2019年上海高考第一次模拟考试理科数学(含答案)
上海市2019年七校联考高考数学一模试卷(理科)含答案解析
上海市2019年七校联考高考数学一模试卷(理科)(解析版)一、填空题(本大题满分56分)本大题共有14题,只要求直接填写结果,每题填对得4分,否则一律得零分.1.方程4x=2x+1﹣1的解是.2.增广矩阵对应方程组的系数行列式中,元素3的代数余子式的值为.3.在x(1+)6的展开式中,含x3项系数是.(用数字作答)4.若关于x的不等式2x2﹣3x+a<0的解集为(m,1),则实数m=.5.若,则它的反函数是f﹣1(x)=.6.设抛物线x2=py的焦点与双曲线的上焦点重合,则p的值为.7.已知数列,则a1+a2+a3+a4+…+a99+a100=.8.已知函数f(x)=则使f[f(x)]=2成立的实数x的集合为.9.执行如图所示的程序框图,若p=0.8,则输出的n=.10.曲线y=Asin2ωx+k(A>0,k>0)在区间上截直线y=4与y=﹣2所得的弦长相等且不为0,则A+k的取值范围是.11.若边长为6的等边三角形ABC,M是其外接圆上任一点,则的最大值为.12.设ξ为随机变量,从边长为1的正方体12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱异面时,ξ=1;当两条棱平行时,ξ的值为两条棱之间的距离,则数学期望Eξ=.13.设数列{a n}是首项为0的递增数列,,满足:对于任意的b∈[0,1),f n(x)=b总有两个不同的根,则{a n}的通项公式为.14.如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作与平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A,P两点间的球面距离为.二、选择题(本大题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,选对得5分,否则一律得零分.15.设a、b均为非零实数,则“”是“”的什么条件?()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件16.已知a是实数,则函数f(x)=acosax的图象可能是()A.B.C.D.17.数列{a n}满足,,则的整数部分是()A.0 B.1 C.2 D.318.在直角坐标系中,如果不同的两点A(a,b),B(﹣a,﹣b)都在函数y=f(x)的图象上,那么称[A,B]为函数f(x)的一组关于原点的中心对称点([A,B]与[B,A]看作同一组),函数g(x)=,关于原点的中心对称点的组数为()A.0 B.1 C.2 D.3三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤.19.已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.20.设在直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=2,∠BAC=90°,E,F依次为C1C,BC 的中点.(1)求异面直线A1B、EF所成角θ的大小(用反三角函数值表示);(2)求点B1到平面AEF的距离.21.已知椭圆的长轴长是短轴长的2倍,且过点B(0,1).(1)求椭圆的标准方程;(2)直线l:y=k(x+2)交椭圆于P,Q两点,若点B始终在以PQ为直径的圆内,求实数k的取值范围.22.已知函数f(x)=a(x+)﹣|x﹣|(x>0)a∈R.(1)若a=,求y=f(x)的单调区间;(2)若关于x的方程f(x)=t有四个不同的解x1,x2,x3,x4,求实数a,t应满足的条件;(3)在(2)条件下,若x1,x2,x3,x4成等比数列,求t用a表示.23.设数列{a n}的前n项和为S n,对一切n∈N*,点(n,)都在函数f(x)=x+的图象上.(1)计算a1,a2,a3,并归纳出数列{a n}的通项公式;(2)将数列{a n}依次按1项、2项、3项、4项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21)…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n},求b5+b100的值;(3)设A n为数列的前n项积,若不等式A n<f(a)﹣对一切n∈N*都成立,求a的取值范围.2019年上海市七校联考高考数学一模试卷(理科)参考答案与试题解析一、填空题(本大题满分56分)本大题共有14题,只要求直接填写结果,每题填对得4分,否则一律得零分.1.方程4x=2x+1﹣1的解是x=0.【分析】由已知得(2x)2﹣2×2x+1=0,由此能求出原方程的解.【解答】解:∵4x=2x+1﹣1,∴(2x)2﹣2×2x+1=0,解得2x=1,∴x=0.故答案为:x=0.【点评】本题考查方程的解的求法,是基础题,解题时要认真审题,注意有理数指数幂的性质的合理运用.2.增广矩阵对应方程组的系数行列式中,元素3的代数余子式的值为5.【分析】根据余子式的定义可知,M21=﹣,计算即可得解.【解答】解:由题意得:M21=﹣=5,故答案为:5.【点评】此题考查学生掌握三阶行列式的余子式的定义,会进行行列式的运算,是一道基础题.3.在x(1+)6的展开式中,含x3项系数是15.(用数字作答)【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为2,即可求解含x3的项的系数【解答】解:(1+)6展开式的通项为T r+1=C6r()r=C6r,令r=4得含x2的项的系数是C64=15,∴在x(1+)6的展开式中,含x3项系数是:15.故答案为:15【点评】本题考查二项展开式上通项公式是解决二项展开式的特定项问题的工具.4.若关于x的不等式2x2﹣3x+a<0的解集为(m,1),则实数m=.【分析】由不等式2x2﹣3x+a<0的解集为(m,1)可知:x=m,x=1是方程2x2﹣3x+a=0的两根.根据韦达定理便可分别求出m和a的值.【解答】解:由不等式2x2﹣3x+a<0的解集为(m,1)可知:x=m,x=1是方程2x2﹣3x+a=0的两根由韦达定理得:,解得:m=,a=1.【点评】本题考查一元二次不等式的解法.5.若,则它的反函数是f﹣1(x)=.【分析】由y=(x≤0),解得:x=﹣,把x与y互换即可得出.【解答】解:由y=(x≤0),解得:x=﹣,把x与y互换可得:y=﹣.故答案为:.【点评】本题考查了反函数的求法、方程的解法,考查了推理能力与计算能力,属于中档题.6.设抛物线x2=py的焦点与双曲线的上焦点重合,则p的值为8.【分析】利用双曲线和抛物线的简单性质直接求解.【解答】解:∵双曲线,∴c==2,∴双曲线的两个焦点坐标分别为F1(﹣2,0),F2(2,0),∵抛物线x2=py的焦点F(,0)与双曲线的上焦点重合,∴==2,∴p=8.故答案为:8.【点评】本题考查抛物线中参数的求法,是基础题,解题时要注意双曲线和抛物线的简单性质的合理运用.7.已知数列,则a1+a2+a3+a4+…+a99+a100=5000.【分析】由已知条件可得数列的奇数项是以0为首项,以2为公差的等差数列、偶数项以2为首项,2为公差的等差数列,分别代入等差数列的前n项和公式计算.【解答】解:a1+a2+a3+a4+…+a99+a100=(a1+a3+…+a99)+(a2+a4+…+a100)=(0+2+4+...+98)+(2+4+ (100)=49×50+51×50=5000故答案为5000.【点评】本题主要考查等差数列的求和公式,分组求和的方法,考查学生的运算能力.8.已知函数f(x)=则使f[f(x)]=2成立的实数x的集合为{x|0≤x ≤1,或x=2} .【分析】结合函数的图象可得,若f[f(x)]=2,则f(x)=2 或0≤f(x)≤1.若f(x)=2,由函数f(x)的图象求得x得范围;若0≤f(x)≤1,则由f(x)的图象可得x的范围,再把这2个x的范围取并集,即得所求.【解答】解:画出函数f(x)=的图象,如图所示:故函数的值域为(﹣∞,0)∪(1,+∞).由f[f(x)]=2 可得f(x)=2 或0≤f(x)≤1.若f(x)=2,由函数f(x)的图象可得0≤x≤1,或x=2.若0≤f(x)≤1,则由f(x)的图象可得x∈∅.综上可得,使f[f(x)]=2成立的实数x的集合为{x|0≤x≤1,或x=2},故答案为{x|0≤x≤1,或x=2}.【点评】本题主要考查函数的零点与方程的根的关系,体现了数形结合与分类讨论的数学思想,属于中档题.9.执行如图所示的程序框图,若p=0.8,则输出的n=4.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是判断S=>0.8时,n+1的值.【解答】解:根据流程图所示的顺序,该程序的作用是判断S=>0.8时,n+1的值.当n=2时,当n=3时,,此时n+1=4.故答案为:4【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.10.曲线y=Asin2ωx+k(A>0,k>0)在区间上截直线y=4与y=﹣2所得的弦长相等且不为0,则A+k的取值范围是(4,+∞).【分析】根据曲线的方程可求得函数的周期,进而根据被直线y=4和y=﹣2所截的弦长相等且不为0,推断出k==1,A>=3.答案可得.【解答】解:曲线y=Asin(2ωx+ϕ)+k(A>0,k>0)的周期为T==,被直线y=4和y=﹣2所截的弦长相等且不为0,结合图形可得k==1,A>=3.则A+k>4,故答案为:(4,+∞).【点评】本题主要考查了三角函数图象和性质,对y=Asin(ωx+ϕ)+B(A>0,ω>0),周期为T=,平衡位置为y=B,y max=A+B,y min=﹣A+B,属于中档题.11.若边长为6的等边三角形ABC,M是其外接圆上任一点,则的最大值为18+12.【分析】求出外接圆圆心,建立平面直角坐标系,将表示成θ的三角函数,求出最.大值【解答】解:∵△ABC是等边三角形,∴三角形的外接圆半径为2,以外接圆圆心O为原点建立平面直角坐标系,设A(2,0),B(﹣,3).设M(2cosθ,2sinθ),则,.∴=﹣18cosθ+6sinθ+18=12sin(θ﹣)+18.∴的最大值是18+12.故答案为18+12.【点评】本题考查了三角函数的恒等变换,平面向量的数量积运算,数形结合的解题思想,属于中档题.12.设ξ为随机变量,从边长为1的正方体12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱异面时,ξ=1;当两条棱平行时,ξ的值为两条棱之间的距离,则数学期望Eξ=.【分析】从棱长为1的正方体的12条棱中任取两条,共有种方法,若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,共有8对相交棱,两条棱平行,则它们的距离为1或,其中距离为的共有6对,由此能求出数学期望Eξ.【解答】解:若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有8对相交棱,∴P(ξ=0)==,若两条棱平行,则它们的距离为1或,其中距离为的共有6对,∴P(ξ=)==,P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=)=,∴随机变量ξ的数学期望E(ξ)=1×+×=.故答案为:.【点评】本题考查数学期望的求法,是中档题,解题时要认真审题,注意空间几何体的性质的合理运用.13.设数列{a n}是首项为0的递增数列,,满足:对于任意的b∈[0,1),f n(x)=b总有两个不同的根,则{a n}的通项公式为.【分析】根据条件确定a n+1﹣a n=nπ,利用叠加可求得{a n}的通项公式.【解答】解:∵a1=0,当n=1时,f1(x)=|sin(x﹣a1)|=|sinx|,x∈[0,a2],又∵对任意的b∈[0,1),f1(x)=b总有两个不同的根,∴a2=π∴f1(x)=sinx,x∈[0,π],a2=π又f2(x)=|sin(x﹣a2)|=|sin(x﹣π)|=|cos|,x∈[π,a3]∵对任意的b∈[0,1),f1(x)=b总有两个不同的根,∴a3=3π…(5分)又f3(x)=|sin(x﹣a3)|=|sin(x﹣3π)|=|sinπ|,x∈[3π,a4]∵对任意的b∈[0,1),f1(x)=b总有两个不同的根,∴a4=6π…(6分)由此可得a n+1﹣a n=nπ,∴a n=a1+(a2﹣a1)+…+(a n﹣a n)=0+π+…+(n﹣1)π=﹣1∴故答案为:【点评】本题考查数列与三角函数的结合,考查学生分析解决问题的能力,具有一定的综合性,属于中档题.14.如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作与平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A,P两点间的球面距离为.【分析】由题意求出AP的距离,然后求出∠AOP,即可求解A、P两点间的球面距离.【解答】解:半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,所以CD⊥平面AOB,因为∠BOP=60°,所以△OPB为正三角形,P到BO的距离为PE=R,E为BO的中点,AE==R,AP==R,AP2=OP2+OA2﹣2OPOAcos∠AOP,∴(R)2=R2+R2﹣2RRcos∠AOP,∴cos∠AOP=,∠AOP=arccos,∴A、P两点间的球面距离为.故答案为:.【点评】本题考查反三角函数的运用,球面距离及相关计算,考查计算能力以及空间想象能力.二、选择题(本大题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,选对得5分,否则一律得零分.15.设a、b均为非零实数,则“”是“”的什么条件?()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【分析】分别求出不等式成立的等价条件,然后利用充分条件和必要条件的定义进行判断.【解答】解:当b=﹣1,a=1时,满足,但不成立.若,则,∴,∴成立.∴“”是“”成立的必要不充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键.16.已知a是实数,则函数f(x)=acosax的图象可能是()A.B.C.D.【分析】根据函数的奇偶性排除不满足题意的选项,根据函数的表达式确定函数的最值与周期的关系,推出正确结果.【解答】解:函数f(x)=acosax,因为函数f(﹣x)=acos(﹣ax)=acosax=f(x),所以函数是偶函数,所以A、D错误;结合选项B、C,可知函数的周期为:π,所以a=2,所以B不正确,C正确.故选C【点评】本题是基础题,考查视图能力,发现问题解决问题的能力,排除方法的应用,函数的周期与最值的关系是解题的关键,好题.17.数列{a n}满足,,则的整数部分是()A.0 B.1 C.2 D.3【分析】由题意可知,a n+1﹣1=a n(a n﹣1)从而得到,通过累加得:m=+…+=﹣=2﹣,a n+1﹣a n=≥0,a n+1≥a n,可得:a2019≥a2019≥a3≥2,,1<m<2,故可求得m的整数部分.【解答】解:由题意可知,a n+1﹣1=a n(a n﹣1),,∴m=+…+=﹣═2﹣,a n+1﹣a n=≥0,a n+1≥a n,∴a2019≥a2019≥a3≥2,,1<m<2,故可求得m的整数部分1.故答案选:B.【点评】本题考查数列的性质和应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用数列的递推式.18.在直角坐标系中,如果不同的两点A(a,b),B(﹣a,﹣b)都在函数y=f(x)的图象上,那么称[A,B]为函数f(x)的一组关于原点的中心对称点([A,B]与[B,A]看作同一组),函数g(x)=,关于原点的中心对称点的组数为()A.0 B.1 C.2 D.3【分析】利用定义,只要求出g(x)=sin,x≤0,关于原点对称的函数h(x)=sin,x>0,观察h(x)与g(x)=log2(x+1),x>0的交点个数,即为中心对称点的组数.【解答】解:由题意可知g(x)=sin,x≤0,则函数g(x)=sin,x≤0,关于原点对称的函数为h(x)=sin,x>0,则坐标系中分别作出函数h(x)=sin,x>0,g(x)=log2(x+1),x>0的图象如图,由图象可知,两个图象的交点个数有1个,所以函数g(x)=关于原点的中心对称点的组数为1组.故选:B【点评】本题主要考查函数的交点问题,利用定义先求出函数关于原点对称的函数,是解决本题的关键.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤.19.已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.【分析】(1)利用同角三角函数关系求得cosα的值,分别代入函数解析式即可求得f(α)的值.(2)利用两角和公式和二倍角公式对函数解析式进行恒等变换,进而利用三角函数性质和周期公式求得函数最小正周期和单调增区间.【解答】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣,=×(+)﹣=.(2)f(x)=cosx(sinx+cosx)﹣.=sinxcosx+cos2x﹣=sin2x+cos2x=sin(2x+),∴T==π,由2kπ﹣≤2x+≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,∴f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z.【点评】本题主要考查了三角函数恒等变换的应用.考查了学生对基础知识的综合运用.20.设在直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=2,∠BAC=90°,E,F依次为C1C,BC 的中点.(1)求异面直线A1B、EF所成角θ的大小(用反三角函数值表示);(2)求点B1到平面AEF的距离.【分析】(1)连接C1B,因为C1B∥EF,异面直线A1B、EF所成角与C1B、A1B所成角相等.(2)利用平面AEF的一个法向量,建立空间坐标系,求出求点B1到平面AEF的距离.【解答】解:以A为原点建立如图空间坐标系,则各点坐标为A1(0,0,2),B(2,0,0),B1(2,0,2),E(0,2,1),F(1,1,0)(2分)(1),,∴(6分)(2)设平面AEF的一个法向量为,∵,由得令a=1可得(10分)∵,∴(13分)∴点B1到平面AEF的距离为.(14分)【点评】此题主要考查异面直线的角度及余弦值计算.21.已知椭圆的长轴长是短轴长的2倍,且过点B(0,1).(1)求椭圆的标准方程;(2)直线l:y=k(x+2)交椭圆于P,Q两点,若点B始终在以PQ为直径的圆内,求实数k的取值范围.【分析】(1)由题意可得a=2b,b=1,解得a=2,进而得到椭圆方程;(2)设P(x1,y1),Q(x2,y2),联立直线l的方程和椭圆方程,运用韦达定理,可得Q的坐标,由点B在以PQ为直径圆内,得∠PBQ为钝角或平角,即有,运用数量积的坐标表示,解不等式即可得到所求范围.【解答】解:(1)由题意知,a=2b,b=1,解得a=2,可得椭圆的标准方程为:;(2)设P(x1,y1),Q(x2,y2)联立,消去y,得(1+4k2)x2+16k2x+16k2﹣4=0,(*)依题意:直线l:y=k(x+2)恒过点(﹣2,0),此点为椭圆的左顶点,所以x1=﹣2,y1=0 ①,由(*)式,②,得y1+y2=k(x1+x2)+4k③,由①②③,可得,由点B在以PQ为直径圆内,得∠PBQ为钝角或平角,即..即,整理得20k2﹣4k﹣3<0,解得.【点评】本题考查椭圆方程的求法,注意运用椭圆的性质,考查实数的取值范围,注意联立直线方程和椭圆方程,运用韦达定理,考查点在圆内的条件:点与直径的端点的张角为钝角或平角,运用数量积小于0,考查化简整理的运算能力,属于中档题.22.已知函数f(x)=a(x+)﹣|x﹣|(x>0)a∈R.(1)若a=,求y=f(x)的单调区间;(2)若关于x的方程f(x)=t有四个不同的解x1,x2,x3,x4,求实数a,t应满足的条件;(3)在(2)条件下,若x1,x2,x3,x4成等比数列,求t用a表示.【分析】(1)将a=代入,结合正比例函数和反比例函数的图象和性质,可得函数的单调区间;(2)利用导数法,分类讨论,不同情况下y=f(x)的单调性,进而求出满足条件的实数a,t的范围;(3)韦达定理可得x1,x2,x3,x4两两互为倒数,结合等比数列的性质,结合韦达定理,可用a表示t.【解答】解:(1)当a=时,函数f(x)=(x+)﹣|x﹣|=.故y=f(x)的单调递增区间为(0,1],单调递减区间为[1,+∞);(2)f(x)=a(x+)﹣|x﹣|=,f′(x)=,当a≤1时,y=f(x)的单调递增区间为(0,1],单调递减区间为[1,+∞),不合题意.当a>1时,f(x)在(0,]上单调递减,在[,1]上单调递增,在[1,]上单调递减,在[,+∞)上单调递增,又由f()=f()=,f(1)=2a,∴方程f(x)=t有四个不同的解x1,x2,x3,x4时,a,t应满足的条件为:<t<2a,a>1;(3)f(x)=t即,或,即(a+1)x2﹣tx+a﹣1=0,或(a﹣1)x2﹣tx+a+1=0,由韦达定理可得两方程的根分别互为倒数,设四个解从小到大依次为x1,x2,x3,x4,则x2x3=1,x1x4=1,∴x1x2x3x4=1,若x1,x2,x3,x4成等比数列,则x1=x23,∴x1x2=x24=,x1+x2=,∴x2=,∴+()3=,解得:t=+(a>1)【点评】本题考查的知识点是分段函数的应用,根的存在性及判断,函数的单调性,与函数的极值,数列的性质,综合性强,转化困难,属于难题.23.设数列{a n}的前n项和为S n,对一切n∈N*,点(n,)都在函数f(x)=x+的图象上.(1)计算a1,a2,a3,并归纳出数列{a n}的通项公式;(2)将数列{a n}依次按1项、2项、3项、4项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21)…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n},求b5+b100的值;(3)设A n为数列的前n项积,若不等式A n<f(a)﹣对一切n∈N*都成立,求a的取值范围.【分析】(1)由已知可得,即.分别令n=1,n=2,n=3,代入可求a1,a2,a3,进而猜想a n(2)由a n=2n可得数列{a n}依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b100是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数,所有第2个数、所有第3个数、所有第4个所有第4个数分别组成都是等差数列,公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.代入可求(3)因为,,若成立设,则只需即可利用g(n)的单调性可求其最大值,从而可求a的范围【解答】解:(1)因为点在函数的图象上,故,所以.令n=1,得,所以a1=2;令n=2,得,所以a2=4;令n=3,得,所以a3=6.由此猜想:a n=2n.(2)因为a n=2n(n∈N*),所以数列{a n}依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b100是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,所以b100=68+24×80=1988.又b5=22,所以b5+b100=2010(3)因为,故,所以.又,故对一切n∈N*都成立,就是对一切n∈N*都成立.设,则只需即可.由于=,所以g(n+1)<g(n),故g(n)是单调递减,于是.令,即,解得,或.综上所述,使得所给不等式对一切n∈N*都成立的实数a的取值范围是.【点评】本题综合考查了利用函数的解析式求解数列的递推公式进而求解数列的项,等差数列的求和公式的应用,及利用数列的单调性求解数列的最大(小)项问题的求解,属于函数与数列知识的综合应用的考查。
