2020-2021佛山市高三数学下期末一模试卷(含答案)

合集下载

2020-2021佛山市高三数学下期末一模试卷(含答案)

2020-2021佛山市高三数学下期末一模试卷(含答案)

2020-2021佛山市高三数学下期末一模试卷(含答案)一、选择题1.设z 立2i ,则|z|1iA. 0B. -C. 1D. J222.从分别写有数字1 , 2, 3, 4, 5的5张卡片中随机抽取1张,放回后再随机抽取则抽得的第一张卡片上的数字不大于第二张卡片的概率是()3.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是1张,A.10 B.310C. D.4.右边程序框图的算法思路源于我国古代数学名著〈〈九章算术》中的更相减损术执行A. 01B. 26 ______ _____ C. 45. 1 1 x展开式中x2的系数为()xA. 15B. 20C. 30D. 14 D. 35该程序框图,若输入a,b分别为14,18,则输出的a ()6.抛掷一枚质地均匀的硬币两次,在第一次正面向上的条件下,第二次反面向上的概率为()1112 A,— B.-C D.-43237.数列2,5,11,20,x, 47...中的xW ()A. 28B. 32C. 33D. 278.若/、等式ax22ax 4 2x2 4x对任意实数x均成立,则实数a的取值范围是()A. ( 2 , 2)B.(,2) (2,)C. ( 2, 2]D.(,2]9.甲、乙、丙、丁四名同学组成一个4x100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是()A.甲B.乙C.丙D. 丁10.已知当m , n [ 1 , 1)时,sin -m . n 3 32 2A. m nB. |m| |n|C. m nD. m与n的大小关系不确定11.渐近线方程为x y0的双曲线的离心率是( )A. B.12C.3D.212.已知a R ,贝U “ a0” 是“ f(x) x2ax是偶函数”的(A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题1 、..13.右二点A( 2,3), B(3, 2),C(§,m)共线,则m的值为.14.已知椭圆—匕1的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中9 5点在以原点。

2020-2021学年广东省佛山市南海中学高二(下)第一次段考数学试卷(含答案解析)

2020-2021学年广东省佛山市南海中学高二(下)第一次段考数学试卷(含答案解析)

2020-2021学年广东省佛山市南海中学高二(下)第一次段考数学试卷一、单选题(本大题共8小题,共40.0分)1. 若函数f(x)在R 上可导,且满足f(x)>xf′(x),则( )A. 3f(1)>f(3)B. 3f(1)<f(3)C. 3f(1)=f(3)D. f(1)=f(3) 2. 复数z 满足(−2−i)z =5(i 为虚数单位),则z =( )A. −2+iB. 2−iC. −2−iD. 2+i 3. 函数f(x)=sinπx −ax 2+bx +16的最大值为32,且对任意实数x ,都有f(1−x)=f(x),则有( )A. a =−43,b =−43B. a =43,b =43C. a =−23,b =23D. a =2,b =2 4. 已知数列{a n }是等差数列,若a 7+3a 13<0,a 11⋅a 12<0,且数列{a n }前n 项和S n 有最大值,那么S n 取最小正值时,n 等于( )A. 22B. 21C. 20D. 19 5. 在△ABC 中,满足sin 22A +sin 22B =sin 22C ,则下列说法中错误的是( )A. C 可能为π4B. C 可能为π2C. C 可能为3π4D. △ABC 可能为等腰Rt △ 6. 长方体ABCD −A 1B 1C 1D 1的长,宽,高分别是3,2,1,则该长方体的体对角线是( )A. √14B. 2+√10C. 3√2D. 2√3 7. 设f′(x)为函数f(x)的导函数,已知x 2f′(x)+xf(x)=lnx ,f(1)=12,则下列结论正确的是( )A. xf(x)在(0,+∞)单调递增B. xf(x)在(1,+∞)单调递减C. xf(x)在(0,+∞)上有极大值12D. xf(x)在(0,+∞)上有极小值12 8. 已知定义在R 上的可导函数y =f(x)的导函数为f′(x),满足f′(x)<f(x),且y =f(x +1)为偶函数,f(2)=1,则不等式f(x)<e x 的解集为( )A. (−∞,e 4)B. (e 4,+∞)C. (−∞,0)D. (0,+∞) 二、多选题(本大题共4小题,共20.0分) 9. 若复数z =a +bi(a,b ∈R),z −为其共轭复数,定义:−z =−a +bi.对任意的z =a +bi ,下列结论正确的是( )A. |z|=|z −|=|−z |B. z −+−z =0C. z ⋅z −=z ⋅−zD. 若b ≠0,则z −z 为纯虚数 10. 若实数t ≥2,则下列不等式中一定成立的是( )A. (t +2)ln(t +3)<(t +3)ln(t +2)B. (t +1)t+2>(t +2)t+1C. log t (t +1)<1+1tD. log (t+1)(t +2)>log (t+2)(t +3)11. 如图所示,正方体ABCD −A′B′C′D′的棱长为1,E ,F 分别是棱AA′,CC′的中点,过直线EF 的平面分别与棱BB′,DD′交于M ,N ,设BM =x ,x ∈(0,1),则正确的说法是( )A. 四边形MENF 为平行四边形B. 若四边形MENF 面积S =f(x),x ∈(0,1),则f(x)有最小值C. 若四棱锥A −MENF 的体积V =p(x),x ∈(0,1),则p(x)是常函数D. 若多面体ABCD −MENF 的体积V =ℎ(x),x ∈(12,1),则ℎ(x)为单调函数12. 已知a ,b ∈R ,b ≠0,a ≠b ,f(x)=b(x −a)2(x −b),则( ) A. 若a 是极大值点,则ab <b 2B. 若a 是极小值点,则ab >b 2C. 关于x 的方程f(x)=f(a+2b3)有三个实根D. 关于x 的方程f(x)=f(2a+b3)有三个实根 三、单空题(本大题共3小题,共15.0分)13. 已经如图,圆锥、球内切于圆柱,则其体积之比,圆锥体积:球体积:圆柱体积为______.14. 复数z =−3+i2+i 的模是______ .15. 若{(2,1)}是关于x ,y 的方程组{ax +by =2bx +ay =7的解集,则(a +b)(a −b)= . 四、多空题(本大题共1小题,共5.0分)16. 定义在(0,+∞)上的函数f(x)满足:①当x ∈[1,3)时,f(x)={x −1,1≤x ≤23−x,2<x <3;②f(3x)=3f(x). (i)f(6)= ;(ii)若函数F(x)=f(x)−a的零点从小到大依次记为x1,x2,…,x n,…,则当a∈(1,3)时,x1+x2+⋯+x2n−1+x2n=.五、解答题(本大题共5小题,共58.0分)17.设函数f(x)=13ax3+12bx2+(1−2a)x,a,b∈R,a≠0.(1)若b=4a,求f(x)的单调递增区间;(2)若曲线y=f(x)与x轴相切于异于原点的一点,且f(x)的极小值为−43a,求a,b的值.18.在如图所示的几何体中,四边形ACC1A1是矩形,FC1//BC,EF//A1C1,∠BCC1=90°,点A,B,E,A1在一个平面内,AB=BC=CC1=2,AC=2.证明:(1)A1E//AB.(2)平面CC1FB⊥平面AA1EB.19.已知曲线f(x)=e x(ax+1)在x=1处的切线方程为y=bx−e.(Ⅰ)求a,b值.(Ⅱ)若函数g(x)=f(x)−3e x−m有两个零点,求实数m的取值范围.20.已知在平面内点P满足|PM|−|PN|=2√2,M(−2,0),N(2,0),O(0,0)(1)求点P的轨迹S;(2)直线过点(2,0)与S交于点A,B,求△OAB的面积的最小值.21.已知函数f(x)=xlnx+(1−k)x+k,k∈R.(1)当k=1时,求函数f(x)的单调区间;(2)当x>1时,求使不等式f(x)>0恒成立的最大整数k的值.参考答案及解析1.答案:A解析:解:设g(x)=f(x)x ,g′(x)=xf′(x)−f(x)x 2 ∵f(x)>xf′(x),∴g′(x)=xf′(x)−f(x)x 2<0 即g(x)在R 上单调递减函数∴f(1)1>f(3)3即3f(1)>f(3)故选:A .根据条件f(x)>xf′(x)可构造函数g(x)=f(x)x ,然后得到函数的单调性,从而得到所求.本题主要考查了导数除法的运算法则,以及利用构造法是解题的关键,同时考查了运算求解的能力,属于基础题.2.答案:A解析:解:由(−2−i)z =5,得z =5−2−i =5(−2+i)(−2−i)(−2+i)=−2+i .故选:A .把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题. 3.答案:B解析:本题考查函数性质的综合运用,考查运算求解能力,属于中档题.根据题意,建立关于a ,b 的方程组,解出即可.解:易知函数y =sinπx 关于x =12对称,又对任意实数x ,都有f(1−x)=f(x),故函数f(x)关于x =12对称,∴函数y =−ax 2+bx +16关于x =12对称,又函数f(x)的最大值为32,故f(12)=32,∴{b2a=12sin(π2)−a(12)2+12b+16=32⟹a=b=43.故选:B.4.答案:B解析:解:在等差数列{a n}中,由a7+3a13<0,得2(a11+a12)<0,即a11+a12<0,又a11⋅a12<0,∴a11,a12异号,由数列{a n}的前n项和S n有最大值,可知数列为递减数列,则a11>0,a12<0,且|a11|<|a12|,∴S21=21a11>0,S22=22(a1+a22)2=11(a11+a12)<0,则当S n取得最小正值时,n=21.故选:B.由等差数列的性质结合a7+3a13<0,得a11+a12<0,再由a11⋅a12<0,可得a11,a12异号,而数列{a n}的前n项和S n有最大值,可知数列为递减数列,由此可得S21>0,S22<0,则答案可求.本题考查等差数列的前n项和,考查了等差数列的性质,是中档题.5.答案:B解析:解:若C=π4,取A=π2,B=π4,此时三个内角满足sin22A+sin22B=0+1=1=sin22C,故A正确且D正确.若C=π2,则sin22A+sin22B=0,故sin2A=sin2B=0,故2A,2B∈(0,2π),故2A=2B=π,所以A=B=π2,与内角和为π矛盾,故B错误.若C=3π4,取A=B=π8,则2A+2B=π2,此时三个内角满足sin22A+sin22B=12+12=1=sin22C,故C正确.故选:B.根据三角函数值关系,利用特殊值法进行排除即可.本题主要考查三角恒等变换的应用,利用特殊值法是解决本题的关键,是中档题.6.答案:A解析:解:∵长方体的长、宽、高分别为3,2,1,∴长方体的对角线长为√32+22+12=√14.。

2020年佛山市高中三年级数学下期末一模试卷(附答案)

2020年佛山市高中三年级数学下期末一模试卷(附答案)

