破解高考数学压轴题

合集下载

高考数学压轴题的破解方法

高考数学压轴题的破解方法

高考数学压轴题的破解方法压轴题的解题方法,具体题目还是要具体分析,不能一一而谈,总体来说,思路如下:1. 复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。

2. 运动的问题静止化,对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,在找到变化线段之间的联系,用代数式慢慢求解。

3. 一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。

另外,还有一些细节要注意,三角比要善于运用,只要有直角就可能用上它,从简化运算的角度来看,三角比优于比例式优于勾股定理,中考命题不会设置太多的计算障碍,如果遇上繁难运算要及时回头,避免钻牛角尖。

如果遇到找相似的三角形,要切记先看角,再算边。

遇上找等腰三角形同样也是先看角,再看底边上的高(用三线合一),最后才是边。

这都是能大大简化运算的。

还有一些小技巧,比如用斜边上中线找直角,用面积算垂线等不一而足最后说一下初中需要掌握的主要的数学思想:1. 方程与函数思想利用方程解决几何计算已经不能算难题了,建立变量间的函数关系,也是经常会碰到的,常见的建立函数关系的方法有比例线段,勾股定理,三角比,面积公式等2. 分类讨论思想这个大家碰的多了,就不多讲了,常见于动点问题,找等腰,找相似,找直角三角形之类的。

3. 转化与化归思想就是把一个问题转化为另一个问题,比如把四边形问题转化为三角形问题,还有压轴题中时有出现的找等腰三角形,有时可以转化为找一个和它相似的三角形也是等腰三角形的问题等等,代数中用的也很多,比如无理方程有理化,分式方程整式化等等4. 数形结合思想高中用的较多的是用几何问题去解决直角坐标系中的函数问题,对于高中生,尽可能从图形着手去解决,比如求点的坐标,可以通过往坐标轴作垂线,把它转化为求线段的长,再结合基本的相似全等三角比解决,尽可能避免用两点间距离公式列方程组,比较典型的是08年中考,倒数第2题,用解析法的同学列出一个极其复杂的方程后,无法继续求解下去了,而用几何方法,结合相似三角比可以轻易解决。