上海市2019年高考数学一模试卷(解析版)
2019年上海市高考数学一模试卷一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.(4分)设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B=.2.(4分)函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=.3.(4分)设i为虚数单位,在复平面上,复数对应的点到原点的距离为.4.(4分)若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=.5.(4分)已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=.6.(4分)甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有种.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是.(写出所有真命题的序号)11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为cm.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]三、解答题(共5小题,满分76分)17.(14分)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD 所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).18.(14分)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.19.(14分)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k >0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.20.(16分)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h (a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.21.(18分)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.参考答案与试题解析一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B={2} .【考点】交集及其运算.【分析】利用交集定义求解.【解答】解:|x﹣2|<1,即﹣1<x﹣2<1,解得1<x<3,即A=(1,3),集合B=Z,则A∩B={2},故答案为:{2}【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意定义法的合理运用.2.函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=2.【考点】正弦函数的图象.【分析】根据三角函数的周期性及其求法即可求值.【解答】解:∵y=sin(ωx﹣)(ω>0),∴T==π,∴ω=2.故答案是:2.【点评】本题主要考查了三角函数的周期性及其求法,属于基础题.3.设i为虚数单位,在复平面上,复数对应的点到原点的距离为.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义、两点之间的距离公式即可得出.【解答】解:复数===对应的点到原点的距离==.故答案为:.【点评】本题考查了复数的运算法则、几何意义、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.4.若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=3.【考点】反函数.【分析】由题意可得函数f(x)=log2(x+1)+a过(1,4),代入求得a的值.【解答】解:函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),即函数f(x)=log2(x+1)+a的图象经过点(1,4),∴4=log2(1+1)+a∴4=1+a,a=3.故答案为:3.【点评】本题考查了互为反函数的两个函数之间的关系与应用问题,属于基础题.5.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=6.【考点】二项式系数的性质.【分析】令二项式中的a=b=1得到展开式中的各项系数的和,根据二项式系数和公式得到各项二项式系数的和2n,据已知列出方程求出n 的值.【解答】解:令二项式中的a=b=1得到展开式中的各项系数的和4n 又各项二项式系数的和为2n据题意得,解得n=6.故答案:6【点评】求二项展开式的系数和问题一般通过赋值求出系数和;二项式系数和为2n.属于基础题.6.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有60种.【考点】排列、组合及简单计数问题.【分析】间接法:①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.【解答】解:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数C52C52=100,②两人所选两门都相同的有为C52=10种,都不同的种数为C52C32=30,故只恰好有1门相同的选法有100﹣10﹣30=60种.故答案为60.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用间接法是解决本题的关键,属中档题.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.【考点】旋转体(圆柱、圆锥、圆台).【分析】利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得底面半径,进而求出圆锥的高,代入圆锥体积公式,可得答案.【解答】解:设此圆锥的底面半径为r,由题意,得:2πr=π×2,解得r=.故圆锥的高h==,∴圆锥的体积V=πr2h=cm3.故答案为:.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=2.【考点】数列的求和;极限及其运算.【分析】利用数列递推关系可得a n,再利用等差数列的求和公式、极限的运算性质即可得出.【解答】解:∵ ++…+=n2+3n(n∈N*),∴n=1时,=4,解得a1=16.n≥2时,且++…+=(n﹣1)2+3(n﹣1),可得:=2n+2,∴a n=4(n+1)2.=4(n+1).∴()==2.故答案为:2.【点评】本题考查了数列递推关系、等差数列的求和公式、极限运算性质,考查了推理能力与计算能力,属于中档题.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.【考点】余弦定理.【分析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.【解答】解:在△ADC中,AD=5,AC=7,DC=3,由余弦定理得cos∠ADC==﹣,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=5,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=故答案为:.【点评】本题主要考查余弦定理和正弦定理的应用,在解决问题的过程中要灵活运用正弦定理和余弦定理.属基础题.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是①②.(写出所有真命题的序号)【考点】必要条件、充分条件与充要条件的判断.【分析】①函数f(x)既是奇函数又是偶函数,则f(x)=0.②利用偶函数的定义和性质判断.③利用单调函数的定义进行判断.④利用反函数的性质进行判断.【解答】解:①若函数f(x)既是奇函数又是偶函数,则f(x)=0,为常数函数,所以f(x)的值域是{0},所以①正确.②若函数为偶函数,则f(﹣x)=f(x),所以f(|x|)=f(x)成立,所以②正确.③因为函数f(x)=在定义域上不单调,但函数f(x)存在反函数,所以③错误.④原函数图象与其反函数图象的交点关于直线y=x对称,但不一定在直线y=x上,比如函数y=﹣与其反函数y=x2﹣1(x≤0)的交点坐标有(﹣1,0),(0,1),显然交点不在直线y=x上,所以④错误.故答案为:①②.【点评】本题主要考查函数的有关性质的判定和应用,要求熟练掌握相应的函数的性质,综合性较强.11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为8.【考点】基本不等式.【分析】A、B、C三点共线,则=λ,化简可得2a+b=1.根据+ =(+)(2a+b),利用基本不等式求得它的最小值【解答】解:向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,∴=﹣=(a﹣1,1),=﹣=(﹣b﹣1,2),∵A、B、C三点共线,∴=λ,∴,解得2a+b=1,∴+=(+)(2a+b)=2+2++≥4+2=8,当且仅当a=,b=,取等号,故+的最小值为8,故答案为:8【点评】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,基本不等式的应用,属于中档题.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为13cm.【考点】多面体和旋转体表面上的最短距离问题.【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱ABC﹣A1B1C1沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理d==13故答案为:13.【点评】本题考查棱柱的结构特征,空间想象能力,几何体的展开与折叠,体现了转化(空间问题转化为平面问题,化曲为直)的思想方法.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先求出x2<4的充要条件,结合集合的包含关系判断即可.【解答】解:由x2<4,解得:﹣2<x<2,故x<2是x2<4的必要不充分条件,故选:B.【点评】本题考察了充分必要条件,考察集合的包含关系,是一道基础题.14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值【考点】等差数列的前n项和.【分析】S n=na1+d=n2+n,利用二次函数的单调性即可判断出结论.【解答】解:S n=na1+d=n2+n,∵>0,∴S n有最小值.故选:C.【点评】本题考查了等差数列的求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【考点】正弦函数的定义域和值域;两角和与差的正弦函数;正弦函数的对称性;余弦函数的定义域和值域.【分析】(1)利用辅助角公式将可判断(1);(2)根据函数y=sinx图象的对称轴方程可判断(2);(3)根据余弦函数的性质可求出y=cos(cosx)(x∈R)的最大值与最小值,从而可判断(3)的正误;(4)用特值法令α,β都是第一象限角,且α>β,可判断(4).【解答】解:(1)∵,∴(1)错误;(2)∵y=sinx图象的对称轴方程为,k=﹣1,,∴(2)正确;(3)根据余弦函数的性质可得y=cos(cosx)的最大值为y max=cos0=1,y min=cos(cos1),其值域是[cos1,1],(3)正确;(4)不妨令,满足α,β都是第一象限角,且α>β,但tanα<tanβ,(4)错误;故选B.【点评】本题考查正弦函数与余弦函数、正切函数的性质,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]【考点】函数恒成立问题.【分析】将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立,构造函数f(y)=+,利用基本不等式可求得f(y)=3,于是问题转化为asinx﹣sin2x≤2恒成立.通过对sinx>0、sinx min<0、sinx=0三类讨论,可求得对应情况下的实数a的取值范围,最后取其交集即可得到答案.【解答】解:∀实数x、y,不等式﹣cos2x≥asinx﹣恒成立⇔+≥asinx+1﹣sin2x恒成立,令f(y)=+,则asinx+1﹣sin2x≤f(y)min,当y>0时,f(y)=+≥2=3(当且仅当y=6时取“=”),f(y)=3;min当y<0时,f(y)=+≤﹣2=﹣3(当且仅当y=﹣6时取“=”),f(y)max=﹣3,f(y)min不存在;综上所述,f(y)min=3.所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.①若sinx>0,a≤sinx+恒成立,令sinx=t,则0<t≤1,再令g(t)=t+(0<t≤1),则a≤g(t)min.由于g′(t)=1﹣<0,所以,g(t)=t+在区间(0,1]上单调递减,因此,g(t)min=g(1)=3,所以a≤3;②若sinx<0,则a≥sinx+恒成立,同理可得a≥﹣3;③若sinx=0,0≤2恒成立,故a∈R;综合①②③,﹣3≤a≤3.故选:D.【点评】本题考查恒成立问题,将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立是基础,令f(y)=+,求得f (y)min=3是关键,也是难点,考查等价转化思想、分类讨论思想的综合运用,属于难题.三、解答题(共5小题,满分76分)17.(14分)(2017•上海一模)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱锥A﹣BCD的体积.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,由此能求出异面直线AD与CM所成角的大小.【解答】解:(1)如图,因为AB⊥平面BCD,所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,因为AB⊥平面BCD,AD与平面BCD所成的角为30°,故∠ADB=30°,由AB=BC=2,得AD=4,AC=2,∴BD==2,CD==2,则V A﹣BCD====.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,则A(0,2,2),D(2,0,0),C(0,0,0),B(0,2,0),M(),=(2,﹣2,﹣2),=(),设异面直线AD与CM所成角为θ,则cosθ===.θ=arccos.∴异面直线AD与CM所成角的大小为arccos.【点评】本题考查了直线和平面所成角的计算,考查了利用等积法求点到面的距离,变换椎体的顶点,利用其体积相等求空间中点到面的距离是较有效的方法,此题是中档题.18.(14分)(2017•上海一模)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.【考点】余弦定理;解三角形.【分析】(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,解方程求得cosA 的值,即可得到A的值.(II)由余弦定理及a=,b+c=3,解方程组求得b 和c的值.【解答】解:(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos (B+C)]﹣4cos2A+2=7,(1分)又∵cos(B+C)=﹣cosA,∴4cos2A﹣4cosA+1=0.(4分)解得,∴.(6分)(II)由.(8分)又.(10分)由.(12分)【点评】本题主要考查余弦定理,二倍角公式及诱导公式的应用,属于中档题.19.(14分)(2017•上海一模)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD 是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D 重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN 为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.【考点】函数模型的选择与应用.【分析】(1)根据函数y=ax2过点D,求出解析式y=2x2;由,消去y得△=0即可证明b=﹣;(2)写出点P的坐标(t,2t2),代入①直线MN的方程,用t表示出直线方程为y=4tx﹣2t2,令y=0,求出M的坐标;令y=2求出N的坐标;②将四边形MABN的面积S表示成关于t的函数S(t),利用基本不等式求出S的最大值.【解答】(1)证明:函数y=ax2过点D(1,2),代入计算得a=2,∴y=2x2;由,消去y得2x2﹣kx﹣b=0,由线段MN与曲线OD有且只有一个公共点P,得△=(﹣k)2﹣4×2×b=0,解得b=﹣;(2)解:设点P的横坐标为t,则P(t,2t2);①直线MN的方程为y=kx+b,即y=kx﹣过点P,∴kt﹣=2t2,解得k=4t;y=4tx﹣2t2令y=0,解得x=,∴M(,0);令y=2,解得x=+,∴N(+,2);②将四边形MABN的面积S表示成关于t的函数为S=S(t)=2×2﹣×2×[+(+)]=4﹣(t+);由t+≥2•=,当且仅当t=,即t=时“=”成立,所以S≤4﹣2;即S的最大值是4﹣.【点评】本题考查了函数模型的应用问题,也考查了阅读理解能力,是综合性题目.20.(16分)(2017•上海一模)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h (a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.【考点】函数的最值及其几何意义;函数的值域.【分析】(1)设t=3x,则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,φ(t)的对称轴为t=a,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a,分类讨论当a<时,当≤a ≤3时,当a>3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m,n存在,函数h(a)在(3,+∞)上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.【解答】解:(1)∵函数f(x)=9x﹣2a•3x+3,设t=3x,t∈[1,3],则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,对称轴为t=a.当a=1时,φ(t)=(t﹣1)2+2在[1,3]递增,∴φ(t)∈[φ(1),φ(3)],∴函数f(x)的值域是:[2,6];(Ⅱ)∵函数φ(t)的对称轴为t=a,当x∈[﹣1,1]时,t∈[,3],当a<时,y min=h(a)=φ()=﹣;当≤a≤3时,y min=h(a)=φ(a)=3﹣a2;当a>3时,y min=h(a)=φ(3)=12﹣6a.故h(a)=;(Ⅲ)假设满足题意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m,n],值域为[m2,n2],则,两式相减得6(n﹣m)=(n﹣m)•(m+n),又∵n>m>3,∴m﹣n≠0,∴m+n=6,与n>m>3矛盾.∴满足题意的m,n不存在.【点评】本题主要考查二次函数的值域问题,二次函数在特定区间上的值域问题一般结合图象和单调性处理,是中档题.21.(18分)(2017•上海一模)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r ∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.【考点】数列递推式.【分析】(1)由rS n=a n a n+1﹣1,利用迭代法得:ra n+1=a n+1(a n+2﹣a n),由此能够证明a n+2﹣a n为定值.(2)当n=1时,ra=aa2﹣1,故a2=,根据数列是隔项成等差,写出数列的前几项,再由r>0和r=0两种情况进行讨论,能够求出该数列的周期.(3)因为数列{a n}是一个有理等差数列,所以a+a=r=2(r+),化简2a2﹣ar﹣2=0,解得a是有理数,由此入手进行合理猜想,能够求出S n.【解答】(1)证明:∵rS n=a n a n+1﹣1,①∴rS n+1=a n+1a n+2﹣1,②②﹣①,得:ra n+1=a n+1(a n+2﹣a n),∵a n>0,∴a n+2﹣a n=r.(2)解:当n=1时,ra=aa2﹣1,∴a2=,根据数列是隔项成等差,写出数列的前几项:a,r+,a+r,2r+,a+2r,3r+,….当r>0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,∴r=0时,数列写出数列的前几项:a,,a,,….所以当a>0且a≠1时,该数列的周期是2,(3)解:因为数列{a n}是一个有理等差数列,a+a+r=2(r+),化简2a2﹣ar﹣2=0,a=是有理数.设=k,是一个完全平方数,则r2+16=k2,r,k均是非负整数r=0时,a=1,a n=1,S n=n.r≠0时(k﹣r)(k+r)=16=2×8=4×4可以分解成8组,其中只有,符合要求,此时a=2,a n=,S n=,∵c n=2•3n﹣1(n∈N*),a n=1时,不符合,舍去.a n=时,若2•3n﹣1=,则:3k=4×3n﹣1﹣1,n=2时,k=,不是整数,因此数列{c n}中的所有项不都是数列{a n}中的项.【点评】本题考查了数列递推关系、等差数列的定义与通项公式、数列的周期性性,考查了推理能力与计算能力,属于难题.。