2020年佛山市高中三年级数学下期末一模试卷(附答案)一、选择题1.设,x y 满足约束条件3002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则3z x y =+的最小值是 A .5-B .4C .3-D .112.已知数列{}n a 的前n 项和为n S ,点(,3)n n S +*()n N ∈在函数32xy =⨯的图象上,等比数列{}n b 满足1n n n b b a ++=*()n N ∈,其前n 项和为n T ,则下列结论正确的是( )A .2n n S T =B .21n n T b =+C .n n T a >D .1n n T b +<3.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35C .25 D .154.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( ) A .19B .29C .49D .7185.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭6.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,b =c =( )A.B .2CD .17.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为A .12B .512C .14D .168.已知函数()2cos 2[0,]2f x x x m π=+-在上有两个零点,则m 的取值范围是A .(1,2)B .[1,2)C .(1,2]D .[l,2]9.在ABC V 中,若3,120AB BC C ==∠=o ,则AC =( ) A .1B .2C .3D .410.若0,0a b >>,则“4a b +≤”是 “4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件11.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .12.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .34二、填空题13.已知数列{}n a 的前n 项和为21nn S =-,则此数列的通项公式为___________.14.已知是数列的前项和,若,则_____.15.在区间[1,1]-上随机取一个数x ,cos2xπ的值介于1[0,]2的概率为 .16.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,3a =b=1,则c =_____________17.函数()23s 34f x in x cosx =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 18.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.19.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.20.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是三、解答题21.在△ABC 中,已知AC =4,BC =3,cosB =-14. (1)求sin A 的值; (2)求·BA BC u u u v u u u v的值.22.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且acos C +3asin C -b -c =0.(1)求A ;(2)若AD 为BC 边上的中线,cos B =17,AD =1292,求△ABC 的面积. 23.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:喜欢游泳不喜欢游泳合计男生10女生20合计已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为. (1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率. 下面的临界值表仅供参考: P0.150.100.050.0250.0100.0050.001(K 2≥k) k2.0722.7063.8415.0246.6357.87910.828(参考公式:22n(ad bc)K (a b)(c d)(a c)(b d)-=++++,其中n=a+b+c+d )24.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,连接BD ,其中DA DP =,BA BP =.(1)求证:PA BD ⊥;(2)若DA DP ⊥,060ABP ∠=,2BA BP BD ===,求二面角D PC B --的正弦值.25.如图,在正方体1111ABCD A B C D -中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ; (2)平面//EFG 平面11BDD B .26.在平面直角坐标系xOy 中,直线l 的参数方程为21x ty at =+⎧⎨=-⎩(t 为参数,a R ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,线C 的极坐标方程是224πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)己知直线l 与曲线C 交于A 、B 两点,且7AB =a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】画出不等式组表示的可行域如图阴影部分所示.由3z x y =+可得3y x z =-+.平移直线3y x z =-+,结合图形可得,当直线3y x z =-+经过可行域内的点A 时,直线在y 轴上的截距最小,此时z 也取得最小值.由300x y x y -+=⎧⎨+=⎩,解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩,故点A 的坐标为33(,)22-.∴min 333()322z =⨯-+=-.选C . 2.D解析:D 【解析】 【分析】 【详解】由题意可得:332,323n nn n S S +=⨯=⨯- ,由等比数列前n 项和的特点可得数列{}n a 是首项为3,公比为2的等比数列,数列的通项公式:132n n a -=⨯ ,设11n nb b q -= ,则:111132n n n b q b q --+=⨯ ,解得:11,2b q == ,数列{}n b 的通项公式12n nb -= ,由等比数列求和公式有:21nn T =- ,考查所给的选项:13,21,,n n n n n n n n S T T b T a T b +==-<< .本题选择D 选项.3.B解析:B 【解析】 【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.4.C解析:C 【解析】试题分析:由题为古典概型,两人取数作差的绝对值的情况共有36种,满足|a-b|≤1的有(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(1,2)(2,1)(3,2)(2,3)(3,4)(4,3)(5,4)(4,5)(5,6)(6,5)共16种情况,则概率为;164369p == 考点:古典概型的计算.5.C解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.6.B解析:B 【解析】1333,sin A ===3cos A =, 所以()222313232c c =+-⨯⨯,整理得2320,c c -+=求得1c =或 2.c = 若1c =,则三角形为等腰三角形,030,60A C B ===不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想. 当求出3cos A =后,要及时判断出0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.7.B解析:B 【解析】记两个零件中恰好有一个一等品的事件为A ,即仅第一个实习生加工一等品(A 1)与仅第二个实习生加工一等品(A 2)两种情况, 则P (A )=P (A 1)+P (A 2)=2 3×14+13×34=512故选B.8.B解析:B 【解析】 【分析】 【详解】试题分析:利用辅助角公式化简函数为()3sin 2cos 2f x x x m =+-,令,则,所以此时函数即为.令有,根据题意可知在上有两个解,根据在函数图像可知,.考点:辅助角公式;;零点的判断;函数图像.9.A解析:A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.10.A解析:A 【解析】 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当0, 0a >b >时,2a b ab +≥,则当4a b +≤时,有24ab a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.11.A解析:A 【解析】【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值, 因此函数()1,0122,0xxx f x x >⎧=⊕=⎨≤⎩, 只有选项A 中的图象符合要求,故选A.12.B解析:B 【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B. 【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.二、填空题13.【解析】【分析】由数列的前项和为得时得出;验证时是否满足即可【详解】当时当时又所以故答案为:【点睛】本题考查了由数列的前项和公式推导通项公式的计算问题;解题时需验证时是否满足是基础题解析:12n n a -=【解析】 【分析】由数列{}n a 的前n 项和为23n n S =-,得2n >时1123n n S --=-,,得出1n n n a S S -=-;验证1n =时11a S =是否满足n a 即可. 【详解】当1n =时,11211a S ==-=, 当2n ≥时,()11121212nn n n n n a S S ---=-=---=,又1121-=,所以12n n a -=. 故答案为:12n n a -=.【点睛】本题考查了由数列{}n a 的前n 项和公式n S 推导通项公式n a 的计算问题;解题时,需验证1n =时11a S =是否满足n a ,是基础题.14.4950【解析】【分析】由an+Sn =2nan+1+Sn+1=2n+1两式相减可得2an+1﹣an =2n 即可计算【详解】解:∵an+Sn =2nan+1+Sn+1=2n+1两式相减可得2an+1﹣an 解析:【解析】 【分析】由a n +S n =2n ,a n +1+S n +1=2n +1,两式相减可得2a n +1﹣a n =2n .即可计算. 【详解】解:∵a n +S n =2n ,a n +1+S n +1=2n +1, 两式相减可得2a n +1﹣a n =2n .则(2a 2﹣a 1)(2a 3﹣a 2)…(2a 100﹣a 99)=21•22•23…299=24950.【点睛】本题考查了数列的递推式,属于中档题.15.【解析】试题分析:由题意得因此所求概率为考点:几何概型概率解析:13【解析】试题分析:由题意得1220cos,[1,1]112232222333xx x x x x πππππππ≤≤∈-⇒≤≤-≤≤-⇒≤≤-≤≤-或或,因此所求概率为22(1)13.1(1)3-=--考点:几何概型概率16.2【解析】【分析】根据条件利用余弦定理可建立关于c 的方程即可解出c 【详解】由余弦定理得即解得或(舍去)故填2【点睛】本题主要考查了利用余弦定理求三角形的边属于中档题解析:2 【解析】 【分析】根据条件,利用余弦定理可建立关于c 的方程,即可解出c. 【详解】由余弦定理2222cos a b c bc A =+-得231c c =+-,即220c c --=,解得2c =或1c =-(舍去).故填2. 【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.17.1【解析】【详解】化简三角函数的解析式可得由可得当时函数取得最大值1解析:1【解析】 【详解】化简三角函数的解析式, 可得()22311cos 3cos cos 3cos 44f x x x x x =-+-=-++= 23(cos )12x --+, 由[0,]2x π∈,可得cos [0,1]x ∈, 当3cos x =时,函数()f x 取得最大值1. 18.【解析】【分析】【详解】试题分析:当时的最大值为令解得所以a 的取值范围是考点:利用导数判断函数的单调性解析:1(,)9-+∞ 【解析】 【分析】 【详解】试题分析:2211()2224f x x x a x a ⎛⎫=-++=--++ ⎪⎝⎭'.当23x ⎡⎫∈+∞⎪⎢⎣⎭,时,()f x '的最大值为22239f a ⎛⎫=+ ⎪⎝⎭',令2209a +>,解得19a >-,所以a 的取值范围是1,9⎛⎫-+∞ ⎪⎝⎭.考点:利用导数判断函数的单调性.19.【解析】【详解】因为所以①因为所以②①②得即解得故本题正确答案为解析:12-【解析】 【详解】 因为,所以,①因为,所以,②①②得,即, 解得, 故本题正确答案为20.2025【解析】设这三个数:()则成等比数列则或(舍)则原三个数:152025解析:20 25 【解析】 设这三个数:、、(),则、、成等比数列,则或(舍),则原三个数:15、20、25三、解答题21.(1)31516;(2)32-【解析】 【分析】 (1)先求得15sin 4B =,再根据正弦定理求得sin A 即可; (2)根据余弦定理解得2AB =,再由数量积的定义求解即可 【详解】 (1)1cos 4B =-Q , 15sin B ∴=, 根据正弦定理可得,sin sin BC ACA B=,即3sin 15A =,315sin 16A ∴=(2)根据余弦定理可得,2222cos AC AB BC AB AC B =+-⋅⋅, 即2223432AB AB =++,解得2AB =, 13cos 2342BA BC BA BC B ⎛⎫∴⋅=⋅⋅=⨯⨯-=- ⎪⎝⎭u u u r u u u r【点睛】本题考查利用正弦定理求角,考查向量的数量积运算,考查运算能力 22.(1)A =60°;(2)3【解析】 【分析】(1)利用正弦定理,把边化为角,结合辅助角公式可求;(2)利用三角形内角关系求出sin C ,结合正弦定理求出,a c 关系,利用余弦定理可求,a c .【详解】(1)acos C+3asin C-b-c=0,由正弦定理得sin Acos C+3sin Asin C=sin B+sin C,即sin Acos C+3sin Asin C=sin(A+C)+sin C,又sin C≠0,所以化简得3sin A-cos A=1,所以sin(A-30°)=1 2 .在△ABC中,0°<A<180°,所以A-30°=30°,得A=60°.(2)在△ABC中,因为cos B=17,所以sin B=437.所以sin C=sin(A+B)=3×17+12×43=53.由正弦定理得,sin7sin5 a Ac C==.设a=7x,c=5x(x>0),则在△ABD中,AD2=AB2+BD2-2AB·BDcos B,即1294=25x2+14×49x2-2×5x×12×7x×17,解得x=1,所以a=7,c=5,故S△ABC=12acsin B=103.【点睛】本题主要考查利用正弦定理和余弦定理解三角形,合理选择公式是求解的关键. 23.(1)列联表见解析;(2)有99.9%的把握认为喜欢游泳与性别有关;(3).【解析】试题分析:(1)根据在100人中随机抽取1人抽到喜欢游泳的学生的概率为35,可得喜爱游泳的学生,即可得到列联表;(2)利用公式求得2K与邻界值比较,即可得到结论;(3)利用列举法,确定基本事件的个数,即利用古典概型概率公式可求出恰好有1人喜欢游泳的概率.试题解析:(1)因为在100人中随机抽取1人抽到喜欢游泳的学生的概率为,所以喜欢游泳的学生人数为人其中女生有20人,则男生有40人,列联表补充如下:喜欢游泳不喜欢游泳合计男生401050女生203050合计6040100(2)因为所以有99.9%的把握认为喜欢游泳与性别有关(3)5名学生中喜欢游泳的3名学生记为a ,b ,c ,另外2名学生记为1, 2,任取2名学生,则所有可能情况为(a ,b )、(a ,c )、(a ,1)、(a ,2)、(b ,c )、(b ,1)、(b ,2)、(c ,1)、(c ,2)、(1,2),共10种.其中恰有1人喜欢游泳的可能情况为(a ,1)、(a ,2)、(b ,1)、(c ,1)、 (c ,2),共6种所以,恰好有1人喜欢游泳的概率为【方法点睛】本题主要考查古典概型概率公式,以及独立性检验的应用,属于中档题,利用古典概型概率公式,求概率时,找准基本事件个数是解题的关键,在找基本事件个数时,一定要按顺序逐个写出:先11(,)A B ,12(,)A B …. 1(,)n A B ,再21(,)A B ,22(,)A B …..2(,)n A B 依次31(,)A B 32(,)A B ….3(,)n A B … 这样才能避免多写、漏写现象的发生.24.(1)见解析;(2) 43sin α= 【解析】试题分析:.(1)取AP 中点M ,易证PA ⊥面DMB ,所以PA BD ⊥,(2)以,,MP MB MD 所在直线分别为,,x y z 轴建立空间直角坐标系,平面DPC 的法向量(13,1,3n =--u v ,设平面PCB 的法向量2n u u v=3,1,3,121212•1cos ,7n n n n n n ==u v u u vu v u u v u v u u v ,即43sin 7α=. 试题解析:(1)证明:取AP 中点M ,连,DM BM , ∵DA DP =,BA BP =∴PA DM ⊥,PA BM ⊥,∵DM BM M ⋂= ∴PA ⊥面DMB ,又∵BD ⊂面DMB ,∴PA BD ⊥(2)∵DA DP =,BA BP =,DA DP ⊥,060ABP ∠=∴DAP ∆是等腰三角形,ABP ∆是等边三角形,∵2AB PB BD ===,∴1DM =,3BM =.∴222BD MB MD =+,∴MD MB ⊥以,,MP MB MD 所在直线分别为,,x y z 轴建立空间直角坐标系, 则()1,0,0A -,()3,0B ,()1,0,0P ,()0,0,1D从而得()1,0,1DP =-u u u v ,()3,0DC AB ==u u u v u u u u u v ,()1,3,0BP =-u u u v ,()1,0,1BC AD ==u u u v u u u v设平面DPC 的法向量()1111,,n x y z =u v则11•0•0n DP n DC ⎧=⎪⎨=⎪⎩u v u u u vu v u u u v ,即1111030x z x -=⎧⎪⎨+=⎪⎩,∴(13,1,3n =--u v , 设平面PCB 的法向量()2212,,n x y z =u u v,由22•0•0n BC n BP ⎧=⎪⎨=⎪⎩u u v u u u vu u v u u u v ,得2222030x z x +=⎧⎪⎨-=⎪⎩,∴23,1,3n =-u u v ∴121212•1cos ,7n n n n n n ==u v u u vu v u u v uv u u v 设二面角D PC B --为α,∴21243sin 1cos ,n n α=-=u v u u v点睛:利用法向量求解空间二面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 25.(1)证明见解析(2)证明见解析 【解析】 【分析】(1)结合几何体,因为,E G 分别是,BC SC 的中点,所以//EG SB .,再利用线面平行的判定定理证明.(2)由,F G 分别是,DC SC 的中点,得//FG SD .由线面平行的判定定理//FG 平面11BDD B .,再由(1)知,再利用面面平行的判定定理证明.【详解】 证明: (1)如图,连接SB ,,E G Q 分别是,BC SC 的中点,//EG SB ∴.又SB ⊂Q 平面11,BDD B EG ⊄平面11BDD B ,所以直线//EG 平面11BDD B .(2)连接,,SD F G Q 分别是,DC SC 的中点,//FG SD ∴.又∵SD ⊂平面11,BDD B FG ⊄平面11,BDD B//FG ∴平面11BDD B .又EG ⊂平面,EFG FG ⊂平面,EFG EG FG G ⋂=, ∴平面//EFG 平面11BDD B . 【点睛】本题主要考查了线面平行,面面平行的判断定定理,还考查了转化化归的能力,属于中档题.26.(1)l 的普通方程210ax y a +--=;C 的直角坐标方程是22220x y x y +--=;(2)3【解析】 【分析】(1)把直线l 的标准参数方程中的t 消掉即可得到直线l 的普通方程,由曲线C 的极坐标方程为ρ=2(θ4π+),展开得2222ρ=(ρsinθ+ρcosθ),利用x cos y sin ρθρθ=⎧⎨=⎩即可得出曲线C 的直角坐标方程; (2)先求得圆心C 到直线AB 的距离为d ,再用垂径定理即可求解.【详解】(1)由直线l 的参数方程为21x ty at=+⎧⎨=-⎩,所以普通方程为210ax y a +--=由曲线C的极坐标方程是4πρθ⎛⎫=+ ⎪⎝⎭,所以22sin 2cos 4πρθρθρθ⎛⎫=+=+ ⎪⎝⎭, 所以曲线C 的直角坐标方程是22220x y x y +--=(2)设AB 的中点为M ,圆心C 到直线AB 的距离为d,则MA =, 圆()()22:112C x y -+-=,则r =()1,1C ,12d MC ====,由点到直线距离公式,12d ===解得a =±,所以实数a的值为±.【点睛】本题考查了极坐标方程化为直角坐标方程、直线参数方程化为普通方程,考查了点到直线的距离公式,圆中垂径定理,考查了推理能力与计算能力,属于中档题.。

