《大学物理》第二章答案.pdf
大学物理 第二章 答案
第1题(5分)(0029) 竖立的圆筒形转笼,半径为R,绕中心轴OO'转动,物块A紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A不下落,圆筒转动的角速度ω至少应为(A)Rgμ(B)gμ.(C)R g μ (D)RgABCDE第2题(5分)(0030) 在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?(A)12a(B))(21g a +(C)ga +12 (D) g a +1ABCDE第3题(5分)(0051) 一只质量为m的猴,原来抓住一根用绳吊在天花板上的质量为M的直杆。
悬线突然断开,小猴则沿杆子往上爬以保持它离地面的高度不变,此时直杆下落的加速度为(A )g (B)M mg(C)g M m M + (D)g m M mM -+ (E)g M mM -ABCDE第4题(5分)(0054) 已知水星的半径是地球半径的 0.4倍,质量为地球的0.04倍.设在地球上的重力加速度为g,则水星表面上的重力加速度为: (A) 0.1g. (B)0.25g. (C) 4g. (D) 2.5g.ABCDE第5题(5分)(0324) 两滑块A、B,质量分别为m1和m2,与图中所示斜面间的摩擦系数分别为μ1和μ2,今将A、B粘合在一起,并使它们的底面共面,而构成一个大滑块,则该滑块与斜面间的摩擦系数为(A))(2121μμ+. (B))(2121μμμμ+.(C)21μμ.(D)212211m m m m ++μμABCDE第6题(5分)(0325) 如图,一质量为m的物体A,用平行于斜面的细线拉着置于光滑的斜面上.若斜面向左方作减速运动,当绳中张力为零时,物体的加速度大小为 (A)θsin g . (B)θcos g . (C)θgctg . (D)θgtg .ABCDE第7题(5分)(0326) 如图所示,质量为m的物体A用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为 (A)θsin g . (B)θcos g . (C)θgctg . (D)θgtg .ABCDE第8题(5分)(0328) 在倾角为θ的固定光滑斜面上,放一质量为m的光滑小球,球被竖直的木板挡住,当把竖直板迅速拿开的这一瞬间,小球获得的加速度为 (A)θsin g . (B)θcos g .(C)θcos g (D) θsin gABCDE第9题(5分)(0330) 如图所示,固定斜面与竖直墙壁均光滑,则质量为m的小球对斜面作用力的大小为 (A)θsin mg . (B)θcos mg .(C)θsin mg. (D)θcos mg .ABCDE第10题(5分)(0331) 如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2.滑轮质量及一切摩擦均不计,此时重物的加速度大小为a .今用一竖直向下的恒力F= m 1g 代替质量为m 1的物体,质量为m 2的重物的加速度为a ' ,则 (A)a a ='. (B)a a >'. (C)a a <'. (D)不能确定.ABCDE第11题(5分)(0332) 两物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示.对物体A施以水平推力F,则物体A对物体B的作用力等于(A)Fm m m 211+. (B)F . (C)F m m m 212+. (D)Fm m 12.ABCDE第12题(5分)(0334) 一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为(A)gl. (B)g l θcos . (C)g l π2. (D)g l θπcos 2.ABCDE第13题(5分)(0337) 质量为M的斜面原来静止于光滑水平面上,将一质量为m的木块轻轻放于斜面上,如图.当木块沿斜面加速下滑时,斜面将(A)保持静止.(B)向右加速运动.(C)向右匀速运动. (D)如何运动将由斜面倾角θ决定.ABCDE第14题(5分)(0607) 一辆汽车从静止出发,在平直公路上加速前进的过程中,如果发动机的功率一定,阻力大小不变,那么,下面哪一个说法是正确的? (A)汽车的加速度是不变的. (B)汽车的加速度不断减小.(C)汽车的加速度与它的速度成正比.(D)汽车的加速度与它的速度成反比.ABCDE第15题(5分)(0608) 升降机内地板上放有物体A,其上再放另一物体B,二者的质量分别为MA 、MB .当升降机以加速度a向下加速运动时(a<g=,物体A对升降机地板的压力在数值上等于(A) MA g. (B)(MA +MB )g.(C)(MA +MB)(g+a).(D)(MA +MB )(g-a).ABCDE第16题(5分)(0609) 一公路的水平弯道半径为R,路面的外侧高出内侧,并与水平面夹角为θ.要 (A)Rg .(B)θRgtg .(C)θθ2sin cos Rg . (D)θRgtg .ABCDE第17题(5分)(0612) 一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦系数(A)不得小于gR μ.(B)不得大于gR μ.(C)必须等于gR 2. (D)应由汽车质量决定.ABCDE第18题(5分)(0613) 用轻绳系一小球,使之在竖直平面内作圆周运动.绳中张力最小时,小球的位置(A)是圆周最高点. (B)是圆周最低点. (C)是圆周上和圆心处于同一水平面上的两点. (D)因条件不足,不能确定.ABCDE第19题(5分)(0614) 在电梯中用弹簧秤称物体的重量.当电梯静止时,称得一个物体重量为500 N.当电梯作匀变速运动时,称得其重量为 400N,则该电梯的加速度是 (A)大小为 0.2g,方向向上. (B)大小为 0.8g,方向向上. (C)大小为 0.2g,方向向下. (D)大小为 0.8g,方向向下.ABCDE第20题(5分)(0617) 如图,滑轮、绳子质量忽略不计.忽略一切摩擦阻力,物体A的质量m A 大于物体B的质量m B .在A、B运动过程中弹簧秤的读数是 (A)()21m m +g . (B)()21m m -g.(C)21212m m m m +g. (D)21214m m m m +g.ABCDE题号 点击查看试题标答 你的答案 得分 试题分析 第1题 (C) (C) 5 分第2题 (C) (B) 0 分 知识点 直线运动中的牛顿定律 第3题 (C) (C) 5 分第4题 (B) (C) 0 分 知识点 曲线运动中的牛顿定律 第5题 (D) (D) 5 分 第6题 (D) (D) 5 分 第7题 (C) (C) 5 分第8题 (A) (空) 0 分 你没有回答这题! 第9题 (D) (D) 5 分第10题(B)(空)0 分你没有回答这题!第11题(C)(C) 5 分第12题(D)(D) 5 分第13题(B)(空)0 分你没有回答这题!第14题(B)(空)0 分你没有回答这题!第15题(D)(空)0 分你没有回答这题!第16题(B)(空)0 分你没有回答这题!第17题(B)(空)0 分你没有回答这题!第18题(A)(空)0 分你没有回答这题!第19题(C)(空)0 分你没有回答这题!第20题(D)(B)0 分知识点直线运动中的牛顿定律第1题(10分)(0024) 一光滑的内表面半径为10cm的半球形碗,以匀角速度 绕其对称轴OC旋转.已知放在碗内表面上的一个小球P相对于碗静止,其位置高于碗底4cm,则由此可推知碗旋转的角速度约为(A)13rad/s.(B)17rad/s.(C)10rad/s.(D)18rad/s.ABCDE第2题(10分)(0034) 光滑的水平面上叠放着物体A和B,质量分别为m和M,如图所示.A与B之间的静摩擦系数为μ,若对物体B施以水平推力F,欲使A与B一起运动,则F应满足(A)0<F≤(m+M)g.(B)0<F≤(μm+M)g.(C)0<F≤(M+m)μg.(D)0<F≤(m+μM)g.ABCDE第3题(10分)(0038) 质量为m的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡.设木板和墙壁之间的夹角为α,当α增大时,小球对木板的压力将(A)增加.(B)减少.(C)不变.(D)先是增加,后又减小.压力增减的分界角为α=45°.ABCDE第4题(10分)(0042) 两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1和球2的加速度分别为 (A)a1=g,a2=g. (B)a1=0,a2=g. (C)a1=g,a2=0. (D)a1=2g,a2=0.ABCDE第5题(10分)(0048) 水平地面上放一物体A,它与地面间的滑动摩擦系数为μ.现加一恒力F如图所示.欲使物体A有最大加速度,则恒力F 与水平方向夹角θ应满足(A)sinθ=μ. (B)cosθ=μ.(C)tgθ=μ. (D)ctgθ=μ.ABCDE第6题(10分)(0094) 如图所示,假设物体沿着铅直面上圆弧形轨道下滑,轨道是光滑的,在从A至C的下滑过程中,下面哪个说法是正确的? (A)它的加速度方向永远指向圆心. (B)它的速率均匀增加. (C)它的合外力大小变化,方向永远指向圆心. (D)它的合外力大小不变. (E)轨道支持力的大小不断增加.ABCDE第7题(10分)(0335) 质量分别为m A 和m B 的两滑块A和B通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A 和a B 分别为 (A)0,0==B A a a . (B)0,0<>B A a a . (C)0,0><B A a a . (D)0,0=<B A a a .ABCDE第8题(10分)(0338) 质量为m的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用.比例系数为k ,k 为正常数.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是(A)k mg .(B)k g2.(C)gk.(D)gk .ABCDE第9题(10分)(0341) 质量分别为m 和M 的滑块A和B,叠放在光滑水平桌面上,如图所示.A、B间静摩擦系数为μs ,滑动摩擦系数为μK ,系统原处于静止.今有一水平力作用于A上,要使A、B不发生相对滑动,则应有(A)mg F S μ≤.(B)mgM m F S )1+≤(μ.(C)g M m F S )(+≤μ. (D)M mM mgF K +≤μABCDE第10题(10分)(0342) 质量分别为m和M的滑块A和B,叠放在光滑水平面上,如图A、B间的静摩擦系数为μs ,滑动摩擦系数为μK ,系统原先处于静止状态.今将水平力F作用于B上,要使A、B间不发生相对滑动,应有(A)mg F S μ≤.(B)mgM mF S )1(+≤μ.(C)g M m F S )(+≤μ.(D)M Mm mgF K +≤μABCDE。