2024年高考数学 二轮复习第49讲 洛必达法则解高考导数压轴题

2024年高考数学 二轮复习第49讲  洛必达法则解高考导数压轴题

第49讲 洛必达法则解高考导数压轴题确界如果分离参数后相应的函数不存在最值,为了能够利用分离参数思想【解析】决含参不等式恒成立的问题,我们利用如下的函数确界的概念:函数()()y f x x D =∈的上确界为(){}min ,Mf x M x D ∈∣,记作.M 上函数()()y f x x D =∈的下确界为()max{Mf x ∣,}M x D ∈,记作M 下.于是,有如下结论:(1)若()f x 无最大值,而有上确界,这时要使()()f x g a <恒成立,只需()M g a 上. (2)若()f x 无最小值,而有下确界,M 下,这时要使()()f x g a >恒成立,只需()M g a 下. 确界通俗地说就是,知道函数不会超过某个值(这个值其实就是确界),但就是在定义域内取不到这个值,举个【例】子:在()()1,21x f x x a ∈=+>恒成立,求a 的取值范围.x 取不到1,但()f x 为单调递增,()()12f x f ∴>=,即2就是()f x 的下确界,于是我们可以得到2a .可以简单地理解为确界就是函数取不到的最值,需要用极限来逼近,下面举例子来说明.【例1】 设函数()21x f x e x ax =−−−,0x 时,()0f x ,求a 的取值范围. 分析:由()0f x 对所有的0x 成立,可得 (1)当0x =时,a R ∈.(2)当0x >时,21x e x a x −−.设()21x e x g x x −−=,把问题转化为求()g x 的最小值或下确界. ()()2222422,22,x x x x x e xe x xg x h x x e xe x x x'−++==−++令 则()2e 2e 22,0x x h x x x x '=−++>.又()h x 的二阶导数()22x x h x xe x e =+−''()22x e h x +的三阶导数()()240x h x e x x '+'=>',()h x ∴''是增函数.()()00h x h ''''∴>=.()h x ∴'增函数.()()00h x h ''∴>=.()h x ∴是增函数.()()00h x h ∴>=,从而()0g x '>,于是()g x 在()0,+∞上单调递增,故()g x 无最小值. 此时,由于()0g 无意义,分析可知()g x 是有下确界的,运用极限表述为:()g x >()0lim x g x +→,关键是这个极限值或者说确界如何求出呢?这就是本章的重点:洛必达法则.由洛必达法则即可得()0lim x g x +→=2000111lim lim lim 222x x x x x x e x e e x x +++→→→−−−===. 故0x >时,()12g x >,因而12a ,综上知a 的取值范围为1,2⎛⎤−∞ ⎥⎝⎦.那什么是洛必达法则呢?洛必达法则(一)型不定式 定理1 设函数()(),f x F x 满足下列条件: (1)()()0lim 0,lim 0x x x x f x F x →→==.(2)()f x 与()F x 在0x 的某一去心邻域内可导,且()0F x '≠. (3)()()limx x f x F x →''存在(或为无穷大),则()()()()00lim limx x x x f x f x F x F x →→''=. 【例1】计算极限01lim x x e x →−.【解析】 该极限属于00型不定式,于是由洛必达法则得001limlim 1.1x xx x e e x→→−== (二)∞∞型不定式定理2设函数()(),f x F x 满足下列条件: (1)()()0lim ,lim x x x x f x F x →→=∞=∞.(2)()f x 与()F x 在0x 的某一去心邻域内可导,且()0F x '≠. (3)()()limx x f x F x →''存在(或为无穷大), 则()()()()00limlimx x x x f x f x F x F x →→''=. 【例2】 计算极限lim nx x x e→+∞【解析】 所求问题是∞∞型不定式,连续n 次实行洛必达法则,有()211!lim lim lim lim0n n n x x xxx x x x n n x x nx n e e e e −−→+∞→+∞→+∞→+∞−=====.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于00型和∞∞型的不定式,其他的不定式须先化简变形成00型或∞∞型才能运用该法则.对于∞−∞型与0⋅∞型的未定式,可通过通分或者取倒数的形式化为基本形式.对于00型,1∞型与0∞型的未定式,可通过取对数等手段化为00型或∞∞型未定式. (2)只要条件具备,就可以连续应用洛必达法则.(3)洛必达法则的条件是充分的,但不必要,因此,在该法则失效时并不能断定原极限不存在.洛必达法则求参数取值范围洛必达法则求参数取值范围的一般步骤和前面参变分离的解题步骤一致,只不过是最后无法直接求解最值,只能用洛必达法则求解确界.【例1】已知函数()()21x f x x e ax =−−,当0x 时,()0f x ,求a 的取值范围. 【解析】 证明 第一步:分类讨论,参变分离.当0x 时,()0f x ,即()21x x e ax −.①当0x =时,a R ∈.②当0x >时,()21xx e ax −等价于1xe ax −,即1x e a x−.第二步:构造函数,求导,并把分子提出,再次构造函数,求导并研究出原函数单调性.记()()1,0,x e g x x x −=∈+∞,则()g x '=()211x x e x −+.记()()()11,0,x h x x e x =−+∈+∞, 则()e 0x h x x =>',因此()()11x h x x e =−+在()0,+∞上单调递增,且()()00h x h >=,()()20h x g x x ='∴>,()e 1x g x x−=从而在()0,+∞上单调递增.第三步:利用洛必达法则求出函数下确界.()0001lim limlim 1,1x xx x x e e g x x→→→−=== 即当0x →时,()1g x →.()1g x ∴>,即有1a . 综上所述,当1,0a x 时,()0f x 成立.【例2】 设函数()1x f x e −=−,设当0x 时,()1xf x ax +,求a 的取值范围. 【解析】 证明 第一步:必要性讨论,缩小参数范围. 由题设0x ,此时()0f x .①当0a <.时,若1x a>−,则01x ax <+,()1x f x ax +不成立. ②当0a 时,当0x 时,()1x f x ax +,即.1111xx x x e e ax ax −−−−++. 若0x =,则a R ∈.第二步:不等式等价变化并参变分离. 若0x >,则11xx eax −−+等价于111xe x ax −−+,即1x x xxe e a xe x −+−. 第三步:构造函数,并因式分解,把部分因式提出,单独构造函数,并多次求导,结合特殊值最终确定原函数的单调性.记e e 1()e x x x x g x x x −+=−,则()g x '=()()(22222e e 2e 1e e 2e e x x x xx x x x x x x x x −−+=−−+−−)e x − 记2()e 2e x x h x x −=−−+,则()h x '=e 2e ,()e e 20x x x xx h x −−−−''=+−>.因此,()e 2exxh x x −'=−−在(0,)+∞上单调递增,且(0)0,()0h h x '=∴'>,即()h x 在(0,)+∞上单调递增,且(0)0,()0h h x =∴>.因此()2e ()()0exxg x h x x x'=⨯>−,∴()g x 在(0,)+∞上单调递增.第四步:利用洛必达法则求出函数下确界.00e e 1lim ()lim e x x x x x x g x x x →→−+==−00e e e 1lim lim e e 12e e 2x x x x x x x x x x x x x →→+==+−+,即当0x →时,1()2g x →,即有1()2g x >, 1. 2a∴综上所述,a 的取值范围是1,2⎛⎤−∞ ⎥⎝⎦. 【例3】若不等式3sin x x ax >−对于x ∈0,2π⎛⎫⎪⎝⎭恒成立,求a 的取值范围。

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

高考数学压轴题常用解题方式

高考数学压轴题常用解题方式

高考数学压轴题常用解题方式九种题型1线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

2图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

3 动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

4一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合5多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。