2019年上海市普陀区高考数学一模试卷(精编含解析)
2019年上海市普陀区高考数学一模试卷一、填空题(本大题共12小题,共60.0分)1. 函数的定义城为______.【答案】【解析】解:由解得:且,故答案为:根据偶次根式中被开方非负,分母不为0列式解得.本题考查了函数的定义域及其求法属基础题.2. 若,则______.【答案】【解析】解:,.故答案为:.由已知直接利用三角函数的诱导公式化简求值.本题考查三角函数的化简求值,考查诱导公式的应用,是基础题.3. 设,若为偶函数,则______.【答案】【解析】解:是偶函数;.故答案为:.可以看出,只有时,为偶函数,从而得出.考查偶函数的定义,偶函数图象的特点.4. 若直线l经过抛物线C:的焦点且其一个方向向量为,则直线l的方程为______.【答案】【解析】解:抛物线的焦点为,方向向量为的直线l的斜率为1,故直线l的方程是,即,故答案为:.求出抛物线的焦点,求出直线l的斜率,用点斜式求直线方程,并化为一般式.本题考查用点斜式求直线方程的方乘,抛物线的简单性质,确定斜率是解题的关键.5. 若一个球的体积是其半径的倍,则该球的表面积为______.【答案】4【解析】解:设球的半径为R,则,,球的表面积为:,故答案为:4.设球的半径为R,根据题意列方程可得.本题考查了球的体积和表面积,属中档题.6. 在一个袋中装有大小、质地均相同的9只球,其中红色、黑色、白色各3只,若从袋中随机取出两个球,则至少有一个红球的概率为______结果用最简分数表示【答案】【解析】解:在一个袋中装有大小、质地均相同的9只球,其中红色、黑色、白色各3只,从袋中随机取出两个球,基本事件总数,至少有一个红球的对立事件是没有红球,至少有一个红球的概率为.故答案为:.从袋中随机取出两个球,基本事件总数,至少有一个红球的对立事件是没有红球,由此能求出至少有一个红球的概率.本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,是基础题.7. 设,则______结果用数值表示【答案】0【解析】解:,则,故答案为:0.把按照二项式定理展开,可得的值.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.8. 设且,若,则______.【答案】1【解析】解:设且,若,所以:,所以:,则:,则:,,,,故答案为:1.直接利用三角函数关系式的恒等变变换和对数的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变变换的应用,主要考查学生的运算能力和转化能力,属于基础题型.9. 如图,正四棱柱的底面边长为4,记,,若,则此棱柱的体积为______.【答案】【解析】解:建立如图所示空间直角坐标系,设,又,则0,,4,,4,,2,,,,,,即.此棱柱的体积为.故答案为:.建立空间直角坐标系,设出直四棱柱的高h,求出的坐标,由数量积为0求得h,则棱柱的体积可求.本题考查棱柱体积的求法,考查利用空间向量求解线线垂直问题,是中档题.10. 某人的月工资由基础工资和绩效工资组成2010年每月的基础工资为2100元、绩效工资为2000元从2011年起每月基础工资比上一年增加210元、绩效工资为上一年的照此推算,此人2019年的年薪为______万元结果精确到【答案】【解析】解:由题意可得,基础工资是以2100元为首项,以210元公差的等差数列,绩效工资以为2000元首项,以公比为的等比数列,则此人2019年每月的基础工资为元,每月的绩效工资为元,则此人2019年的年薪为万元,故答案为:.由题意可得,基础工资是以2100元为首项,以210元公差的等差数列,绩效工资以为2000元首项,以公比为的等比数列,即可求出2019年的每月的工资,即可求出年薪本题考查了等差数列和等比数列在实际生活中的应用,属于中档题.11. 已知点,设B、C是圆O:上的两个不同的动点,且向量其中t为实数,则______.【答案】3【解析】解:由向量其中t为实数,可得:A,B,C三点共线,且,同向,设圆O与x轴正半轴交于点E,由圆的割线定理可得,,故答案为:3由向量其中t为实数,可得:A,B,C三点共线,且,同向,设圆O与x轴正半轴交于点E,由割线定理可得,本题考查了向量中三点共线的判断,及圆的割线定理,属中档题12. 设a为常数记函数且,的反函数为,则______.【答案】【解析】解:由,得,,,原式,故答案为:先求出反函数,然后求出,所以等于a个a.本题考查了反函数,属基础题.二、选择题(本大题共4小题,共20.0分)13. 下列关于双曲线:的判断,正确的是A. 渐近线方程为B. 焦点坐标为C. 实轴长为12D. 顶点坐标为【答案】B【解析】解:关于双曲线:,,,,则渐近线方程为;焦点为;实轴,顶点坐标为.关于双曲线:,,,,即可得答案.本题考查双曲线的方程、几何性质,属于基础题.14. 函数的图象A. 关于原点对称B. 关于点C. 关于y轴对称D. 关于直线轴对称【答案】B【解析】解:对于选项:A,当时,故错误.对于选项C:当时,,故错误.对于选项D:当时,,故错误.故选:B.直接利用余弦函数的性质求出结果.本题考查的知识要点:三角函数关系式的恒等变变换,正弦型函数的性质的应用,主要考查学生的运算能力和转化能力,属于基础题型.15. 若a、b、c表示直线,、表示平面,则“”成立的一个充分非必要条件是A. ,B. ,C. ,D. ,【答案】C【解析】解:由a、b、c表示直线,、表示平面,在A中,,,则a与b相交、平行或异面,故A错误;在B中,,,则a与b相交、平行或异面,故B错误;在C中,,,则,反之,不一定得到,,故C正确;在D中,,,则a与b相交或异面,故D错误.故选:C.在A中,a与b相交、平行或异面;在B中,a与b相交、平行或异面;在C中,,,则,反之,不一定得到,;在D中,a与b相交或异面.本题考查命题成立的一个充分非必要条件的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.16. 设是定义在R上的周期为4的函数,且,记,若则函数在区间上零点的个数是A. 5B. 6C. 7D. 8【解析】解:由图可知:直线与在区间上的交点有8个,故选:D.分别作出与直线的图象,观察交点个数即可本题考查了数形结合的思想及作图能力.三、解答题(本大题共5小题,共70.0分)17. 在中,三个内角A,B,C所对的边依次为a,b,c,且.求的值;设,求的取值范围.【答案】解:,,分,,由余弦定理可得:,,可得:,当且仅当时等号成立,可得:,可得:,当且仅当时等号成立,,的取值范围为:分【解析】利用同角三角函数基本关系式可求,利用三角函数恒等变换的应用即可计算得解.由余弦定理,基本不等式可求的最大值,利用三角形两边之和大于第三边可求,即可得解的取值范围.本题主要考查了同角三角函数基本关系式,三角函数恒等变换的应用,余弦定理,基本不等式,三角形两边之和大于第三边等知识的应用,考查了计算能力和转化思想,属于中档题.18. 已知曲线:的左、右顶点分别为A,B,设P是曲线上的任意一点.当P异于A,B时,记直线PA,PB的斜率分别为,,求证:是定值;设点C满足,且的最大值为7,求的值.【答案】证明:由椭圆方程可得,,设,则,,为定值;解:设,则.若,则,解得.此时,,,由,得;同理,若,可得,此时求得.故的值为7或.【解析】由已知椭圆方程求出A,B的坐标,设,由斜率公式及点P在椭圆上即可证明是定值;设,写出两点间的距离公式,分类利用配方法求最值,可得m值,结合,求得的值.本题考查椭圆的简单性质,考查两点间距离公式的应用,训练了利用配方法求最值,是中档题.19. 如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有一端所在的直线竖直向上,并记组成该“钉”的四条线段的公共点为O,钉尖为2,3,.设,当,,在同一水平面内时,求与平面所成角的大小结果用反三角函数值表示.若该“钉”的三个钉尖所确定的三角形的面积为,要用某种线型材料复制100枚这种“钉”损耗忽略不计,共需要该种材料多少米?【答案】解:根据题意,可知组成该种钉的四条线段长必相等,且两两所成的角相等,,,,两两连结后得到的四面体为正四面体,延长交平面于B,则平面,连结,则是在平面上的射影,就是与平面所成角,设,则,在中,,即,,,其中,,与平面所成角的大小为.,根据可得,,要用某种线型材料复制100枚这种“钉”损耗忽略不计,共需要该种材料:米.要用某种线型材料复制100枚这种“钉”损耗忽略不计,共需要该种材料米【解析】组成该种钉的条线段长必相等,且两两所成的角相等,,,,两两连结后得到的四面体为正四面体,延长交平面于B,则平面,连结,则就是与平面所成角,由此能求出与平面所成角的大小.推导出,,从而,由此能求出要用某种线型材料复制100枚这种“钉”损耗忽略不计,共需要该种材料的长度.本题考查线面角的求法,考查需要材料数量的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.20. 设数列满足,.求,的值;求证:是等比数列,并求的值;记的前n项和为,是否存在正整数k,使得对于任意的且均有成立?若存在,求出k的值:若不存在,说明理由.【答案】解:数列满足,.所以:,,由于数列满足,.所以:常数,所以::是以为首项,为公比的等比数列.所以:,所以:,故:,,.由于:,所以,,,所以:,所以:数列为递减数列,则:当时,,所以:.所以:存在,使得对于任意的且均有成立.【解析】直接利用关系式求出结果.利用定义证明数列是等比数列,并求出极限值.首先求出数列的关系式,进一步利用数列的单调性求出函数的存在问题的条件,进一步确定k的值.1本题考查的知识要点:数列的通项公式的求法及应用,叠加法在求数列的通项公式中的应用,主要考查学生的运算能力和转化能力,属于基础题型.21. 已知函数,记.解不等式:;设k为实数,若存在实数,使得成立,求k的取值范围;记其中a,b均为实数,若对于任意的,均有,求a,b的值.【答案】解:函数,,即为,即为,即有,解得,即解集为;存在实数,使得成立,即为,设,在递增,可得,,即有,则,设,,即有,在递增,可得,即有,,令,,,.若对于任意的,均有,即对任意,.,解得:,.【解析】函数,,即为,即为,可得解集;根据,利用换元法,求解最值,即可求解k的取值范围;根据其中a,b均为实数,,均有,建立关系即可求解a,b的值.本题主要考查了函数恒成立问题的求解,分类讨论以及转化思想的应用,二次函数闭区间是的最值以及单调性的应用.。
2019年上海市青浦区高考数学一模试卷(含解析版)
2019年上海市青浦区高考数学一模试卷一、填空题(本大题满分54分)本题共有12题,1-6每题4分,7-12每题5分考生应在答题相应编号的空格内直接填写结果,每个空格填对得分,否则律得零分。
1.(4分)已知集合A={﹣1,0,1,2},B=(﹣∞,0),则A∩B=.2.(4分)写出命题“若am2<bm2,则a<b”的逆命题.3.(4分)不等式2<()3(x﹣1)的解集为.4.(4分)在平面直角坐标系xOy中,角θ以Ox为始边,终边与单位圆交于点(),则tan(π+θ)的值为.5.(4分)已知直角三角形ABC中,∠A=90°,AB=3,AC=4,则△ABC绕直线AC旋转一周所得几何体的体积为.6.(4分)如图所示,在复平面内,网格中的每个小正形的边长都为1,点A,B对应的复数分别是z1,z2,则||=.7.(5分)已知无穷等比数列{a n}的各项和为4,则首项a1的取值范围是.8.(5分)设函数f(x)=sinωx(0<ω<2),将f(x)图象向左平移单位后所得函数图象的对称轴与原函数图象的对称轴重合,则ω=.9.(5分)2018首届进博会在上海召开,现要从5男4女共9名志愿者中选派3名志愿者服务轨交2号线徐泾东站的一个出入口,其中至少要求一名为男性,则不同的选派方案共有种.10.(5分)设等差数列{a n}满足a1=1,a n>0,其前n顶和为S n,若数列{}也为等差数列,则=.11.(5分)已函数f(x)+2=,当x∈(0,1]时,f(x)=x2,若在区间(﹣1,1]内,g(x)=f(x)﹣t(x+1)有两个不同的零点,则实数t的取值范围是.12.(5分)已知平面向量、、满足||=1,||=||=2,且=0,则当0≤λ≤1时,|﹣λ﹣(1﹣λ)|的取值范围是.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则律得零分。
2019年上海市杨浦区高考数学一模试卷(含解析版)
2019年上海市杨浦区高考数学一模试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)设全集U={1,2,3,4,5},若集合A={3,4,5},则∁U A=.2.(4分)已知扇形的半径为6,圆心角为,则扇形的面积为.3.(4分)已知双曲线x2﹣y2=1,则其两条渐近线的夹角为.4.(4分)若(a+b)n展开式的二项式系数之和为8,则n=.5.(4分)若实数x,y满足x2+y2=1,则xy的取值范围是.6.(4分)若圆锥的母线长l=5(cm),高h=4(cm),则这个圆锥的体积等于.7.(5分)在无穷等比数列{a n}中,(a1+a2+……+a n)=,则a1的取值范围是.8.(5分)若函数f(x)=ln的定义域为集合A,集合B=(a,a+1),且B⊆A,则实数a的取值范围为.9.(5分)行列式中,第3行第2列的元素的代数余子式记作f(x),则y=1+f(x)的零点是.10.(5分)已知复数z1=cos x+2f(x)i,z2=(sin x+cos x)+i(x∈R,i为虚数单位).在复平面上,设复数z1,z2对应的点分别为Z1,Z2,若∠Z1OZ2=90°,其中O是坐标原点,则函数f(x)的最小正周期.11.(5分)当0<x<a时,不等式+≥2恒成立,则实数a的最大值为.12.(5分)设d为等差数列{a n}的公差,数列{b n}的前n项和T n,满足T n+=(﹣1)n b n (n∈N*),且d=a5=b2,若实数m∈P k={x|a k﹣2<x<a k+3}(k∈N*,k≥3),则称m具有性质P k.若H n是数列{T n}的前n项和,对任意的n∈N*,H2n﹣1都具有性质P k,则所有满足条件的k的值为.二、选择题(本题共有4题,满分20分)13.(5分)下列函数中既是奇函数,又在区间[﹣1,1]上单调递减的是()A.f(x)=arcsin x B.y=lg|x|C.f(x)=﹣x D.f(x)=cos x14.(5分)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加象棋比赛,则选出的2人中恰有1人是女队员的概率为()A.B.C.D.15.(5分)已知f(x)=log sinθx,θ∈(0,),设a=f(),b=f(),c=f(),则a,b,c的大小关系是()A.a≤c≤b B.b≤c≤a C.c≤b≤a D.a≤b≤c16.(5分)已知函数f(x)=m•2x+x2+nx,记集合A={x|f(x)=0,x∈R},集合B={x|f[f (x)]=0,x∈R},若A=B,且都不是空集,则m+n的取值范围是()A.[0,4)B.[﹣1,4)C.[﹣3,5]D.[0,7)三、解答题(本大题共有5题,满分76分)17.(14分)如图,P A⊥平面ABCD,四边形ABCD为矩形,P A=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣P AD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.18.(14分)在△ABC中,角A,B,C所对的边分别为a,b,c,且cos B=.(1)若sin A=,求cos C;(2)已知b=4,证明≥﹣5.19.(14分)上海某工厂以x千克小时的速度匀速生产某种产品,每一小时可获得的利润是(5x+1﹣)元,其中1≤x≤10.(1)要使生产该产品2小时获得的利润不低于30元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.20.(16分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B,满足P A,PB的中点均在抛物线C上(1)求抛物线C的焦点到准线的距离;(2)设AB中点为M,且P(x P,y P),M(x M,y M),证明:y P=y M;(3)若P是曲线x2+=1(x<0)上的动点,求△P AB面积的最小值.21.(18分)记无穷数列{a n}的前n项中最大值为M n,最小值为m n,令,其中n∈N*.(1)若a n=2n+cos,请写出b3的值;(2)求证:“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件;(3)若对任意n,有|a n|<2018,且|b n|=1,请问:是否存在K∈N*,使得对于任意不小于K的正整数n,有b n+1=b n成立?请说明理由.2019年上海市杨浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)设全集U={1,2,3,4,5},若集合A={3,4,5},则∁U A={1,2}.【考点】1F:补集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用补集定义直接求解.【解答】解:∵全集U={1,2,3,4,5},集合A={3,4,5},∴∁U A={1,2}.故答案为:{1,2}.【点评】本题考查补集的求法,是基础题,解题时要认真审题,注意补集定义的合理运用.2.(4分)已知扇形的半径为6,圆心角为,则扇形的面积为6π.【考点】G8:扇形面积公式.【专题】11:计算题;31:数形结合;44:数形结合法;56:三角函数的求值.【分析】先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积.【解答】解:根据扇形的弧长公式可得l=αr=×6=2π,根据扇形的面积公式可得S=lr=•2π•6=6π.故答案为:6π.【点评】本题考查扇形的弧长与面积公式,正确运用公式是解题的关键,属于基础题.3.(4分)已知双曲线x2﹣y2=1,则其两条渐近线的夹角为900.【考点】KC:双曲线的性质.【专题】35:转化思想;4O:定义法;5D:圆锥曲线的定义、性质与方程.【分析】由双曲线方程,求得其渐近线方程,求得直线的夹角,即可求得两条渐近线夹角.【解答】解:双曲线x2﹣y2=11的两条渐近线的方程为:y=±x,所对应的直线的倾斜角分别为90°,∴双曲线x2﹣y2=1的两条渐近线的夹角为90°,故答案为:90°.【点评】本题考查双曲线的几何性质,考查直线的倾斜角的应用,属于基础题.4.(4分)若(a+b)n展开式的二项式系数之和为8,则n=3.【考点】DA:二项式定理.【专题】35:转化思想;49:综合法;5P:二项式定理.【分析】由题意利用二项式系数的性质,求得n的值.【解答】解:(a+b)n展开式的二项式系数之和为2n=8,则n=3,故答案为:3.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.5.