大学物理课后习题(第二章)
第二章 能量守恒 动量守恒选择题2-1 有一劲度系数为k 的弹簧(质量忽略不计),垂直放置,下端悬挂一质量为m 的小球.现使弹簧为原长,而小球恰好与地面接触.今将弹簧上端缓慢地提起,直到小球刚脱离地面为止,在上提过程中外力做的功为 ( A )(A)222m g k ; (B)222m g k ;(C) 224m g k; (D) 224m g k.2-2 一弹簧长00.5m l =,劲度系数为k ,上端挂在天花板上,当下端吊一小盘后,长度变为10.6m l =.然后在盘中放一物体,使弹簧长度变为20.8m l =.放物后,在弹簧伸长的过程中,弹性力所做的功为 ( C )(A) 0.80.6d kx x -⎰; (B) 0.80.6d kx x ⎰;(C) 0.30.1d kx x -⎰; (D) 0.80.1d kx x ⎰.2-3 如图所示,一单摆在点A 和点A '之间往复运动,就点A 、点B 和点C 三位置比较,重力做功的功率最大位置为 ( B )(A) 点A ; (B) 点B ; (C) 点C ; (D) 三点都一样.2-4 今有质量分别为1m 、2m 和3m 的三个质点,彼此相距分别为12r 、23r 和31r .则它之间的引力势能总和为 ( A )(A) 233112122331m m m m m m G r r r ⎛⎫-++ ⎪⎝⎭; (B) 233112122331m m m m m m G r r r ⎛⎫++ ⎪⎝⎭; (C) 2331121223312m m m m m m G r r r ⎛⎫-++⎪⎝⎭; (D) 2331121223312m m m m m m G r r r ⎛⎫++ ⎪⎝⎭.2-5 有下列几种情况:(1) 物体自由落下,由物体和地球组成的系统; (2) 使物体均匀上升,由物体和地球组成的系统;(3) 子弹射入放在光滑水平面上的木块,由子弹和木块组成的系统; (4) 物体沿光滑斜坡向上滑动,由物体和地球组成的系统.机械能守恒的有 ( C )(A) (1)、(3); (B) (2)、(4); (C) (1)、(4); (D) (1)、(2).2-6 质量分别为m 和4m 的两个质点,沿一直线相向运动.它们的动能分别为E 和4E ,它们的总动量的大小为 ( C )(A)(C)-.2-7 质量为m 的小球,以水平速度v 与竖直的墙壁作完全弹性碰撞.以小球的初速度v的方向为O x 轴的正方向,则此过程中小球动量的增量为 ( D ) (A) m i v ; (B) 0; (C) 2m i v ; (D) 2m -i v .2-8 如图所示,质量为1k g 的弹性小球,自某高度水平抛出,落地时与地面发生完全弹性碰撞.已知在抛出1s 后又跳回原高度,而且速度的大小和方向和刚抛出时相同.在小球与地面碰撞的过程中,地面给它的冲量的大小和方向为 ( A )(A) 19.8kg m s -⋅⋅,垂直地面向上;19.8kg m s-⋅⋅,垂直地面向上;(C) 119.6kg m s -⋅⋅,垂直地面向上; (D) 14.9kg m s-⋅⋅,与水平面成o45角.2-9 一炮弹由于特殊原因,在弹道最高点处突然炸成两块,如果其中一块做自由落体下落,则另一块的着地点 ( A )(A) 比原来更远; (B) 比原来更近; (C) 仍和原来一样; (D) 条件不足,不能判定.2-10 在下列陈述中,正确的是 ( A ) (A) 物体的动量不变,动能也不变; (B) 物体的动能不变,动量也不变; (C) 物体的动量变化,动能也一定变化; (D) 物体的动能变化,动量却不一定也变化.2-11 如图所示,一光滑圆弧形槽m '放置于光滑的水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力,对这一过程,下列陈述正确的为 ( C )(A) 由m 和m '组成的系统动量守恒; (B) 由m 和m '组成的系统机械能守恒; (C) 由m 、m '和地球组成的系统机械能守恒; (D) m 对m '的正压力恒不作功.2-12 如图所示,质量为20g 的子弹,以1400m s-⋅的速率沿图示方向射入一原来静止的、质量为980g 的摆中.摆线不可伸缩,质量忽略不计.子弹射入后,摆的速度为 ( A )(A) 14m s -⋅; (B) 18m s -⋅; (C) 12m s -⋅; (D) 11.79m s -⋅. 计算题2-13 用力推物体,使物体沿O x 轴正方向前进,力在O x 轴上的分量为510x F x =+式中x 的单位为m ,x F 的单位为N .求当物体由0x =移到4m x =时,力所做的功.解 在物体由0x =移到4m x =的过程中,力所做的功为()214d 510d 100J x x x A F x x x ==+=⎰⎰2-14 一个不遵守胡克定律的弹簧,它的弹性力F 与形变x 的关系为3F kx b x =--式中,411.1610N m k -=⨯⋅,531.610N mb -=⨯⋅,求弹簧变形由10.2m x =到20.3mx =时,弹性力所做的功.解 在弹簧变形由1x 到2x 的过程中,弹性力所做的功为221132244212111d ()d ()()24x x x x A F x kx b x F x k x x b x x ==-+=----⎰⎰将10.2m x =和20.3m x =代入上式,可得2244212142254411()()2411 1.1610(0.30.2) 1.6010(0.30.2)J 550J24A k x x b x x =----⎡⎤=-⨯⨯⨯--⨯⨯⨯-=-⎢⎥⎣⎦2-15 如果子弹穿入墙壁时,所受的阻力与穿入的深度h 成正比,证明当子弹的初速度增大为原来的2倍时,子弹进入墙壁的深度也增大2倍.证 在穿进墙壁后,子弹所受的阻力为F kh =-,式中k 为常数.设子弹进入墙壁的最大深度为m h ,则在子弹穿入过程中,阻力做的功为m 2m 01d 2h A kh h kh =-=-⎰子弹在最大深度m h 时的速度为零.由外力的功等于始末二状态之间的动能的增量,有22m ax 01122kh k -=-v式中0v 是子弹的初速度,即子弹与墙壁接触瞬间的速度.k 和子弹质量m 均为常数,因此子弹的初速度0v 和子弹进入墙壁的最大深度m h 成正比,子弹的初速度增大为原来的2倍时,子弹进入墙壁的最大深度也增大为原来的2倍.2-16 如图所示,一质量为4k g 的小球,从高度3m h =处落下,使弹簧受到压缩.假定弹簧的质量与小球相比可以略去不计,弹簧的劲度系数1500N m k -=⋅.求弹簧被压缩的最大距离.解 小球从开始下落,到弹簧达到最大压缩x 量为止,下落距离为h x +.这期间, 由小球、弹簧和地球组成的系统机械能守恒.由于小球的动能增量为零,因此21()02kx m g h x -+=即2220m g m g x x h kk--=将2249.80.1568500m g k⨯⨯==,3m h =代入上式,可解得0.769m x =2-17 测定矿车的阻力因数μ(即阻力与矿车对轨道正压力的比值)的设施如图所示.测定时使矿车自高度h 处从静止开始下滑,滑过一段水平距离2l 后停下.已知坡底的长度为1l ,证明12h l l μ=+.证 设矿车质量为m ,则矿车在坡道上下滑时所受的正压力大小为co s m g θ.式中θ为斜面与水平面的夹角.由功能原理,矿车所受的力在全过程中所做的功,等于其始末二状态之间的动能增量,而动能的增量为零,于是2co s 0co s l m g h m g m g l μθμθ--=由此可得12()h l l μ=+2-18 一颗子弹由枪口射出时速率为0v ,当子弹在枪筒内被加速时,它所受的合外力为F a bt =-式中a 、b 为常量.(1) 设子弹走到枪口处,所受的合力刚好为零,求子弹走完枪筒全长所需的时间; (2) 求子弹所受的冲量; (3) 求子弹的质量.解 (1) 子弹走到枪口处,所受的合力刚好为零:00F a bt =-=由此可得子弹走完枪筒全长所需的时间为0a t b=(2) 在[]00,t ,子弹所受的冲量为022200011()d ()222t a aaI a b t t a t b t ab bb b=-=-=-=⎰(3) 由动量原理I m =∆v ,而子弹的初速度为零,于是有0I =m v由此可得子弹的质量为2I a b ==m v v2-19 一质量为m 的质点,在O xy 平面上运动,其位置矢量为cos sin a t b t ωω=+r i j求从0t =到π2t ω=时间内,质点所受的合外力的冲量.