这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。

高等数学轻松解决高考压轴题,助现处于120左右却始终无法突破140这个大瓶颈的资优生一举突破140瓶颈!!!复习

高等数学轻松解决高考压轴题,助现处于120左右却始终无法突破140这个大瓶颈的资优生一举突破140瓶颈!!!复习

高等数学轻松解决高考压轴题,助现处于120左右却始终无法突破140这个大瓶颈的资优生一举突破140瓶颈!!!高等数学轻松解决高考压轴题,助现处于120左右却始终无法突破140这个大瓶颈的资优生一举突破140瓶颈!!!内容概要以上就是对高考有着极大帮助的几个基础高等数学定理,资优生掌握以后必定能再更上一层楼,对其突破140的瓶颈大有裨益!想要突破140瓶颈的千万别错过!!!1—2:核心总结本文的核心就是1—2,建议大家把以上公式记录到自己的笔记本上好好理解,并在自己平时的作业尝试应用。

3—9:重中之重——拉格朗日中值定理深层次剖析以上就是对高考有着极大帮助的几个基础高等数学定理,资优生掌握以后必定能再更上一层楼,对其突破140的瓶颈大有裨益。

但是由于篇幅有限,不能一一对其深入剖析,在此向大家致歉。

不过本文对以上定理中最最重要的,也是高考压轴题中最最常用的拉格朗日中值定理进行了深层次剖析。

拉格朗日中值定理,是对高考数学压轴题帮助最大的高等数学定理,望学有余力的同学务必将其掌握!10—15:拉格朗日中值定理在高考题里的应用或许有同学不相信拉格朗日中值定理对高考的帮助是如此之大,以下将会以高考真题为例子向你阐明。

我想很大一部分同学或许不知道该如何应用,下文将对于高考真题应用拉格朗日中值定理解题并与参考答案的解法作比较,体现高观点解题的好处。

重中之重—————拉格朗日中值定理资优生掌握了拉格朗日中值定理以后可帮助其突破140的瓶颈,一举成为数学大神!!!拉格朗日中值定理是微分学的基础定理之一,它是沟通函数及其导数之间关系的桥梁,课本中关于拉格朗日中值定理的应用并没有专门的讲解,而很多研究者也只是研究了它在某个方面的应用,并没有系统的总结。

本文首先进一步分析了定理的实质,以便使读者深入理解拉格朗日中值定理;然后从课本中证明拉格朗日中值定理的思想(构造辅助函数法)出发,提出了一个较简单的辅助函数,从而使拉格朗日中值定理的证明简单化;以此为理论依据并在别人研究的基础上,最后重点总结了拉格朗日中值定理在各个方面的应用。

近十年高考数学压轴题高频考点及解题策略分析

近十年高考数学压轴题高频考点及解题策略分析

近十年高考数学压轴题高频考点及解题策略分析近11年全国I卷,11道理科压轴题中全部考查函数与导数。

“函数与导数”以其极强的综合性强,灵活多变的解法,屡屡承载压轴使命.也因此成为了高考数学是否可以达到140+的关键因素。

压轴题为什么难?难在题设条件多而杂,你能在第一遍审题的过程中就找到全部的条件?又能不能在看到条件的那一刻就反映出可能的做法?本文通过对近年来高考数学压轴题考情分析,及典型例题,归纳了解题策略,一起来看。

一、近十年全国卷压轴题考点(一)方法角度(1)函数的零点,极值点的问题:2015(I卷),2017(I、II卷), 2018( II卷,III卷)(如何选取函数,如何取点)(2)恒成立求参数范围问题:2010,2011,2013(I卷)(含参求导、分离参数、化两个函数(一直一曲))(3)函数不等式(证明和利用解决问题):2013(II卷),2014(I卷), 2017(III卷)(函数不等式的等价变形、数列求和问题的函数不等式寻找)(4)函数的值域问题(包含任意存在、派生函数值域):2015(II卷), 2015(II卷)(隐零点问题的整体代换(虚设零点))(5)双变量问题:2016(I卷), 2018( I卷)(极值点偏移问题,双变量问题的函数构造)(6)数值估计:2014(II卷)(极值点附近的x值的选择)(7)高等数学背景下的压轴题处理:(定积分法求和,极限思想的应用(罗必达法则),双变量中的拉格朗日中值定理)(二)核心函数角度(以二次函数为主)二、解题策略一熟悉掌握以下六种基本函数及其图象在遇到涉及指数函数式与对数函数式的综合题目时,可考虑将指数函数式和对数函数式分离成上述六种基本函数分析解答.二函数极值点存在不可求问题利用函数最值解不等式问题时,遇到函数的最值在极值点处,函数极值存在却不可求,这时可以考虑设出极值点,利用整体代换的思路求解.三利用超越不等式放缩牢记常用的超越不等式常见变式在需要确定函数取值范围时可以利用上述不等式将指数、对数、三角函数等超越函数放缩成非常熟悉的一次函数或反比例函数来分析求解.四方程根(函数零点)的个数问题考虑函数零点个数问题时,应根据函数的导数确定原函数的单调性和极值,可结合函数图象和参数的取值范围确定零点个数,或根据零点个数确定参数取值范围.五以高等数学为背景的试题(洛必达法则、拉格朗日中值定理等的应用)遇到含参不等式的证明时常用的两种方式:对参数分类讨论和参变量分离法. 对于参变量分离的求解策略关键在于分离后构造的函数要存在最值.如遇最值不存在的问题,可以考虑用洛必达法则求出函数的极限,再由极限值构造函数.从以上对全国卷导数压轴题的分析,可以看出全国卷导数题目的特点,看似平淡却富有神奇,注重通法又不乏技巧,要求我们在平时的学习中注重积累,重视数学思想方法的锻炼,在平时的思维训练中注重广度与深度,提升灵活运用知识解决问题的能力.。