(4分)若实数x,y满足x2+y2=1,则xy的取值范围是[﹣,].【考点】7F:基本不等式及其应用.【专题】11:计算题;57:三角函数的图象与性质.【分析】三角换元后,利用二倍角正弦公式和正弦函数的值域可得.【解答】因为x2+y2=1,所以可设x=cosθ,y=sinθ,则xy=cosθsinθ=sin2θ∈[﹣,]故答案为[﹣,]【点评】本题考查了三角换元以及正弦函数的值域.属基础题.6.(4分)若圆锥的母线长l=5(cm),高h=4(cm),则这个圆锥的体积等于12πcm3.【考点】L5:旋转体(圆柱、圆锥、圆台).【专题】11:计算题.【分析】利用勾股定理可得圆锥的底面半径,那么圆锥的体积=×π×底面半径2×高,把相应数值代入即可求解.【解答】解:∵圆锥的高是4cm,母线长是5cm,∴圆锥的底面半径为3cm,∴圆锥的体积=×π×32×4=12πcm3.故答案为:12πcm3.【点评】本题考查圆锥侧面积的求法.注意圆锥的高,母线长,底面半径组成直角三角形.7.(5分)在无穷等比数列{a n}中,(a1+a2+……+a n)=,则a1的取值范围是.【考点】8J:数列的极限.【专题】11:计算题;54:等差数列与等比数列.【分析】无穷等比数列{a n}中,,推出0<|q|<1,然后求出首项a1的取值范围.【解答】解:因为无穷等比数列{a n}中,,所以|q|<1,=,所以,∵﹣1<q<1且q≠0∴0<a1<1且a1≠故答案为:.【点评】本题考查无穷等比数列的极限存在条件的应用,解题时要注意极限逆运算的合理运用.8.(5分)若函数f(x)=ln的定义域为集合A,集合B=(a,a+1),且B⊆A,则实数a的取值范围为[﹣1,0].【考点】1C:集合关系中的参数取值问题.【专题】36:整体思想;4O:定义法;5J:集合.【分析】先化简集合A,由B⊆A,得,得﹣1≤a≤0.【解答】解:∵>0,∴(x+1)(x﹣1)<0,∴﹣1<x<1,∴A=(﹣1,1);∵B⊆A,∴,∴﹣1≤a≤0,∴实数a的取值范围为[﹣1,0].故答案为[﹣1,0].【点评】本题考查的知识点是集合的包含关系判断及应用,集合关系中的参数问题,难度中档.9.(5分)行列式中,第3行第2列的元素的代数余子式记作f(x),则y=1+f(x)的零点是﹣1.【考点】OY:三阶矩阵.【专题】33:函数思想;4O:定义法;51:函数的性质及应用.【分析】将行列式按第3行第2列展开,由f(x)=A32=﹣=﹣(4×2x﹣4×4x)=﹣2x+2(1﹣2x),令y=1+f(x)=1﹣2x+2(1﹣2x)=0,解得:x=﹣1,即可求得y =1+f(x)的零点.【解答】解:第3行第2列的元素的代数余子式A32=﹣=﹣4×2x+4×4x=﹣2x+2(1﹣2x),∴f(x)=﹣2x+2(1﹣2x),y=1+f(x)=1﹣2x+2(1﹣2x),令y=0,即2x+2(1﹣2x)=1,解得:2x=,x=﹣1故答案为:﹣1.【点评】本题考查三阶行列式的余子式的定义,考查函数的零点的定义,属于中档题.10.(5分)已知复数z1=cos x+2f(x)i,z2=(sin x+cos x)+i(x∈R,i为虚数单位).在复平面上,设复数z1,z2对应的点分别为Z1,Z2,若∠Z1OZ2=90°,其中O是坐标原点,则函数f(x)的最小正周期π.【考点】A4:复数的代数表示法及其几何意义;A5:复数的运算.【专题】38:对应思想;4R:转化法;57:三角函数的图象与性质;5N:数系的扩充和复数.【分析】由已知求得Z1,Z2的坐标,结合∠Z1OZ2=90°可得f(x)的解析式,降幂后利用辅助角公式化积,再由周期公式求周期.【解答】解:由题意,Z1(cos x,2f(x)),,∴∠Z1OZ2=90°,∴,即2f(x)=﹣,∴f(x)=.则函数f(x)的最小正周期为π.故答案为:π.【点评】本题考查复数的代数表示法及其几何意义,考查三角函数周期的求法,是基础的计算题.11.(5分)当0<x<a时,不等式+≥2恒成立,则实数a的最大值为2.【考点】3R:函数恒成立问题.【专题】11:计算题;35:转化思想.【分析】想法求出左边式子的最小值,首先把分式形式乘以a2,变形为2+[+]+[+],利用均值不等式得出式子的最小值.【解答】解:∵(+)a2=(+)[x+(a﹣x)]2=(+)[x2+2x(a﹣x)+(a﹣x)2]=2+[+]+[+]≥2+4+2=8∴+≥∴≥2'∴0<a≤2.【点评】考查了对式子的配凑变形,均值定理的应用,思路不太好想,有一定难度.12.(5分)设d为等差数列{a n}的公差,数列{b n}的前n项和T n,满足T n+=(﹣1)n b n (n∈N*),且d=a5=b2,若实数m∈P k={x|a k﹣2<x<a k+3}(k∈N*,k≥3),则称m具有性质P k.若H n是数列{T n}的前n项和,对任意的n∈N*,H2n﹣1都具有性质P k,则所有满足条件的k的值为3,4.【考点】8E:数列的求和.【专题】15:综合题;38:对应思想;4R:转化法;54:等差数列与等比数列.【分析】求得n=1,2,3,4,5时,数列{b n}的前5项,即可求出通项公式,再求得d 和首项a1,得到等差数列{a n}的通项公式,求得n=1,2,3,4,H2n﹣1的特点,结合k =3,4,5,6,集合的特点,即可得到所求取值.【解答】解:T n+=(﹣1)n b n(n∈N*),可得n=1时,T1+=﹣b1=﹣T1,解得b1=﹣,T2+=b2=﹣+b2+=b2,T3+=﹣b3=﹣+b2+b3+,即b2+2b3=,T4+=b4=﹣+b2+b3+b4+,即b2+b3=,解得b2=,b3=﹣,同理可得b4=,b5=﹣,…,b2n﹣1=﹣,d=a5=b2,可得d=a1+4d=,解得a1=﹣,d=,a n=,设H n是数列{T n}的前n项和,若对任意的n∈N*,H2n﹣1都具有性质P k,由于H1=T1=b1=﹣,H3=T1+T2+T3=﹣,H5=T1+T2+T3+T4+T5=﹣,H7=﹣+0﹣=﹣,…,H2n﹣1=H2n﹣3+b2n﹣1,(n≥2),当k=3时,P3={x|a1<x<a6}={x|﹣<x<},当k=4时,P4={x|a2<x<a7}={x|﹣<x<},当k=5时,P5={x|a3<x<a8}={x|﹣<x<1},当k=6时,P3={x|a4<x<a9}={x|0<x<},显然k=5,6不成立,故所有满足条件的k的值为3,4.答案为:3,4【点评】本题考查新定义的理解和运用,考查等差数列的通项公式的求法,集合的性质和数列的单调性的判断和应用,考查化简整理的运算能力,属于难题.二、选择题(本题共有4题,满分20分)13.(5分)下列函数中既是奇函数,又在区间[﹣1,1]上单调递减的是()A.f(x)=arcsin x B.y=lg|x|C.f(x)=﹣x D.f(x)=cos x【考点】3E:函数单调性的性质与判断;3K:函数奇偶性的性质与判断.【专题】11:计算题;33:函数思想;49:综合法;51:函数的性质及应用.【分析】可看出f(x)=arcsin x在[﹣1,1]上单调递增,y=lg|x|和f(x)=cos x都是偶函数,从而判断A,B,D都错误,只能选C.【解答】A.f(x)=arcsin x在区间[﹣1,1]上单调递增;∴该选项错误;B.y=lg|x|为偶函数,∴该选项错误;C.f(x)=﹣x是奇函数,且在[﹣1,1]上单调递减;∴该选项正确;D.f(x)=cos x是偶函数,∴该选项错误.故选:C.【点评】考查反正弦函数和一次函数的单调性,以及奇函数和偶函数的定义.14.(5分)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加象棋比赛,则选出的2人中恰有1人是女队员的概率为()A.B.C.D.【考点】CC:列举法计算基本事件数及事件发生的概率.【专题】15:综合题;34:方程思想;4G:演绎法;5I:概率与统计.【分析】确定基本事件的个数,即可求出概率.【解答】解:随机选派2人参加象棋比赛,有=10种,选出的2人中恰有1人是女队员,有=6种,∴所求概率为=,故选:B.【点评】本题考查古典概型,考查概率的计算,确定基本事件的个数是关键.15.(5分)已知f(x)=log sinθx,θ∈(0,),设a=f(),b=f(),c=f(),则a,b,c的大小关系是()A.a≤c≤b B.b≤c≤a C.c≤b≤a D.a≤b≤c【考点】3G:复合函数的单调性.【专题】35:转化思想;49:综合法;51:函数的性质及应用.【分析】先判断f(x)在(0,+∞)上是减函数,再比较,,的大小关系,从而得到a,b,c的大小关系.【解答】解:∵f(x)=log sinθx,θ∈(0,),∴sinθ∈(0,1),故f(x)在(0,+∞)上为减函数.∵a=f(),b=f(),c=f(),∵≥>0,∴a=f()≤b=f (),a≤b.又≤=,即)≥,∴b=f()≤c=f(),即b≤c.综上,a≤b≤c,故选:D.【点评】本题主要考查复合函数的单调性,基本不等式的应用,比较两个数大小的方法,属于中档题.16.(5分)已知函数f(x)=m•2x+x2+nx,记集合A={x|f(x)=0,x∈R},集合B={x|f[f (x)]=0,x∈R},若A=B,且都不是空集,则m+n的取值范围是()A.[0,4)B.[﹣1,4)C.[﹣3,5]D.[0,7)【考点】19:集合的相等.【专题】32:分类讨论;35:转化思想;5J:集合.【分析】由{x|f(x)=0}={x|f(f(x))=0}可得f(0)=0,从而求得m=0;从而化简f(f(x))=(x2+nx)(x2+nx+n)=0,从而讨论求得【解答】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},∴f(x1)=f(f(x1))=0,∴f(0)=0,即f(0)=m=0,故m=0;故f(x)=x2+nx,f(f(x))=(x2+nx)(x2+nx+n)=0,当n=0时,成立;当n≠0时,0,﹣n不是x2+nx+n=0的根,故△=n2﹣4n<0,解得:0<n<4;综上所述,0≤n+m<4;故选:A.【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题三、解答题(本大题共有5题,满分76分)17.(14分)如图,P A⊥平面ABCD,四边形ABCD为矩形,P A=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣P AD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.【考点】LF:棱柱、棱锥、棱台的体积;LO:空间中直线与直线之间的位置关系.【专题】15:综合题;35:转化思想;49:综合法;5F:空间位置关系与距离.【分析】(1)转换底面,代入体积公式计算;(2)利用线线垂直证明AF⊥平面PBC,即可得出结论.【解答】(1)解:∵P A⊥平面ABCD,且四边形ABCD为矩形.∴,…(3分)∴…(6分)(2)证明:∵P A⊥平面ABCD,∴P A⊥AB,又∵P A=AB=1,且点F是PB的中点,∴AF⊥PB…(8分)又P A⊥BC,BC⊥AB,P A∩AB=A,∴BC⊥平面P AB,又AF⊂平面P AB,∴BC⊥AF…(10分)由AF⊥平面PBC,又∵PE⊂平面PBC∴无论点E在边BC的何处,都有AF⊥PE成立.…(12分)【点评】本题给出特殊的四棱锥,考查了线面垂直的证明与性质的运用,考查了学生的空间想象能力与推理论证能力,关键是要熟练掌握定理的条件.18.(14分)在△ABC中,角A,B,C所对的边分别为a,b,c,且cos B=.(1)若sin A=,求cos C;(2)已知b=4,证明≥﹣5.【考点】9O:平面向量数量积的性质及其运算;HR:余弦定理.【专题】15:综合题;35:转化思想;58:解三角形;5A:平面向量及应用.【分析】(1)利用同角三角函数基本关系式可求sin B,由sin B>sin A,可得A为锐角,可求cos A,根据三角形内角和定理,诱导公式,两角和的余弦函数公式即可计算得解cos C 的值.(2)由余弦定理,基本不等式可求得ac≤13,根据平面向量数量积的运算,诱导公式即可计算得解.【解答】解:(1)∵cos B=,可得:sin B==,∵sin B=>sin A=,∴B>A,可得A为锐角,∴cos A==,∴cos C=﹣cos(A+B)=sin A sin B﹣cos A cos B=.(2)证明:∵由余弦定理b2=a2+c2﹣2ac cos B,可得:a2+c2﹣ac=16,∵a2+c2≥2ac,∴解得:ac≤13,当且仅当a=c时等号成立,∴=ac cos(π﹣B)=﹣ac cos B=﹣ac≥﹣5.得证.【点评】本题主要考查了同角三角函数基本关系式,三角形内角和定理,两角和的余弦函数公式,余弦定理,基本不等式,平面向量数量积的运算,诱导公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.(14分)上海某工厂以x千克小时的速度匀速生产某种产品,每一小时可获得的利润是(5x+1﹣)元,其中1≤x≤10.(1)要使生产该产品2小时获得的利润不低于30元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.【考点】5A:函数最值的应用;5C:根据实际问题选择函数类型.【专题】34:方程思想;53:导数的综合应用;59:不等式的解法及应用.【分析】(1)由题意可得:2(5x+1﹣)≥30,1≤x≤10.解出即可得出.(2)要使生产900千克该产品获得的利润最大,设该厂应选取生产速度为,≤10,可得t∈[90,900].可得获得利润f(t)=5×+1﹣=﹣+1,t>0.利用反比例函数的单调性即可得出.【解答】解:(1)由题意可得:2(5x+1﹣)≥30,1≤x≤10.解得:3≤x≤10,因此要使生产该产品2小时获得的利润不低于30元,x的取值范围为[3,10].(2)要使生产900千克该产品获得的利润最大,设该厂应选取生产速度为,≤10,可得t∈[90,900].则获得利润f(t)=5×+1﹣=﹣+1,t>0.由反比例函数的单调性可得:f(t)在t∈[90,900]单调递减.∴t=90时,即该厂应选取10千克小时的速度匀速生产,可使生产900千克该产品获得的利润最大,其最大利润为900f(10)=45630元.故该厂应选取10千克小时的速度匀速生产,可使生产900千克该产品获得的利润最大,其最大利润为900f(10)=45630元.【点评】本题考查了不等式的解法、利用导数研究函数的单调性极值与最值,考查了数形结合方法、推理能力与计算能力,属于中档题.20.(16分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B,满足P A,PB的中点均在抛物线C上(1)求抛物线C的焦点到准线的距离;(2)设AB中点为M,且P(x P,y P),M(x M,y M),证明:y P=y M;(3)若P是曲线x2+=1(x<0)上的动点,求△P AB面积的最小值.【考点】KN:直线与抛物线的综合.【专题】34:方程思想;4I:配方法;4J:换元法;5D:圆锥曲线的定义、性质与方程.【分析】(1)由抛物线方程求得p,则答案可求;(2)P(x P,y P),设A(,y1),B(,y2),运用中点坐标公式可得M的坐标,再由中点坐标公式和点在抛物线上,代入化简整理可得y1,y2为关于y的方程y2﹣2y P y+8x P﹣=0的两根,由根与系数的关系即可得到结论;(3)由题意可得,﹣1≤x P<0,﹣2<y P<2,可得△P AB面积为S=|PM|•|y1﹣y2|,再由配方和换元法结合函数单调性求最值.【解答】(1)解:由抛物线C:y2=4x,得2p=4,则p=2,∴抛物线C的焦点到准线的距离为2;(2)证明:P(x P,y P),设A(,y1),B(,y2),AB中点为M的坐标为M(x M,y M),则M(,),抛物线C:y2=4x上存在不同的两点A,B满足P A,PB的中点均在C上,可得,,化简可得y1,y2为关于y的方程y2﹣2y P y+8x P﹣=0的两根,可得y1+y2=2y P,y1y2=8,可得;(3)解:若P是曲线x2+=1(x<0)上的动点,可得,﹣1≤x P<0,﹣2<y P<2,由(2)可得y1+y2=2y P,y1y2=8,由PM垂直于y轴,可得△P AB面积为S=|PM|•|y1﹣y2|=()•=[﹣]•=(),令t===,得时,t取得最大值.x P=﹣1时,t取得最小值2,即2≤t≤,则S=在2≤t≤递增,可得S∈[6,],∴△P AB面积的最小值为6.【点评】本题考查抛物线的方程和运用,考查转化思想和运算能力,训练了利用换元法及函数的单调性求最值,属于难题.21.(18分)记无穷数列{a n}的前n项中最大值为M n,最小值为m n,令,其中n∈N*.(1)若a n=2n+cos,请写出b3的值;(2)求证:“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件;(3)若对任意n,有|a n|<2018,且|b n|=1,请问:是否存在K∈N*,使得对于任意不小于K的正整数n,有b n+1=b n成立?请说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】34:方程思想;54:等差数列与等比数列;59:不等式的解法及应用.【分析】(1)a n=2n+cos,可得a1=2,a2=3,a3=8,M3,m3.即可得出b3.(2)充分性:若“数列{a n}是等差数列”,设其公差为d,可得b n=,b n+1=.b n+1﹣b n=常数,即可证明“数列{b n}是等差数列”.必要性:若“数列{b n}是等差数列”,设其公差为d′,b n+1﹣b n=﹣=+=d′,根据定义,M n+1≥M n,m n+1≤m n,至少有一个取等号,当d′>0时,M n+1>M n,a n+1=M n+1>M n≥a n,即数列{a n}为增数列,则M n=a n,m n =a1,进而得出.同理可得d′<0时,“数列{a n}是等差数列”;当d′=0时,M n+1=M n,且m n+1=m n,故{a n}为常数列,是等差数列.(3)假设结论不成立,即对任意K∈N*,存在n>K,使b n+1≠b n.由|b n|=1,b n=1或﹣1,对∀K∈N*,一定存在i>K,使得b i,b i+1符号相反.在数列{b n}中存在,,…,,,…,其中k1<k2<k3<…<k i<….﹣1===…==,1===…===…,=﹣1,=1.=﹣1,=1,由于≥与≤中只有一个等号成立,必有>,=.可得=+4.==+4.k i>k i﹣1,k i≥k i﹣1+1,≥+1,≥+4,﹣≥4.利用累加求和方法即可得出.【解答】解:(1)∵a n=2n+cos,∴a1=2,a2=3,a3=8,∴M3=8,m3=2.∴b3==5.(2)证明:充分性:若“数列{a n}是等差数列”,设其公差为d,则b n=,b n+1=.∴b n+1﹣b n=,故“数列{b n}是等差数列”必要性:若“数列{b n}是等差数列”,设其公差为d′则b n+1﹣b n=﹣=+=d′根据定义,M n+1≥M n,m n+1≤m n,至少有一个取等号,当d′>0时,M n+1>M n,a n+1=M n+1>M n≥a n,即数列{a n}为增数列,则M n=a n,m n=a1,则b n+1﹣b n=﹣==d′,即a n+1﹣a n=2d′,即“数列{a n}是等差数列”,同理可得d′<0时,“数列{a n}是等差数列”;当d′=0时,M n+1=M n,且m n+1=m n,故{a n}为常数列,是等差数列.综上可得:“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件;(3)假设结论不成立,即对任意K∈N*,存在n>K,使b n+1≠b n.∵|b n|=1,∴b n=1或﹣1,∴对∀K∈N*,一定存在i>K,使得b i,b i+1符号相反∴在数列{b n}中存在,,…,,,…,其中k1<k2<k3<…<k i<…且﹣1===…==,1===…===…∵=﹣1,=1即=﹣1,=1,由于≥与≤中只有一个等号成立,∴必有>,=.可得=+4.∴==+4.∵k i>k i﹣1∴k i≥k i﹣1+1∴≥+1∴≥+4∴﹣≥4.利用累加求和方法可得:≥+4(m﹣1),∴≥+4×(1010﹣1)>﹣2018+4036=2018.这与|a n|<2018矛盾,故假设错误,∴存在K∈N*,使∀n≥K,有b n+1=b n.【点评】本题考查了数列递推关系、等差数列的通项公式与单调性、累加求和方法、不等式的解法、充要条件,考查了推理能力与计算能力,属于难题.。
普通高等学校招生全国统一考试理科数学模拟考试参考答案
则 x=|OB|sin30°=4 ,y=|OB|cos30°=12...........2 分
∵B(4 ,12)在 x2=2py(p>0)上,
∴
∴p=2,∴抛物线 E 的方程为 x2=4y;...........4 分
【方法不唯一,只要抛物线方程与答案正确均给 4 分】
P 0.646
0.318
0.036
.............6 分
1
(II)对方案 1 来说,花费 5000 元;.............7 分 对 方 案 2 来 说 ,建 围 墙 需 花 费 2000 元 ,它 只 能 抵 御 一 条 河 流 的 洪 水,但当两河流都发生洪水时,损失约 54000 元,而两河流同时 发生洪水的概率为 P=0.036. 所 以 , 该 方 案 中 可 能 的 花 费 为 : 2000+54000×0.036=3944 (元)..........9 分 对于方案 3 来说,损失费的数学期望为: Eξ=10000×0.318+50000×0.036=4980(元),.............11 分 比较可知,方案 2 最好、方案 3 次之,方案 1 最差............12 分 【在计算花费时没写单位,在最终得分基础上减去 1 分】
射线
3
与
C1
的交点
A
的极径为Biblioteka 14sin 3,
射线
3
与
C2
的交点
B
的极径为
2
8sin
3
.