解 质点的速度为d sin co s d a t b t tωωωω==-+r i j v0t =时, 质点的速度为1b ω=j vπ2t ω=时, 质点的速度为2ππsin co s 22a b a ωωωωωωω=-+=-i j i v由动量原理, 在0t =到π2t ω=时间内质点所受的合外力的冲量为21m m m a m b ωω=-=--I i j v v2-20 有一横截面积为20.2m S =的直角弯管,水平放置,如图所示.管中流过流速为13.0m s-=⋅v 的水.求弯管所受力的大小和方向.解 d m 的水转过直角,经历的时间为∆l t =v,式中l 为弯管14圆弧的长度;动量改变的大小为d m ,方向与水平成o45角.由动量定理,弯管给d m 的水的平均作用力的大小为2d d d d m m m F l tl===∆v圆弧弯管长度的水的质量为d m mS l ρ==⎰.这么多的水转过直角,弯管所给的平均作用力的大小为2223231100.20 3.0N 2.5510NS l F S ll====⨯⨯⨯=⨯v v v方向与水平成o45角,斜向上.此力的反作用力即为水管所受的力,大小为32.5510N F '=⨯方向与水平成o45角,斜向下.2-21 水力采煤是利用水枪在高压下喷出来的强力水柱,冲击煤层而使煤层破裂.设所用水枪的直径为30m m ,水速为160m s-⋅,水柱与煤层表面垂直,如图所示.水柱在冲击煤层后,沿煤层表面对称地向四周散开.求水柱作用在煤层上的力.解 设水在煤层表面均匀四散,则煤层所受的合力在沿煤层表面的方向上的分量为零.在t ∆时间内,有质量为m tS ρ=∆v 的水到达煤层表面.式中v 为水速, S 为水柱截面积.在垂直于煤层的方向上,其动量的变化为()2x m tS ρ∆=-∆v v由动量定理,()x x F t m ∆=∆v ,可求得水柱所受的冲力在垂直于煤层的方向上的分量为x F S ρ=-2v水柱作用在煤层上的力是x F i 的反作用力,垂直指向煤层,大小为2432π 3.01011060N 2545N 4F S ρ-⨯⨯'==⨯⨯⨯=2v2-22 在铁轨上,有一质量为40t 的车辆,其速度为11.5m s -⋅,它和前面的一辆质量为35t 的静止车辆挂接.挂接后,它们以同一速度前进.求:(1) 挂接后的速率;(2) 质量为35t 的车辆受到的冲量. 解 (1) 由动量守恒定律,有21122()m m m m +=+v v v式中11 1.5m s -=⋅v 是140t m =的车辆的初速度,20=v 是230t m =的车辆的初速度;v 是两辆车一起运动的速度.由此可得311113124010 1.5m s0.8m s(4035)10m m m --⨯⨯==⋅=⋅++⨯v v(2) 质量为235t m =的车辆受到的冲量等于其动量的增量:34235100.8N s 2.8010N s I m ==⨯⨯⋅=⨯⋅v2-23 一个质量为60kg 的人,以12.0m s -⋅速率跳上一辆以11.0m s -⋅的速率运动的小车.小车的质量为180k g .(1) 如果人从小车后面跳上去,求人和小车的共同速度 (2) 如果人从小车前面跳上去,求人和小车的共同速度. 解 以小车前进方向为正方向.由动量守恒定律121122()m m m m +=+v v v式中v 是人和小车的共同速度, 1v 是人的速率, 12 1.0m s -=⋅v 是小车的速率. 由上式可得112212m m m m +=+v v v(1) 如果人从小车后面跳上去,则人的速度11 2.0m s -=⋅v ,人和小车的共同运动的速度为1111221260 2.0180 1.0m s1.25m s(60180)m m m m --+⨯+⨯==⋅=⋅++v v v(2) 如果人从小车前面跳上去,则人的速度11 2.0m s -=-⋅v ,人和小车的共同运动的速度为1111221260( 2.0)180 1.0m s0.25m s(60180)m m m m --+⨯-+⨯==⋅=⋅++v v v2-24 一炮弹竖直向上发射,初速度为0v .在发射后经过时间t ,在空中自动爆炸.假定炮弹爆炸后分成质量相等的A 、B 、C 三块碎片.其中A 块的速度为零, B 、C 两块的速度大小相同,且B 块的方向与水平成α角.求B 、C 两块碎片的速度大小和C 块的方向.解 临爆炸前,炮弹的速度在竖直方向,大小为0g t =-v v .其方向可能竖直向上,亦可能竖直向下.设炮弹的质量为m ,爆炸后瞬时B 、C 两块的速度分别为B v 和C v .由动量守恒定律B C 1133m m m +=v v v图示为速度竖直向上时的动量守恒的矢量图,图中π2βα=-.若速度竖直向下,亦可作出相似的动量守恒的矢量图.由于B 、C 两块的速度大小相同,即B C =v v ,因此动量守恒的矢量图为等腰三角形,C v 与竖直面的夹角亦为β,与水平面的夹角亦为α;与B v 之间的夹角为π2α-,且B C 11sin sin 33m m m αα+=v v v将0g t =-v v 和B C =v v 代入,即可求得B 、C 两块碎片的速度大小为0B C 32sin g t α-==v v v2-25 如图所示,有一空气锤,质量为200kg m =,由高度0.45m h =处受工作气缸中压缩空气的压力及重力的作用而落下,摩擦阻力可以忽略.已知工作气缸内压缩空气对锤头的平均压力37.0010N F =⨯,锤头与工件的碰撞时间为0.010s t =,求锤头锻打工件时的平均冲力.解 设锤头到达工件,与工件接触瞬时的速度为v .由功能原理,有21()2F m g h m +=v由此可得=v这时,汽缸内的压强已经很小,对锤头的压力可以忽略.锤头锻打工件时的过程中,受到的向上的平均冲力为1F .以竖直向下为正方向,由动量原理,有()1Fm g t m -+∆=-v可得1F 的大小为15200 2009.8N 1.29010N0.010m F m g m gt ⎛⎫=+=⎪∆⎝⎭⎛⎫=⨯⨯=⨯ ⎪ ⎪⎝⎭v工件所受的打击力是1F 的反作用力,平均大小亦为51.29010N ⨯,方向竖直向下.若不忽略汽缸内的压缩空气对锤头的压力,且认为大小亦为37.0010N F =⨯,则有()1F F m g t m '-++∆=-v由此可得锤头和工件所受的打击力的平均大小()53511 1.290107.0010N1.3610N F F F '=+=⨯+⨯=⨯2-26 两个形状相同质量均为m '弧形光滑导轨A 和B ,放在光滑地板上,且在同一竖直平面内,A 和B 的下端均和地板相切,如图所示.今有一质量为m 的小物体,由静止从高度为0h 的A 的顶端下滑,求m 在B 导轨上上升的最大高度.解 设小物体下滑至地面时,物体速度为v ,导轨A 的速度为A v .在小物体下滑的过程中,小物体、导轨A 和地球组成的系统机械能守恒,有22A 01122m m m g h '+=v v小物体和导轨A 组成的系统在水平方向上动量守恒,有A 0m m '+=v v联立解此二方程,可得=v设小物体沿导轨B 上升的最大高度为h ,此时二者一起运动的速度为B v .在小物体上升的过程中,小物体、导轨B 和地球组成的系统机械能守恒,有221B 11()22m m g h m m '=++v v小物体和导轨B 组成的系统在水平方向上动量守恒,有B ()m m m '=+v v联立解此二方程,可得22()m h m m g'='+v将=v 代入上式,可得20m h h m m '⎛⎫= ⎪'+⎝⎭。
大学物理习题答案第二章
[习题解答]2-1 处于一斜面上的物体,在沿斜面方向的力F作用下,向上滑动。
已知斜面长为5.6m,顶端的高度为3.2m,F的大小为100N,物体的质量为12kg,物体沿斜面向上滑动的距离为4.0 m,物体及斜面之间的摩擦系数为0.24。
求物体在滑动过程中,力F、摩擦力、重力和斜面对物体支撑力各作了多少功?这些力的合力作了多少功?将这些力所作功的代数和及这些力的合力所作的功进行比较,可以得到什么结论?解物体受力情形如图2-3所示。
力F所作的功;摩擦力图2-3,摩擦力所作的功;重力所作的功;支撑力N及物体的位移相垂直,不作功,即;这些功的代数和为.物体所受合力为,合力的功为.这表明,物体所受诸力的合力所作的功必定等于各分力所作功的代数和。
2-3物体在一机械手的推动下沿水平地面作匀加速运动,加速度为0.49 m⋅s-2 。
若动力机械的功率有50%用于克服摩擦力,有50%用于增加速度,求物体及地面的摩擦系数。
解设机械手的推力为F沿水平方向,地面对物体的摩擦力为f,在这些力的作用下物体的加速度为a,根据牛顿第二定律,在水平方向上可以列出下面的方程式,在上式两边同乘以v,得,上式左边第一项是推力的功率()。
按题意,推力的功率P是摩擦力功率fv的二倍,于是有.由上式得,又有,故可解得.2-4有一斜面长5.0 m、顶端高3.0 m,今有一机械手将一个质量为1000 kg的物体以匀速从斜面底部推到顶部,如果机械手推动物体的方向及斜面成30 ,斜面及物体的摩擦系数为0.20,求机械手的推力和它对物体所作的功。
解物体受力情况如图2-4所示。
取x轴沿斜面向上,y轴垂直于斜面向上。
可以列出下面的方程,(1),(2). (3)根据已知条件, .由式(2)得图2-4.将上式代入式(3),得.将上式代入式(1)得,由此解得.推力F所作的功为.2-5有心力是力的方向指向某固定点(称为力心)、力的大小只决定于受力物体到力心的距离的一种力,万有引力就是一种有心力。
大学物理第二章习题答案
1
第二章 机械能及其守恒定律
——思考题与习题 (2课时)
思考题
2
在驱动轮不发生滑动的条件下,一辆汽车从静止加速到速率V。 汽车的动能是否由路面施于汽车的静摩擦力所作之功而获得的?