广东省佛山市普通高中2021 届高三教学质量检测数学(理)试题Word版含解析

广东省佛山市普通高中2021 届高三教学质量检测数学(理)试题Word版含解析

广东省佛山市普通高中2021 届高三教学质量检测数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,若,,则( )A. B. C. D.【答案】B【解析】由题意得,,∴.故选B.2.复数为虚数单位)的共轭复数( )A. B. C. D.【答案】C【解析】分析:利用复数的除法法则、加法法则把化为形式,再由共轭复数的定义得解.详解:,∴.故选C.点睛:复数的运算,难点是乘除法法则,设,则,.3已知,则( )A. B. C. D.【答案】D【解析】分析:已知,由同角关系式求得,然后由两角差的余弦公式求值.详解:∵,∴,∴,故选D.点睛:在应用同角间的三角函数关系特别是平方关系求函数值时,一定要先确定角的象限,这样才能确定(或)的正负,否则易出现错误结论.4.已知等差数列的前项为,且,,则( )A. 90B. 100C. 110D. 120【答案】A【解析】分析:是等比数列,因此把两已知等式相除可化简.详解:设公差为,,∴,,,,∴,故选A.点睛:等差数列与等比数列之间通过函数的变换可以相互转化,如是等差数列,则是等比数列,如是等比数列且均为正,则是等差数列.5.某同学用收集到的6组数据对(x i,y i)(i=1,2,3,4,5,6)制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线l的方程:x,相关指数为r.现给出以下3个结论:①r>0;②直线l恰好过点D;③1;其中正确的结论是A. ①②B. ①③C. ②③D. ①②③【答案】A【解析】由图可知这些点分布在一条斜率大于零的直线附近,所以为正相关,即相关系数因为所以回归直线的方程必过点,即直线恰好过点;因为直线斜率接近于AD斜率,而,所以③错误,综上正确结论是①②,选A.6.函数的最小正周期和振幅分别是( )A. B. C. D.【答案】B【解析】分析:应用诱导公式有,从而函数易化为一个三角函数的形式:,然后利用物理意义得出结论.详解:,∴,振幅为2,故选B.点睛:函数的物理意义:表示振幅,为周期,为频率,为相位,为初相.7.下列函数中,既是奇函数又存在零点的是( )A. B. C. D.【答案】D【解析】分析:利用奇函数的定义判断各函数是琐是奇函数,再通过解方程或画出函数的图象可判断各函数是否零点.详解:是奇函数,但没有零点;不是奇函数;是奇函数,但没有零点;是奇函数,也有零点.故选D.点睛:解决本题首先要掌握函数奇偶性的定义,即满足恒成立,则为奇函数,满足恒成立,则为偶函数,判断奇偶性一般用定义判断,有时也可从图象是否关于原点或轴对称进行判断;其次要掌握零点的定义,即解方程以确定零点;第三本题一般要对每一个函数进行判断才可得出结论.8.执行如图所示的程序框图,当输出的时,则输入的的值为( )A. -2B. -1C.D.【答案】B【解析】若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,符合题意;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;综上选B.9.已知,设满足约束条件,且的最小值为-4,则( )A. 1B. 2C. 3D. 4【答案】C【解析】分析:作出可行域,同时作出直线,由得,因此当直线向上平移时,纵截距增大,减小,从而知过点时取得最小值,求出点坐标代入后可得值.详解:作出可行域,如图内部,并作直线,当直线向上平移时,减少,可见,当过点时,取得最小值,∴,,故选C.点睛:线性规划问题,一般是作出可行域,作出目标函数对应的直线(目标函数中令),然后平移这条直线,最后所过可行域的点就是最优解;把目标函数化为直线方程的点斜式,会发现增大减小与直线的纵截距增大减小之间的关系,从而可确定直线是向上平移还是向下平移,从而得最优解.10.已知分别为双曲线的左顶点、右焦点以及右支上的动点,若恒成立,则双曲线的离心率为( )A. B. C. 2 D.【答案】C【解析】分析:设P点坐标为,写出直线PA、PF的斜率,利用及它们与斜率的关系可建立的方程,此即为P点的轨迹方程与双曲线标准方程比较可得关系,从而得离心率.详解:设,又,∵,∴,,又,∴,整理得,这是P点的轨迹方程,又P点轨迹方程为,∴,∴,故选C.点睛:求双曲线的离心率,一般要求出的一个关系等式,这可从双曲线的几何性质分析得出,本题中由于已知是,而这两个角可以与相应直线的斜率有关,因此可以通过正切的二倍角公式建立P点的轨迹方程,这应该是双曲线的标准方程,比较后得出的关系.这种方法比较特殊,可以体会学习.11.如图,正方形的棱长为 4 ,点分别在底面、棱上运动,且,点为线段运动时,则线段的长度的最小值为( )A. 2B.C. 6D.【答案】B【解析】【分析】由已知确定点M的轨迹,由QA⊥AP,知MA=2,从而M在以A为圆心,2为半径的球面上,从而可求得的轨迹,由球的性质可得结论.【详解】由题意,,而M是PQ的中点,所以AM=2,即M在以A为球心,2为半径的球面上,又,∴的最小值为.故选B.【点睛】立体几何中与动点有关的最值问题,一般可先确定动点的轨迹,如本题球面,再利用空间几何体的性质求解.12.已知函数,曲线关于直线对称,现给出如结论:①若,则存在,使;②若,则不等式的解集为;③若,且是曲线的一条切线,则的取值范围是.其中正确结论的个数为( )A. 0B. 1C. 2D. 3【答案】D【解析】由题意得过点,且所以,因此,①若,则由,因此存在②若,则,此时,图像如图所示,因此不等式等价于,即不等式的解集为;③若,且,如图,则是曲线的一条切线,设切点为,则,因为,所以,由,所以,综上,正确结论的个数为3,选D.点睛:求范围问题,一般利用条件转化为对应一元函数问题,即通过题意将多元问题转化为一元问题,再根据函数形式,选用方法求值域,如二次型利用对称轴与定义区间位置关系,分式型可以利用基本不等式,复杂性或复合型可以利用导数先研究单调性,再根据单调性确定值域.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知均为单位向量,且它们的夹角为120°,则__________.【答案】【解析】分析:由把模转化为向量的数量积计算即可.详解:,故答案.点睛:向量的数量积是平面向量的重要内容,几乎向量的大多数问题都与数量积有关,如向量的夹角,向量的模等,其公式为,.14.的展开式中的常数项是 .【答案】【解析】,常数项r=4,,填15.15.若抛物线的焦点在直线上,则直线截抛物线的弦长为__________.【答案】40【解析】分析:求出已知直线与轴的交点坐标,得抛物线的焦点,然后求出抛物线方程中的参数,联立直线方程与抛物线方程求出两交点坐标,最后由两点间距离公式求得弦长.详解:在中,令得,∴,,即抛物线方程为,由,解得或,∴弦长为,故答案为40.点睛:(1)由抛物线标准方程确定焦点的位置,从而确定要求出直线与哪个坐标轴的交点坐标,得参数,如果焦点位置不确定,则可能有两解;(2)求直线与抛物线的交点弦长,可以先求出交点坐标,再由两点间距离公式得解,也可借助于圆锥曲线中的弦长公式求解,这种方法利用韦达定理,可以避免解方程中方程根较复杂不易求的情况.16.若使得成立的最小整数,则使得成立的最小整数__________.【答案】18【解析】分析:解指数不等式,可利用取对数的方法求解,再由题意估计出的范围,同样用取对数的方法解不等式得,由刚才的的范围,得出的范围,从而可得要求的最小整数.详解:由得,∴,,即,,即,由得,,∴,即最小整数为18,故答案为18.点睛:解指数不等式一般采用两边取对数的方程,化指数不等式为一般的多项式不等式,从而求解.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图 ,在平面四边形中,.(Ⅰ)若,求的面积;(Ⅱ)若,求.【答案】(1)(2)【解析】分析:(Ⅰ)由余弦定理求出,再用公式求得面积;(Ⅱ)设,在中用正弦定理表示出,然后在中把用表示后,再由正弦定理得的等式,从而可求出.详解:(Ⅰ)在中,由余弦定理得,,即,解得或(舍去),所以的面积.(Ⅱ)设,在中,由正弦定理得,,即,所以.在中,,则,即,即,整理得.联立,解得,即.点睛:在已知两边和一边对角时一般可用正弦定理求出另一边所对角,从而得三角形的第三角及第三边,也可直接利用余弦定理列出关于第三边的方程,解方程得第三边长.18.如图,在多面体中,平面,直线与平面所成的角为30°,为的中点.(Ⅰ)求证:平面平面;(Ⅱ)求二面角的大小.【答案】(1)见解析(2)60°【解析】分析:(Ⅰ)由BD⊥平面ABC得BD⊥AC,上AC⊥AB,得AC⊥平面ABDE,从而知∠CDA是直线CD与平面ABDE 所成的角为30°,这样可求得AC与BC的关系从而确定是等腰直角三角形,于是取BC中点为O,有AO⊥BC,因此可证AO⊥平面CBD,又可证AOME是平行四边形,即得AO//EM,于是有EM⊥平面BCD,最终可证得面面垂直;(Ⅱ) 以为原点,建立空间直角坐标系如图所示,不妨设,写出各点坐标,然后求出平面BCE和平面BEM的法向量,利用向量法可求得二面角.详解:(Ⅰ)连接,取的中点为,连接.因为平面平面,所以,又,所以平面,则为直线与平面所成的角,即.所以,所以是等腰直角三角形,则,又平面,所以,所以平面.又分别是的中点,所以又,所以,故四边形是平行四边形,所以,所以平面,又平面,所以平面平面.(Ⅱ)以为原点,建立空间直角坐标系如图所示,不妨设,则,所以.设平面的法向量为,则,即,解得,令,得;设平面的法向量为,则,即,解得,令,得;所以,所以二面角的大小为60°.点睛:立体几何中求二面角有两种基本方法,第一种方法是根据二面角的定义作出二面角的平面角,通过解三角形求出平面角,得二面角大小;第二种方法是建立空间直角坐标系,利用空间向量法求解,此法关键是求平面的法向量,同时要判断二面角是钝角还是锐角.19.单位计划组织55名职工进行一种疾病的筛查,先到本单位医务室进行血检,血检呈阳性者再到医院进一步检测.已知随机一人血检呈阳性的概率为 1% ,且每个人血检是否呈阳性相互独立.(Ⅰ) 根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检人员随机等分成若干组,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样全部为阴性,不必再化验;若结果呈阳性,则本组中至少有一人呈阳性,再逐个化验.现有两个分组方案:方案一: 将 55 人分成 11 组,每组 5 人;方案二:将 55 人分成5组,每组 11 人;试分析哪一个方案工作量更少?(Ⅱ) 若该疾病的患病率为 0.4% ,且患该疾病者血检呈阳性的概率为99% ,该单位有一职工血检呈阳性,求该职工确实患该疾病的概率.(参考数据:)【答案】(1)方案二工作量更少.(2)39.6%.【解析】分析:(Ⅰ)方案一中化验次数为1或者6,方案二中化验次数为1或13,分别求出两种方案化验次数的分布列,求出期望,通过比较期望大小可得结论;(Ⅱ) 设事件:血检呈阳性;事件:患疾病.则题意有,利用条件概率公式可得,注意要求的概率是P(B|A).详解:(Ⅰ)方法1:设方案一中每组的化验次数为,则的取值为1,6.所以,所以的分布列为1 60.951 0.049所以.故方案一的化验总次数的期望为:次.设方案二中每组的化验次数为,则的取值为1,12,所以,所以的分布列为1 120.895 0.105所以.故方案二的化验总次数的期望为:次.因,所以方案二工作量更少.方法 2:也可设方案一中每个人的化验次数为,则的取值为.方案二中每个人的化验次数为 ,则的取值为.同方法一可计算得,因,所以方案二工作量更少.(Ⅱ)设事件:血检呈阳性;事件:患疾病.则由题意有,由条件概率公式,得,故, 所以血检呈阳性的人确实患病的概率为 39.6%.点睛:本题是概率的实际应用,要比较工作量的多少,从概率角度考虑,可求出两种方案的工作量的平均值,这可通过化验次数的概率分布率,求出平均值(期望).条件概率公式,要注意字母的顺序,如,否则易出错.20.已知椭圆的左、右焦点为.过作直线交椭圆于,过作直线交椭圆于,且垂直于点.(Ⅰ)证明:点在椭圆内部;(Ⅱ)求四边形面积的最小值.【答案】(1)见解析(2)【解析】分析:(Ⅰ)由可求得,从而椭圆标准方程,再由已知求出点轨迹方程为,而此圆在题设椭圆内部,因此可证P点在椭圆内部;(Ⅱ)分类讨论,当斜率不存在时,可求出四边形ABCD的面积,同理当斜率不0时,与刚才一样,当斜率存在且不为0时,设方程为,这样就有方程为,设,利用圆锥曲线中的弦长公式求得弦长,同理可得弦长,于是可得面积为的函数,利用函数的知识可求得的最小值,从而得出结论.详解:(Ⅰ)由题意得,故,所以椭圆方程为.由于分别为过两焦点, 且垂直相交于点,则的轨迹为以为直径的圆,即的轨迹方程为,又因为,所以点在椭圆内部.(Ⅱ)①当斜率不存在时,直线的方程为, 此时直线的方程为,此时四边形的面积为.同时当斜率为0时,此时的斜率不存在,易得.②当斜率存在且不为0时,设直线方程为,直线方程为,设,联立,消去整理得,所以,所以.同理得则令,则即当,即时,综合上式①②可得,当时,.求最值的其它方法:,令,得,因为,当时,,且是以为自变量的增函数,所以. 综上可知,. 即四边形面积的最小值为.方法二:①当斜率为0,此时直线轴,此时四边形的面积为.同时当斜率为0时,此时轴,易得.②当斜率存在且不为0时,设直线方程为,直线方程为,设,联立,消去整理得,所以,所以.同理得则下同解法一.点睛:要圆锥曲线中直线与圆锥曲线相交的弦长问题,一般是把直线与圆锥曲线方程联立方程组,消元得一元二次方程,同时设两交点坐标为,利用韦达定理得(或),再由弦长公式得弦长,这是解析几何中的“设而不求”思想.21.已知,函数.(Ⅰ)若有极小值且极小值为0,求的值;(Ⅱ)当时,, 求的取值范围.【答案】(1)(2)【解析】分析:(Ⅰ)求出导函数,通过研究的解,确定和的解集,以确定的单调性,从而确定是否有极小值,在有极小值时,由极小值为0,解得值,如符合上述范围,即为所求;(Ⅱ)先把不等式f(x)+f(-x)≥0具体化为:,可分类讨论此不等式成立的情形,时恒成立,由于对恒成立,因此只要,不等式满足恒成立,接着还要研究时,不等式恒成立的的范围,此时再分类:当时,恒成立,当时,恒成立,这时可换元,设,则问题转化为对恒成立,对恒成立,可利用导数求最值,由最值>0或<0确定出的范围.详解:(Ⅰ). ①若,则由解得,当时,递减;当上,递增;故当时,取极小值,令,得(舍去).若,则由,解得.(i)若,即时,当,.递增;当上,递增.故当时,取极小值,令,得(舍去)(ii )若,即时,递增不存在极值;(iii)若,即时,当上,递增;,上,递减;当上,递增.故当时,取极小值,得满足条件.故当有极小值且极小值为0时,(Ⅱ)等价于,即当时,①式恒成立;当时,,故当时,①式恒成立;以下求当时,不等式恒成立,且当时不等式恒成立时正数的取值范围.令,以下求当恒成立,且当,恒成立时正数的取值范围.对求导,得,记.(i)当时,,故在上递增,又,故,即当时,式恒成立;(ii)当时,,故的两个零点即的两个零点和,在区间上,是减函数,又,所以,当时①式不能恒成立.综上所述,所求的取值范围是.点睛:本题中在研究时,不等式恒成立,可转化为恒成立,因此可设,问题为求的最小值,求导得,要确定它的正负,为此设,再求导有,恒成立,即在上单调递增,又,∴时,,当时,,因此,递减,时,递增,又,因此有当时,,从而有,即.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为为参数,).以坐标原点为极点,以轴正半轴为极轴的极坐标系中,曲线上一点的极坐标为,曲线的极坐标方程为.(Ⅰ)求曲线的极坐标方程;(Ⅱ)设点在上,点在上(异于极点),若四点依次在同一条直线上,且成等比数列,求的极坐标方程.【答案】(1).(2)【解析】试题分析:(1)先根据平方关系消元得曲线的直角坐标方程,再根据将直角坐标方程化为极坐标方程,最后代入A点坐标解出,(2)先设直线的极坐标方程为,代入,得交点极径或关系,根据成等比数列得,代入化简可得.试题解析:(Ⅰ)曲线的直角坐标方程为,化简得,又,所以代入点得,解得或(舍去).所以曲线的极坐标方程为.(Ⅱ) 由题意知,设直线的极坐标方程为,设点,则.联立得,,所以.联立得,.因为成等比数列,所以,即.所以,解得.经检验满足四点依次在同一条直线上,所以的极坐标方程为.23.选修4-5:不等式选讲设函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若函数的图象与直线所围成的四边形面积大于20,求的取值范围.【答案】(1)(2)【解析】试题分析:(1)根据绝对值定义将不等式化为两个不等式组,分别求解,最后求并集,(2)先根据绝对值定义化为分段函数形式,作图可得形状为梯形,根据梯形面积公式列不等式,解不等式可得的取值范围. 试题解析:(Ⅰ)当时,不等式为.若,则,解得或,结合得或.若,则,不等式恒成立,结合得.综上所述,不等式解集为.(Ⅱ)则的图象与直线所围成的四边形为梯形,令,得,令,得,则梯形上底为, 下底为 11,高为..化简得,解得,结合,得的取值范围为.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