所以 | AB || 2 1 | 2 3 .………………10 分
23.解:(1)当 a 1 时, f (x) 3x 2 可化为 | x 1| 2 ,由此可得 x 3 或 x 1 . 故不等式 f (x) 3x 2 的解集为 {x | x 1 或 x 3} . (2)由 f (x) 0 得 | x a | 3x 0 ,
2019年普通高等学校招生第一次统一模拟考试 理科数学 参考答案
解: ( Ⅰ ) 由题意知 B 0, b , F2 1,0 ,设 D x, y 则 BF2 1,b , F2 D x 1, y ∵ BF2 2 F2 D ,
3 x 2 1 2 x 1 ,即 b b 2y y 2
*
( n 2 ),其 中 S n 为 {a n } 的
1 , {bn } 的 前 n 项 和 (1 + log 4 an )(3 + log 4 an )
为 Tn , 且 对 任 意 的 正 整 数 n 都 有 Tn m , 求 m 的 最 小 值 . 解: ( Ⅰ ) ∵ an = 3S n -1 + 1 , n 2 , ∴ an+1 = 3S n + 1 两式相减得 an+1 - an = 3an , n 2 ∴
(Ⅱ) 由柱状图知,流失的教师数不大于 18 的频率为 0.46;流失的教师数不大于 19 的频率为 0.7,所以 n 的 最 小 值 为 19. (Ⅲ)若每所乡村中学在今年都招聘 19 名教师,则未来四年内这 100 所乡村中学中有 70 所在招聘教师上费用为 38 万元,20 所的费用为 43 万元,10 所的费用为 48 万元,因此这 100 所乡村中学未来四年内在招聘教师上所需费用的平均数为 :
高三理科数学答案 第
6 页
(共 8 页)
取 x = 2,得 n =(2,0,﹣1) , 由 DF =(﹣1,
,4) .
设平面 DEF 的法向量为 m =(a,b,c) ,
ì ï m × DE = a + 3b + 2c = 0 , ï 则í ï ï ï îm × DF = -a + 3b + 4c = 0
上海市普陀区2019届高考数学一模试题卷及答案解析
上海市普陀区2019届高考数学一模试题卷一、填空题(本大题共12小题,共60.0分)1.函数f(x)=1−x+2x的定义城为______.2.若sinα=13,则cos(π2+α)=______.3.设α∈{13,12,−1,−2,3},若f(x)=xα为偶函数,则α=______.4.若直线l经过抛物线C:y2=4x的焦点且其一个方向向量为d=(1,1),则直线l的方程为______.5.若一个球的体积是其半径的43倍,则该球的表面积为______.6.在一个袋中装有大小、质地均相同的9只球,其中红色、黑色、白色各3只,若从袋中随机取出两个球,则至少有一个红球的概率为______.(结果用最简分数表示)7.设(x−1)(x+1)5=a0+a1x+a2x2+a3x3+…+a6x6,则a3=______(结果用数值表示)8.设a>0且a≠1,若log a(sinx−cosx)=0,则sin8x+cos8x=______.9.如图,正四棱柱ABCD−A1B1C1D1的底面边长为4,记A1C1∩B1D1=F,BC1∩B1C=E,若AE⊥BF,则此棱柱的体积为______.10.某人的月工资由基础工资和绩效工资组成2010年每月的基础工资为2100元、绩效工资为2000元从2011年起每月基础工资比上一年增加210元、绩效工资为上一年的110%.照此推算,此人2019年的年薪为______万元(结果精确到0.1) 11.已知点A(−2,0),设B、C是圆O:x2+y2=1上的两个不同的动点,且向量OB= tOA+(1−t)OC(其中t为实数),则AB⋅AC=______.12.设a为常数记函数f(x)=12+log a xa−x(a>0且a≠1,0<x<a)的反函数为f−1(x),则f−1(12a+1)+f−1(22a+1)+f−1(32a+1)+……+f−1(2a2a+1)=______.二、选择题(本大题共4小题,共20.0分)13.下列关于双曲线Γ:x26−y23=1的判断,正确的是()A.渐近线方程为x±2y=0B.焦点坐标为(±3,0)C.实轴长为12D.顶点坐标为(±6,0)14.函数y=2cos(2x+π4)的图象()A.关于原点对称B.关于点(−3π8,0)C.关于y轴对称 D.关于直线x=π4轴对称15.若a、b、c表示直线,α、β表示平面,则“a//b”成立的一个充分非必要条件是()A.a⊥b,b⊥cB.a//α,b//αC.a⊥β,b⊥βD.a//c,b⊥c16.设f(x)是定义在R上的周期为4的函数,且f(x)=2log2x,1<x<4sin2πx,0≤x≤1,记g(x)=f(x)−a,若0<a≤12则函数g(x)在区间[−4,5]上零点的个数是()A.5B.6C.7D.8三、解答题(本大题共5小题,共70.0分)17.在△ABC中,三个内角A,B,C所对的边依次为a,b,c,且cosC=14.(1)求2cos2A+B2+2sin2C的值;(2)设c=2,求a+b的取值范围.18.已知曲线Γ:x216+y212=1的左、右顶点分别为A,B,设P是曲线Γ上的任意一点.(1)当P异于A,B时,记直线PA,PB的斜率分别为k1,k2,求证:k1⋅k2是定值;(2)设点C满足AC=λCB(λ>0),且|PC|的最大值为7,求λ的值.19.如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有一端所在的直线竖直向上,并记组成该“钉”的四条线段的公共点为O,钉尖为A i(i=1,2,3,4).(1)设OA1=a(a>0),当A1,A2,A3在同一水平面内时,求OA1与平面A1A2A3所成角的大小(结果用反三角函数值表示).(2)若该“钉”的三个钉尖所确定的三角形的面积为32cm2,要用某种线型材料复制100枚这种“钉”(损耗忽略不计),共需要该种材料多少米?20.设数列{a n}满足a1=35,a n+1=3a n an+2(n∈N∗).(1)求a2,a3的值;(2)求证:{1a n −1}是等比数列,并求n→∞lim(1a1+1a2+…+1a n−n)的值;(3)记{a n}的前n项和为S n,是否存在正整数k,使得对于任意的n(n∈N∗且n≥2)均有S n≥k成立?若存在,求出k的值:若不存在,说明理由.21.已知函数f(x)=2x(x∈R),记g(x)=f(x)−f(−x).(1)解不等式:f(2x)−f(x)≤6;(2)设k为实数,若存在实数x0∈(1,2],使得g(2x0)=k⋅g2(x0)−1成立,求k的取值范围;(3)记h(x)=f(2x+2)+a⋅f(x)+b(其中a,b均为实数),若对于任意的x∈[0,1],均有|h(k)|≤12,求a,b的值.上海市普陀区2019届高考数学一模试卷及解析一、填空题(本大题共12小题,共60.0分)1.函数f(x)=1−x+2x的定义城为______.【答案】(−∞,0)∪(0,1]【解析】解:由x≠01−x≥0解得:x≤1且x≠0,故答案为:(−∞,0)∪(0,1]根据偶次根式中被开方非负,分母不为0列式解得.本题考查了函数的定义域及其求法.属基础题.2.若sinα=13,则cos(π2+α)=______.【答案】−13【解析】解:∵sinα=1,∴cos(π+α)=−sinα=−1.故答案为:−1.由已知直接利用三角函数的诱导公式化简求值.本题考查三角函数的化简求值,考查诱导公式的应用,是基础题.3.设α∈{1,1,−1,−2,3},若f(x)=xα为偶函数,则α=______.【答案】−2【解析】解:f(x)=x−2是偶函数;∴α=−2.故答案为:−2.可以看出,只有α=−2时,f(x)为偶函数,从而得出α=−2.考查偶函数的定义,偶函数图象的特点.4.若直线l经过抛物线C:y2=4x的焦点且其一个方向向量为d=(1,1),则直线l的方程为______.【答案】x−y−1=0【解析】解:抛物线y2=4x的焦点为(1,0),方向向量为d=(1,1)的直线l的斜率为1,故直线l的方程是y−0=1⋅(x−1),即y=x−1,故答案为:x−y−1=0.求出抛物线y2=4x的焦点,求出直线l的斜率,用点斜式求直线方程,并化为一般式.本题考查用点斜式求直线方程的方乘,抛物线的简单性质,确定斜率是解题的关键.5.若一个球的体积是其半径的43倍,则该球的表面积为______.【解析】解:设球的半径为R,则43πR3=43R,∴πR2=1,球的表面积为:4πR2=4,故答案为:4.设球的半径为R,根据题意列方程可得.本题考查了球的体积和表面积,属中档题.6.在一个袋中装有大小、质地均相同的9只球,其中红色、黑色、白色各3只,若从袋中随机取出两个球,则至少有一个红球的概率为______.(结果用最简分数表示)【答案】712【解析】解:在一个袋中装有大小、质地均相同的9只球,其中红色、黑色、白色各3只,从袋中随机取出两个球,基本事件总数n=C92=36,至少有一个红球的对立事件是没有红球,∴至少有一个红球的概率为P=1−C6236=712.故答案为:712.从袋中随机取出两个球,基本事件总数n=C92=36,至少有一个红球的对立事件是没有红球,由此能求出至少有一个红球的概率.本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,是基础题.7.设(x−1)(x+1)5=a0+a1x+a2x2+a3x3+…+a6x6,则a3=______(结果用数值表示)【答案】0【解析】解:∵(x−1)(x+1)5=(x−1)(x5+5x4+10x3+10x2+5x+1)=a0+a1x+a2x2+ a3x3+…+a6x6,则a3=10−10=0,故答案为:0.把(x+1)5按照二项式定理展开,可得a3的值.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.8.设a>0且a≠1,若log a(sinx−cosx)=0,则sin8x+cos8x=______.【答案】1【解析】解:设a>0且a≠1,若log a(sinx−cosx)=0,所以:sinx−cosx=a0=1,所以:sinx⋅cosx=0,则:sinx−cosx=1,则:sin8x+cos8x=(sin4x−cos4x)2+2sin4x⋅cos4x,=[(sin2x+cos2x)(sin2x−cos2x)]2+2sin4x⋅cos4x,=[(sinx+cosx)(sinx−cosx)]2−0,=1,故答案为:1.直接利用三角函数关系式的恒等变变换和对数的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变变换的应用,主要考查学生的运算能力和转化能力,属于基础题型.9.如图,正四棱柱ABCD−A1B1C1D1的底面边长为4,记A1C1∩B1D1=F,BC1∩B1C=E,若AE⊥BF,则此棱柱的体积为______.【答案】322【解析】解:建立如图所示空间直角坐标系,设DD1=h,又AB=BC=4,),B(4,4,0),F(2,2,h),则A(4,0,0),E(2,4,h2∴AE =(−2,4,h 2),BF =(−2,−2,h),∵AE ⊥BF ,∴4−8+h 22=0,即h =22.∴此棱柱的体积为4×4×22=322.故答案为:322.建立空间直角坐标系,设出直四棱柱的高h ,求出AE,BF 的坐标,由数量积为0求得h ,则棱柱的体积可求.本题考查棱柱体积的求法,考查利用空间向量求解线线垂直问题,是中档题.10.某人的月工资由基础工资和绩效工资组成2010年每月的基础工资为2100元、绩效工资为2000元从2011年起每月基础工资比上一年增加210元、绩效工资为上一年的110%.照此推算,此人2019年的年薪为______万元(结果精确到0.1)【答案】10.4【解析】解:由题意可得,基础工资是以2100元为首项,以210元公差的等差数列,绩效工资以为2000元首项,以公比为1.1的等比数列,则此人2019年每月的基础工资为2100+210(10−1)=3990元,每月的绩效工资为2000×1.19≈4715.90元,则此人2019年的年薪为12(3990+4715.90)≈10.4万元,故答案为:10.4.由题意可得,基础工资是以2100元为首项,以210元公差的等差数列,绩效工资以为2000元首项,以公比为1.1的等比数列,即可求出2019年的每月的工资,即可求出年薪本题考查了等差数列和等比数列在实际生活中的应用,属于中档题.11.已知点A(−2,0),设B 、C 是圆O :x 2+y 2=1上的两个不同的动点,且向量OB =tOA +(1−t)OC(其中t 为实数),则AB ⋅AC =______.【答案】3【解析】解:由向量OB =tOA +(1−t)OC(其中t 为实数),可得:A ,B ,C 三点共线,且AB ,AC 同向,设圆O 与x 轴正半轴交于点E ,由圆的割线定理可得,|AB||AC|=|AO||AE|,∴AB ⋅AC =|AB||AC|cos0=|AB||AC|=|AO||AE|=1×3=3故答案为:3由向量OB =tOA +(1−t)OC(其中t 为实数),可得:A ,B ,C 三点共线,且AB ,AC 同向,设圆O 与x 轴正半轴交于点E ,由割线定理可得,|AB||AC|=|AO||AE|=1×3=3本题考查了向量中三点共线的判断,及圆的割线定理,属中档题12.设a 为常数记函数f(x)=12+log a x a−x (a >0且a ≠1,0<x <a)的反函数为f −1(x),则f −1(12a+1)+f −1(22a+1)+f −1(32a+1)+……+f −1(2a 2a+1)=______.【答案】a 2【解析】解:由f(x)=12+log a x a−x ,得f −1(x)=a x+12a x−12+1,∴f −1(1−x)=a 1−x+12a 1−x−12+1=a 1+a x−12,∴f −1(x)+f −1(1−x)=a x+12a x−12+1+a 1+a x−12=a ,∴原式=a ⋅a =a 2,故答案为:a 2先求出反函数,然后求出f −1(x)+f −1(1−x)=a ,所以等于a 个a .本题考查了反函数,属基础题.二、选择题(本大题共4小题,共20.0分)13.下列关于双曲线Γ:x 26−y 23=1的判断,正确的是()A.渐近线方程为x ±2y =0B.焦点坐标为(±3,0)C.实轴长为12D.顶点坐标为(±6,0)【答案】B【解析】解:关于双曲线Γ:x 26−y 23=1,a 2=6,b 2=3,c 2=9,则渐近线方程为x ±2y =0;焦点为(±3,0);实轴2a =26,顶点坐标为(±6,0).故选:B .关于双曲线Γ:x 26−y 23=1,a 2=6,b 2=3,c 2=9,即可得答案.本题考查双曲线的方程、几何性质,属于基础题.14.函数y =2cos(2x +π4)的图象()A.关于原点对称B.关于点(−3π8,0)C.关于y 轴对称D.关于直线x =π4轴对称【答案】B【解析】解:对于选项:A ,当x =0时y =2,故错误.对于选项C :当x =0时,y =2≠2,故错误.对于选项D :当x =π4时,y =−2≠±2,故错误.故选:B .直接利用余弦函数的性质求出结果.本题考查的知识要点:三角函数关系式的恒等变变换,正弦型函数的性质的应用,主要考查学生的运算能力和转化能力,属于基础题型.15.若a 、b 、c 表示直线,α、β表示平面,则“a//b ”成立的一个充分非必要条件是()A.a ⊥b ,b ⊥cB.a//α,b//αC.a ⊥β,b ⊥βD.a//c ,b ⊥c【答案】C【解析】解:由a 、b 、c 表示直线,α、β表示平面,在A 中,a ⊥b ,b ⊥c ,则a 与b 相交、平行或异面,故A 错误;在B中,a//α,b//α,则a与b相交、平行或异面,故B错误;在C中,a⊥β,b⊥β,则a//b,反之a//b,不一定得到a⊥β,b⊥β,故C正确;在D中,a//c,b⊥c,则a与b相交或异面,故D错误.故选:C.在A中,a与b相交、平行或异面;在B中,a与b相交、平行或异面;在C中,a⊥β,b⊥β,则a//b,反之a//b,不一定得到a⊥β,b⊥β;在D中,a与b相交或异面.本题考查命题成立的一个充分非必要条件的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.16.设f(x)是定义在R上的周期为4的函数,且f(x)=2log2x,1<x<4sin2πx,0≤x≤1,记g(x)=f(x)−a,若0<a≤12则函数g(x)在区间[−4,5]上零点的个数是()A.5B.6C.7D.8【答案】D【解析】解:由图可知:直线y=a(0<a≤12)与y=f(x)在区间[−4,5]上的交点有8个,故选:D.分别作出y=f(x)与直线y=a(1<a≤12)的图象,观察交点个数即可本题考查了数形结合的思想及作图能力.三、解答题(本大题共5小题,共70.0分)17.在△ABC中,三个内角A,B,C所对的边依次为a,b,c,且cosC=14.(1)求2cos2A+B2+2sin2C的值;(2)设c=2,求a+b的取值范围.【答案】解:(1)∵cosC=14,∴sinC=1−cos2C=154,∴2cos2A+B2+2sin2C=1+cos(A+B)+2sin2C=1−cosC+4sinCcosC=1−1+4×1×15 4=3+154.…(6分)(2)∵c=2,cosC=14,∴由余弦定理可得:4=a2+b2−12ab=(a+b)2−52ab,∵a2+b2≥2ab,可得:ab≤8,当且仅当a=b时等号成立,∴可得:(a+b)2=4+52ab≤323,可得:a+b≤463,当且仅当a=b时等号成立,∵a+b>c=2,∴a+b的取值范围为:(2,463].…(12分)【解析】(1)利用同角三角函数基本关系式可求sinC,利用三角函数恒等变换的应用即可计算得解.(2)由余弦定理,基本不等式可求a+b的最大值,利用三角形两边之和大于第三边可求a+b>c=2,即可得解a+b的取值范围.本题主要考查了同角三角函数基本关系式,三角函数恒等变换的应用,余弦定理,基本不等式,三角形两边之和大于第三边等知识的应用,考查了计算能力和转化思想,属于中档题.18.已知曲线Γ:x216+y212=1的左、右顶点分别为A,B,设P是曲线Γ上的任意一点.(1)当P异于A,B时,记直线PA,PB的斜率分别为k1,k2,求证:k1⋅k2是定值;(2)设点C满足AC=λCB(λ>0),且|PC|的最大值为7,求λ的值.【答案】(1)证明:由椭圆方程可得A(−4,0),B(4,0),设P(x 0,y 0)(−4≤x 0≤4),则k 1=y 0x 0+4,k 2=y 0x 0−4,∴k 1⋅k 2=y 02x 02−16=12(1−x 0216)x 02−16=−1216=−34为定值;(2)解:设C(m,0)(−4<m <4),则|PC|=(x 0−m)2+y 02=x 02−2mx 0+m 2+12(1−x 0216)=14(x 0−4m)2+12−3m 2.若m ≥0,则|PC|max =14(−4−4m)2+12−3m 2=7,解得m =3.此时AC =(7,0),CB =(1,0),AC =7CB ,由AC =λCB ,得λ=7;同理,若m <0,可得m =−3,此时求得λ=17.故λ的值为7或17.【解析】(1)由已知椭圆方程求出A ,B 的坐标,设P(x 0,y 0)(−4≤x 0≤4),由斜率公式及点P 在椭圆上即可证明k 1⋅k 2是定值;(2)设C(m,0)(−4<m <4),写出两点间的距离公式,分类利用配方法求最值,可得m 值,结合AC =λCB(λ>0),求得λ的值.