环境卫星有效载荷——红外相机
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环境卫星有效载荷——红外相机
红外相机将来自地球表面环境地物的红外反射及辐射信号,经光学系统会聚镜成像到线列探测器上,完成光电信号的转换。探测器输出的电信号进行数字处理形成数字信号,并进行均匀性校正,形成近红外、短波红外、中波红外和长波红外四个红外通道4个通道的红外图像数据。
红外相机有近红外、短波红外、中波红外和长波红外四个红外通道,波段跨越0.75μm~12.5μm,光学口径200mm。红外相机的光路结构如图3.3-4所示,由主光学系统、后光学系统及其光学薄膜元件组成。环境目标信号经双面旋转扫描反射镜反射,进入同轴光学系统,以准平行光出射。分色片D1反射中长波红外波段,透射近红外短波红外波段,分色片D2反射近红外波段,透射短波红外波段。由各通道透镜组将信号会聚成像于各自对应的探测器组件上。各探测器焦平面组件均由探测器线列镶嵌以滤光片构成,以响应各光谱波段的信号,并形成4个光谱通道。中红外、长波红外两个线列探测器集成到同一个焦平面上,由一台斯特林制冷机进行制冷,制冷温度95K。
红外相机主要包括1台红外相机光机扫描头部、1台红外相机信息处理箱和1台斯特林制冷机控制箱。
选择同轴两反的卡塞格林系统作为主光学系统。系统的主镜为抛物面,副镜为双曲面,校正了系统的球差。主镜筒采用材料为殷钢,主镜采用石英材料。望远镜筒与副镜支架为一体化设计,这样加强了主镜与副镜的配合精度。副镜支架的肋板设计成倾斜面。在望远镜系统中,机械保证主镜和副镜安装后的同心度。红外相机成像方式选择多元并扫式。探测器采用多元器件,不同于推扫式的是多元探测器成像不是在穿轨方向而是在沿轨方向同时成像,其优点是在大的刈副宽度下可以有效地提高系统的探测灵敏度。
考虑到滤光片与探测器组合的分光方式在结构上比较紧凑,光学效率高,因此采用分色片先把近红外、短波红外波段与中红外、长波红外波段分离开,再通过各自的后光学系统会聚到滤光片-探测器组件上,形成红外相机所需要的4个探测波段。红外相机4个波段均采用自制的线列探测器,并采用校正黑体来代替冷空间,利用相机底板上参考黑体和侧壁上校正黑体两点,同时实现星上辐射基准和相机在轨的辐射校正。根据卫星系统要求,主要利用红外相机所获得的红外谱段的辐射信息探测陆面、水体和大气的热状况。红外相机具体技术技术性能和指标如下表所示。
项目指标
星下点像元分辨率150m(B1、B2、B3) ; 300m (B4),
刈宽(km)720
扫描视场角± 29°
谱段(μm)0.75~
1.10
1.55~
1.75
3.50
~3.90
10.5
~12.5
MTF0.280.270.260.25辐射分辨率(Ne△ρ或0.5%0.5%≤ ≤
NE△T)1K(@400K)1K(@300K)
谱段辐射景最大值
9.32mW/
(cm2²Sr)
0.89mW/
(cm2²Sr)
500K340K 最小值------300K200K
中长波红外星上定标精
度
------2K2K
近短波红外地面定标精度相对定标精度5%,
绝对定标精度10%
------
配准精度0.3 IFOV
量化比特数(bit)10
数据率(Mbps)7.5 (四谱段下传)制冷温度85K