2020-2021佛山市高一数学上期末一模试卷(含答案)

2020-2021佛山市高一数学上期末一模试卷(含答案)

2020-2021佛山市高一数学上期末一模试卷(含答案)一、选择题1.已知2log e =a ,ln 2b =,121log 3c=,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>2.设4log 3a =,8log 6b =,0.12c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .c b a >>3.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦4.德国数学家狄利克在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f (x )由右表给出,则1102f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值为( )A .0B .1C .2D .35.若函数*12*log (1),()3,x x x N f x x N⎧+∈⎪=⎨⎪∉⎩,则((0))f f =( ) A .0B .-1C .13D .16.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-17.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>8.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .59.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。

广东省佛山市第一中学2020-2021学年高三数学理下学期期末试题含解析

广东省佛山市第一中学2020-2021学年高三数学理下学期期末试题含解析

广东省佛山市第一中学2020-2021学年高三数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 四棱锥的底面为正方形,侧面为等边三角形,且侧面底面,点在底面正方形内(含边界)运动,且满足,则点在正方形内的轨迹一定是A. B. C.D.参考答案:B2. 已知全集,,,则(?uM)N为A. B. C. D.参考答案:C3. 在R上定义运算:x y=x(1-y).若不等式(x-a)(x+a)<1对任意实数x成立,则(▲)A. B. C. D.参考答案:C4. 执行如图所示的程序框图,若输出的值为,则输入的值为()A. 3 B. 4 C. 5 D.6参考答案:C5. 已知,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件参考答案:A6. 用半径为R 的圆铁皮剪一个内接矩形,再以内接矩形的两边分别作为圆柱的高与底面半径,则圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比为( ) A .B .C .D .参考答案:C【考点】棱柱、棱锥、棱台的体积.【分析】设圆柱的高为x ,则其为内接矩形的一边长,那么另一边长为y=2,利用导数性质求出当x=时,此圆柱体积最大.由此能求出圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比.【解答】解:设圆柱的高为x ,则其为内接矩形的一边长,那么另一边长为y=2,∴圆柱的体积V (X )=πy 2x==π(﹣x 3+4R 2x ),(0<x <2R ),∴V′(x )=π(﹣3x 2+4R 2), 列表如下: (0,)(,2R )+﹣∴当x=时,此圆柱体积最大.∴圆柱体体积最大时,该圆内接矩形的两条边长分别为和2=,∴圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比为:=.故选:C .7. 已知变量x ,y 满足约束条件,则的取值范围是( )A .B .C .(﹣∞,3]∪[6,+∞)D .[3,6]参考答案:A【考点】简单线性规划的应用. 【专题】数形结合.【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,分析表示的几何意义,结合图象即可给出的取值范围.【解答】解:约束条件对应的平面区域如下图示:三角形顶点坐标分别为(1,3)、(1,6)和(),表示可行域内的点(x ,y )与原点(0,0)连线的斜率, 当(x ,y )=(1,6)时取最大值6, 当(x ,y )=()时取最小值,故的取值范围是故选A.【点评】平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.8. 直线的倾斜角等于()参考答案:C略9. 当时,则下列大小关系正确的是A.B.C.D.参考答案:10. 复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. (5分)阅读右侧程序框图,输出的结果i的值为.参考答案:7【考点】:程序框图.【专题】:算法和程序框图.【分析】:模拟执行程序框图,依次写出每次循环得到的S,i的值,当S=256时,满足条件S≥100,退出循环,输出i的值为7.解:模拟执行程序框图,可得S=1,i=3不满足条件S≥100,S=8,i=5不满足条件S≥100,S=256,i=7满足条件S≥100,退出循环,输出i的值为7.故答案为:7.【点评】:本题主要考查了程序框图和算法,正确得到每次循环S,i的值是解题的关键,属于基础题.12. ,则的值为( )A. B. C.D.-参考答案:A13. 已知△ABC 中,角C 为直角,D 是BC 边上一点,M 是AD 上一点,且|CD|=1,∠DBM=∠DMB=∠CAB,则|MA|= .参考答案:2【考点】HT :三角形中的几何计算.【专题】11 :计算题;35 :转化思想;4O :定义法;58 :解三角形.【分析】设∠DBM=θ,在△CDA 中,由正弦定理可得=,在△AMB 中,由正弦定理可得=,继而可得=,问题得以解决 【解答】解:设∠DBM=θ,则∠ADC=2θ,∠DAC=﹣2θ,∠AMB=﹣2θ,在△CDA 中,由正弦定理可得=,在△AMB 中,由正弦定理可得=,∴===,从而MA=2, 故答案为:2.14. 为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为.参考答案:5 15. 设,其中实数满足且,则的取值范围是 ▲ .参考答案:[21,31] 略16. 执行如图所示的程序框图,若输入的a 、b 的值分别为、4,则输出a 的值为参考答案:1617. 直线的倾斜角是__*___参考答案:略三、 解答题:本大题共5小题,共72分。