本题考查椭圆的简单性质,考查两点间距离公式的应用,训练了利用配方法求最值,是中档题.19.如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有一端所在的直线竖直向上,并记组成该“钉”的四条线段的公共点为O,钉尖为A i(i=1,2,3,4).(1)设OA1=a(a>0),当A1,A2,A3在同一水平面内时,求OA1与平面A1A2A3所成角的大小(结果用反三角函数值表示).(2)若该“钉”的三个钉尖所确定的三角形的面积为32cm2,要用某种线型材料复制100枚这种“钉”(损耗忽略不计),共需要该种材料多少米?【答案】解:(1)根据题意,可知组成该种钉的四条线段长必相等,且两两所成的角相等,A1,A2,A3,A4两两连结后得到的四面体A1A2A3A4为正四面体,延长A4O交平面A1A2A3于B,则A4B⊥平面A1A2A3,连结A1B,则A1B是OA1在平面A1A2A3上的射影,∴∠OA1B就是OA1与平面A1A2A3所成角,设A1A4=l,则A1B=33l,在Rt△A4A1B中,A1A42=A1B2+A4B2,即l2=(33l)2++a)2,∴l=263a,∴A1B=33×263a=223a,cos∠OA1B=A1BOA1=223(其中0<∠OA1B<π2),∴∠OA1B=223,∴OA1与平面A1A2A3所成角的大小为arccos223.(2)12A1A22⋅32=32,根据(1)可得A1A2=263a,∴a=4272cm,∴要用某种线型材料复制100枚这种“钉”(损耗忽略不计),共需要该种材料:1100⋅100⋅(4a)=4a =24216(米).∴要用某种线型材料复制100枚这种“钉”(损耗忽略不计),共需要该种材料24216米.【解析】(1)组成该种钉的条线段长必相等,且两两所成的角相等,A 1,A 2,A 3,A 4两两连结后得到的四面体A 1A 2A 3A 4为正四面体,延长A 4O 交平面A 1A 2A 3于B ,则A 4B ⊥平面A 1A 2A 3,连结A 1B ,则∠OA 1B 就是OA 1与平面A 1A 2A 3所成角,由此能求出OA 1与平面A 1A 2A 3所成角的大小.(2)推导出12A 1A 22⋅32=32,A 1A 2=263a ,从而a =4272cm ,由此能求出要用某种线型材料复制100枚这种“钉”(损耗忽略不计),共需要该种材料的长度.本题考查线面角的求法,考查需要材料数量的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.20.设数列{a n }满足a 1=35,a n+1=3a n a n +2(n ∈N ∗).(1)求a 2,a 3的值;(2)求证:{1a n −1}是等比数列,并求n →∞lim (1a 1+1a 2+…+1a n −n)的值;(3)记{a n }的前n 项和为S n ,是否存在正整数k ,使得对于任意的n(n ∈N ∗且n ≥2)均有S n ≥k 成立?若存在,求出k 的值:若不存在,说明理由.【答案】解:(1)数列{a n }满足a 1=35,a n+1=3a n a n +2(n ∈N ∗).所以:a 2=3a 1a 1+2=95135=913,a 3=3a 2a 2+2=2735,(2)由于数列{a n }满足a 1=35,a n+1=3a n a n +2(n ∈N ∗).所以:1a n+1−11a n −1=13a n a n +2−11a n −1=23(常数),所以::{1a n −1}是以23为首项,23为公比的等比数列.所以:1n −1=2⋅(2)n−1=(2)n ,所以:1a n =(23)n +1,故:n →∞lim (1a 1+1a 2+…+1a n −n),=n →∞lim 23[1−(23)n ]1−23,=2.(3)由于:1a n =(23)n +1,所以,a n =1(23)n +1,a n+1=1(23)n+1+1,所以:a n+1−a n =1(23)n+1+1−1(23)n +1<0,所以:数列{a n }为递减数列,则:当n ≥2时,k ≤S 2=a 1+a 2=35+913=8465,所以:k =1.所以:存在k =1,使得对于任意的n(n ∈N ∗且n ≥2)均有S n ≥k 成立.【解析】(1)直接利用关系式求出结果.(2)利用定义证明数列{1a n −1}是等比数列,并求出极限值.(3)首先求出数列的关系式,进一步利用数列的单调性求出函数的存在问题的条件,进一步确定k 的值.1本题考查的知识要点:数列的通项公式的求法及应用,叠加法在求数列的通项公式中的应用,主要考查学生的运算能力和转化能力,属于基础题型.21.已知函数f(x)=2x (x ∈R),记g(x)=f(x)−f(−x).(1)解不等式:f(2x)−f(x)≤6;(2)设k 为实数,若存在实数x 0∈(1,2],使得g(2x 0)=k ⋅g 2(x 0)−1成立,求k 的取值范围;(3)记h(x)=f(2x +2)+a ⋅f(x)+b(其中a ,b 均为实数),若对于任意的x ∈[0,1],均有|h(k)|≤12,求a ,b 的值.【答案】解:(1)函数f(x)=2x ,f(2x)−f(x)≤6,即为22x −2x −6≤0,即为(2x +2)(2x −3)≤0,即有2x ≤3,解得x ≤log 23,即解集为(−∞,log 23];(2)存在实数x0∈(1,2],使得g(2x0)=k⋅g2(x0)−1成立,即为1+22x0−2−2x0=k(2x0−2−x0)2,设t=2x0−2−x0,在(1,2]递增,可得32<t≤154,(2x0+2−x0)2=22x0+2−2x0+2=t2+4,即有1+4+t2=kt2,则k=1t2+设m=1t2,m∈[16225,49),即有y=m+m+4m2,在m∈[16225,49)递增,可得y∈(2125,273 289],即有k∈(2125,273289],(3)h(x)=f(2x+2)+a⋅f(x)+b=22x+2+a⋅2x+b=4(2x)2+a⋅2x+b,令v=2x,∵x∈[0,1],∴v∈[1,2],∴h(x)=φ(v)=4v2+av+b.若对于任意的x∈[0,1],均有|h(x)|≤12,即对任意v∈[1,2],|φ(v)|=|4v2+av+b|≤12.∴|4+a+b|≤12①|16+2a+b|≤12②|16b−a216|≤12③,解得:a=−12,b=13.5.【解析】(1)函数f(x)=2x,f(2x)−f(x)≤6,即为22x−2x−6≤0,即为(2x+2)(2x−3)≤0,可得解集;(2)根据g(2x0)=k⋅g2(x0)−1,利用换元法,求解最值,即可求解k的取值范围;(3)根据h(x)=f(2x+2)+a⋅f(x)+b(其中a,b均为实数),x∈[0,1],均有|h(k)|≤12,建立关系即可求解a,b的值.本题主要考查了函数恒成立问题的求解,分类讨论以及转化思想的应用,二次函数闭区间是的最值以及单调性的应用.。
2019年上海市宝山区高考数学一模试卷和答案
2019年上海市宝山区高考数学一模试卷一、填空题(本题满分54分)本大题共有12题,1-6每题4分,7-12每题5分,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得分,否则一律得零分。
1.(4分)函数f(x)=sin(﹣2x)的最小正周期为.2.(4分)集合U=R,集合A={x|x﹣3>0},B={x|x+1>0},则B∩∁U A=.3.(4分)若复数z满足(1+i)z=2i(i是虚数单位),则=.4.(4分)方程ln(9x+3x﹣1)=0的根为.5.(4分)从某校4个班级的学生中选出7名学生参加进博会志愿者服务,若每个班级至少有一名代表,则各班级的代表数有种不同的选法.(用数字作答)6.(4分)关于x,y的二元一次方程的增广矩阵为,则x+y=.7.(5分)如果无穷等比数列{a n}所有奇数项的和等于所有项和的3倍,则公比q=.8.(5分)函数y=f(x)与y=lnx的图象关于直线y=﹣x对称,则f(x)=.9.(5分)已知A(2,3),B(1,4),且=(sin x,cos y),x,y∈(﹣,),则x+y=.10.(5分)将函数y=﹣的图象绕着y轴旋转一周所得的几何容器的容积是.11.(5分)张老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在△ABC中,a,b,c分别是角A,B,C的对边,已知b=2,∠A=45°,求边c,显然缺少条件,若他打算补充a的大小,并使得c只有一解,a的可能取值是(只需填写一个适合的答案)12.(5分)如果等差数列{a n},{b n}的公差都为d(d≠0),若满足对于任意n∈N*,都有b n ﹣a n=kd,其中k为常数,k∈N*,则称它们互为同宗”数列.已知等差数列{a n}中,首项a 1=1,公差d=2,数列{b n}为数列{a n}的“同宗”数列,若()=,则k=.二、选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.13.(5分)若等式1+x+x2+x3=a0+a1(1﹣x)+a2(1﹣x)2+a3(1﹣x)3对一切x∈R都成立,其中a0,a1,a2,a3为实常数,则a0+a1+a2+a3=()A.2B.﹣1C.4D.114.(5分)“x∈[﹣,]是“sin(arcsin)=x”的()条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要15.(5分)关于函数f(x)=的下列判断,其中正确的是()A.函数的图象是轴对称图形B.函数的图象是中心对称图形C.函数有最大值D.当x>0时,y=f(x)是减函数16.(5分)设点M、N均在双曲线C:=1上运动,F1,F2是双曲线C的左、右焦点,||的最小值为()A.2B.4C.2D.以上都不对三、解答题(本题满分76分)本大题共有5题,解答下列名题必须在答题纸的规定区域(对应的题号)内写出必要的步骤。
上海市交大附中2019届高三高考一模试卷数学试题
2019年上海市交大附中高考数学一模试卷一、选择题(本大题共4小题,共12.0分)1. 已知定义域为R的函数*(22,2],()21,055x k k k N f x x x ⎧∈-∈⎪=⎨-≤⎪⎩,则此函数图象上关于原点对称的点有( )A. 7对B. 8对C. 9对D. 以上都不对 【答案】B【解析】解:当0x =时,1(5)f x =-,此时1(0,)5-关于原点对称的点1(0,)5此时与()f x 没有交点, 函数2155y x =-关于原点对称的函数为2155y x -=--,即2155y x =+,0x >, 若函数图象上关于原点对称的点,等价为当0x >时,()f x =2155y x =+,0x >的交点个数即可, 作出函数()f x 在0x >时的图象如图,由图象知,函数分别关于1,3,5,7,9x x x x x =====对称,且函数的最大值为3(2)1f k -=, 当21355x y +==时,得21455x =,即7x =, 故当0x >时,()f x =2155y x =+,0x >的交点个数有8个, 即函数图象上关于原点对称的点有8对,故选:B . 求出函数2155y x =-关于原点对称的函数为2155y x =+,0x >,利用数形结合判断当0x >时,()f x =2155y x =+,0x >的交点个数即可 本题主要考查函数与方程的应用,利用对称性转化为两个图象交点个数是解决本题的关键.注意利用数形结合是解决本题的关键.2. 某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )A. 8桶B. 9桶C. 10桶D. 11桶 【答案】B【解析】解:易得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少共有9个碗.故选:B .主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.3. 已知2(3)f x x x =+,若1x a -≤,则下列不等式一定成立的是( ) A.33()()f x f a a -≤+ B. 24()()f x f a a -≤+ C. ()()5f x f a a -≤+ D. 2|()()2|(1)f x f a a -≤+ 【答案】B【解析】解:∵1x a -≤,∴11a x a -≤≤+,∵()f x 是二次函数,∴()f x 在区间1,1[]a a -+上单调时,()()f x f a -取得最大值为|()(|1)f a f a +-或|()(|1)f a f a --, 而22()()()11313242())4f a f a a a a a a a +-+++--=+≤+=, 22|()()||()(11313||22||22|2|)2|f a f a a a a a a a a ---+---=--=+≤+=. ∴24()()f x f a a -≤+,故选:B .结合二次函数的图象可知,当()f x 在区间1,1[]a a -+单调时,|()()|f x f a -的最大值为|()(|1)f a f a +-或|()(|1)f a f a --,从而得出结论.本题考查了二次函数的性质,利用函数的最值研究恒成立问题的思路,同时结合函数图象分析问题是关键.4. 若2a b c ===,且0a b ⋅=,()()0a c b c -⋅-≤,则a b c +-的取值范围是( )A. [0,2]B. [0,2]C. 2,2]D. 2,2] 【答案】D【解析】解:∵2a b c ===,且0a b ⋅=,()()0a c b c -⋅-≤,∴20a b a c b c c ⋅-⋅-⋅+≤,∴4a b a c b c ≥-⋅+⋅+⋅,∴222222244484a b c a b c a b a c b c +-=+++⋅-⋅-⋅≤++-=, ∴2a b c +-≤,又由0a b ⋅=,得:22a b +=, 故222a b c a b c +-≥+-=-,故a b c +-的取值范围是2,2],故选:D .由0a b ⋅=,得:22a b +=,故222a b c a b c +-≥+-=-,结合()()0a c b c -⋅-≤,得2a b c +-≤,进而得到答案.本题考查的知识点是平面向量的数量积运算,向量的模,难度中档.二、填空题(本大题共12小题,共36.0分)5. 已知集合02{|}A x x =<≤,集合12{|}B x x =-<<,则A B =______.【答案】{x|-1<x ≤2}【解析】解:∵集合02{|}A x x =<≤ },集合12{|}B x x =-<<,∴1|}2{A B x x =-<≤.故答案为:2{|}1x x -<≤.利用并集定义直接求解.本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.6. 若复数43z i =+,其中i 是虚数单位,则2z =______.【答案】25【解析】解:由43z i =+,得222431624972()4z i i i i =+=++=+,则272425z i =+==.故答案为:25.直接利用复数代数形式的乘除运算化简,再由复数模的公式计算得答案.本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.7. 函数4,(4)()(3)(4)x x f x f x x -≥⎧=⎨+<⎩,则[()]1f f -=______. 【答案】0【解析】解:12()())541(5f f f -===-=所以[()]()1140()f f f f -===故答案为0先根据函数的解析式求出1()f -的值,再求出[()]()1140()f f f f -===.求分段函数的值,关键是判断出自变量所属的范围,然后将自变量的值代入相应段的解析式求出值.8. 已知)in(1s 43πα-=,则)os(c 4πα-=______.【答案】【解析】解:∵)in(1s 43πα-=,∴cos 4(3)πα-==±.故答案为:3± 根据in 4(s )πα-的值,利用同角三角函数间的基本关系求出os 4(c )πα-的值即可. 此题考查了运用诱导公式化简求值,以及同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.9. 已知数列{}n a 的前n 项和为2*()2n S n n n N =+∈,则数列{}n a 的通项公式n a =______.【答案】*2)1(n n N +∈【解析】解:当2n ≥,且*n N ∈时,221()[()(2121)]n n n a S S n n n n -=-=+--+-22222)2(1n n n n n =+--++-21n =+,又211123S a ==+=,满足此通项公式,则数列{}n a 的通项公式*21()n a n n N =+∈. 故答案为:*2)1(n n N +∈由数列的前n 项和公式22n S n n =+,表示出当n 大于等于2时,前1n -项和1n S -,利用1n n n a S S -=-得出n 大于等于2时的通项公式,把1n =代入此通项公式检验也满足,故得到数列的通项公式. 此题考查了等差数列的通项公式,熟练掌握数列的递推式1n n n a S S -=-是解本题的关键,同时注意要把首项代入通项公式进行验证.10. 已知实数,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =+的取值范围为______.【答案】[1,6]【解析】解:由约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩作出可行域如图,联立2224x y x y +=⎧⎨+=⎩,解得()2,0A , 联立2241x y x y +=⎧⎨-=-⎩,解得()0,1B . 化目标函数3z x y =+为3y x z =-+,由图可知,当直线3y x z =-+过B 时,直线在y 轴上的截距最小,z 有最小值为1,当直线3y x z =-+过A 时,直线在y 轴上的截距最大,z 有最小值为6.∴目标函数3z x y =+的取值范围为[1,6].故答案为:[1,6].由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.11. 已知函数sin 2cos ()(2,,0)f x a x b x a b R ab =+∈≠,若其图象关于直线6x π=对称,则直线20ax by ++=的倾斜角α=______. 【答案】23π【解析】解:∵函数 sin 2cos 2y a x b x =+(,a b 不全为0)的图象关于直线6x π=对称, 设sin θ=,cos θ=,∴sin 2cos 222)y a x b x x x =+=+(n 2)x θ=+, 当6x π=时,2,32()x k k Z ππθθπ+=+=+∈, ∴,32()6k k k Z πππθππ=-++=+∈,不妨取0k =时,得6θπ=;∴1sin 2θ==,cos θ==,解得a =1b =;∴直线l :0ax by c ++=可化为:0y c ++=,它的斜率为k =∴倾斜角是23π; 故答案为:23π. 化简函数sin 2cos 2y a x b x =+为一个角的一个角的函数形式,利用6x π=是函数sin 2cos 2y a x b x=+图象的一条对称轴,求出,a b 的值,然后求直线l 的斜率与倾斜角.