高考数学压轴题必用的6个技巧+5大思路

高考数学压轴题必用的6个技巧+5大思路

高考数学压轴题必用的6个技巧+5大思路解题技巧1、三角函数题注意归一公式、诱导公式的正确性{转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!}。

2、数列题1)证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2)最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。

)利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。

简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3)证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

3、立体几何1)证明线面位置关系,一般不需要去建系,更简单;2)求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3)注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

4、概率问题1)搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2)搞清是什么概率模型,套用哪个公式;3)记准均值、方差、标准差公式;4)求概率时,正难则反(根据P1+P2+...+Pn=1);5)注意计数时利用列举、树图等基本方法;6)注意放回抽样,不放回抽样;7)注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8)注意条件概率公式;9)注意平均分组、不完全平均分组问题。

5、圆锥曲线问题1)注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2)注意直线的设法(法1分有斜率,没斜率;法2设x=m y+b (斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3)战术上整体思路要保7分,争9分,想12分。

高考数学压轴题破解方法

高考数学压轴题破解方法

高考数学压轴题破解方法
压轴题一般指在高考试卷最后面出现的大题目。

在数学考试中有压轴题。

下面是为大家的高考数学压轴题破解方法,欢送参考~ 在解决高考数学压轴题的过程中,有时添加辅助线是必不可少的。

对于高考来说,只有一道很简单的数学证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。

高考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原那么:构造定理所需的图形或构造一些常见的根本图形。

高考数学压轴题牵涉到的知识点较多,数学知识转化的难度较高。

学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。

紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。

高考数学压轴图形题,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何防止漏解也是一个令考生头痛的问题,其实多解的信息在数学题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。

总之,高考数学压轴题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。

有些同学往往想想觉得不行就放弃了,其实绝大多数的数学题目只要想到上述切入点,认真做下去,问题根本都可以得到解决。

用洛必达法则巧解高考数学压轴题-李文星

用洛必达法则巧解高考数学压轴题-李文星

用洛必达法则巧解高考数学压轴题-李文星洛必达法则是高等数学中的一个重要定理,可以用来解决一些极限问题。

在高考数学中,也经常会遇到一些需要使用洛必达法则来解决的压轴题。

以我遇到的一个高考数学压轴题为例,题目如下:
已知函数\(f(x) = \frac{x^2-2x+1}{x^2-1}\),求函数\(y = f(x)\)在点\(x = 1\)处的极限。