2020-2021佛山市高中必修二数学下期末第一次模拟试卷带答案

2020-2021佛山市高中必修二数学下期末第一次模拟试卷带答案

2020-2021佛山市高中必修二数学下期末第一次模拟试卷带答案一、选择题1.如图,在ABC V 中,90BAC ︒∠=,AD 是边BC 上的高,PA ⊥平面ABC ,则图中直角三角形的个数是( )A .5B .6C .8D .102.已知()()()sin cos ,02f x x x πωϕωϕωϕ=+++>,<,()f x 是奇函数,直线2y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增 D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增 3.已知ABC ∆是边长为4的等边三角形,P 为平面ABC 内一点,则•()PA PB PC +u u u v u u u v u u u v的最小值是() A .6-B .3-C .4-D .2-4.已知D ,E 是ABC V 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+u u u r u u u r u u u r,则xy 的取值范围是( ) A .14,99⎡⎤⎢⎥⎣⎦B .11,94⎡⎤⎢⎥⎣⎦C .21,92⎡⎤⎢⎥⎣⎦D .21,94⎡⎤⎢⎥⎣⎦5.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( ) A .53B .103C .56D .1166.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,//l m ,则m α⊥ C .若//l α,m α⊂,则//l mD .若//l α,//m α,则//l m7.函数()23sin 23f x x π⎛⎫=- ⎪⎝⎭的一个单调递增区间是 A .713,1212ππ⎡⎤⎢⎥⎣⎦ B .7,1212ππ⎡⎤⎢⎥⎣⎦C .,22ππ⎡⎤-⎢⎥⎣⎦D .5,66ππ⎡⎤-⎢⎥⎣⎦8.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 29.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)10.已知函数21(1)()2(1)ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-11.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生12.在空间四边形ABCD 的边AB ,BC ,CD ,DA 上分别取E ,F ,G ,H 四点,如EF 与HG 交于点M ,那么 ( ) A .M 一定在直线AC 上 B .M 一定在直线BD 上C .M 可能在直线AC 上,也可能在直线BD 上 D .M 既不在直线AC 上,也不在直线BD 上二、填空题13.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为______.14.()sin1013tan 70+=oo_____15.若x ,y 满足约束条件10,{30,30,x y x y x -+≥+-≥-≤则z=x−2y 的最小值为__________.16.在圆x 2+y 2+2x +4y -3=0上且到直线x +y +1=0的距离为2的点共有________个.17.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______18.若()1,x ∈+∞,则131y x x =+-的最小值是_____. 19.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩若()()10f a f +=,则实数a 的值等于________.20.某三棱锥的三视图如下图所示,正视图、侧视图均为直角三角形,则该三棱锥的四个面中,面积最大的面的面积是 .三、解答题21.已知函数31()log 1a m xf x x -=-(0a >,且1a ≠)的图象关于坐标原点对称.(1)求实数m 的值;(2)比较()2f 与()3f 的大小,并请说明理由.22.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=u u u r u u u r,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.23.已知二次函数()f x 满足()(1)2f x f x x -+=-且(0)1f =. (1)求()f x 的解析式;(2)当[1,1]x ∈-时,不等式()2x m f x >+恒成立,求实数m 的取值范围. 24.在ABC V 中,5,3,sin 2sin BC AC C A ===. (Ⅰ)求AB 的值; (Ⅱ)求sin 24A π⎛⎫-⎪⎝⎭的值. 25.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.26.某校高一()1班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(1)求分数在[)50,60的频数及全班人数;(2)求分数在[)80,90之间的频数,并计算频率分布直方图中[)80,90间矩形的高; (3)若要从分数在[)80,100之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[)90,100之间的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据线面垂直得出一些相交直线垂直,以及找出题中一些已知的相交直线垂直,由这些条件找出图中的直角三角形. 【详解】①PA ⊥Q 平面ABC ,,,,PA AB PA AD PA AC PAB ∴⊥⊥⊥∴∆,,PAD PAC ∆∆都是直角三角形;②90,BAC ABC ︒∠=∴Q V 是直角三角形; ③,,AD BC ABD ACD ⊥∴∆∆Q 是直角三角形;④由,PA BC AD BC ⊥⊥得BC ⊥平面PAD ,可知:,,BC PD PBD PCD ⊥∴∆∆也是直角三角形.综上可知:直角三角形的个数是8个,故选C .【点睛】本题考查直角三角形个数的确定,考查相交直线垂直,解题时可以充分利用直线与平面垂直的性质得到,考查推理能力,属于中等题.2.A解析:A 【解析】 【分析】首先整理函数的解析式为()24f x x πωϕ⎛⎫=++ ⎪⎝⎭,由函数为奇函数可得4πϕ=-,由最小正周期公式可得4ω=,结合三角函数的性质考查函数在给定区间的单调性即可. 【详解】由函数的解析式可得:()24f x x πωϕ⎛⎫=++ ⎪⎝⎭,函数为奇函数,则当0x =时:()4k k Z πϕπ+=∈.令0k =可得4πϕ=-.因为直线2y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π结合最小正周期公式可得:22ππω=,解得:4ω=.故函数的解析式为:()24f x x =. 当3,88x ππ⎛⎫∈⎪⎝⎭时,34,22x ππ⎛⎫∈ ⎪⎝⎭,函数在所给区间内单调递减;当0,4x π⎛⎫∈ ⎪⎝⎭时,()40,x π∈,函数在所给区间内不具有单调性; 据此可知,只有选项A 的说法正确. 故选A . 【点睛】本题主要考查辅助角公式的应用,考查了三角函数的周期性、单调性,三角函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.3.A解析:A 【解析】 【分析】建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解. 【详解】由题意,以BC 中点为坐标原点,建立如图所示的坐标系, 则(0,23),(2,0),(2,0)A B C -,设(,)P x y ,则(,23),(2,),(2,)PA x y PB x y PC x y =--=---=--u u u r u u u r u u u r,所以22()(2)(23)(2)2432PA PB PC x x y y x y y •+=-⋅-+-⋅-=-+u u u r u u u r u u u r222[(3)3]x y =+--,所以当0,3x y ==时,()PA PB PC •+u u u r u u u r u u u r取得最小值为2(3)6⨯-=-,故选A.【点睛】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的关键,着重考查了推理与运算能力,属于基础题.4.D解析:D 【解析】 【分析】利用已知条件推出x +y =1,然后利用x ,y 的范围,利用基本不等式求解xy 的最值. 【详解】解:D ,E 是ABC V 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+u u u r u u u r u u u r,可得x y 1+=,x ,12y ,33⎡⎤∈⎢⎥⎣⎦,则2x y 1xy ()24+≤=,当且仅当1x y 2==时取等号,并且()2xy x 1x x x =-=-,函数的开口向下, 对称轴为:1x 2=,当1x 3=或2x 3=时,取最小值,xy 的最小值为:29.则xy 的取值范围是:21,.94⎡⎤⎢⎥⎣⎦故选D . 【点睛】本题考查函数的最值的求法,基本不等式的应用,考查转化思想以及计算能力.5.A解析:A 【解析】 【分析】设5人分到的面包数量从小到大记为{}n a ,设公差为d ,可得345127()a a a a a ++=+,5100S =,求出3a ,根据等差数列的通项公式,得到关于d 关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为{}n a ,设公差为d , 依题意可得,15535()51002a a S a +===, 33451220,7()a a a a a a ∴=++=+, 6037(403)d d ∴+=-,解得556d =, 1355522033a a d ∴=-=-=. 故选:A. 【点睛】本题以数学文化为背景,考查等差数列的前n 项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.6.B解析:B 【解析】 【分析】利用,l α可能平行判断A ,利用线面平行的性质判断B ,利用//l m 或l 与m 异面判断C ,l 与m 可能平行、相交、异面,判断D . 【详解】l m ⊥,m α⊂,则,l α可能平行,A 错;l α⊥,//l m ,由线面平行的性质可得m α⊥,B 正确; //l α,m α⊂,则//l m , l 与m 异面;C 错,//l α,//m α,l 与m 可能平行、相交、异面,D 错,.故选B. 【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.7.A解析:A 【解析】 【分析】首先由诱导公式对函数的解析式进行恒等变形,然后求解其单调区间即可. 【详解】 函数的解析式即:()223sin 23sin 233f x x x ππ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭,其单调增区间满足:()23222232k x k k Z πππππ+≤-≤+∈, 解得:()7131212k x k k Z ππππ+≤≤+∈, 令0k =可得函数的一个单调递增区间为713,1212ππ⎡⎤⎢⎥⎣⎦. 故选A . 【点睛】本题主要考查诱导公式的应用,三角函数单调区间的求解等知识,意在考查学生的转化能力和计算求解能力.8.D解析:D 【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x +π12)=cos (2x +π6)=sin (2x +2π3)的图象,即曲线C 2, 故选D .点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数sin()()y A x x R ωϕ=+∈是奇函数π()k k Z ϕ⇔=∈;函数sin()()y A x x R ωϕ=+∈是偶函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是奇函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是偶函数π()k k Z ϕ⇔=∈.9.C解析:C 【解析】 【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案. 【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤. 故选:C .【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.10.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1,x >1时,()()21,10a a f x x f x x x=++'=-…在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1,综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.11.C解析:C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.12.A解析:A 【解析】如图,因为EF∩HG=M,所以M∈EF,M∈HG,又EF ⊂平面ABC ,HG ⊂平面ADC , 故M∈平面ABC ,M∈平面ADC , 所以M∈平面ABC∩平面ADC=AC. 选A. 点睛:证明点在线上常用方法先找出两个平面,然后确定点是这两个平面的公共点,再确定直线是这两个平面的交线.二、填空题13.36π【解析】三棱锥S −ABC 的所有顶点都在球O 的球面上SC 是球O 的直径若平面SCA⊥平面SCBSA=ACSB=BC 三棱锥S −ABC 的体积为9可知三角形SBC 与三角形SAC 都是等腰直角三角形设球的半解析:36π 【解析】三棱锥S−ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径, 若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S−ABC 的体积为9, 可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r , 可得112932r r r ⨯⨯⨯⨯= ,解得r=3. 球O 的表面积为:2436r ππ= .点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.14.【解析】【分析】将写成切化弦后利用两角和差余弦公式可将原式化为利用二倍角公式可变为由可化简求得结果【详解】本题正确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题涉及到两角和差余弦公式二 解析:1【解析】 【分析】tan 60o,切化弦后,利用两角和差余弦公式可将原式化为sin10cos10cos 60cos 70o oo o,利用二倍角公式可变为1sin 202cos 60cos 70⋅oo o,由sin 20cos70=o o 可化简求得结果. 【详解】()()cos 60cos 7060sin 70sin101sin101tan 60tan70sin1s 0co i s 60o 7n c s 0=++⋅=o o o ooooo ooo o()cos 7060sin10cos101sin 201sin101cos60cos70cos60cos702cos60cos702cos60-=⋅==⋅==o oo o o oo o o o o o o本题正确结果:1 【点睛】本题考查利用三角恒等变换公式进行化简求值的问题,涉及到两角和差余弦公式、二倍角公式的应用.15.【解析】【分析】【详解】试题分析:由得记为点;由得记为点;由得记为点分别将ABC 的坐标代入得所以的最小值为【考点】简单的线性规划【名师点睛】利用线性规划求最值一般用图解法求解其步骤是:(1)在平面直 解析:5-【解析】 【分析】 【详解】 试题分析:由10{30x y x y -+=+-=得12x y =⎧⎨=⎩,记为点()1,2A ;由10{30x y x -+=-=得34x y =⎧⎨=⎩,记为点()3,4Β;由30{30x x y -=+-=得3x y =⎧⎨=⎩,记为点()3,0C .分别将A ,B ,C 的坐标代入2z x y =-,得1223Αz =-⨯=-,3245Βz =-⨯=-,3203C z =-⨯=,所以2z x y =-的最小值为5-.【考点】 简单的线性规划 【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.16.3【解析】【分析】圆方程化为标准方程找出圆心坐标与半径求出圆心到已知直线的距离判断即可得到距离【详解】圆方程变形得:(x+1)2+(y+2)2=8即圆心(﹣1-2)半径r =2∴圆心到直线x+y+1=解析:3【分析】圆方程化为标准方程,找出圆心坐标与半径,求出圆心到已知直线的距离,判断即可得到距离. 【详解】圆方程变形得:(x +1)2+(y +2)2=8,即圆心(﹣1,-2),半径r =,∴圆心到直线x +y +1=0的距离d ==,∴r ﹣d =则到圆上到直线x +y +1=03个, 故答案为3. 【点睛】本题考查了直线与圆的位置关系,解题时注意点到直线的距离公式的合理运用.17.【解析】【分析】【详解】解:从1234这四个数中一次随机取两个数有(12)(13)(14)(23)(24)(34)共6种情况;其中其中一个数是另一个的两倍的有两种即(12)(24);则其概率为;故答解析:13【解析】 【分析】 【详解】解:从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况; 其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4); 则其概率为2163=; 故答案为13. 解析:简单考察古典概型的概率计算,容易题.18.【解析】【分析】由已知可知然后利用基本不等式即可求解【详解】解:(当且仅当取等号)故答案为【点睛】本题主要考查了利用基本不等式求最值解题的关键是配凑积为定值属于基础试题解析:3+【解析】 【分析】由已知可知()11y 3x 3x 13x 1x 1=+=-++--,然后利用基本不等式即可求解.解:x 1>Q ,()11y 3x 3x 13x 1x 1∴=+=-++--33≥=,(当且仅当1x =+取等号)故答案为3. 【点睛】本题主要考查了利用基本不等式求最值,解题的关键是配凑积为定值,属于基础试题.19.-3【解析】【分析】先求再根据自变量范围分类讨论根据对应解析式列方程解得结果【详解】当a>0时2a=-2解得a=-1不成立当a≤0时a+1=-2解得a=-3【点睛】求某条件下自变量的值先假设所求的值解析:-3 【解析】 【分析】先求()f a ,再根据自变量范围分类讨论,根据对应解析式列方程解得结果. 【详解】()()()102f a f f a +=⇒=-当a>0时,2a=-2,解得a=-1,不成立 当a≤0时,a+1=-2,解得a=-3 【点睛】求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.20.【解析】试题分析:该三棱锥底面是边长为2的正三角形面积为有两个侧面是底边为2高为2的直角三角形面积为2另一个侧面是底边为2腰为的等腰三角形面积为所以面积最大的面的面积是考点:三视图【解析】试题分析:该三棱锥底面是边长为2,有两个侧面是底边为2,高为2的直角三角形,面积为2,另一个侧面是底边为2,腰为.考点:三视图.三、解答题21.(1)1m =-;(2)当1a >时, ()()23f f >;当01a <<时, ()()23f f <,理由见解析 【解析】(1)将图象关于坐标原点对称转化为函数为奇函数,从而有()()f x f x -=-在函数的定义域内恒成立,进而求得m 的值,再进行检验; (2)根所在(1)中求得的m 值,得到1()log 1ax f x x +=-,再求得()()2,3f f 的值,对 a 分两种情况讨论,从而得到()()2,3f f 的大小关系.【详解】解:(1)31()log 1a m x f x x -=-Q ,31()()log 1a m x f x x -⋅-∴-=--.又Q 函数()f x 的图象关于坐标原点对称,()f x ∴为奇函数,()()f x f x ∴-=-在函数的定义域内恒成立,331()1log log 11a am x m xx x -⋅--∴=----, 331()1111m x m xx x -⋅--∴⋅=---,()6210m x ∴-=在函数的定义域内恒成立,1m ∴=-或1m =.当1m =时,函数的真数为1-,不成立,1m ∴=-.(2)据(1)求解知,1()log 1ax f x x +=-, (2)log 3a f ∴=,(3)log 2a f =.当1a >时,函数()log a g x x =在(0,)+∞上单调递增,23<Q ,log 2log 3(3)(2)a a f f ∴<⇒<;当01a <<时,函数()log a g x x =在(0,)+∞上单调递减,23<Q ,log 2log 3(3)(2)a a f f ∴>⇒>.【点睛】本题考查利用函数的奇偶性求解析式中参数值、对数函数的单调性比较大小,考查数形结合思想、分类讨论思想的运用,在比较大小时,注意对a 分1a >和01a <<两种情况讨论. 22.(1)3,2a c ==;(2)2327【解析】试题分析:(1)由2BA BC ⋅=u u u r u u u r和1cos 3B =,得ac=6.由余弦定理,得2213a c +=.解,即可求出a ,c ;(2) 在ABC ∆中,利用同角基本关系得22sin .3B =由正弦定理,得42sin sin 9c C B b ==,又因为a b c =>,所以C 为锐角,因此27cos 1sin 9C C =-=,利用cos()cos cos sin sin B C B C B C -=+,即可求出结果. (1)由2BA BC ⋅=u u u r u u u r得,,又1cos 3B =,所以ac=6. 由余弦定理,得2222cos a c b ac B +=+. 又b=3,所以2292213a c +=+⨯=. 解,得a=2,c=3或a=3,c=2.因为a>c,∴ a=3,c=2.(2)在ABC ∆中,2212sin 1cos 1()33B B =-=-= 由正弦定理,得22242sin sin 3c C B b ===a b c =>,所以C 为锐角,因此22427cos 1sin 1()99C C =-=-=.于是cos()cos cos sin sin B C B C B C -=+=1724223393927⋅+⋅=. 考点:1.解三角形;2.三角恒等变换. 23.(1)2()1f x x x =-+(2)1m <- 【解析】 【分析】(1)设2()(0)f x ax bx c a =++≠,带入()(1)2f x f x x -+=-和(0)1f =,即可求出a ,b ,c 的值.(2)首先将题意转化为[1,1]x ∈-时,231x x m -+>恒成立,再求出2min (31)x x -+,2min (31)m x x <-+即可.【详解】(1)设2()(0)f x ax bx c a =++≠,则22()(1)(1)(1)2f x f x ax bx a x b x ax a b -+=+-+-+=---, 所以22ax a b x ---=-,解得:1a =,1b =-.又(0)1f c ==, 所以2()1f x x x =-+.(2)当[1,1]x ∈-时,()2x m f x >+恒成立, 即当[1,1]x ∈-时,231x x m -+>恒成立. 设2()31g x x x =-+,[1,1]x ∈-. 则min ()(1)1g x g ==-,1m ∴<-. 【点睛】本题第一问考查待定系数法求函数的解析式,第二问考查二次函数的恒成立问题,属于中档题.24.(Ⅰ)25;(Ⅱ)210. 【解析】 【分析】(Ⅰ)直接利用正弦定理可求AB 的值;(Ⅱ)由余弦定理求得cos A ,再利用同角三角函数的关系求出sin A ,由二倍角公式求出sin 2A ,cos2A ,根据两角差的正弦公式可求sin 24A π⎛⎫- ⎪⎝⎭的值.【详解】 (Ⅰ)在中,根据正弦定理,sin sin AB BCC A=, 于是sin 225sin BCAB CBC A=== (Ⅱ)在ABC ∆中,根据余弦定理,得222cos 2AB AC BC A AB AC+-=⋅于是25sin 1cos A A =-=从而2243sin 22sin cos ,cos 2cos sin 55A A A A A A ===-= 2sin 2sin 2cos cos 2sin 44410A A A πππ⎛⎫-=-=⎪⎝⎭. 【点睛】本题主要考查余弦定理、正弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径. 25.(1)a n =2n –9,(2)S n =n 2–8n ,最小值为–16. 【解析】分析:(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n 项和公式得n S 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.26.(1)2,25;(2)0.012;(3)0.7. 【解析】 【分析】(1)先由频率分布直方图求出[)50,60的频率,结合茎叶图中得分在[)50,60的人数即可求得本次考试的总人数;(2)根据茎叶图的数据,利用(1)中的总人数减去[)50,80外的人数,即可得到[)50,80内的人数,从而可计算频率分布直方图中[)80,90间矩形的高;(3)用列举法列举出所有的基本事件,找出符合题意得基本事件个数,利用古典概型概率计算公式即可求出结果. 【详解】(1)分数在[)50,60的频率为0.008100.08⨯=,由茎叶图知:分数在[)50,60之间的频数为2,∴全班人数为2250.08=. (2)分数在[)80,90之间的频数为25223-=;频率分布直方图中[)80,90间的矩形的高为3100.01225÷=. (3)将[)80,90之间的3个分数编号为1a ,2a ,3a ,[)90,100之间的2个分数编号为1b ,2b ,在[)80,100之间的试卷中任取两份的基本事件为:()12a ,a ,()13a ,a ,()11a ,b ,()12a ,b ,()23a ,a ,()21a ,b ,()22a ,b ,()31a ,b ,()32a ,b ,()12b ,b 共10个,其中,至少有一个在[)90,100之间的基本事件有7个,故至少有一份分数在[)90,100之间的概率是70.710=. 【点睛】本题考查了茎叶图和频率分布直方图的性质,以及古典概型概率计算公式的应用,此题是基础题.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.。