本题考查了三角函数与向量知识的综合应用问题,是综合题目.12. 鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经90︒榫卯起来,如图,若正四棱柱体的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为______.(容器壁的厚度忽略不计)【答案】41π2=, ∴该球形容器的表面积的最小值为414414ππ⋅=. 故答案为41π2,即可求出该球形容器的表面积的最小值. 本题考查正棱柱的外接球,考查学生的计算能力,属于中档题.13. 已知232*012(1)(1)(1)(1)()n n n x x x x a a x a x a x n N ++++++++=++++∈,且012126n a a a a +++⋯+=,那么n 展开式中的常数项为______. 【答案】20 【解析】解:∵已知232*012(1)(1)(1)(1)()n n n x x x x a a x a x a x n N ++++++++=++++∈,且012126n a a a a +++⋯+=,∴令1x =,可得210122(12)2222212612n nn n a a a a +-+++⋯+=++⋯+==-=-,∴6n =,那么6n=的展开式的通项公式为316(1)r r r r T C x -+=⋅-⋅,令30r -=,求得3r =, 可得展开式中的常数项为3620C =,故答案为:20.由题意令1x =,可得4n =,再利用二项展开式的通项公式,求得展开式中的常数项.本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和,可以简便的求出答案,二项展开式的通项公式,属于基础题.14. 已知正实数,x y 满足2342xy x y ++=,则54xy x y ++的最小值为______.【答案】55【解析】解:∵正实数,x y 满足2342xy x y ++=,∴42203x y x-=>+,0x >,解得021x <<. 则42216543423423[(3)]3133x xy x y x y x x x x -++=++=++=+++++33155≥⨯=,当且仅当1,10x y ==时取等号. ∴54xy x y ++的最小值为55.故答案为:55.正实数,x y 满足2342xy x y ++=,可得42203x y x-=>+,解得021x <<.则 42216543423423[(3)]3133x xy x y x y x x x x-++=++=++=+++++,再利用基本不等式的性质即可 得出.本题考查了基本不等式的性质、不等式的解法,考查了推理能力与计算能力,属于中档题.15. 已知等边ABC △的边长为2,点P 在线段AC 上,若满足等式PA PB λ⋅=的点P 有两个,则实数λ的取值范围是______. 【答案】1(,0]4-【解析】解:设02()PA x x =≤≤,则2PC x =-. ∴2x PB PA AB AC AB =+=-+, 又22cos602AB AC ⋅=⨯⨯︒=, ∴222211()224224()x x x x PA PB AC AC AB AC AB AC x x x λ=⋅=--+=-⋅=-=--. 令2(11(4))2f x x =--,则()f x 在1[0,]2上单调递减,在1(,2]2上单调递增, 且0(0)f =,()1124f =-,2(2)f =. ∵满足等式PA PB λ⋅=的点P 有两个,∴关于x 的方程()f x λ=在[0,2]上有两解,∴104λ-<≤. 故答案为:1(,0]4-. 设PA x =,得出式PA PB ⋅关于x 的函数,根据函数的单调性得出λ的范围.本题考查了平面向量的数量积运算,属于中档题.16. 过直线2l x y +=:上任意点P 向圆221C x y +=:作两条切线,切点分别为,A B ,线段AB 的中点为Q ,则点Q 到直线l 的距离的取值范围为______.【答案】[,2【解析】解:∵点P 为直线2l x y +=:上的任意一点,∴可设2(),P t t -,则过O A P B 、、、的圆的方程为222221()()[22()]24tt x y t t --+-=+-, 化简可得22()20x tx y t y -+--=,与已知圆的方程相减可得AB 的方程为21()tx t y +-=,由直线OP 的方程为(20)t x ty --=, 联立两直线方程可解得2244t x t t =-+,22244t y t t -=-+, 故线段AB 的中点222(,)244244t t Q t t t t --+-+, ∴点Q 到直线l的距离2122d t t ==--+, ∵222211)1(t t t -+=-+≥,∴210122t t <≤-+, ∴211022t t -≤-<-+,∴2112222t t ≤-<-+,∴21222t t ≤-<-+[,2d ∈故答案为:[,2设2(),P t t -,可得过O A P B 、、、的圆的方程与已知圆的方程相减可得AB 的方程,进而联立直线方程解方程组可得中点Q 的坐标,由点Q 到直线的距离公式和不等式的性质可得.本题考查直线与圆的位置关系,涉及圆的相交弦和点到直线的距离公式,以及不等式求函数的值域,属中档题.三、解答题(本大题共5小题,共60.0分)17. 在ABC △中,a b c 、、分别为角A B C 、、的对边,已知cos 23co 1)s(A B C -+=.(1)求角A 的值;(2)若2a =,求ABC △周长的取值范围.【答案】解:(1)ABC △中,cos 23co 1)s(A B C -+=,22cos 13()(co )s 1A A --⋅-=,22cos 3cos 20A A +-=, 解得1cos 2A =或cos 2A =- (不合题意,舍去), ∴1cos 2A =,3A π=; (2) 2a =,3A π=,由正弦定理可得sin sin sin b c a B C A ====;∴b B =,c C =,∴2s n sin )i a b c B C ++=+22sin()sin 3(]C C π=+-+32)s sin 2C C =++24sin 6()C π=++, ∵203C π<<, ∴5666C πππ<+<, ∴1si 1n 6(2)C π+≤<, 24sin 6()4C π+≤<, 则(4664sin )2C π<+≤+,即46a b c <++≤,∴ABC △的周长的取值范围是(4,6].【解析】(1)根据二倍角公式化简求解即可求出角A 的大小;(2)由正弦定理求得b c 、的值,再利用三角恒等变换计算a b c ++的取值范围.本题考查了正弦定理、两角和与差的正弦公式、三角函数的单调性应用问题,是中档题.18. 在如图所示的组合体中,三棱柱111ABC A B C -的侧面11ABB A 是圆柱的轴截面,C 是圆柱底面圆周上不与A B 、重合的一个点.(Ⅰ)若圆柱的轴截面是正方形,当点C 是弧AB 的中点时,求异面直线1AC 与1AB 的所成角的大小;(Ⅱ)当点C 是弧AB 的中点时,求四棱锥111A BCC B -与圆柱的体积比.【答案】解:(Ⅰ)如图,取BC 的中点D ,连接,OD AD ,则1OD AC ∕∕,∴AOD ∠ (或其补角)为异面直线1AC 与1AB 的所成角,设正方形的边长为2,则A O D △中,112OD AC ==,AO AD =,∴352cos AOD+-∠==∴AOD∠=;(Ⅱ)设圆柱的底面半径为r,母线长度为h,当点C是弧AB的中点时,AB BC==,111212))33A BCC BV h r h-=⋅⋅⋅=,2V r hπ=圆柱,∴111:2:3A BCC BVVπ-=圆柱.【解析】(Ⅰ)取BC的中点D,连接,OD AD,则1OD AC∕∕,AOD∠(或其补角)为异面直线1AC与1AB的所成角,利用余弦定理,可求异面直线1AC与1AB的所成角的大小;(II)设圆柱的底面半径为r,母线长度为h,当点C是弧弧AB的中点时,求出三棱柱111ABC A B C-的体积,求出三棱锥1A ABC-的体积为,从而求出四棱锥111A BCC B-的体积,再求出圆柱的体积,即可求出四棱锥111A BCC B-与圆柱的体积比.本小题主要考查直线与直线的位置关系,以及几何体的体积等基础知识,考查空间想象能力、运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想,属于中档题.19. 一个创业青年租用一块边长为4百米的等边ABC△田地(如图)养蜂、产蜜与售蜜.田地内拟修建笔直小路,MN AP,其中,M N分别为,AC BC的中点,点P在BC上.规划在小路MN与AP的交点O(O与M N、不重合)处设立售蜜点,图中阴影部分为蜂巢区,空白部分为蜂源植物生长区,,A N为出入口(小路的宽度不计).为节约资金,小路MO段与OP段建便道,供蜂源植物培育之用,费用忽略不计.为车辆安全出入,小路AO段的建造费用为每百米4万元,小路ON段的建造费用为每百米3万元.(1)若拟修的小路AOON段的建造费用;(2)设BAPθ∠=,求cosθ的值,使得小路AO段与ON段的建造总费用最小.【答案】解:(1)在AOM △中,2222cos AO AMOM AM OM AMO =+-⋅∠,∴222222cos 3AMAM π=+-, 化简得:2230AM AM +-=, ∵0AM >,∴1AM =,则211ON MN AM =-=-=,313⨯=,答:小路ON 段的建造费用为3万元.(2)由正弦定理得:sin sin sin()33AM AO OM θθ==-,则AO =OM =,∴sin sin 2sin sin ON MN AM θθθθθθ-=-=-=, 设小路AO 段与ON 段的建造总费用为()f θ,则9sin ()43sin f AO ON θθθθ-+=+=,63ππθ<<,∴2'()sin f θθθ=, 若0θ满足03cosθ=,且0ππθ<<,列表如下: 则当0θθ=时,()f θ有极小值,此时也是()f θ的最小值,∴03cos cos 4θθ==, 答:当3cos 4θ=,小路AO 段与ON 段的建造总费用最小.【解析】(1)根据余弦定理求出AM ,即可求出211ON MN AM =-=-=,即可求出小路ON 段的建造费用;(2)由正弦定理可得则AO =OM =,sin sin 2sin sin ON MN AM θθθθθθ-=-=-=,即可表示出9sin ()43sin f AO ON θθθθ-+=+=,根据导数和函数最值得关系即可求出小路AO 段与ON 段的建造总费用最小.本题考查导数在实际问题中的运用:求最值,考查化简整理的运算能力,正确求出函数解析式和运用正余弦定理是解题的关键,属于中档题.20. 过抛物线22C y px =:(其中0p >)的焦点F 的直线交抛物线于A B 、两点,且A B 、两点的纵坐标之积为16-.(1)求抛物线C 的方程;(2)当AF BF ≠时,求OF OFAF BF +的值;(3)对于x 轴上给定的点0(),D n (其中2n >),若过点D 和B 两点的直线交抛物线C 的准线P 点,求证:直线AP 与x 轴交于一定点.【答案】解:(1)过抛物线22C y px =:(其中0p >)的焦点(,0)2P F 的直线 为2x P my =+,代入抛物线方程,可得2220y pmy p --=, 可设1122,,()(),A x y B x y ,即有21216y y p =-=-,解得4p =,可得抛物线的方程为28y x =;(2)由直线AB 过抛物线的焦点F ,可设12, ,,()()A B ρθρπθ+, 由1cos p ρθ=-,可得111cos 1cos 212AF BF p p p θθ-++=+==, 可得212OF OFp AF BF p+=⋅=; (3)证明:设121()8,A y y ,222()8,y B y ,,()2P s -, 由,0 ,(),,D n B D P 三点共线可得22228s n n y y =---,可得2228(2)8n s ny y --=-,① 设AP 交x 轴上的点为(),0t , 即有211112288s y y y t y -=---, 代入①,结合1216y y =-,可得1222118(8)8y n n y y y t =--, 即有222211121()86488256ny nt ny y y ny -=-=-, 可得4t n=. 即有直线AP 与x 轴交于一定点4(,0)n .【解析】(1)设直线AB 的方程,联立抛物线方程,运用韦达定理,可得4p =,即有抛物线方程;(2)推得112AF BF p+=,即可得到所求值; (3) 设121()8,A y y ,222()8,y B y ,,()2P s -,运用三点共线的条件:斜率相等,可得s ,设AP 交x 轴上的点为(),0t ,运用韦达定理,化简整理可得所求定点.本题考查直线和抛物线的位置关系,考查联立直线方程和抛物线方程,运用韦达定理和直线的斜率公式,考查化简运算能力,属于难题.21. 已知数列{}n a 为等比数列,11a =,公比为,n q S 为数列{}n a 的前n 项和.(1)若3520a a +=,求84S S ; (2)若调换567a a a 、、的顺序后能构成一个等差数列,求q 的所有可能值;(3)是否存在正常数c q 、,使得对任意正整数n ,不等式2n n S S c>-总成立?若存在,求出q 的取值范围;若不存在,请说明理由.【答案】解:(1)因为数列{}n a 为等比数列,11a =,公比为q ,且351,20q a a ≠+=,所以2420q q +=,解得24q = (5-舍去), 则8484411111617S q qq S =+=+-=-=; (2)若调换567,,a a a 的顺序后能构成一个等差数列,即若调换456,,q q q 的顺序后能构成一个等差数列,由等差数列的性质可得212q q +=或212q q +=或22q q +=,解得1q =或12-或2-; (3)假设存在正常数,c q ,使得对任意正整数n , 不等式2n n S S c>-总成立. 由2n n S S c >-,即为20n n S S c c-<-,等价为2n c S c <<,若1q =,可得2c n c <<,不成立;由11,0,1n n a a S =>≥,可得1c <,当1q >时,222S c >>不可能成立; 当112q <<时,121nq q->-可得21n q q <-, 即(log 21)q n q >-, 由112q <<,可得(og 1)l 21q q ->, 即当2(log 21,)2q n q S >->,所以2n S c <不可能成立; 当12q =时,11()22112nc -<-, 即11()2n c -<,可得1()12n c >-, 即当12(l g )o 1n c >-时,2nS c <不成立; 当102q <<时,1111n n q S q q-=<--, 所以当112(1)c q <<-时,2n c S c <<恒成立, 综上可得,存在正常数,c q ,使得对任意正整数n , 不等式2n n S S c>-总成立, 且q 的取值范围是(10,2). 【解析】(1)运用等比数列的通项公式,解方程可得公比,求和公式计算即可得到所求值;(2)由等比数列的通项公式和等差数列中项的性质,解方程即可得到所求值;(3)假设存在正常数,c q ,使得对任意正整数n ,不等式2n n S S c>-总成立.由不等式2n n S S c >-,即为20n n S S c c-<-,等价为2n c S c <<,讨论公比q ,结合题意,推得存在,求得q 的范围.本题考查等差数列和等比数列的通项公式和求和公式的运用,考查存在性问题的解法,以及分类讨论思想方法,化简整理和推理能力,属于难题.。
2019年上海市闵行区高考数学一模试卷(含解析版)
2019年上海市闵行区高考数学一模试卷一、填空题1.(3分)已知全集U=R,集合A={x|x2﹣3x≥0},则∁U A=.2.(3分)=.3.(3分)若复数z满足(1+2i)z=4+3i(i是虚数单位),则z=.4.(3分)方程=0的解为.5.(3分)等比数列{a n}中,a1+a2=1,a5+a6=16,则a9+a10=.6.(3分)(1﹣2x)5的展开式中x3的项的系数是(用数字表示)7.(3分)已知两条直线l1:4x+2y﹣3=0,l2:2x+y+1=0,则l l与l2的距离为.8.(3分)已知函数f(x)=|x﹣1|(x+1),x∈[a,b]的值域为[0,8],则a+b的取值范围是.9.(3分)如图,在过正方体ABCD﹣A1B1C1D1的任意两个顶点的所有直线中,与直线AC1异面的直线的条数为.10.(3分)在△ABC中,角A,B,C的对边分别为a,b,c,面积为S,且4S=(a+b)2﹣c2,则cos C=.11.(3分)已知向量=(cosα,sinα),=(cosβ,sinβ),且α﹣β=,若向量满足||=1,则||的最大值为.12.(3分)若无穷数列{a n}满足:a1≥0,当n∈N*,n≥2时.|a n﹣a n﹣1|=max{a1,a2,…,a n﹣1}(其中max{a1,a2,…,a,n﹣1}表示a1,a2,…,a,n﹣1中的最大项),有以下结论:①若数列{a n}是常数列,则a n=0(n∈N*)②若数列{a n}是公差d≠0的等差数列,则d<0;③若数列{a n}是公比为q的等比数列,则q>1④若存在正整数T,对任意n∈N*,都有a n+T=a n,则a1是数列{a n}的最大项.则其中正确的结论是(写出所有正确结论的序号)二、选择题13.(3分)若a,b为实数,则“a<﹣1”是“>﹣1”的()A.充要条件B.充分非必要条件C.必要非充分条件D.既非充分必要条件14.(3分)已知a,b为两条不同的直线,α,β为两个不同的平面,α∩β=a,a∥b,则下面结论不可能成立的是()A.b⊄β,且b∥αB.b⊄aC.b∥α,且b∥βD.b与α,β都相交15.(3分)已知函数y=,(x≥a,a>0,b>0)与其反函数有交点,则下列结论正确的是()A.a=b B.a<bC.a>b D.a与b的大小关系不确定16.(3分)在平面直角坐标系中,已知向量=(1,2),O是坐标原点,M是曲线|x|+2|y|=2上的动点,则•的取值范围()A.[﹣2,2]B.[﹣]C.[﹣]D.[﹣]三、解答题17.如图,正三棱柱ABC﹣A1B1C1的各棱长均为2,D为棱BC的中点.(1)求该三棱柱的表面积;(2)求异面直线AB与C1D所成角的大小.18.已知抛物线C:y2=2px(p≠0).(1)若C上一点M(1,t)到其焦点的距离为3,求C的方程;(2)若P=2,斜率为2的直线l交C于两点,交x轴的正半轴于点M,O为坐标原点=0,求点M的坐标.19.在股票市场上,投资者常根据股价(每股的价格)走势图来操作,股民老张在研究某只股票时,发现其在平面直角坐标系内的走势图有如下特点:每日股价y(元)与时间x (天)的关系在ABC段可近似地用函数y=a sin(ωx+φ)+20(a>0,ω>0,0<ω<π)的图象从最高点A到最低点C的一段来描述(如图),并且从C点到今天的D点在底部横盘整理,今天也出现了明显的底部结束信号.老张预测这只股票未来一段时间的走势图会如图中虚线DEF段所示,且DEF段与ABC 段关于直线l:x=34对称,点B,D的坐标分别是(12,20)(44,12).(1)请你帮老张确定a,ω,φ的值,并写出ABC段的函数解析式;(2)如果老张预测准确,且今天买入该只股票,那么买入多少天后股价至少是买入价的两倍?20.对于函数y=f(x),若函数F(x)=f(x+1)﹣f(x)是增函数,则称函数y=f(x)具有性质A.