路面对汽车的静摩擦力并没有作功,汽车作用。
1 R 3
1 1 2 1 2 mgx k ( x x ) kx mv 2 2 2 2 (1)
O
A
x
F
x
B
mg
x
18
小球在 A 点时处于平衡状态,故
mg kx (2)
A
由以上二式可解出由静止释放小球后小 球第一次经过点 A 时的速率为
v k x m
O
x
F
x
B
mg
x
注意,在此问题中,弹性势能 0 点不能选在 A 点,而必须选 择弹簧自然伸长时的位置 O 点,因为弹性势能的定义 1 2 E p kx 2 只有选择弹簧自然伸长时的位置为势能 0 点时才成立。
3
一人逆水划船,使船相对于河岸静止。试问: 1)人是否要作功? 2)停止划船,让船顺流而下,则流水对船是否作功? 1)要作功,使被划的水获得动能增量。 2)略去空气阻力,略去船的海拔下降,人刚停下时流水做功, 使船与水达到同速,此后流水对船不作功。
4
质点系的内力之和是否一定为零?内力作功之和是否一定为零? 内力矩之和是否一定为零?为什么? 质点系的内力之和一定为零,因为内力是成对出现的,每一 对内力大小相等,方向相反。 内力作功之和不一定等于零,因为一对内力的功与内力大小 及发生作用的两部分之间的相对位移有关,例如爆炸的情况, 内力做功大于零。 内力矩之和一定为零,因为内力矩也是成对出现的,大小相 等,方向相反。
大学物理答案第二章牛顿定律-习题解答
将牛顿运动定律应用于各种实际问题中,如天体运动、弹性碰撞、摩擦力问题等,通过建立物理模型和 运用数学工具解决实际问题。
解决复杂问题的思路与方法
01
02
03
04
建立物理模型
根据问题的实际情况,抽象出 具体的物理模型,如质点、刚 体、弹性碰撞等,为解决问题 提供清晰的思路。
定律的应用场景与实例
总结词
牛顿第一定律在日常生活和科学研究中有着广泛的应用。例如,汽车安全带的设计、投掷物体的轨迹、行星的运 动等都遵循这一规律。
详细描述
汽车安全带的设计依据了惯性定律,通过限制乘客在急刹车或碰撞时的运动,减少伤害风险。投掷物体时,出手 的角度和力量会影响物体的运动轨迹,这也符合惯性定律。行星的运动规律是牛顿第一定律的重要应用之一,行 星绕太阳的椭圆轨道运动可以由惯性定律推导出来。
05
习题解答
常见错误解析与纠正
01 02 03
错误1
混淆了牛顿第二定律中的力和加速度概念,将力误认为是 加速度的原因,而实际上力是产生加速度的原因。纠正: 正确理解力和加速度的关系,力是产生加速度的原因,加 速度的大小和方向由力的三要素决定。
错误2
在分析多力作用下物体的运动时,未能正确分析合力和加 速度的关系。纠正:在分析多力作用下物体的运动时,应 先求出合力,再根据牛顿第二定律求出加速度,最后根据 运动学公式求解速度和位移。
导出牛顿第三定律。
定律的应用场景与实例
要点一
总结词
牛顿第三定律在现实生活中有着广泛的应用,例如火箭发 射、车辆行驶、体育运动等。
要点二
详细描述
在火箭发射中,火箭向下喷射高温高压气体,产生一个向 上的反作用力,使火箭升空。在车辆行驶中,车辆发动机 产生的力推动车辆前进,同时车辆也会给地面一个向后的 反作用力,使地面产生磨损。在体育运动中,例如篮球投 篮时,投篮的力量和手受到的反作用力大小相等、方向相 反。
大学物理课后习题2第二章答案
(B) aA>0 , aB<0.
(C) aA<0 , aB>0.
(D) aA<0 , aB=0. F
B
A
x
答案:(D)。
题 2.1(5)图
2.2 填空题 (1) 质量为 m 的小球,用轻绳 AB、BC 连接,如图所示,其中 AB 水平.剪断绳 AB 前后的瞬间,绳 BC 中的张力比 T : T′=____________.
说
法
中
:
()
(A)①、②是正确的。
(B)②、③是正确的。
(C)只有②是正确的。
(D)只有③是正确的。
答案:(C)。
(4) 一质量为 M 的斜面原来静止于水平光滑平面上,将一质量为 m 的木块轻
轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将
()
(A) 保持静止.
(B) 向右加速运动.
(C) 向右匀速运动. (D) 向左加速运动.
受的合力为 F =( a bt )N( a,b 为常数),其中 t 以秒为单位:(1)假设子弹运行
到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的
冲量;(3)求子弹的质量.
解: (1)由题意,子弹到枪口时,有
F (a bt) 0 ,得 t a b
(2)子弹所受的冲量
,
物体与水平面间的摩擦系数为
。
答案: v2 ; 2s
v2 . 2gs
(5) 在光滑的水平面内有两个物体 A 和 B,已知 mA=2mB。(a)物体 A 以一定的动
能 Ek 与 静 止 的 物 体 B 发 生 完 全 弹 性 碰 撞 , 则 碰 撞 后 两 物 体 的 总 动 能
大学物理答案第二章
2-1 分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2 分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3 分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4 分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rmθmg F N 2sin v=-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).2-5 分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a ′为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中aA 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6 分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin (1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -== 则 ()αμααg lt cos sin cos 2-= (2)为使下滑的时间最短,可令0d d =αt,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα 则可得 μα12tan -=,o 49=α此时 ()s 99.0cos sin cos 2=-=αμααg lt2-7 分析 预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解 按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示).当框架以加速度a 上升时,有F T -(m1 +m 2 )g =(m 1 +m 2 )a (1) ,F N2 - m 2 g =m 2 a (2)解上述方程,得F T =(m 1 +m 2 )(g +a) (3) F N2 =m 2 (g +a) (4)(1) 当整个装置以加速度a =10 m ·s-2上升时,由式(3)可得绳所受张力的值为F T =5.94 ×103 N乙对甲的作用力为 F ′N2 =-F N2 =-m 2 (g +a) =-1.98 ×103N (2) 当整个装置以加速度a =1 m ·s-2上升时,得绳张力的值为 F T =3.24 ×103N 此时,乙对甲的作用力则为 F ′N2 =-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8 分析 该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A 、B 及滑轮列动力学方程,有 m A g -F T =m A a (1)F ′T1 -F f =m B a ′ (2) F ′T -2F T1 =0 (3)考虑到m A =m B =m , F T =F ′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N am m mg F 2724f .=+-=讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来.2-9 分析当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1 以地面为参考系,在摩擦力Ff=μmg的作用下,根据牛顿定律分别对木块、平板列出动力学方程Ff=μmg=ma1F′f=-Ff=m′a2a 1 和a 2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a 1 +a 2 ,木块相对平板以初速度- v ′作匀减速运动直至最终停止.由运动学规律有 - v ′2=2as由上述各式可得木块相对于平板所移动的距离为()m m g μm s +'''=22v解2 以木块和平板为系统,它们之间一对摩擦力作的总功为W =F f (s +l ) -F fl =μmgs式中l 为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m ′v ′=(m ′+m ) v ″由系统的动能定理,有()222121v v ''+'-''=m m m mgs μ由上述各式可得 ()m m g μm s +'''=22v2-10 分析 维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力F N 的分力来提供的,由于支持力F N 始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示Oxy 坐标,列出动力学方程,即可求解钢球距碗底的高度.解 取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程θωmR ma θF n N sin sin 2== (1)mg θF N =cos (2)且有 ()Rh R θ-=cos (3)由上述各式可解得钢球距碗底的高度为2ωgR h -= 可见,h 随ω的变化而变化.2-11 分析 如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量F N sin θ 提供(式中θ 角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v 0行驶.当火车行驶速率v ≠v 0 时,则会产生两种情况:如图所示,如v >v 0 时,外轨将会对车轮产生斜向内的侧压力F 1 ,以补偿原向心力的不足,如v <v 0时,则内轨对车轮产生斜向外的侧压力F 2 ,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解 (1) 以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有Rm θF N 2sin v = (1) 0cos =-mg θF N (2)解(1)(2)两式可得火车转弯时规定速率为θgR tan 0=v(2) 当v >v 0 时,根据分析有 RmθF θF N 21cos sin v=+ (3) 0sin cos 1=--mg θF θF N (4) 解(3)(4)两式,可得外轨侧压力为⎪⎪⎭⎫⎝⎛-=θg θR F sin cos m 21v当v <v 0 时,根据分析有RθF θF N 22m cos sin v =- (5) 0sin cos 2=-+mg θF θF N (6)解(5)(6)两式,可得内轨侧压力为⎪⎪⎭⎫ ⎝⎛-=θR θg m F cos sin 22v 2-12 分析 杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v 1 和v 2 两个分量,显然v 1是竖直向上作匀速直线运动的分速度,而v 2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力F N 的水平分量F N2 提供,而竖直分量F N1 则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向力.