2020-2021学年广东省佛山市三水华侨中学高三数学理月考试题含解析

2020-2021学年广东省佛山市三水华侨中学高三数学理月考试题含解析

2020-2021学年广东省佛山市三水华侨中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列函数中周期为π且为奇函数的是()A.B.C.D.参考答案:B.根据函数的周期为可知选项C,D错误,又因为选项A中为偶函数,而选项B中为奇函数,所以选B.2. 执行如右图所示的程序框图,如果输入的是4,则输出的的值是A.8 B.5 C.3 D.2参考答案:C略3. 将函数的图像向右平移个单位,得到函数的图像,则下列说法不正确的是()A.的周期为π B.C. 是的一条对称轴D.为奇函数参考答案:C由题意得,所以周期为π,,不是g(x)的对称轴,g(x)为奇函数,选C4. 已知分别是两条不重合的直线,分别垂直于两不重合平面,有以下四个命题:①若,且,则;②若,且,则;③若且,则;④若且,则.其中真命题的序号是()A.①②B.③④C.①④D.②③参考答案:D5. 已知,则等于( )A. B. C. D.参考答案:C6. 已知x与y之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为.若某同学根据上表中的最后两组数据(5,2)和(6,0)求得的直线方程为,则以下结论正确的是( )A. B. C. D.参考答案:B7. 《算数书》竹简于上世纪八十年代在湖北省张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“禾盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的圆周率π近似取为()A.B.C.D.参考答案:A【考点】旋转体(圆柱、圆锥、圆台).【分析】用L表示出圆锥的底面半径,得出圆锥的体积关于L和h的式子V=,令=L2h,解出π的近似值.【解答】解:设圆锥的底面半径为r,则圆锥的底面周长L=2πr,∴r=,∴V==.令=L2h,得π=.故选A.【点评】本题考查了圆锥的体积公式,属于基础题.8. 函数f(x)=(1-cosx)sinx在[-π,π]的图象大致为( )参考答案:C9. 在各项均为正数的等比数列中,,成等差数列,是数列的前项的和,则A.1008B.2016C.2032D.4032参考答案:B10. 设函数,,若f(x)的三个零点为,且,则()A. B. C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数f(x)=x3-px2-qx的图像与x轴相切于(1,0),则该函数的极小值为_______.参考答案:略12. 在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD·BC.拓展到空间,在四面体A—BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为.参考答案:13. 在△ABC中,AB= 1,BC =,CA = 3,O为△ABC的外心,若,其中,则点P的轨迹所对应图形的面积是.参考答案:本题主要是考查解三角形及平面向量运算的几何意义.由余弦定理得,,所以.因此由题意知,点的轨迹对应图形是边长为的菱形,于是这个菱形的面积是14. 已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为万件;参考答案:92.在等差数列中,若a1+ a2+ a3+ a4=30,则a2+ a3= .参考答案:1516. 已知三次函数在R上单调递增,则的最小值为▲.参考答案:3由题意得在R上恒成立,则,,令,,(当且仅当,即时取“”).故答案为:3.17. 函数的图象恒过定点,若点在直线上,其中,则的最小值为_______.参考答案:三、解答题:本大题共5小题,共72分。

广东省佛山市石门中学2021年高三数学文期末试题含解析

广东省佛山市石门中学2021年高三数学文期末试题含解析

广东省佛山市石门中学2021年高三数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i参考答案:A【考点】复数代数形式的乘除运算.【分析】由已知直接利用求解.【解答】解:∵z=1+2i,∴ =|z|2=.故选:A.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2. 复数满足(其中为虚数单位),则=A.B.C.D.参考答案:C3. 若且,则的最小值为()A. B. C. D.参考答案:D4. “”是“函数的最小正周期为”的().必要不充分条件.充分不必要条件.充要条件.既不充分也不必要条件参考答案:B 5. 若且,则下列结论正确的是()(A)(B)(C)(D)参考答案:6. 已知,则=()A.1 B.C.-1 D.参考答案:D7. 已知双曲线C:﹣=1(a>0,b>0)的左焦点为F,A,B分别为双曲线C左、右两支上的点,且四边形ABOF(O为坐标原点)为菱形,则双曲线C的离心率为()A.B.2C. +1 D.2参考答案:C【考点】双曲线的简单性质.【分析】利用四边形ABOF(O为坐标原点)为菱形,结合双曲线的对称性,求出A的坐标,代入双曲线方程然后求解离心率.【解答】解:双曲线C:﹣=1(a>0,b>0)的左焦点为F,A,B分别为双曲线C左、右两支上的点,且四边形ABOF(O为坐标原点)为菱形,不妨A在x轴上方,可知A(,),代入双曲线方程可得:.可得e4﹣8e2+4=0,e>1,可得e2=.可得e=.故选:C.【点评】本题考查双曲线的简单性质的应用,判断A的位置是解题的关键,考查计算能力.8. 已知是定义在上的奇函数,当时, ,若,则实数的取值范围是( ) A.B.C.D.参考答案:B 略9. 已知f (x )是R 上的偶函数,将f (x )的图象向右平移一个单位,得到一个奇函数的图象,若( )A .1B .0C .—1D .—1005.5参考答案:B10. 等差数列中,,那么的值是:( )A . 12B . 24C .16D . 48 参考答案:答案:B二、 填空题:本大题共7小题,每小题4分,共28分11. 已知个面向量,满足||=1,|﹣2|=,且与夹角为120°,则||= .参考答案:2【考点】9R :平面向量数量积的运算.【分析】利用已知等式以及平面向量的数量积得到关于||的方程解之.【解答】解:向量,满足||=1,|﹣2|=,且与夹角为120°,所以|﹣2|2=21,且与夹角为120°,则,整理得,解得||=2;故答案为:2.12. 已知,则的值为_____________.参考答案:13. 已知函数,其中e 为自然对数的底数,则不等式的解集为 ▲ .参考答案:(-3,2) ∵,∴,即函数为奇函数,又∵恒成立,故函数在上单调递增,不等式可转化为,即,解得:,即不等式的解集为,故答案为.14. 设正数数列的前项和是,数列的前项之积是,且,则的前项之和等于参考答案:15. 已知分别是△ABC 三个内角A ,B ,C 所对的边,若,A +C =2B ,则sinA =____参考答案:16. 观察下列不等式,照此规律,第五个不等式为.参考答案:17. 设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为.参考答案:【考点】列举法计算基本事件数及事件发生的概率.【专题】概率与统计.【分析】本题可以按照等可能事件的概率来考虑,可以先列举出试验发生包含的事件数,再求出满足条件的事件数,从而根据概率计算公式写出概率【解答】解:∵a是甲抛掷一枚骰子得到的点数,∴试验发生包含的事件数6,∵方程x2+ax+a=0 有两个不等实根,∴a2﹣4a>0,解得a>4,∵a是正整数,∴a=5,6,即满足条件的事件有2种结果,∴所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.三、解答题:本大题共5小题,共72分。

广东省佛山市艺术中学2020-2021学年高三数学文联考试卷含解析

广东省佛山市艺术中学2020-2021学年高三数学文联考试卷含解析

广东省佛山市艺术中学2020-2021学年高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 要得到函数的图象,只要将函数的图象()A.向左平移2个单位B.向右平移2个单位C.向左平移个单位D.向右平移个单位参考答案:D略2. 集合或,则=A. B.C. D.参考答案:A略3. 函数为奇函数,且在上为减函数的值可以是()A.B.C.D.参考答案:D4. 若﹁p∨q是假命题,则A. p∧q是假命题B. p∨q是假命题C. p是假命题D. ﹁q是假命题参考答案:A略5. 函数y=(3-x2)e x的单调递增区间是()A.(-∞,0)B.(0,+∞)C.(-∞,-3)和(1,+∞) D.(-3,1)参考答案:D解析:y′=-2xe x+(3-x2)e x=(-2x+3-x2)e x>0,∴2x-3+x2<0,∴x∈(-3,1).6. 设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称.则下列判断正确的是 ( )A.p为真 B.﹁q为假 C.p∧q为假 D.p∨q为真参考答案:C7. 设集合,在上定义运算:,其中为被3除的余数,,则使关系式成立的有序数对总共有A.1对B.2对C.3对D.4对参考答案:C8. 设A、B、I均为非空集合,且满足A?B?I,则下列各式中错误的是()A.(?I A)∪B=I B.(?I A)∪(?I B)=IC.A∩(?I B)= D.(?I A)∩(?I B)=?I B参考答案:B9. 函数的零点所在的区间是A.B. C. D.参考答案:B 略10. 数学中有许多形状优美、寓意美好的曲线,曲线C :就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过;③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A. ① B. ② C. ①② D. ①②③参考答案:C 【分析】将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围.详解】由得,,,所以可为的整数有0,-1,1,从而曲线恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由得,,解得,所以曲线上任意一点到原点的距离都不超过. 结论②正确.如图所示,易知,四边形的面积,很明显“心形”区域的面积大于,即“心形”区域的面积大于3,说法③错误.故选C.二、 填空题:本大题共7小题,每小题4分,共28分11. 设函数.当时,求的值域--_______参考答案:略12. 在边长为1的正三角形ABC 中,,x >0,y>0,且x +y =1,则的最大值为. 参考答案:略13. 已知,设方程的一个根是,则,方程的两个根是,则,由此类推方程的三个根是,则= .参考答案:略14. 设曲线在点处的切线为,曲线在点处的切线为.若存在,使得,则实数的取值范围是 .参考答案:[]15. 已知函数的定义域为部分对应值如下表,为的导函数,函数的图象如右图所示:若两正数满足,则的取值范围是_____________.参考答案:略16. 里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的 震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍. 参考答案:17. 过点M (m ,0)(m>0)作直线l ,与抛物线y 2=4x 有两交点A ,B ,F 是抛物线的焦点,若,则m 的取值范围是 .参考答案:(3﹣2,3+2)【考点】9V :向量在几何中的应用.【分析】设AB 方程为x=ay+m ,代入抛物线方程,利用根与系数的关系得出A ,B 的坐标关系,根据恒成立得出关于m 的不等式,从而解出m 的范围.【解答】解:设直线AB 的方程为x=ay+m ,代入抛物线方程得y 2﹣4ay ﹣4m=0,设A (x 1,y 1),B (x 2,y 2),又F (1,0), ∴=(x 1﹣1,y 1),=(x 2﹣1,y 2)由根与系数的关系得:y 1y 2=﹣4m ,y 1+y 2=4a ,∴x 1x 2=(ay 1+m )(ay 2+m )=a 2y 1y 2+am (y 1+y 2)+m 2=﹣4a 2m+4a 2m+m 2=m 2, x 1+x 2=a (y 1+y 2)+2m=4a 2+2m , ∴=(x 1﹣1)(x 2﹣1)+y 1y 2=x 1x 2﹣(x 1+x 2)+1+y 1y 2=m 2﹣6m ﹣4a 2+1<0,∴m 2﹣6m+1<4a 2恒成立,∴m 2﹣6m+1<0, 解得3﹣2<m <3+2. 故答案为(3﹣2,3+2).三、 解答题:本大题共5小题,共72分。