根据洛必达法则,我们需要计算\(\lim_{x\to 1}\frac{f(x)}{x-
1}\)。

首先,我们计算\(\lim_{x\to 1}(x-1)\)。

显然,当\(x\)趋近于1时,\(x-1\)也趋近于0。

接下来,我们计算\(\lim_{x\to 1}f(x)\)。

将函数\(f(x)\)代入后,得到:
\(\lim_{x\to 1}\frac{x^2-2x+1}{x^2-1}\)。

因此,我们有\(\lim_{x\to 1}\frac{f(x)}{x-1} = \lim_{x\to
1}\frac{0}{x-1} = 0\)。

所以,函数\(y=f(x)\)在点\(x=1\)处的极限为0。

通过以上步骤,我们成功地使用洛必达法则解决了这个压轴题。

洛必
达法则的核心思想是将问题转化为求导数的问题,通过求导数的方式来计
算极限。

在解决高考数学压轴题时,洛必达法则可以帮助我们更快地得到
答案,提高解题效率。

除了洛必达法则,高考数学中还有许多其他的解题方法和技巧。

在备战高考数学时,我们不仅需要掌握这些方法和技巧,还需要多做题、多总结,提高自己的解题能力。

希望我们都能在高考中取得好成绩!。

高考数学函数压轴题解题技巧有哪些

高考数学函数压轴题解题技巧有哪些

高考数学函数压轴题解题技巧有哪些近年来,高考数学考试中的压轴题通常都是与函数有关的,几乎成为了每年的必考题型之一。

对于考生来说,掌握一定的解题技巧可以有助于提高解题速度和答题准确率。

在本文中,我们将分享一些关于高考数学函数压轴题解题技巧。

1. 熟悉常见函数了解并熟悉常见的函数类型是解决高考数学函数压轴题的第一步。

例如,初中课程中学过的线性函数、二次函数、指数函数、对数函数、三角函数等等,这些函数的性质和图像应该是每个考生必须掌握的。

2. 发掘题目中的小技巧高考数学函数压轴题的解题方法通常都比较精细复杂,需要考生自己去发现其中的小技巧。

例如,题目中的条件经常能够反映出函数图像中的相关信息,比如函数的对称性、拐点、极值、单调性等等。

因此,考生需要仔细阅读题目,观察、分析并利用条件推导出有价值的信息。

3. 合理利用函数图像函数图像是解决大部分高考数学函数题的重要来源,因此要善于利用函数图像进行题目分析和解题过程。

好的函数图像可以大大缩减解题时间,对于掌握函数图像的考生来说,解题会大大容易。

4. 把握分析图像的方法解决高考数学函数压轴题的关键在于把握分析图像的方法。

标准的函数图像最显著的特征是曲线的变化情况,而对于不同类型的图像,不同的函数性质和图像的特殊性质等,需要采取不同的分析方法。

例如:对于二次函数,要借助其顶点坐标和开口方向进行判断;对于指数函数,知道指数函数图像的单调性有助于解决题目。

5. 掌握解方程的方法高考数学函数压轴题一般都涉及到解方程,因此掌握解方程的方法也是很重要的。

对于不同形式的方程,掌握不同的解法对于解题是很有帮助的。

例如,对于含有绝对值符号的方程,可以通过分情况讨论、拆绝对数等多种方法,而掌握多种方法,学会灵活运用最关键。

综上所述,解决高考数学函数压轴题需要同时具备对于函数的掌握和解题技巧。

掌握函数性质和图像,发现问题和把握分析图像的方法,熟练掌握解方程的方法等都有利于解决这类问题。

北京高考压轴题的解题技巧

北京高考压轴题的解题技巧

北京高考压轴题的解题技巧
北京高考数学压轴题通常具有一定的难度和综合性,需要考生具备扎实的数学基础和较高的解题能力。

以下是一些解题技巧:
1. 仔细阅读题目:认真阅读题目,理解题意,弄清所给条件和要求。

2. 分析问题结构:将问题分解成若干个简单的子问题,通过解决子问题逐步推导答案。

3. 多角度思考:尝试从不同的角度思考问题,寻找解题的线索。

4. 运用数学知识:灵活运用所学的数学知识,如函数、导数、不等式等,进行解题。

5. 注重解题步骤:清晰地展示解题步骤,有助于检查和验证答案的正确性。

6. 时间管理:合理安排时间,不要在一道题上花费过多时间,确保有足够的时间解答其他题目。

7. 检查答案:在完成解答后,务必仔细检查答案的合理性。

一道高考压轴小题的多解探究与反思

一道高考压轴小题的多解探究与反思

一道高考压轴小题的多解探究与反思
本文将探究一道高考压轴小题的多解解法,并就其答题思路和考点进行反思和总结。

这道题为“有两个正整数,它们的和等于15,积等于26,求这
两个数”,是一道较为基础的代数题目,但其不同解法和思路却引起
了广泛讨论。

一种解法是通过列方程求解,设两个数分别为x和y,则有x+y=15,xy=26,进而解得x=2,y=13。

另一种解法是通过观察题目中给出的两个条件,可以发现15和26均为质数,因此只有1和15以及2和13两组数字相加等于15,
而只有2和13的积等于26,因此这组数字即为答案。

再一种解法是通过勾股定理,将26分解为2*13,设两个数分别为a和b,则有a+b=15,a^2+b^2=169,即a^2+(15-a)^2=169,解得a=4,b=11,进而得到另一组答案。

这三种解法均可得到正确答案,但考生在考场上应根据自己的能力和经验选择最适合自己的解法。

同时,这道题目也考察了考生的代数、数学推理和勾股定理等多个知识点,因此考生在备考过程中应加强对这些知识点的掌握和理解。

总之,这道高考压轴小题的多解探究和反思说明了数学题目的多样性和复杂性,考生需要在备考过程中不断提高自己的解题能力和思维水平,才能在考场上取得优异的成绩。

- 1 -。

高考数学压轴题解题技巧和方法

高考数学压轴题解题技巧和方法

高考数学压轴题解题技巧和方法错题重做:临近考试,要重拾做错的题,特别是大型考试中出错的题,通过回归教材,分析出错的原因,从出错的根源上解决问题。

错题重做是查漏补缺的很好途径,这样做可以花较少的时间,解决较多的问题。

回归课本:结合考纲考点,采用对账的方式,做到点点过关,单元过关。

对每一单元的常用方法和主要题型等,要做到心中有数;结合错题重做,尽可能从课本知识上找到出错的原因,并解决问题;结合题型革新,从预防冷点突爆、实施题型改善出发回归课本。