解 设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有01=-mg F N (1) Rm F N 22v = (2)()222π2π2cos h R Rθ+==vv v (3) 2221N N N F F F +=(4)以式(3)代入式(2),得222222222222π4π4π4π4h R Rm h R R R m F N +=+=v v (5) 将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22222222221π4π4⎪⎪⎭⎫ ⎝⎛++=+=h R R g m F F F N N N v与壁的夹角φ为()gh R R F F N N 2222212π4π4arctan arctan +==v 讨论 表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2-13 分析 首先应由题图求得两个时间段的F (t )函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解 由题图得()⎩⎨⎧<<-<<=7s t 5s,5355s t 0,2t t t F 由牛顿定律可得两时间段质点的加速度分别为5s t 0 ,2<<=t a 7s t 5s ,535<<-=t a对0 <t <5s 时间段,由ta d d v =得 ⎰⎰=tt a 0d d 0vv v 积分后得 25t +=v再由txd d =v 得 ⎰⎰=t t x 0d d 0v x x积分后得33152t t x ++=将t =5s 代入,得v 5=30 m ·s-1和x 5 =68.7 m 对5s<t <7s 时间段,用同样方法有⎰⎰=tt a s52d d 0vv v 得 t t t 5.825.2352--=v再由⎰⎰=txx t x s55d d v 得 x t 2t 3 t将t =7s代入分别得v 7=40 m ·s-1和 x 7 =142 m2-14 分析 这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a =d v /d t ,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v (t );由速度的定义v =d x /d t ,用积分的方法可求出质点的位置.解 因加速度a =d v /d t ,在直线运动中,根据牛顿运动定律有tmt d d 40120v=+ 依据质点运动的初始条件,即t 0 =0 时v 0 =6.0 m ·s-1,运用分离变量法对上式积分,得()⎰⎰+=tt t 0d 0.40.12d 0vv v vt+t 2又因v =d x /d t ,并由质点运动的初始条件:t 0 =0 时x 0 =5.0 m,对上式分离变量后积分,有()⎰⎰++=txx t t t x 02d 0.60.40.6dx +t+t 2t 32-15 分析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F 为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,t αtmma F -===d d v ⎰⎰-=t t m t α0d d 0v v v 得 202t m α-=v v因此,飞机着陆10s后的速率为v =30 m ·s-1又⎰⎰⎪⎭⎫ ⎝⎛-=t xx t t m αx 0200d 2d v故飞机着陆后10s内所滑行的距离 m 4676300=-=-=t mαt x x s v 2-16 分析 该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P 、浮力F 和水的阻力F f的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为gh 20=v运动员入水后,由牛顿定律得 P -F f -F =ma 由题意P =F 、F f=bv 2,而a =d v /d t =v (d v /d y ),代 入上式后得 -bv 2= mv (d v /d y ) 考虑到初始条件y 0 =0 时, gh 20=v ,对上式积分,有⎰⎰=⎪⎭⎫ ⎝⎛-v v vv 0d d 0ty b m mby m by e gh e //02--==v v (2) 将已知条件b/m =0.4 m -1,v v 0 代入上式,则得m 76.5ln 0=-=v vb m y 2-17 分析 螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解 设叶片根部为原点O ,沿叶片背离原点O 的方向为正向,距原点O 为r 处的长为d r 一小段叶片,其两侧对它的拉力分别为F T(r)与F T(r +d r ).叶片转动时,该小段叶片作圆周运动,由牛顿定律有()()r r ωlm r r F r F F T T T d d d 2=+-= 由于r =l 时外侧F T =0,所以有()r r lωm F lrtr F T T d d 2⎰⎰= ()()()22222222r l l mn πr l l ωm r F T --=--= 上式中取r =0,即得叶片根部的张力F T0 =-2.79 ×105N 负号表示张力方向与坐标方向相反.2-18 分析 该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度a t,与其相对应的外力F t是重力的切向分量mg sin α,而与法向加速度a n 相对应的外力是支持力F N 和重力的法向分量mg cos α.由此,可分别列出切向和法向的动力学方程F t=m d v/d t 和F n =ma n .由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量. 倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解 小球在运动过程中受到重力P 和圆轨道对它的支持力F N .取图(b)所示的自然坐标系,由牛顿定律得tm αmg F t d d sin v=-= (1) R m m αmg F F N n 2cos v =-= (2) 由tαr t s d d d d ==v ,得v αr t d d =,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有()⎰⎰-=αααrg o90d sin d vv v v 得 αrg cos 2=v则小球在点C 的角速度为r αg r ω/cos 2==v由式(2)得 αmg αmg r m m F N cos 3cos 2=+=v 由此可得小球对圆轨道的作用力为 αmg F F N N cos 3-=-='负号表示F ′N 与e n 反向.2-19 分析 运动学与动力学之间的联系是以加速度为桥梁的,因而,可先分析动力学问题.物体在作圆周运动的过程中,促使其运动状态发生变化的是圆环内侧对物体的支持力F N 和环与物体之间的摩擦力F f ,而摩擦力大小与正压力F N ′成正比,且F N 与F N ′又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学的积分关系式求解速率和路程.解 (1) 设物体质量为m ,取图中所示的自然坐标,按牛顿定律,有R m ma F n N 2v == tma F t d d f v-=-=由分析中可知,摩擦力的大小F f=μF N ,由上述各式可得tR μd d 2vv -= 取初始条件t =0 时v =v 0 ,并对上式进行积分,有⎰⎰-=v v v v02d d μR t tt μR R 00v v v +=(2) 当物体的速率从v 0 减少到1/2v 0时,由上式可得所需的时间为v μR t =' 物体在这段时间内所经过的路程⎰⎰''+==t t t t μR R t s 0000d d v v v 2ln μRs =2-20 分析 物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v 的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解 (1) 物体在空中受重力mg 和空气阻力F r =kv 作用而减速.由牛顿定律得tmk mg d d vv =-- (1) 根据始末条件对上式积分,有⎰⎰+-=vv v v vd d 0k mg m t ts 11.61ln 0≈⎪⎪⎭⎫⎝⎛+=mg k k m t v (2) 利用yvt d d d d v v =的关系代入式(1),可得 ym k mg d d vvv =-- 分离变量后积分⎰⎰+-=0d d v v vv k mg m y y故 m 1831ln 00≈⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛+-=v v mg k k mg k m y 讨论 如不考虑空气阻力,则物体向上作匀减速运动.由公式g t 0v =和gy 220v=分别算得t ≈y ≈184 m,均比实际值略大一些.2-21 分析 由于空气对物体的阻力始终与物体运动的方向相反,因此,物体在上抛过程中所受重力P 和阻力F r 的方向相同;而下落过程中,所受重力P 和阻力F r 的方向则相反.又因阻力是变力,在解动力学方程时,需用积分的方法.解 分别对物体上抛、下落时作受力分析,以地面为原点,竖直向上为y 轴(如图所示).(1) 物体在上抛过程中,根据牛顿定律有ym t mkm mg d d d d 2vv v v ==-- 依据初始条件对上式积分,有⎰⎰+-=020d d v v vv k g y y⎪⎪⎭⎫ ⎝⎛++-=202ln 21v v k g k g k y 物体到达最高处时, v =0,故有⎪⎪⎭⎫ ⎝⎛+==g k g k y h 20max ln 21v (2) 物体下落过程中,有yvmkm mg d d 2v v =+- 对上式积分,有 ⎰⎰--=020d d v v vv k g y y则 2/1201-⎪⎪⎭⎫ ⎝⎛+=g k v v v2-22 分析 该题依然是运用动力学方程求解变力作用下的速度和位置的问题,求解方法与前两题相似,只是在解题过程中必须设法求出阻力系数k .由于阻力F r =kv 2,且F r 又与恒力F 的方向相反;故当阻力随速度增加至与恒力大小相等时,加速度为零,此时速度达到最大.因此,根据速度最大值可求出阻力系数来.但在求摩托车所走路程时,需对变量作变换.解 设摩托车沿x 轴正方向运动,在牵引力F 和阻力F r 同时作用下,由牛顿定律有tmk F d d 2vv =- (1) 当加速度a =d v /d t =0 时,摩托车的速率最大,因此可得k =F/v m 2 (2)由式(1)和式(2)可得t m F m d d 122vv v =⎪⎪⎭⎫ ⎝⎛- (3) 根据始末条件对式(3)积分,有⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m tF m t v v v v 2101220d 1d 则 3ln 2F m t m v = 又因式(3)中xm t md d d d vv v =,再利用始末条件对式(3)积分,有 ⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m xF m x v v v v 2101220d 1d 则 F m F m x mm 22144.034ln 2v v ≈=2-23 分析 如图所示,飞机触地后滑行期间受到5 个力作用,其中F 1为空气阻力, F 2 为空气升力, F 3 为跑道作用于飞机的摩擦力,很显然飞机是在合外力为变力的情况下作减速运动,列出牛顿第二定律方程后,用运动学第二类问题的相关规律解题.由于作用于飞机的合外力为速度v 的函数,所求的又是飞机滑行距离x ,因此比较简便方法是直接对牛顿第二定律方程中的积分变量d t 进行代换,将d t 用vxd 代替,得到一个有关v 和x 的微分方程,分离变量后再作积分.