广东省佛山市官窑中学2020-2021学年高三数学理下学期期末试卷含解析

广东省佛山市官窑中学2020-2021学年高三数学理下学期期末试卷含解析

广东省佛山市官窑中学2020-2021学年高三数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 顶点在同一球面上的正四棱柱中,,面距离为(A) (B) (C) (D)参考答案:B2. 已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l?α,l?β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l参考答案:D考点:平面与平面之间的位置关系;平面的基本性质及推论.专题:空间位置关系与距离.分析:由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.解答:解:由m⊥平面α,直线l满足l⊥m,且l?α,所以l∥α,又n⊥平面β,l⊥n,l?β,所以l∥β.由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,与m,n异面矛盾.故α与β相交,且交线平行于l.故选D.点评:本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.3. 设x∈R,向量a=(2,x),b=(3,-2),且a⊥b,则|a-b|=A.5 B.C.2D.6参考答案:B4. 在同一平面内,下列说法:①若动点P到两个定点A,B的距离之和是定值,则点P的轨迹是椭圆;②若动点P到两个定点A,B的距离之差的绝对值是定值,则点P的轨迹是双曲线;③若动点P到定点A的距离等于P到定直线的距离,则点P的轨迹是抛物线;④若动点P到两个定点A,B的距离之比是定值,则点P的轨迹是圆.其中错误的说法个数是()A.1 B.2 C.3 D.4参考答案:D【考点】轨迹方程.【分析】利用椭圆,双曲线、抛物线的定义,即可得出结论.【解答】解:①平面内与两定点距离之和为常数的点的轨迹是椭圆,如果距离之和等于两点间的距离,轨迹表示的是线段,不表示椭圆,所以①不正确;②平面内与两定点距离之差绝对值为常数的点的轨迹是双曲线,这个常数必须小于两定点的距离,此时是双曲线,否则不正确,所以②不正确;③当定点位于定直线时,此时的点到轨迹为垂直于直线且以定点为垂足的直线,只有当定点不在直线时,轨迹才是抛物线,所以③错误;④若动点P到两个定点A,B的距离之比是定值,则点P的轨迹是圆,也可以是直线,故不正确.故选D.5. 下列函数中, 在区间上为增函数的是( )A. B. C. D.参考答案:A6. 已知a是函数的零点,a,则的值满足( )A.=0 B.>0 C.<0 D.的符号不确定参考答案:7. 已知函数是上的奇函数,且的图象关于对称,当时,,则的值为()A.-2 B.-1 C.0 D.1参考答案:D8. 已知各项均不为零的数列,定义向量,则下列命题中是真命题的是A.若对任意的,都有成立,则数列是等差数列B.若对任意的,都有成立,则数列是等差数列C.若对任意的,都有成立,则数列是等差数列D.若对任意的,都有成立,则数列是等比数列参考答案:A9. 已知函数是连续函数,则实数的值是()A. B. C. D.—2参考答案:C 略10. 宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n=()A.2 B.3 C.4 D.5参考答案:C【考点】EF:程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当n=1时,a=,b=4,满足进行循环的条件,当n=2时,a=,b=8满足进行循环的条件,当n=3时,a=,b=16满足进行循环的条件,当n=4时,a=,b=32不满足进行循环的条件,故输出的n值为4,故选C.二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数(为常数)的图象在点处的切线与该函数的图象恰好有三个公共点,则实数的取值范围是.参考答案:12. 已知正数x ,y 满足2x+y-2 =0,则的最小值为 .参考答案:13. 复数z=(a 2﹣2a )+(a 2﹣a ﹣1)i 的对应点在虚轴上,则实数a 的值是 .参考答案:0或2.【考点】A4:复数的代数表示法及其几何意义. 【分析】由题意可得:a 2﹣2a=0,解出即可得出.【解答】解:复数z=(a 2﹣2a )+(a 2﹣a ﹣1)i 的对应点在虚轴上,则a 2﹣2a=0,解得a=0或2. 故答案为:0或2.【点评】本题考查了复数的几何意义、方程的解法,考查了推理能力与计算能力,属于基础题. 14. 我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处所截得两几何体的截面积恒等,那么这两个几何体的体积相等.已知双曲线C 的渐近线方程为,一个焦点为.直线与在第一象限内与双曲线及渐近线围成如图所示的图形OABN ,则它绕轴旋转一圈所得几何体的体积为_____.参考答案:由题意可得双曲线的方程为,在第一象限内与渐近线的交点的坐标为,与双曲线第一象限的交点的坐标为,记与轴交于点,因为,根据祖暅原理,可得旋转体的体积为.15. 已知集合__________参考答案:16. 函数(且)的图象恒过定点A ,若点A 在直线上,其中,则的最小值为 ▲ .参考答案:3+217. 某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为 ▲ . 参考答案: 20设样本中松树苗的数量为,则有,解得。

2020-2021学年广东省佛山市人和中学高三数学文联考试卷含解析

2020-2021学年广东省佛山市人和中学高三数学文联考试卷含解析

2020-2021学年广东省佛山市人和中学高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 四个命题:①若x2=1则x=1的否命题是若x2≠1则x≠±1;②x=﹣1是x2﹣5x﹣6=0的必要不充分条件;③存在x∈R,使x2+x+1<0的否定是对任意x∈R,都有x2+x+1>0;④若sinα=sinβ,则α=β的否命题为真命题,其中正确命题的个数为()A.0 B.1 C.2 D.3参考答案:C【考点】命题的真假判断与应用.【分析】①命题“若p,则q”的否命题是“若¬p,则¬q”,由此判断正误;②判断充分性是否成立,再判定必要性是否成立,即得结论;③特称命题“存在x∈R,p(x)”的否定是“对任意x∈R,¬p(x)”,由此判断正误;④命题与它的逆否命题真假性相同,通过判定原命题的真假即可.【解答】解:①命题“若x2=1,则x=1”的否命题是:“若x2≠1,则x≠±1”,∴①正确;②∵当x=﹣1时,等式x2﹣5x﹣6=0成立,∴充分性成立,当x2﹣5x﹣6=0时,解得x=﹣1,或x=6,必要性不成立;∴“x=﹣1”是“x2﹣5x﹣6=0的充分不必要条件;∴②错误;③命题“存在x∈R,x2+x+1<0”的否定是“对任意x∈R,x2+x+1≥0”,∴③错误;④若sinα=sinβ,则α=β的否命题为“若sinα≠sinβ,则α≠β”是真命题;∴④正确.所以,正确的命题有2个;故选:c.【点评】本题考查了命题真假的判断与应用问题,是基础题2. 如图,平行四边形ABCD中,,点M在AB边上,且等于()A. B. C. D.1参考答案:D略3. 已知函数f(x)=x3+ax2+bx+c,(a,b,c均为非零整数),且f(a)=a3,f(b)=b3,a≠b,则c=()A.16 B.8 C.4 D.1参考答案:A【考点】函数的值.【分析】由f(a)=a3,f(b)=b3列出等式化简即b=1﹣a﹣,因为b为整数,得出a=﹣2,从而求出b与c值.【解答】解:由已知得,①﹣②化简得:a(a+b)(a﹣b)+b(a﹣b)=0,b=﹣a(a+b),即b=1﹣a﹣,a,b,c均为非零整数且a≠b,得为整数,所以a=﹣2,所以a=﹣2,b=4,∵f(﹣2)=﹣8?c=16.故选:A4. 已知实数、满足,则目标函数的最大值是(A);(B);(C);(D).参考答案:C略5. 下列说法正确的个数为()①函数的一个对称中心为;②在中,,,是的中点,则;③在中,是的充要条件;④定义,已知,则的最大值为. A.1 B.2 C. 3 D.4参考答案:D6. 图1是某县参加2013年高考的学生身高的统计图,从左到右的条形图表示学生人数一次记为(表示身高(单位:cm)在的人数)。