2高考解题技巧一高考数学压轴题解题技巧和方法:大量的看题。

不做,就是审完脑海里想思路!如果有思路就过掉,看下一个题!有点模糊的思路看看答案思路印证一下,对了,过掉,不对,抄到错题集上,按上面提到的两个本子分别填写,扩充错题库! 第二阶段的最后一步跟第三阶段的第一步是紧密联系的,如果没有那个把思路写下来的过程,你这个阶段凭空想思路也是很难受的! 但想想考试时也是凭空想思路,所以这个想思路的过程是必须要做的! (第三阶段的第一步属于脑部休息,可以做题做烦的时候,心情不好不想做题的时候,天气不好没有状态的时候,快放假没有心情复习的时候去做!不浪费时间还对提升数学有帮助!)经过前面的积存,大概一个月左右吧!就开始实战了,天天做一套模拟卷!限时,而且是100或90分钟!因为必须练到给自己预留检查时间的做题速度!不要死啃难题,果断放弃,一道大题最后一问四分可能用15分钟做不出来,如果用这15分钟检查出一道选择或填空你就不亏了,检查两个你就赚大了!保证写出来的都是对的!空下的都是不会的!把粗心丢的分作为自己提升分数的主要方向,加上前一阵对知识点的查漏补缺,你的知识死角会越来越少,只要把握住会的,就一定有庞大飞跃!每套真正考场做的卷子(指老师批改过给过分的)都储存在一个文件夹里(几块一个)用于第一阶段的归纳分析总结用,而且考前看这个效果会好的惊人,一是让你看到了你当时粗心被扣分的题,让你联想到你后悔的咬牙切齿的时候,会增加你考试的细心度。

洛必达法则巧解高考压轴题

洛必达法则巧解高考压轴题

= ,
洛必 达 法则 的妙 用
例 题 (2017年 全 国 卷 Ⅲ )已 知 函 数 f( )

洛必 达 法则简 介
法 则 1 若 函 数 f(x)和 g(z)满 足 下 列
条 件 :(1) limf (z)- 二 0 ) ̄ limg(z)一 0,(2)在
一 z一 1~ 。1n 。若 厂( )≥ o,求 。 的 值 。 . 洛 必 达 法 则 解 法 :,( )一 一 1一 aln z
知 识 篇 学 习发 现 与 思 考 黼— 高二 数 学 2018年 2月 鼹
岫 一 … —。。。%
涪 c21洁 Ij巧弼 高考 压 轴题
一郑 州市 第十一 中学 1805班 赵 文博
从 近 年 高 考 看 ,导 数 及 其 应 用 作 为 高 中 数 学 与 高 等 数 学 的 衔 接 点 已 成 为 高 考 考 查 的 重 要 内 容 ,压 轴 题 也 常 以 导 数 的 形 式 出 现 ,含 参 不 等 式 恒 成 立 问 题 更 是 经 常 出 现 ,成 为 我 们 取 得 优 异 成 绩 的 拦 路 虎 。 解 决 这 类 问 题 , 分 离 参 数 法 是 个 很 好 的 选 择 ,洛 必 达 法 则 在 其 中 有 妙 用 。
’ 。’
’ ’’’ … …


’…


’’ 一
样 ,要 具 体 问 题 具 体 分 析 ,而 分 离 参 数 法 结 合
洛 必 达 法 则 求 参 数 范 围 是 其 中 一 条 捷 径 。 这
也 启 发 我 们 在 学 习 中 要 善 于 思 考 和 总 结 ,这
样才容易取得成功 。

高考数学 压轴题 放缩法技巧全总结(最强大)

高考数学   压轴题   放缩法技巧全总结(最强大)

高考数学压轴题放缩法技巧全总结(最强大)高考数学-压轴题-放缩法技巧全总结(最强大)变焦技术(高考数学备考资料)证明级数不等式由于其思维跨度大、建构性强,充满了思考和挑战。