解 取飞机滑行方向为x 的正方向,着陆点为坐标原点,如图所示,根据牛顿第二定律有 tmk F N d d 21vv =- (1) 022=-+mg k F N v (2)将式(2)代入式(1),并整理得()xm t mk μk mg μd d d d 221v v v v ==--- 分离变量并积分,有()⎰⎰⨯-=-+0221d d 0x k μk mg μvm vv v v得飞机滑行距离()()⎥⎦⎤⎢⎣⎡-+-=mg μk μk mg μk μk mx 22121ln 2v (3) 考虑飞机着陆瞬间有F N =0 和v =v 0 ,应有k 2v 02=mg,将其代入(3)式,可得飞机滑行距离x 的另一表达式()⎪⎪⎭⎫ ⎝⎛-=212122k ln 2k μk μk g k x v 讨论 如飞机着陆速度v 0=144 km ·h -1,μ=0.1,升阻比521=k k ,可算得飞机的滑行距离x =560 m,设计飞机跑道长度时应参照上述计算结果.2-24 分析 如同习题2 -5 分析中指出的那样,可对木箱加上惯性力F 0 后,以车厢为参考系进行求解,如图所示,此时木箱在水平方向受到惯性力和摩擦力作用,图中a ′为木箱相对车厢的加速度.解 由牛顿第二定律和相关运动学规律有F 0 -F f=ma -μmg =ma ′ (1) v ′ 2 =2a ′L (2)联立解(1)(2)两式并代入题给数据,得木箱撞上车厢挡板时的速度为()2s m 9.22-⋅=-='L g μa v2-25 分析 如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.解 取如图(b)所示的坐标,以电梯为参考系,分别对物体A 、B 作受力分析,其中F 1 =m 1a ,F 2 =m 2a 分别为作用在物体A 、B 上的惯性力.设a r 为物体相对电梯的加速度,根据牛顿定律有r a m F a m g m 1T111=-+ (1) r a m F a m g m 2T222-=-+ (2) T2T2F F = (3)由上述各式可得()a g m m m m a r ++-=2121 ()a g m m m m F F ++==2121T2T22由相对加速度的矢量关系,可得物体A 、B 对地面的加速度值为()2122112m m a m g m m a a a r +--=-= ()()2121122m m gm m a m a a ar +-+-=+-=a 2 的方向向上, a 1 的方向由a r 和a 的大小决定.当a r <a ,即m 1g -m 2g -2m 2 a >0 时,a 1 的方向向下;反之, a 1 的方向向上.2-26 分析 这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意: (1) 参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为a A 的运动,这时,滑块沿斜面的加速度a BA ,不再是它相对于地面的加速度a B 了.必须注意到它们之间应满足相对加速度的矢量关系,即a B =a A +a BA .若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F ,且有F =ma A .(2) 坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.(3) 在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mg cos α,事实上只有当a A =0 时,正压力才等于mg cosα.解1 取地面为参考系,以滑块B 和三棱柱A 为研究对象,分别作示力图,如图(b)所示.B 受重力P 1 、A 施加的支持力F N1 ;A 受重力P 2 、B 施加的压力F N1′、地面支持力F N2 .A 的运动方向为Ox 轴的正向,Oy 轴的正向垂直地面向上.设a A 为A 对地的加速度,a B 为B 对的地加速度.由牛顿定律得A a m α'='sin N1F (1)Bx ma α=-sin N1F (2) By ma mg α=-cos N1F (3)'=N1N1F F (4)设B 相对A 的加速度为a BA ,则由题意a B 、a BA 、a A 三者的矢量关系如图(c)所示.据此可得αa a a BA A Bx cos -= (5) αa a BA By sin -= (6)解上述方程组可得三棱柱对地面的加速度为αm m ααmg a A 2sin cos sin +'=滑块相对地面的加速度a B 在x 、y 轴上的分量分别为αm m ααg m a Bx 2sin cos sin +''= ()αm m αg m m a By 22sin sin +'+'-=则滑块相对地面的加速度a B 的大小为()αm m αm m m m αg a a a ByBx B 222222sin sin 2sin +'+'+'=+=其方向与y 轴负向的夹角为m m αm a a θBy Bx +'+'==cot arctan arctanA 与B 之间的正压力 αm m αmg m F 2N1sin cos +''= 解2 若以A 为参考系,Ox 轴沿斜面方向[图(d)].在非惯性系中运用牛顿定律,则滑块B 的动力学方程分别为BA A ma αma αmg =+cos sin (1) 0sin cos N1=--αma F αmg A (2)又因 0sin N1='-'A a m αF (3)'=N1N1F F (4)由以上各式可解得αm m ααmg a A 2sin cos sin +'=()αm m αg m m a BA2sin sin +'+'-= 由a B 、a BA 、a A 三者的矢量关系可得()αm m αm m m m αg a B 2222sin sin 2sin +'+'+'= 以a A 代入式(3)可得 αm m αmg m F 2N1sin cos +''=4-1 分析与解 力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B).4-2 分析与解 刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B).4-3 分析与解 如图所示,在棒下落过程中,重力对轴之矩是变化的,其大小与棒和水平面的夹角有关.当棒处于水平位置,重力矩最大,当棒处于竖直位置时,重力矩为零.因此在棒在下落过程中重力矩由大到小,由转动定律知,棒的角加速亦由大到小,而棒的角速度却由小到大(由机械能守恒亦可判断角速度变化情况),应选(C).4-4 分析与解 对于圆盘一子弹系统来说,并无外力矩作用,故系统对轴O 的角动量守恒,故L 不变,此时应有下式成立,即ωJ ωJ d m d m =+-00v v式中mv D 为子弹对点O 的角动量ω0 为圆盘初始角速度,J 为子弹留在盘中后系统对轴O 的转动惯量,J 0为子弹射入前盘对轴O 的转动惯量.由于J >J 0 ,则ω<ω0 .故选(C).4-5 分析与解 由于卫星一直受到万有引力作用,故其动量不可能守恒,但由于万有引力一直指向地球中心,则万有引力对地球中心的力矩为零,故卫星对地球中心的角动星守恒,即r ×m v =恒量,式中r 为地球中心指向卫星的位矢.当卫星处于椭圆轨道上不同位置时,由于|r |不同,由角动量守恒知卫星速率不同,其中当卫星处于近地点时速率最大,处于远地点时速率最小,故卫星动能并不守恒,但由万有引力为保守力,则卫星的机械能守恒,即卫星动能与万有引力势能之和维持不变,由此可见,应选(B).4-6 分析 这是刚体的运动学问题.刚体定轴转动的运动学规律与质点的运动学规律有类似的关系,本题为匀变速转动.解 (1) 由于角速度ω=2π n (n 为单位时间内的转数),根据角加速度的定义tωαd d =,在匀变速转动中角加速度为 ()200s rad 1.13π2-⋅=-=-=tn n t ωωα (2) 发动机曲轴转过的角度为()0020π221n n t ωωt αt ωθ-=-=+=在12 s 内曲轴转过的圈数为3902π20=+==t n n θN 4-7 分析 与质点运动学相似,刚体定轴转动的运动学问题也可分为两类:(1) 由转动的运动方程,通过求导得到角速度、角加速度;(2) 在确定的初始条件下,由角速度、角加速度通过积分得到转动的运动方程.本题由ω=ω(t )出发,分别通过求导和积分得到电动机的角加速度和6.0 s 内转过的圈数.解 (1) 根据题意中转速随时间的变化关系,将t =6.0 s 代入,即得()10/0s 6.895.01--==-=ωe ωωτt(2) 角速度随时间变化的规律为()22//0s rad e 5.4e d d ---⋅===t τt τωt ωα (3) t =6.0 s 时转过的角度为()rad 9.36d 1d /6060=-==-⎰⎰t e ωt ωθτt则t =6.0 s 时电动机转过的圈数 87.5π2/==θN 圈4-8 分析 如将原子视为质点,则水分子中的氧原子对AA ′轴和BB ′ 轴的转动惯量均为零,因此计算水分子对两个轴的转动惯量时,只需考虑氢原子即可.。
大学物理第二章质点动力学习题答案
习题二2-1质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。
[解]设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力f =-kv (1)由牛顿第二定律tv mma f d d == 即tv mkv d d ==- 所以t mk v v d d -=对等式两边积分⎰⎰-=tvv t m k v v 0d d 0得t mkv v -=0ln因此t mke v v -=0(2)由牛顿第二定律xv mv t x x v m t v m ma f d d d d d d d d ==== 即xvmv kv d d =- 所以v x mkd d =-对上式两边积分⎰⎰=-000d d v sv x mk 得到0v s m k-=-即kmv s 0=2-2质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为[证明]任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得即tvm ma kv F mg d d ==--整理得mtkv F mg v d d =--对上式两边积分⎰⎰=--t vmt kv F mg v00d dy得mktF mg kv F mg -=---ln即⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1 2-3跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。
求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。
[解]设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。
大学物理课后习题答案第二章
(2)小球上升到最大高度所花的时间T.
[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程
,
分离变量得 ,
积分得 .
当t= 0时,v=v0,所以 ,
因此 ,
小球速率随时间的变化关系为
.
(2)当小球运动到最高点时v= 0,所需要的时间为
第二章运动定律与力学中的守恒定律
(一) 牛顿运动定律
2.1一个重量为P的质点,在光滑的固定斜面(倾角为α)上以初速度 运动, 的方向与斜面底边的水平约AB平行,如图所示,求这质点的运动轨道.
[解答]质点在斜上运动的加速度为a = gsinα,方向与初速度方向垂直.其运动方程为
x = v0t, .
将t = x/v0,代入后一方程得质点的轨道方程为
(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角;
(4)用与斜面平行的加速度 把小车沿斜面往上推(设b1=b);
(5)以同样大小的加速度 (b2=b),将小车从斜面上推下来.
[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力 的作用,摆线偏角为零,线中张力为T = mg.
(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于
这也是桌子受板的压力的大小,但方向相反.
板在桌子上滑动,所受摩擦力的大小为:fM= μkNM= 7.35(N).
这也是桌子受到的摩擦力的大小,方向也相反.
(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为
f =μsmg=ma`,
可得a` =μsg.
