) b : constant accounting for mechanical stability of filter cake (2x10-8 to 5x10-7 cm3/cm2) : shear rate at wall (sec-1)
Overpressured surge stimulation well configuration
3.机械压实
正压射孔后的裂缝
3.机械压实
正压处理后压力恢复测试结果
3.机械压实
地层强度低时,或油藏压力降低,井附 近地层会坍塌
地层强度低 酸化降低地层强度 近井带油藏压力过低
二、储层伤害预防
泥饼)。取出岩心观察:端部未被堵
死。 正向:3.70 反向:5.35 83.1
末端基本不出液,取出岩心观察:端 末端基本不出液,取出岩心观察:端
部被堵死 正向:1.81 反向:2.03 89.5 部被堵死 正向:2.09 反向:3.10 90.2
标准盐水渗透率(md) 钻井液对渗透率伤害率(%)
钻井伤害:滤液侵入
微粒类型和可动性检查方法:
最常见的运移微粒:
1.固体颗粒堵塞
微粒属性
1.固体颗粒堵塞
不溶物沉淀物
沉淀类型
ห้องสมุดไป่ตู้
盐类无机沉淀 来源于油的有机沉淀
以下因素改变导致沉淀
温度 压力 注入液体组成
1.固体颗粒堵塞
无机沉淀
通常二价离子(例如Ca+2 钡与碳酸盐和硫酸盐 离子) 盐成分改变,打破初始化学平衡,产生沉淀 如:
易碎地层 酸化降低地层强度
3.机械压实
射孔压实作用 污染深度: ¼ to ½ inches 污染渗透率: 7% to 20%的原渗透率
3.机械压实
正压射孔和增产作业
Typical tubing conveyed overbalanced perforating well configuration
Barium sulfate (BaSO4)
2.流体污染
常见垢
Iron scales
Iron carbonate and iron sulfide 难于去除 Usually in formations with high back-ground iron count and tendency to precipitate calcium carbonate 多数形式的 iron sulfide scales 在 HCl中溶解度小 形成原因