2020-2021佛山市初二数学下期末一模试卷附答案

2020-2021佛山市初二数学下期末一模试卷附答案

2020-2021佛山市初二数学下期末一模试卷附答案一、选择题1.x ﹣5,则x 的取值范围是( ) A .x <5B .x ≤5C .x ≥5D .x >52.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差3.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( ) A .m ≠2,n ≠2 B .m =2,n =2C .m ≠2,n =2D .m =2,n =04.已知函数y =1x -,则自变量x 的取值范围是( ) A .﹣1<x <1 B .x ≥﹣1且x ≠1C .x ≥﹣1D .x ≠15.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:则这10双运动鞋尺码的众数和中位数分别为( ) A .25.5厘米,26厘米 B .26厘米,25.5厘米 C .25.5厘米,25.5厘米D .26厘米,26厘米6.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( ) A .直角三角形 B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形7.如图,一次函数y =mx +n 与y =mnx (m ≠0,n ≠0)在同一坐标系内的图象可能是( )A.B.C.D.8.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁9.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.-2B.﹣1+2C.﹣1-2D.1-2.若10.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处V的周长为6,四边形纸片ABCD的周长为()V的周长为18,ECFAFDA.20B.24C.32D.4811.正方形具有而菱形不一定具有的性质是()A.对角线互相平分B.每条对角线平分一组对角C.对边相等D.对角线相等12.如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()A.4B.5C.6D.3二、填空题13.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_________°.14.若x=2-1, 则x 2+2x+1=__________.15.如图,直线l 1:y =x +n –2与直线l 2:y =mx +n 相交于点P (1,2).则不等式mx +n <x +n –2的解集为______.16.观察下列各式:221111++=1+1212⨯, 221111++=1+2323⨯, 221111++=1+3434⨯, ……请利用你所发现的规律,计算22111++12+22111++23+22111++34+…+22111++910,其结果为_______. 17.如图所示,已知Y ABCD 中,下列条件:①AC =BD ;②AB =AD ;③∠1=∠2;④AB ⊥BC 中,能说明Y ABCD 是矩形的有______________(填写序号)18.A 、B 、C 三地在同一直线上,甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发2小时,甲车到达B 地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B 的方向行驶,经过一段时间后两车同时到达C 地,设两车之间的距离为y (千米),甲行驶的时间x (小时).y 与x 的关系如图所示,则B 、C 两地相距_____千米.19.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是_______20.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是_________.三、解答题21.已知正方形ABCD 的对角线AC,BD 相交于点O.(1)如图 1,E,G 分别是OB,OC 上的点,CE 与DG 的延长线相交于点F.若DF⊥CE,求证:OE=OG;(2)如图 2,H 是BC 上的点,过点H 作EH⊥BC,交线段OB 于点E,连结DH 交CE 于点F,交OC 于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1 时,求HC 的长.22.如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC上的点,AE=CF,并且∠AED=∠CF D.求证:(1)△AED≌△CFD;(2)四边形ABCD是菱形.23.为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表.甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲70乙1甲、乙射击成绩折线统计图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?24.求证:三角形的一条中位线与第三边上的中线互相平分.和它的一条中位线DE,在给出的图形上,请用尺规作出BC边要求:(1)根据给出的ABC上的中线AF,交DE于点O.不写作法,保留痕迹;(2)据此写出已知,求证和证明过程.25.在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】(a≤0),由此性质求得答案即可.【详解】,∴5-x≤0∴x≥5.故选C.【点睛】(a≥0(a≤0).2.C解析:C【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.3.C解析:C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.4.B解析:B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.解:根据题意得:1010 xx+≥⎧⎨-≠⎩,解得:x≥-1且x≠1.故选B.点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.5.D解析:D【解析】【分析】【详解】试题分析:众数是26cm,出现了3次,次数最多;在这10个数中按从小到大来排列最中间的两个数是26,26;它们的中位书为26cm考点:众数和中位数点评:本题考查众数和中位数,解本题的关键是熟悉众数和中位数的概念6.D解析:D【解析】【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,进而可得a=b或a2=b2+c2,进而判断△ABC的形状为等腰三角形或直角三角形.【详解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a2+b2=c2的三角形是直角三角形.7.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.8.A解析:A【解析】【分析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.9.D解析:D【解析】【分析】【详解】∵边长为1=∴∵A在数轴上原点的左侧,∴点A表示的数为负数,即1故选D10.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.故矩形ABCD的周长为24cm.故答案为:B.本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.11.D解析:D 【解析】 【分析】列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案. 【详解】正方形具有而菱形不一定具有的性质是:①正方形的对角线相等,而菱形不一定对角线相等; ②正方形的四个角是直角,而菱形的四个角不一定是直角. 故选D . 【点睛】本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.12.A解析:A 【解析】 【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD 是等边三角形,进而可知答案. 【详解】∵∠ABC=120°,四边形ABCD 是菱形 ∴∠CBD=60°,BC=CD ∴△BCD 是等边三角形 ∵BD=4 ∴BC=4 故答案选A. 【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.二、填空题13.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为解析:15° 【解析】 【分析】 【详解】解:由题意可知:90,60.BAD DAE ∠=∠=oo.AB AD AE ==150.BAE o∴∠=ABE△是等腰三角形15.AEB∴∠=o故答案为15.o14.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式解析:2【解析】【分析】先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【详解】∵,∴x2+2x+1=(x+1)22=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.15.>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(12)∴关于x的不等式mx+n<x+n-2的解集为x>1故答案为x>1解析:x>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2),∴关于x的不等式mx+n<x+n-2的解集为x>1,故答案为x>1.16.【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9故答案为9点睛:此题主要考查了数字变化规律正确解析:9 9 10【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:=11+12⨯+1+123⨯+1+134⨯+ (1)1910⨯=9+(1﹣12+12﹣13+13﹣14+…+19﹣110) =9+910=9910. 故答案为9910. 点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.17.①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形由此可得能使平行四边形ABCD 是矩形的条件是①和④解析:①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD 是矩形的条件是①和④.18.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a 千米/小时乙车的速度为b 千米/小时解得∴AB 两地的距离为:80×9=72解析:【解析】【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题.【详解】解:设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,(62)()560(62)(96)a b b a -⨯+=⎧⎨-=-⎩,解得8060a b =⎧⎨=⎩, ∴A 、B 两地的距离为:80×9=720千米, 设乙车从B 地到C 地用的时间为x 小时,60x =80(1+10%)(x+2﹣9),解得,x =22,则B 、C 两地相距:60×22=1320(千米) 故答案为:1320.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.—1【解析】【分析】首先根据勾股定理计算出AC 的长进而得到AE 的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题1【解析】【分析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴,∵A点表示-1,∴E-1,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.20.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2∴该函数中y随着x的增大而减小∵1<2∴a>b故答案为a>b【点睛】本题考查一次函数图象上点的坐标特征解析:a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征.三、解答题21.(1)证明见解析;(2【解析】【分析】(1)欲证明OE=OG,只要证明△DOG≌△COE(ASA)即可;(2)①欲证明∠ODG=∠OCE,只要证明△ODG≌△OCE即可;②设CH=x,由△CHE∽△DCH,可得EH HCHC CD=,即HC2=EH•CD,由此构建方程即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是正方形,∴AC⊥BD,OD=OC,∴∠DOG=∠COE=90°,∴∠OEC+∠OCE=90°,∵DF⊥CE,∴∠OEC+∠ODG=90°,∴∠ODG=∠OCE,∴△DOG≌△COE(ASA),∴OE=OG.(2)①证明:如图2中,∵OG=OE,∠DOG=∠COE=90°OD=OC,∴△ODG≌△OCE,∴∠ODG=∠OCE.②解:设CH=x,∵四边形ABCD是正方形,AB=1,∴BH=1﹣x,∠DBC=∠BDC=∠ACB=45°,∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1﹣x,∵∠ODG=∠OCE,∴∠BDC﹣∠ODG=∠ACB﹣∠OCE,∴∠HDC=∠ECH,∵EH⊥BC,∴∠EHC=∠HCD=90°,∴△CHE∽△DCH,∴EH HCHC CD=,∴HC2=EH•CD,∴x2=(1﹣x)•1,解得x=512-或512--(舍弃),∴HC=51 -.22.(1)证明见解析;(2)证明见解析.【解析】分析:(1)由全等三角形的判定定理ASA证得结论;(2)由“邻边相等的平行四边形为菱形”证得结论.详解:(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C.在△AED与△CFD中,A C AE CFAED CFD ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AED ≌△CFD (ASA );(2)由(1)知,△AED ≌△CFD ,则AD=CD .又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.点睛:考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.23.(1)补图见解析;(2)甲胜出,理由见解析;(3)见解析.【解析】【分析】(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;(2)计算出甲乙两人的方差,比较大小即可做出判断;(3)希望乙胜出,修改规则,使乙获胜的概率大于甲即可.【详解】(1)根据折线统计图得乙的射击成绩为2,4,6,8,7,7,8,9,9,10, 则平均数为1(24687789910)710⨯+++++++++=(环),中位数为7.5环, 方差为22222221(27)(47)(67)(87)(77)(77)(87)10⎡-+-+-+-+-+-+-⎣ 222(97)(97)(107) 5.4⎤+-+-+-=⎦.由图和表可得甲的射击成绩为9,6,7,6,2,7,7,8,9,平均数为7环. 则甲第8次成绩为710(967627789)9⨯-++++++++=(环).所以甲的10次成绩为2,6,6,7,7,7,8,9,9,9,中位数为7环, 方差为22222221(97)(67)(77)(67)(27)(77)(77)10⎡-+-+-+-+-+-+-⎣ 222(97)(87)(97)4⎤+-+-+-=⎦.补全表格如下:甲、乙射击成绩统计表(2)甲应胜出因为甲的方差小于乙的方差,甲的成绩比较稳定,故甲胜出.(3)制定的规则不唯一,如:如果希望乙胜出,应该制定的评判规则为平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲、乙的平均成绩相同,乙只有第5次射击比第4次射击少命中1环,且命中1次10环,而甲第2次比第1次第4次比第3次、第5次比第4次、第9次比第8次命中环数都低, 且命中10环的次数为0,即随着比赛的进行,乙的射击成绩越来越好,故乙胜出.【点睛】本题考查折线统计图,中位数,方差,平均数,以及统计表,读懂统计图,熟练掌握中位数,方差,平均数的计算是解本题的关键.24.(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可,见解析;(2) 见解析.【解析】【分析】(1)作BC 的垂直平分线得到BC 的中点F ,从而得到BC 边上的中线AF ;(2)写出已知、求证,连接DF 、EF ,如图,先证明EF 为AB 边的中位线,利用三角形中位线性质得到EF ∥AD ,EF=AD ,则可判断四边形ADFE 为平行四边形,从而得到DE 与AF 互相平分.【详解】解:(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
y
1
0
,则 z 3x 2y 的最大值为_____________.
y 0
20.在 ABC 中,若 AB 13 , BC 3, C 120 ,则 AC _____. 三、解答题
21.设椭圆
x2 a2
y2 b2
1(a
b
0) 的左焦点为 F
,右顶点为 A ,离心率为
1 2
.已知
A 是抛
A. 1 10
B. 3 10
C. 3 5
D. 2 5
3.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是
()
A.①③④
B.②④
C.②③④
D.①②③
4.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行
该程序框图,若输入 a, b 分别为 14,18,则输出的 a ( )
a 2b 3c
24.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农 村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也 逐年增加.为了更好的制定 2019 年关于加快提升农民年收入力争早日脱贫的工作计划,该 地扶贫办统计了 2018 年 50 位农民的年收入并制成如下频率分布直方图:
【详解】 记事件 A 表示“第一次正面向上”,事件 B 表示“第二次反面向上”,
则 P(AB)= ,P(A)= ,∴P(B|A)= = ,故选 C.
【点睛】 本题主要考查了条件概率的计算,其中解答中认真审题,熟记条件概率的计算公式,准确 计算是解答的关键,着重考查了推理与运算能力,属于基础题.
7.B
2
2
A. m n
B. | m || n |
C. m n
D. m 与 n 的大小关系不确定
11.渐近线方程为 x y 0 的双曲线的离心率是( )
A. 2 2
B.1
C. 2
D.2
12.已知 a R ,则“ a 0 ”是“ f (x) x2 ax 是偶函数”的( )
A.充分不必要条件
B.必要不充分条件
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C 解析:C
【解析】
分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数 z ,然后
求解复数的模.
详解:
z
1 1
i i
2i
1 1
i i
1 1
i i
2i
i 2i i ,
则 z 1,故选 c.
点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚 部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分 母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出 错,造成不必要的失分.
C.充分必要条件
D.既不充分也不必要条件
二、填空题
13.若三点 A(2,3), B(3, 2),C(1 , m) 共线,则 m的值为

2
14.已知椭圆 x2 y2 1的左焦点为 F ,点 P 在椭圆上且在 x 轴的上方,若线段 PF 的中 95
点在以原点 O 为圆心, OF 为半径的圆上,则直线 PF 的斜率是_______.
故跑第三棒的是丙.
故选:C. 【点睛】
本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能
17. ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 b 2 , c 3, C 2B ,则
ABC 的面积为______.
18.已知函数 y sin(2x )( ) 的图象关于直线 x 对称,则 的值是
2
2
3
________.
x 2y 2 0
19.若
x

y
满足约束条件
2020-2021 佛山市高三数学下期末一模试卷(含答案)
一、选择题 1.设 z 1 i 2i ,则| z |
1 i
A. 0
B. 1 2
C.1
D. 2
2.从分别写有数字 1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,
则抽得的第一张卡片上的数字不大于第二张卡片的概率是( )
x2
的项为 C62x2
1 x2
C64
x4
则 1
1 x2
1
x6
展开式中
x2
的系数为 C62
C64
15 15
30
故选:C
【点睛】
本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.
6.C
解析:C
【解析】
【分析】
由题意,求得 P(AB), P(A) 的值,再由条件概率的计算公式,即可求解.
该组数据区间的中点值表示);
(2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 N , 2 ,其
中 近似为年平均收入 x, 2 近似为样本方差 s2 ,经计算得: s2 6.92 ,利用该正态分
布,求: (i)在 2019 年脱贫攻坚工作中,若使该地区约有占总农民人数的 84.14%的农民的年收入 高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元? (ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了 1000 位农 民.若每个农民的年收入相互独立,问:这 1000 位农民中的年收入不少于 12.14 千元的人数 最有可能是多少?
2.C
解析:C 【解析】 【分析】
设第一张卡片上的数字为 x ,第二张卡片的数字为 y ,问题求的是 P(x y) ,
首先考虑分别写有数字 1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1
张,有多少种可能,再求出 x y 的可能性有多少种,然后求出 P(x y) .
【详解】
【点睛】 本题主要考查了数列的概念及其应用,其中解答中根据题意发现数列中数字的排布规律是 解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
8.C
解析:C 【解析】
由题意,不等式 ax2 2ax 4 2x2 4x ,可化为 (a 2)x2 2(a 2)x 4 0 , 当 a 2 0,即 a 2 时,不等式恒成立,符合题意;
22.在△ABC 中,a=7,b=8,cosB= – 1 . 7
(Ⅰ)求∠A; (Ⅱ)求 AC 边上的高.
23.已知函数 f x m x 2 , m R ,且 f x 2 0的解集为1,1
(1)求 m 的值; (2)若 a,b,cR ,且 1 1 1 m ,求证 a 2b 3c 9
序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;
丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们
四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在
老师安排的出场顺序中跑第三棒的人是( )
A.甲
B.乙
C.丙
D.丁
10.已知当 m , n[1,1) 时, sin m sin n n3 m3 ,则以下判断正确的是 ( )
2x y 4 15.已知实数 x , y 满足 x 2 y 4 ,则 z 3x 2y 的最小值是__________.
y 0
16.双曲线
x2 a2
y2 b2
1(a
0 , b 0 )的渐近线为正方形
OABC
的边
OA,OC
所在的直
线,点 B 为该双曲线的焦点.若正方形 OABC 的边长为 2,则 a=_______________.
棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一
棒,不合题意.
【详解】
由题意得乙、丙均不跑第一棒和第四棒,
∴跑第三棒的只能是乙、丙中的一个,
当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;
当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意.
物线 y2 2 px( p 0) 的焦点, F 到抛物线的准线 l 的距离为 1 . 2
(I)求椭圆的方程和抛物线的方程;
(II)设 l 上两点 P , Q 关于 x 轴对称,直线 AP 与椭圆相交于点 B ( B 异于点 A ),直
线 BQ 与 x 轴相交于点 D .若△APD 的面积为 6 ,求直线 AP 的方程. 2
A.0
B.2
C.4
D.14
5. 1
1 x2
1
x6 展开式中
x2
的系数为(

A.15
B.20
C.30
D.35
6.抛掷一枚质地均匀的硬币两次,在第一次正面向上的条件下,第二次反面向上的概率为( )
A. 1 4
B. 1 3
C. 1 2
D. 2 3
7.数列 2,5,11,20,x,47...中的 x 等于( )
25.已知 A 为圆 C : x2 y2 1上一点,过点 A 作 y 轴的垂线交 y 轴于点 B ,点 P 满足 BP 2BA.
(1)求动点 P 的轨迹方程;
(2)设 Q 为直线 l : x 3 上一点, O 为坐标原点,且 OP OQ ,求 POQ 面积的最小
值. 26.△ABC 在内角 A、B、C 的对边分别为 a,b,c,已知 a=bcosC+csinB. (Ⅰ)求 B; (Ⅱ)若 b=2,求△ABC 面积的最大值.
A.28
B.32
C.33
D.27
8.若不等式 ax2 2ax 4 2x2 4x 对任意实数 x 均成立,则实数 a 的取值范围是
相关文档
最新文档