板的运动方程为
F – f – μk(m + M)g=Ma`,
大学物理_第2章_质点动力学_习题答案
第二章 质点动力学2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-o20(2)(31)s g u ∴=-把式(2)代入式(1)得,()222200.1983u v v=+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G r 和轨道对它的支持力T r.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=r r r由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,习题2-2图Ao B rCT902n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr v g rrv mg mg rmg ααααωαααα=-===+==-=-⎰⎰o r得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+-2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
大学物理教程第2章习题答案
⼤学物理教程第2章习题答案思考题2.1 从运动学的⾓度看,什么是简谐振动?从动⼒学的⾓度看,什么是简谐振动?答:从运动学的⾓度看,弹簧振⼦相对平衡位置的位移随时间按余弦函数的规律变化,所作的运动就是简谐振动。
从动⼒学的⾓度看,如果物体受到的⼒的⼤⼩总是与物体对其平衡位置的位移成正⽐,⽽⽅向相反,那么该物体的运动就是简谐振动。
2.2 弹簧振⼦的振幅增⼤到2倍时,其振动周期、振动能量、最⼤速度和最⼤加速度等物理量将如何变化?答:弹簧振⼦的运动⽅程为0cos()x A t ω?=+,速度为0sin()v A t ωω?=-+,加速度的为)cos(02?ωω+-=t A a ,振动周期2T =221kA E =。
所以,弹簧振⼦的振幅A 增⼤到2倍时,其振动周期不变,振动能量为原来的4倍,最⼤速度为原来的2倍,最⼤加速度为原来的2倍。
2.3 下列运动是否为简谐振动?(1)⼩球在地⾯上作完全弹性的上下跳动;(2)⼩球在半径很⼤的光滑凹球⾯底部作⼩幅度的摆动;(3)曲柄连杆机构使活塞作往复运动;(4)⼩磁针在地磁的南北⽅向附近摆动。
答:(2)、(4)为简谐振动,(1)、(3)、不是简谐振动。
2.4 三只相同的弹簧(质量忽略不计)都⼀端固定,另⼀端连接质量为m 的物体,它们放置情况不同,其中⼀个平放,⼀个斜放,另⼀个竖直放。
如果它们振动起来,则三者是否均为简谐振动,它们振动的周期是否相同?答:三者均为简谐振动,它们振动的周期也相同。
2.5 当谐振⼦作简谐振动的振幅增⼤为原来的2倍时,谐振⼦的什么量也增⼤为原来的2倍?答:最⼤速度和最⼤加速度。
2.6 ⼀弹簧振⼦作简谐振动,其振动的总能量为E 1。
如果我们将弹簧振⼦的振动振幅增加为原来的2倍,⽽将重物的质量增加为原来的4倍,则新的振⼦系统的总能量是否发⽣变化?答:弹簧振⼦212E kA = ,所以新的振⼦系统的总能量增加为原来的4倍。
2.7 ⼀质点作简谐振动,振动频率为n,则该质点动能的变化频率是多少?答:该质点动能的变化频率是2n。
大学物理第二章练习答案
第二章 运动的守恒量和守恒定律练 习 一一. 选择题1. 关于质心,有以下几种说法,你认为正确的应该是( C )(A) 质心与重心总是重合的; (B) 任何物体的质心都在该物体内部; (C) 物体一定有质心,但不一定有重心; (D) 质心是质量集中之处,质心处一定有质量分布。
2. 任何一个质点系,其质心的运动只决定于( D )(A)该质点系所受到的内力和外力; (B) 该质点系所受到的外力;(C) 该质点系所受到的内力及初始条件; (D) 该质点系所受到的外力及初始条件。
3.从一个质量均匀分布的半径为R 的圆盘中挖出一个半径为2R 的小圆盘,两圆盘中心的距离恰好也为2R 。
如以两圆盘中心的连线为x 轴,以大圆盘中心为坐标原点,则该圆盘质心位置的x 坐标应为( B ) (A)R 4; (B) R 6; (C) R 8; (D R12。
4. 质量为10 kg 的物体,开始的速度为2m/s ,由于受到外力作用,经一段时间后速度变为6 m/s ,而且方向转过90度,则该物体在此段时间内受到的冲量大小为 ( B ) (A)s N ⋅820; (B) s N ⋅1020; (C) s N ⋅620; (D) s N ⋅520。
二、 填空题1. 有一人造地球卫星,质量为m ,在地球表面上空2倍于地球半径R 的高度沿圆轨道运行,用m 、R 、引力常数G 和地球的质量M 表示,则卫星的动量大小为RGM m3。
2.三艘质量相等的小船在水平湖面上鱼贯而行,速度均等于0v ,如果从中间小船上同时以相对于地球的速度v 将两个质量均为m 的物体分别抛到前后两船上,设速度v 和0v 的方向在同一直线上,问中间小船在抛出物体前后的速度大小有什么变化:大小不变。
3. 如图1所示,两块并排的木块A 和B ,质量分别为m 1和m 2,静止地放在光滑的水平面上,一子弹水平地穿过两木块。
设子弹穿过两木块所用的时间分别为t 1和t 2,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为 1A BF t m m ⋅∆+,木块B 的速度大小为12F t A BBF t m m m ⋅∆⋅∆++。
大学物理第2章课后答案
第二章 质点动力学四、习题选解2-1 光滑的水平桌面上放有三个相互接触的物体,它们的质量分别为.4,2,1321kg m kg m kg m ===(1)如图a 所示,如果用一个大小等于N 98的水平力作用于1m 的左方,求此时2m 和3m 的左边所受的力各等于多少?(2)如图b 所示,如果用同样大小的力作用于3m 的右方。
求此时2m 和3m 的左边所受的力各等于多少?(3)如图c 所示,施力情况如(1), 但3m 的右方紧靠墙壁(不能动)。
求此时2m 和3m 左边所受的力各等 于多少?解:(1)三个物体受到一个水平力的作用,产生的加速度为a()a m m m F 321++=232114-⋅=++=sm m m m F a用隔离法分别画出32,m m 在水平方向的受力图(a ),题2-1(a )图由a m F =a m f f23212=- a m f323= 2332f f =N f 5623=N f 8412=(2)由()a m m m F321++=232114-⋅=++=sm m m m F a用隔离法画出321m m m 、、在水平方向的受力图(b )由a m F= 得⎪⎪⎪⎩⎪⎪⎪⎨⎧====-=-3223122112121232323f f ff a m f a m f f a m f F解得: N f 1412= N f 4223=题2-1(b )图(3)由于321m m m 、、都不运动,加速度0=a ,三个物体彼此的作用力都相等,都等于FN f f 982312== 2-2 如图所示,一轻质弹簧连接着1m 和2m 两个物体,1m 由细线拉着在外力作用下以加速a 竖直上升。
问作用在细线上的张力是多大?在加速上升的过程中,若将线剪断,该瞬时1m 、2m 的加速度各是多大?解:(1)分别画出1m 、2m 受力的隔离体如图(a ),题2-2(a )图取向上为正方向,由牛顿第二定律⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f T 2211故 ()()a g m m g m g m a m a m T ++=+++=212121 (2)将线剪断,画出21m m 、的隔离体图,如图(b )题2-2(b )图 取竖直向上为正方向,由牛顿第二定律得⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f 222111 得⎪⎩⎪⎨⎧+--==-=)(/)'(121222a g m m g a a m g m f a 1a 的方向向下,2a的方向向上。
大学物理学(课后答案解析)第2章
第2章牛顿运动定律习题一选择题2-1 关于惯性有下面四种表述,正确的为[ ](A)物体静止或作匀速运动时才具有惯性(B)物体受力作变速运动才具有惯性(C)物体受力作变速运动时才没有惯性(D)物体在任何情况下均有惯性解析:惯性是物体具有的固有特性,因此物体在任何情况下均有惯性,答案选D。
2-2 下列表述中正确的是[ ](A)质点运动的方向和它所受的合外力方向相同(B)质点的速度为零,它所受的合外力一定为零(C)质点作匀速率圆周运动,它所受的合外力必定与运动方向垂直(D)摩擦力总是阻碍物体间的相对运动,它的方向总是与物体的运动方向相向解析:根据牛顿第二定律,质点所受的合外力等于动量随时间的变化率,因此A、B错误。
质点作匀速率圆周运动,合外力指向圆心,运动方向沿切线方向,二者垂直,因此选项C正确。
摩擦力总是阻碍物体间的相对运动或相对运动趋势,它的方向沿着物体运动或运动趋势的切线方向,但并不是总与物体的运动方向相向,因此选项D错误。
2-3 一质点在力5(52)()F m t SI =-的作用下,0t =时从静止开始作直线运动,式中,m 为质点质量,t 为时间。
则当5t s =,质点的速率为[ ](A )25m s (B )50m s - (C )0 (D )50m s 解析:根据牛顿第二定律dv F ma mdt ==可得,5(52)dv Ft dt m==-,所以5(52)dv t dt =-,两边积分可得2255v t t =-,即得50v =。
答案选C 。
2-4 如图2-4(A )所示,A B m m μ>时,算出B m 向右的加速度为a ,今去掉Am 而代之以拉力A T m g =,如图2-4(B)所示,算出B m 的加速度a ',则[ ](A )a a '> (B )a a '< (C )a a '= (D )无法判断解析:去掉A m 前,{A A B Bm g T m a T m g m a μ-=-=,联立求得ABA B m m a g m m μ-=+; 去掉A m 后,B A B B T m g m g m g m a μμ'-=-=,求得A BBm m a g a m μ-'=>。
《大学物理》第二章答案