它可以全面全面地测试学生的潜能和后续学习能力。

因此,它已成为高考最后一道题和各级各类竞赛题命题的优秀材料。

这类问题的解决策略往往是:多角度观察给定序列的通项结构,深入分析其特点,把握其规律,适当放大缩小;主要有以下膨胀和收缩技术:一、裂项放缩例1(1)请问?K1n24k2?124n2?11? n2n值;(2)验证:?1.五2k?1k3解析:(1)因为211,那么n212n 1.2(2n?1)(2n?1)2n?12n?12n?12n?1k?14k?14(2)因为n1111?251?,所以?1?1?2??11????2?2?2???k352n?12n?133??k?114n?1?2n?12n?1?n2?41奇巧积累:(1)1441?? 1.2.2.2.2N4N?1.2n?12n?1.R1r?中国?(2)121112cn?1cn(n?1)n(n?1)n(n?1)n(n?1)(3) t1n!11111 (r?2)rrr!(n?r)!nr!r(r?1)r?1rn(4)(1?1)n?1.1.1.1.氮气?13? 215?n(n?1)21?n?2?nn?2?2n?12n?3?211?n?1(2n?1)?2(2n?3)?2n(5)111? Nnnn2(2?1)2?12(6)21?1(7)2(n?1?n)?1?2(n?n?1)(8)n?n(9)111?111?11,????k(n?1?k)?n?1?kk?n?1n(n?1?k)k?1?nn?1?k?n11??(n?1)!n!(n?1)!(10)(11)1n?2(2n?1?2n?1)?222n?1.2n?1.N211? N22(11)(12)(13)(14)2n?111 (n?2)n2nnnnnnnnnn?1n?1n(2?1)(2?1)(2?1)(2?1)(2?2)(2?1)(2?1)2?12? 11n3?1n?n21111 n(n?1)(n?1)?n(n?1)??n(n?1)?N1.N一1?n?1?n?1?1n?1?2n?n?111N1n?一2n12n?n?32?132n?1?2?2n?(3?1)?2n?3?3(2n?1)?2n?2n?1?k?211??k!?(k?1)!?(k?2)!(k?1) !(k?2)!1.NN1(n?2)n(n?1)(15)22(15)i?1?j?1?i2?j2(i?j)(i2?1?j2?1)i?j?i?ji2?1?j2?1?1例2(1)验证:1?11171? 2.(n?2)2262(2n?1)35(2n?1)(2)验证:1?1.1.1.1.12416364n24n(3)验证:1?1.3.1.3.5.1.3.5.(2n?1)?2n?1.一22?42?4?62?4?62nn(4)求证:2(n?1?1)?1?1?11?2(2n?1?1)23分析:(1)因为111?11?,所以2(2n?1)(2n?1)2?2n?12n?1?(2n?1)?(2i?1)i?1n12111111?1?(?)?1?(?)232n?1232n 1(2)11111(111)1(111)222416364n42n4n(3)首先证明1?3.5.(2n?1)?2.4.6.2n12n?1.重新连接1n?2?n?2?n进行裂项,最后就可以得到答案(4)首先,再次证明1n1n?2(n?1?n)?2n?1?n22,所以容易经过裂项得到2(n?1?1)?1?1?1123n从平均不平等性来看,很明显这是真的,2(2n12n1)2n12n1n211n22所以1?1?11?2(2n?1?1)23n例3.求证:6n1115?1.2.(n?1)(2n?1)49n31?n21??1?2?214n?12n?12n?1?2?n?414解析:一方面:因为,所以kk?1n1211?25? 11? 1.2.1.2n?12n?1.33? 35另一方面:1?1.1.1.1.1.1.249n2?33? 411n1n(n1)n1n1当n?3时,什么时候?2点,总结一下6n111n6n,当n?1时,?12?(n?1)(2n?1)49nn?1(n?1)(2n?1)6n111?12,(n?1)(2n?1)49n,6n1115?12?(n?1)(2n?1)49n3案例4(2022年国家第一卷)集合函数f(x)?十、xlnx。

高考数学压轴题解题技巧方法

高考数学压轴题解题技巧方法

高考数学压轴题解题技巧方法高考数学的压轴题可以说是整张数学卷中难度最大的题,也是考验学生数学综合知识的题,在压轴题上得分往往都是不容易的。

下面是小编为大家整理的关于高考数学压轴题解题技巧,希望对您有所帮助!高考数学压轴题解题诀窍诀窍1.重视审题你的心态就是珍惜题目中给你的条件。

数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。

所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。

在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时,步骤(1)将题目条件推导出“新条件”,步骤(2)将题目结论推导到“新结论”,步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。

步骤(2)就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。

然后在“新条件”与“新结论”之间再寻找关系。

一道难题,难就难在题目条件与结论的关系难以建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!诀窍2.细心演算由于高考数学压轴题思路曲折,推理和运算过程都比较复杂,一旦前面的解答部分出错,就会导致后面的解答劳而无功,且往往陷入更加复杂的运算,因此一定要细心演算,关键步骤要认真检查。

对于一些高考压轴题,如果题意难以理解,解题思路不明,可以先考虑一些特殊情况或简单情况,也就是“以退求进”。

高考数学压轴题怎么答1、如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败.特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题巧拿分”。