习题二1 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v2sin 21t g y α=由①、②式消去t ,得220sin 21x g v y ⋅=α 2 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的 (1)位矢;(2)速度. 解: 2s m 83166-⋅===m f a x x 2s m 167-⋅-==m f a y y (1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=ji v(2)m874134)167(21)4832122(21)21(220j i j i jt a i t a t v r y x --=⨯-+⨯⨯+⨯-=++=3 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mkev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0kmv ;(4)证明当k m t =时速答: (1)∵ tvm kv a d d =-= 分离变量,得m tk v v d d -=即 ⎰⎰-=v v t mtk v v 00d d m kte v v -=ln ln 0∴ tm k e v v -=0(2) ⎰⎰---===tttm k m ke kmv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞, 故有 ⎰∞-=='00d kmv t ev x tm k (4)当t=km时,其速度为 ev e v ev v km m k 0100===-⋅- 即速度减至0v 的e1. 4一质量为m 的质点以与地的仰角θ=30°的初速0v从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量. 解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下, 而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p-=∆由矢量图知,动量增量大小为0v m,方向竖直向下.5 作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,ip I imp v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆ 若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t tt F v m t m F v m p v m p 000000d )d (,于是⎰∆==-=∆t p t F p p p 0102d ,同理, 12v v ∆=∆,12I I=这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t解得s 10=t ,(s 20='t 舍去)6一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将bat =代入,得 ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m == 证毕.7 设N 67j i F -=合.(1) 当一质点从原点运动到m 1643k j i r++-=时,求F 所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化.解: (1)由题知,合F为恒力,∴ )1643()67(k j i j i r F A++-⋅-=⋅=合J 452421-=--= (2) w 756.045==∆=t A P (3)由动能定理,J 45-==∆A E k8 如题2-18图所示,一物体质量为2kg ,以初速度0v =3m ·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原 长处为弹性势能零点。
大学物理第二章习题及答案
第二章 牛顿运动定律一、选择题1.下列说法中哪一个是正确的?( )(A )合力一定大于分力(B )物体速率不变,所受合外力为零 (C )速率很大的物体,运动状态不易改变 (D )质量越大的物体,运动状态越不易改变2.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时( )(A )将受到重力,绳的拉力和向心力的作用 (B )将受到重力,绳的拉力和离心力的作用 (C )绳子的拉力可能为零 (D )小球可能处于受力平衡状态3.水平的公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率( )(A )不得小于gRμ (B )不得大于gRμ (C )必须等于gRμ2 (D )必须大于gRμ34.一个沿x 轴正方向运动的质点,速率为51s m -⋅,在0=x 到m 10=x 间受到一个如图所示的y 方向的力的作用,设物体的质量为1. 0kg ,则它到达m 10=x 处的速率为( )(A )551s m -⋅ (B )1751s m -⋅(C )251s m -⋅ (D )751s m -⋅5.质量为m 的物体放在升降机底板上,物体与底板的摩擦因数为μ,当升降机以加速度a 上升时,欲拉动m 的水平力至少为多大( )(A )mg (B )mg μ(C ))(a g m +μ (D ))(a g m -μ6 物体质量为m ,水平面的滑动摩擦因数为μ,今在力F 作用下物体向右方运动,如下图所示,欲使物体具有最大的加速度值,则力F 与水平方向的夹角θ应满足( )(A )1cos =θ (B )1sin =θ(C )μθ=tg (D )μθ=ctg 二、简答题1.什么是惯性系?什么是非惯性系?2.写出任一力学量Q 的量纲式,并分别表示出速度、加速度、力和动量的量纲式。
三、计算题2.1质量为10kg 的物体,放在水平桌面上,原为静止。
先以力F 推该物体,该力的大小为20N ,方向与水平成︒37角,如图所示,已知物体与桌面之前的滑动摩擦因数为0.1,求物体的加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v0
(
m k
)
;(4)证明当
t
=
m
k
时速
答: (1)∵ 分离变量,得
即
a = − kv = dv m dt
dv = − kdt vm v dv t − kdt
=
v v0 0 m
ln
v
=
ln
e−
kt m
v0
∴
v
=
v e−
k m
t
0
(2)
x =
vdt =
t 0
v0
e
−
k m
t
dt
=
mv 0 k
(1
I = a2 2b
m = I = a2 v0 2bv0
证毕.
7
设 F合
= 7i − 6 jN .(1)
当一质点从原点运动到 r
= −3i + 4 j +16km 时,求 F
所作的
功.(2)如果质点到 r 处时需0.6s,试求平均功率.(3)如果质点的质量为1kg,试求动能的
变化.
解: (1)由题知, F合 为恒力,
答这两个问题.
解: (1)若物体原来静止,则
p1 =
t Fdt =
0
4
(10
+
2t)i dt
=
56
kg
m
s−1i
,沿
x
轴正向,
0
v1 I1 =
= p1 m
p1 =
= 5.6 56 kg
ms m
−1i
s −1i
若物体原来具有 − 6 m s−1 初速,则
p0
= −mv0 , p = m(−v0
计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.
解: (1)由题意,子弹到枪口时,有 0 ,得 t = a b
I = t (a − bt)dt = at − 1 bt 2
0
2
将 t = a 代入,得 b
(3)由动量定理可求得子弹的质量
I = t (10 + 2t)dt = 10t + t 2 0
亦即
t 2 +10t − 200 = 0
3
解得 t = 10 s,( t = 20 s 舍去)
6一颗子弹由枪口射出时速率为 v0m s −1 ,当子弹在枪筒内被加速时,它所受的合力为 F
=( a − bt )N( a,b 为常数),其中 t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试
+
t 0
F m
dt)
=
−mv0
+
t Fdt 于是
0
同理,
p2 =
p
−
p0
=
t 0
Fdt
=
p1
,
v2
=
v1
,
I2
=
I1
这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大, 那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即
的摩擦力为8N,到达 B 点后压缩弹簧20cm后停止,然后又被弹回,求弹簧的劲度系数和物
体最后能回到的高度. 解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原 长处为弹性势能零点。则由功能原理,有
4
−
fr s
=
1 2
k x2
− 1 2
mv2
N,当 t =0时, x = y = 0, v x =-2 m·s-1, v y =0.求 当 t =2 s 时质点的 (1)位矢;(2)速度.
解:
ax
=
fx m
=6 16
=3 8
m s −2
ay
=
fy m
=
−7 16
m s−2
(1)
vx
= vx0 +
2 0
a x dt
=
−2
+
3 8
2
=
−
5 4
mv0
,方向竖直向下.
5 作用在质量为10 kg的物体上的力为 F = (10 + 2t)i N,式中 t 的单位是s,(1)求4s后,这
物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N·s,该
力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度 − 6 j m·s-1的物体,回
∴
A合 = F r = (7i − 6 j ) (−3i + 4 j + 16k )
= −21− 24 = −45 J
(2)
P = A = 45 = 75 w
t 0.6
(3)由动能定理, Ek = A = −45 J
8 如题2-18图所示,一物体质量为2kg,以初速度 v0 =3m·s-1从斜面 A 点处下滑,它与斜面
−
e
−
k m
t
)
(3)质点停止运动时速度为零,即 t→∞,
故有
x =
0
v0
e
−
k m
t
dt
=
mv 0 k
(4)当 t= m 时,其速度为 k
v
=
v e−k m mk 0
= v0e−1
=
v0 e
即速度减至
v
0
的
1 e
.
4一质量为
m
的质点以与地的仰角
=30°的初速
v0
从地面抛出,若忽略空气阻力,求质点
习题二
1 一个质量为 P 的质点,在光滑的固定斜面(倾角为 )上以初速度 v0 运动, v0 的方向与
斜面底边的水平线 AB 平行,如图所示,求这质点的运动轨道.
解:
物体置于斜面上受到重力 mg ,斜面支持力 N
.建立坐标:取
v0
方向为
X
轴,平行斜
面与 X 轴垂直方向为Y 轴.如图 2-2.
题 2-2 图
2
落地时相对抛射时的动量的增量. 解: 依题意作出示意图如题 2-6 图
题 2-6 图 在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,
而抛物线具有对 y 轴对称性,故末速度与 x 轴夹角亦为 30o ,则动量的增量为
p = mv − mv0
由矢量图知,动量增量大小为
m s −1
v y
= vy0 +
2
0 ay dt
=
−7 16
2
=
−
7 8
m s −1
于是质点在 2s 时的速度
1
v
=
−
5
i
−
7
j
48
m s−1
(2)
r
=
(v0t
+
1 2
axt
2
)i
+
1 2
ayt
2
j
=
(−2
2
+
1
3
4)i
+
1
(−
7)
4
j
28
2 16
=
− 13
i
−
7
j
m
48
X 方向: Y 方向:
Fx = 0
x = v0t
①
Fy = mg sin = ma y
②
t =0时 由①、②式消去 t ,得
y =0
vy = 0 y = 1 g sin t 2
2
y = 1 g sin x2 2v02
2 质量为16 kg 的质点在 xOy 平面内运动,受一恒力作用,力的分量为 f x =6 N, f y =-7
3 质点在流体中作直线运动,受与速度成正比的阻力 kv ( k 为常数)作用, t =0时质点的速
−( k )t
度为 v0 ,证明(1) t 时刻的速度为 v = v0e m ;(2) 由0到 t 的时间内经过的距离为
x =(
mv 0 k
−( k )t
)[1- e m
];(3)停止运动前经过的距离为