多角度破解高考数学压轴题

多角度破解高考数学压轴题

高考数学压轴题往往是难度最大的题目,需要学生具备扎实的数学基础和较高的思维水平。

以下是一些多角度破解高考数学压轴题的方法:
1. 掌握基础知识:压轴题往往涉及到多个知识点,因此学生需要熟练掌握基础知识,包括代数、几何、概率统计等方面的知识。

只有掌握了这些基础知识,才能更好地理解和解答压轴题。

2. 训练思维方法:压轴题往往需要运用多种思维方法,包括归纳、演绎、分析、综合等。

学生需要通过练习,掌握这些思维方法,提高自己的思维能力和解题能力。

3. 掌握解题技巧:压轴题往往需要运用一些特殊的解题技巧,如构造反例、数形结合、参数设定等。

学生需要认真学习和掌握这些技巧,并在实践中加以运用。

4. 多做模拟题:模拟题是接近高考的题目,学生可以通过多做模拟题来熟悉压轴题的出题方式和解题思路。

同时,也可以通过模拟题来检验自己的学习成果和发现自己的不足之处。

5. 善于总结经验:学生需要总结自己在解题过程中的经验和教训,发现自己的不足之处并加以改进。

同时,也需要总结不同类型压轴题的解题思路和技巧,形成自己的解题方法和策略。

总之,破解高考数学压轴题需要学生具备扎实的基础知识、灵活的思维方法和丰富的解题经验。

只有通过多角度的训练和实践,才能提高自己的数学水平和解题能力。

微积分解高考压轴题

微积分解高考压轴题

微积分是高等数学中的重要内容,也是高考数学中的难点之一。

在高考数学中,微积分常常作为压轴题出现,难度较大。

微积分的压轴题可能会涉及到多个知识点,比如函数的单调性、极值、不定积分、定积分等。

这些知识点都需要考生熟练掌握,并且能够灵活运用。

在解决微积分的压轴题时,考生需要注意以下几点:
仔细审题,明确题目要求和条件。

理解题目的数学模型,将实际问题转化为数学问题。

运用微积分的基本概念和公式,进行计算和推导。

注意计算精度和书写规范,避免因为计算错误或书写不规范而失分。

总之,微积分的压轴题是高考数学中的难点之一,需要考生具备扎实的基础知识和灵活的运用能力。

只有通过大量的练习和不断的积累经验,才能更好地掌握微积分的相关知识和技能,解决这类难题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学压轴题”错位相减法”数列的求和公式法
陆河外国语学校—杜耀航
高考数学压轴题很多是把等
差数列通项
s kn
a n
与等比数列通项1
n n
mq
b (1q
)乘积1
)(n n
mq
s kn c 作为新数列通项,让求其前n 项和。

这样的题计算量较大,很多考生由于计算问题而不能解决全部问题而留下遗憾。

为了解
决这种遗憾,圆满高考梦想,本编在这里提供解决这种求和计算的密钥。

1
1
))(n n n q
ms mkn
mq s kn c (,记a=mk,b=ms,那么数列
n c 的通项可以
化成1
)(n n q
b an
c 的形式,其前n 项和
C q B An s n
n )((其中B C q A
b B
q
a A
,1
,1

推导:
1
2
)()3()2()(n n
q
b an q
b a q b a b a s ⑴n
n
q
b an
q
b a
q
b a
qs )()2()(2

⑴+⑵得;
n
n n
q
b an q
q
q a b s q )()1()1(1
2
1
1)111(
q
b
q a
q
q q a
b n
q a s n
n
(1q

令:B C
q A
b
B
q
a A
,1
,1
则:C
q
B An s n
n
)(应用举例
例1 (2009....年全国卷....1.理科)...
20.(本小题满分
12分)
在数列{}n a 中,11
111,(1
)2
n
n
n
n a a a n
(I )设n n
a b n
,求数列{}n b 的通项公式
(II )求数列{}n a 的前n 项和n
S 解:(I )由已知得1
1
1b a ,且
1
11
2
n
n n
a a n n
即1
12n n n
b b 从而
211
2b b 3
2
212
b b ……
1
1
1
(2)
2
n
n n b b n 于是12
1
111 (22)
2
n
n b b =1
12
(2)
2
n n

1
1
b 故所求的通项公式1
122
n n b (II )由(I )知11
1(2)222
n
n n n a n n
,
n S =
1
1(2)
2
n
k k k k 1
1
1
(2)
2
n
n k k k k k 而
1
(2)(1)n
k k n n ,又
1
1
2
n
k k k 是一个典型的错位相减法模型,运用公式密钥
易得
1
1
1
24
2
2
n
k n k k n n S =(1)
n n 1
2
4
2
n n 例2:求和
)
2(1
k
n
k n
k S 解:1
1
1
2
2)
2(n n
k k
n
k n
k k S ,运用密钥计算得
2
2
)1(1
n n
n S 注;为了避免高考阅卷扣分,解答时前三步照写,第四步把通项化成密钥通项的形式,按密钥计算。

答案准确,事半功倍。

例3.(2012浙江文科)
19.(本题满分
14分)已知数列
{}n a 的前n 项和为n S ,且
2
2,*n
S n
n n
N ,数列{}n b 满足24log 3,*.
n
n
a b n
N ⑴求,;
n n a b
⑵数列{}n n a b 的前项和.
n T 解:(Ⅰ)由2
2n S n
n 得,当1n 时,113a S 当2n 时,
1
41n n
n
a S S n 所以41,*,n
a n n N 由1
241
4log 32
,*.
n n n n
n a b b n N (Ⅱ)由(Ⅰ)知
1
(41)2,*,n n n a b n n N 所以
2
1
372112(41)2
n n T n 2
3
1
23272112
(45)2(41)2
n n
n
T n n 所以2
1
2(41)2
[34(2
2
2
)](45)2
5
n
n n
n n
T T n n 即
(45)25,*.
n
n
T n n
N 自练、已知数列
{}n a 满足*
2
1
2
(q )n
N ,1,2n
n a qa a a 为实数,且q
1,,且
233445,,a a a a a a +++成等差数列.
(I)求q 的值和
{}n a 的通项公式;
(II)设*
2221log ,n n
n
a b n
N a ,求数列n {b }
的前n 项和. 参考答案(I)
1
22
2
,2,.
n n
n
n a n 为奇数,
为偶数; (II)1
2
4
2
n
n n S .。

相关文档
最新文档