(1)若f(x)=x2+2,求F(x)的解析式,并判断f(x)是否具有性质A;(2)判断命题“减函数不具有性质A”是否真命题,并说明理由;(3)若函数f(x)=kx2+x3(x≥0)具有性质A,求实数k的取值范围,并讨论此时函数g(x)=f(sin x)﹣sin x在区间[0,π]上零点的个数.21.对于数列{a n},若存在正数p,使得a n+1≤pa n对任意n∈N*都成立,则称数列{a n}为“拟等比数列”.(1)已知a>0,b>0且a>b,若数列{a n}和{b n}满足:a1=,b1=且a n+1=,b n+1=(n∈N*).①若a1=1,求b1的取值范围;②求证:数列{a n﹣b n)(n∈N*)是“拟等比数列”;(2)已知等差数列{c n}的首项为c1,公差为d,前n项和为S n,若c1>0,S4035>0,S4036<0,且{c n}是“拟等比数列”,求p的取值范围(请用c1,d表示).2019年上海市闵行区高考数学一模试卷参考答案与试题解析一、填空题1.(3分)已知全集U=R,集合A={x|x2﹣3x≥0},则∁U A=(0,3).【考点】1F:补集及其运算.【专题】11:计算题;37:集合思想;49:综合法;5J:集合.【分析】可求出集合A,然后进行补集的运算即可.【解答】解:A={x|x≤0,或x≥3};∴∁U A=(0,3).故答案为:(0,3).【点评】考查描述法的定义,以及补集的运算.2.(3分)=.【考点】6F:极限及其运算.【专题】11:计算题;52:导数的概念及应用.【分析】由,,可得==.【解答】解:=.===,故答案为:.【点评】本题考查了极限及其运算,属简单题.3.(3分)若复数z满足(1+2i)z=4+3i(i是虚数单位),则z=2﹣i.【考点】A5:复数的运算.【专题】34:方程思想;49:综合法;5N:数系的扩充和复数.【分析】利用复数的运算性质即可得出.【解答】解:(1+2i)z=4+3i(i是虚数单位),∴(1﹣2i)(1+2i)z=(1﹣2i)(4+3i),∴5z=10﹣5i,可得z=2﹣i.故答案为:2﹣i.【点评】本题考查了复数的运算法则及其性质,考查了推理能力与计算能力,属于基础题.4.(3分)方程=0的解为log25.【考点】OM:二阶行列式的定义.【专题】11:计算题;34:方程思想;4O:定义法;5R:矩阵和变换.【分析】利用行列式展开法则列出方程,从而能求出结果.【解答】解:∵方程=0,∴2x﹣2﹣3=0,解得x=log25.故答案为:log25.【点评】本题考查二阶行列式的求法,考查行列式展开法则等基础知识,考查运算求解能力,是基础题.5.(3分)等比数列{a n}中,a1+a2=1,a5+a6=16,则a9+a10=256.【考点】87:等比数列的性质.【专题】11:计算题;34:方程思想;35:转化思想;54:等差数列与等比数列.【分析】根据题意,设等比数列{a n}的公比为q,由等比数列的通项公式可得a5+a6=q4×a1+q4×a2=q4(a1+a2)=16,解可得q4的值,又由a9+a10=q8×a1+q8×a2=q8(a1+a2),计算可得答案.【解答】解:根据题意,设等比数列{a n}的公比为q,若a1+a2=1,则a5+a6=q4×a1+q4×a2=q4(a1+a2)=16,解可得:q4=16,则a9+a10=q8×a1+q8×a2=q8(a1+a2)=256,故答案为:256.【点评】本题考查等比数列的性质,关键是求出等比数列的公比,属于基础题.6.(3分)(1﹣2x)5的展开式中x3的项的系数是﹣80(用数字表示)【考点】DA:二项式定理.【专题】11:计算题.【分析】在(1﹣2x)5的展开式中,令通项x的指数等于3,求出r,再求系数【解答】(1﹣2x)5的展开式的通项为T r+1=C5r(﹣2x)r,令r=3,得x3的项的系数是C53(﹣2)3=﹣80故答案为:﹣80【点评】本题考查二项式定理的简单直接应用,属于基础题.7.(3分)已知两条直线l1:4x+2y﹣3=0,l2:2x+y+1=0,则l l与l2的距离为.【考点】IU:两条平行直线间的距离.【专题】35:转化思想;49:综合法;5B:直线与圆.【分析】先把直线方程中x、y的系数化为相同的,再利用两条平行直线间的距离公式d =,求出他们之间的距离.【解答】解:两条直线l1:4x+2y﹣3=0,l2:2x+y+1=0,即两条直线l1:4x+2y﹣3=0,l2:4x+2y+2=0,它们之间的距离为d==,故答案为:.【点评】本题主要考查两条平行直线间的距离公式d=应用,注意未知数的系数必需相同,属于基础题.8.(3分)已知函数f(x)=|x﹣1|(x+1),x∈[a,b]的值域为[0,8],则a+b的取值范围是[2,4].【考点】34:函数的值域.【专题】33:函数思想;44:数形结合法;51:函数的性质及应用.【分析】写出分段函数解析式,作出图形,数形结合得答案.【解答】解:数f(x)=|x﹣1|(x+1)=.作出函数的图象如图:由图可知,b=3,a∈[﹣1,1],则a+b∈[2,4].故答案为:[2,4].【点评】本题考查函数的值域,考查数形结合的解题思想方法,是中档题.9.(3分)如图,在过正方体ABCD﹣A1B1C1D1的任意两个顶点的所有直线中,与直线AC1异面的直线的条数为12.【考点】LN:异面直线的判定.【专题】11:计算题;31:数形结合;49:综合法;5F:空间位置关系与距离.【分析】结合正方体的结构特征,利用列举法能求出在过正方体ABCD﹣A1B1C1D1的任意两个顶点的所有直线中,与直线AC1异面的直线的条数.【解答】解:在过正方体ABCD﹣A1B1C1D1的任意两个顶点的所有直线中,与直线AC1异面的直线有:A1D1,DD1,CD,A1B1,BC,BB1,B1D1,B1C,D1C,BD,A1D,A1B,共12条.故答案为:12.【点评】本题考查异面直线的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是基础题.10.(3分)在△ABC中,角A,B,C的对边分别为a,b,c,面积为S,且4S=(a+b)2﹣c2,则cos C=0.【考点】HR:余弦定理.【专题】35:转化思想;49:综合法;58:解三角形.【分析】由余弦定理和三角形面积公式得sin C﹣cos C=1,结合平方关系得答案.【解答】解:∵4S=(a+b)2﹣c2,∴4×ab sin C=a2+b2﹣c2+2ab,由余弦定理得:2ab sin C=2ab cos C+2ab,∴sin C﹣cos C=1,又∵sin2C+cos2C=1,∴sin C cos C=0,又∵在△ABC中,sin C≠0,∴cos C=0.故答案为:0.【点评】本题考查余弦定理、三角形面积公式、平方关系,考查计算能力.11.(3分)已知向量=(cosα,sinα),=(cosβ,sinβ),且α﹣β=,若向量满足||=1,则||的最大值为.【考点】9O:平面向量数量积的性质及其运算;GL:三角函数中的恒等变换应用.【专题】11:计算题;5A:平面向量及应用.【分析】首先解决,结合两角差的余弦可以得到的模,即对应点的轨迹,进而得到对应点的轨迹,问题得解.【解答】解:∵,∴=2+2cos(α﹣β)=3,令,则||=,∴D点轨迹为以原点为原心,半径为的圆,令,则||=||=1,∴C点轨迹是以原点为原心,半径为的两个圆及其之间的部分,∴最大值为,即||最大值为.故答案为:.【点评】此题考查了向量的模与点的轨迹,三角公式等,难度不大.12.(3分)若无穷数列{a n}满足:a1≥0,当n∈N*,n≥2时.|a n﹣a n﹣1|=max{a1,a2,…,a n﹣1}(其中max{a1,a2,…,a,n﹣1}表示a1,a2,…,a,n﹣1中的最大项),有以下结论:①若数列{a n}是常数列,则a n=0(n∈N*)②若数列{a n}是公差d≠0的等差数列,则d<0;③若数列{a n}是公比为q的等比数列,则q>1④若存在正整数T,对任意n∈N*,都有a n+T=a n,则a1是数列{a n}的最大项.则其中正确的结论是①②③④(写出所有正确结论的序号)【考点】2K:命题的真假判断与应用;8H:数列递推式.【专题】35:转化思想;48:分析法;54:等差数列与等比数列.【分析】由常数列,结合新定义可得a n=0,可判断①;由等差数列的定义和单调性,可判断②;由等比数列的定义和单调性可判断③;假设a1不是数列{a n}的最大项,设i是使得a i>a1的最小正整数,根据第二数学归纳法可判断④.【解答】解:①,若数列{a n}是常数列,由|a n﹣a n﹣1|=max{a1,a2,…,a n﹣1},可得max{a1,a2,…,a n﹣1}=0,则a n=0(n∈N*),故①正确;②,若数列{a n}是公差d≠0的等差数列,由max{a1,a2,…,a n﹣1}=|d|,若d>0,即有数列递增,可得d=a n,即数列为常数列,不成立;若d<0,可得数列递减,可得﹣d=a1成立,则d<0,故②正确;③,若数列{a n}是公比为q的等比数列,若q=1可得数列为非零常数列,不成立;由|a2﹣a1|=a1,可得a2=0(舍去)或a2=2a1,即有q=2>1,a1>0,则数列递增,由max{a1,a2,…,a n﹣1}=a n﹣1,可得a n﹣a n﹣1=a n﹣1,可得a n=2a n﹣1,则q>1,故③正确;④,假设a1不是数列{a n}的最大项,设i是使得a i>a1的最小正整数,则|a i+1﹣a i|=max{a1,a2,…a i}=a i,因此a i+1是a i的倍数,假设a i+1,a i+2,…,a i+k﹣1都是a i的倍数,则|a i+k﹣a i+k﹣1|=max{a1,a2,…,a i+k﹣1}=max{a i,a i+1…,a i+k﹣1},故a i+k是a i的倍数,假设a i+1,a i+2,…,a i+k﹣1都是a i的倍数,则|a i+k﹣a i+k﹣1|=max{a1,a2,…,a i+k﹣1}=max{a1,a i+1,…,a i+k﹣1},因此,a i+k也是a i的倍数,由第二数学归纳法可知,对任意n≥i,a n都是a i的倍数,又存在正整数T,对任意正整数n,都有a T+n=a n,故存在正整数m≥i,a m=a1,故a i 是a1的倍数,但a i>a1,故a1不是a i的倍数,矛盾,故a i是数列{a n}的最大值.故④正确.故答案为:①②③④.【点评】本题考查数列新定义问题,考查等差数列和等比数列的定义的运用,考查举例法和数学归纳法的运用,属于综合题.二、选择题13.(3分)若a,b为实数,则“a<﹣1”是“>﹣1”的()A.充要条件B.充分非必要条件C.必要非充分条件D.既非充分必要条件【考点】29:充分条件、必要条件、充要条件.【专题】35:转化思想;4O:定义法;5L:简易逻辑.【分析】首先找出>﹣1的等价条件,然后根据充分条件和必要条件的定义分别进行判断即可.【解答】解:>﹣1⇔a<﹣1或a>0,∵a<﹣1⇒a<﹣1或a>0,a<﹣1或a>0推不出a<﹣1,∴“a<﹣1”是“>﹣1”的充分非必要条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.14.(3分)已知a,b为两条不同的直线,α,β为两个不同的平面,α∩β=a,a∥b,则下面结论不可能成立的是()A.b⊄β,且b∥αB.b⊄aC.b∥α,且b∥βD.b与α,β都相交【考点】LO:空间中直线与直线之间的位置关系;LP:空间中直线与平面之间的位置关系.【专题】11:计算题;35:转化思想;44:数形结合法;5F:空间位置关系与距离.【分析】以正方体ABCD﹣A1B1C1D1为载体,能求出结果.【解答】解:由a,b为两条不同的直线,α,β为两个不同的平面,α∩β=a,a∥b,知:在A中,在正方体ABCD﹣A1B1C1D1中,平面ABCD∩平面ABB1A1=AB,C1D1⊄平面ABCD,且C1D1∥AB,∴b⊄β,且b∥α有可能成立,故A错误;在B中,在正方体ABCD﹣A1B1C1D1中,平面ABCD∩平面ABB1A1=AB,C1D1∥平面ABCD,且C1D1∥平面ABB1A1,∴b⊄a有可能成立,故B错误;在C中,在正方体ABCD﹣A1B1C1D1中,平面ABCD∩平面ABB1A1=AB,C1D1∥平面ABCD,且C1D1∥平面ABB1A1,∴b∥α,且b∥β有可能成立,故C错误;在D中,b与α,β都相交不可能成立,故D成立.故选:D.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.15.(3分)已知函数y=,(x≥a,a>0,b>0)与其反函数有交点,则下列结论正确的是()A.a=b B.a<bC.a>b D.a与b的大小关系不确定【考点】4R:反函数.【专题】11:计算题;51:函数的性质及应用.【分析】问题转化为函数y=(x≥a,a>0,b>0)与函数y=x有交点.【解答】解:依题意得:函数y=(x≥a,a>0,b>0)与函数y=x有交点,即=x2,x2==≥a2,∴b2>a2,∴b>a,故选:B.【点评】本题考查了反函数.属基础题.16.(3分)在平面直角坐标系中,已知向量=(1,2),O是坐标原点,M是曲线|x|+2|y|=2上的动点,则•的取值范围()A.[﹣2,2]B.[﹣]C.[﹣]D.[﹣]【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;44:数形结合法;5A:平面向量及应用.【分析】首先去绝对值,得到曲线,并发现垂直关系,从而找到向量的射影,得解.【解答】解:去绝对值整理后知,曲线为菱形BCDE,易知CD⊥AN,BE⊥AN,故当点M在曲线上运动时,在上的射影必在FN上,且当M在CD上时得到最大值,在BE上时得到最小值,最大值为==2,最小值为﹣2,故选:A.【点评】此题考查了曲线方程,数量积,射影等,难度适中.三、解答题17.如图,正三棱柱ABC﹣A1B1C1的各棱长均为2,D为棱BC的中点.(1)求该三棱柱的表面积;(2)求异面直线AB与C1D所成角的大小.【考点】LE:棱柱、棱锥、棱台的侧面积和表面积;LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5G:空间角.【分析】(1)该三棱柱的表面积S=2S△ABC+3,由此能求出结果.(2)取AC中点E,连结DE,C1E,则DE∥AB,从而∠C1DE是异面直线AB与C1D 所成角(或所成角的补角),由此能求出异面直线AB与C1D所成角的大小.【解答】解:(1)∵正三棱柱ABC﹣A1B1C1的各棱长均为2,∴该三棱柱的表面积:S=2S△ABC+3=2×+3×2×2=12+2.(2)取AC中点E,连结DE,C1E,∵D为棱BC的中点,∴DE∥AB,DE==1,∴∠C1DE是异面直线AB与C1D所成角(或所成角的补角),DC1=EC1==,cos∠C1DE===,∴∠C1DE=arccos,∴异面直线AB与C1D所成角的大小为arccos.【点评】本题考查三棱柱的表面积的求法,考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.18.已知抛物线C:y2=2px(p≠0).(1)若C上一点M(1,t)到其焦点的距离为3,求C的方程;(2)若P=2,斜率为2的直线l交C于两点,交x轴的正半轴于点M,O为坐标原点=0,求点M的坐标.【考点】KN:直线与抛物线的综合.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】(1)根据抛物线的定义可得;(2)设出直线l:y=2x+b,并代入抛物线,根据韦达定理以及x1x2+y1y2=0解得b,然后求得M(4,0).【解答】解:(1)由抛物线的定义得:1﹣(﹣=3,解得:p=4,所以抛物线C的方程为:y2=8x;(2)p=2时,抛物线C:y2=4x,设直线l:y=2x+b,并代入抛物线C:y2=4x得:4x2+(4b﹣4)x+b2=0,△=(4b﹣4)2﹣16b2>0,解得设A(x1,y1),B(x2,y2),则x1+x2=1﹣b,x1x2=,∵•=x1x2+y1y2=x1x2+(2x1+b)(2x2+b)=5x1x2+2b(x1+x2)+b2=+2b(1﹣b)+b2=0,解得b=0或b=﹣8当b=0时,M(0,0)不在x轴正半轴上,舍去;当b=﹣8时,M(4,0)故点M的坐标为(4,0)【点评】本题考查了直线与抛物线的综合.属中档题.19.在股票市场上,投资者常根据股价(每股的价格)走势图来操作,股民老张在研究某只股票时,发现其在平面直角坐标系内的走势图有如下特点:每日股价y(元)与时间x (天)的关系在ABC段可近似地用函数y=a sin(ωx+φ)+20(a>0,ω>0,0<ω<π)的图象从最高点A到最低点C的一段来描述(如图),并且从C点到今天的D点在底部横盘整理,今天也出现了明显的底部结束信号.老张预测这只股票未来一段时间的走势图会如图中虚线DEF段所示,且DEF段与ABC 段关于直线l:x=34对称,点B,D的坐标分别是(12,20)(44,12).(1)请你帮老张确定a,ω,φ的值,并写出ABC段的函数解析式;(2)如果老张预测准确,且今天买入该只股票,那么买入多少天后股价至少是买入价的两倍?【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;57:三角函数的图象与性质.【分析】(1)对照图象可求出a,ω,φ以及ABC的解析式;(2)先根据对称性求出DEF段的解析式,再令函数值等于24,解出x=60,可得.【解答】解:(1)a=12﹣4=8,=24﹣12=12,∴T=48,ω==,由×24+φ=可得φ=,∴f(x)=8sin(x+)+20=8cos x+20,x∈[0,24].(2)由题意得DEF的解析式为:y=8cos[(68﹣x)]+20,由8cos[(68﹣x)]+20=24,得x=60,故买入60﹣44=16天后股价至少是买入价的两倍.【点评】本题考查了由y=A sin(ωx+φ)的部分图象确定其解析式,属中档题.20.对于函数y=f(x),若函数F(x)=f(x+1)﹣f(x)是增函数,则称函数y=f(x)具有性质A.(1)若f(x)=x2+2,求F(x)的解析式,并判断f(x)是否具有性质A;(2)判断命题“减函数不具有性质A”是否真命题,并说明理由;(3)若函数f(x)=kx2+x3(x≥0)具有性质A,求实数k的取值范围,并讨论此时函数g(x)=f(sin x)﹣sin x在区间[0,π]上零点的个数.【考点】3E:函数单调性的性质与判断;52:函数零点的判定定理.【专题】35:转化思想;48:分析法;51:函数的性质及应用.【分析】(1)由新定义直接化简即可得到F(x)的解析式,判断单调性可得f(x)的性质;(2)命题为假命题,可举指数函数;(3)由新定义结合单调性和导数,解不等式可得k的范围,运用正弦函数的图象和性质,讨论k的范围,即可得到所求零点个数.【解答】解:(1)f(x)=x2+2,F(x)=(x+1)2+2﹣x2﹣2=2x+1,F(x)在R上递增,可知f(x)具有性质A;(2)命题“减函数不具有性质A”,为假命题,比如:f(x)=0.5x,F(x)=f(x+1)﹣f(x)=﹣0.5x+1在R上递增,f(x)具有性质A;(3)若函数f(x)=kx2+x3(x≥0)具有性质A,可得F(x)=f(x+1)﹣f(x)=k(x+1)2+(x+1)3﹣kx2﹣x3=3x2+(3+2k)x+1+k 在x≥0递增,可得﹣≤0,解得k≥﹣;由t=sin x(0≤t≤1),可得g(x)=0,即f(t)=t,可得kt2+t3=t,t=0时显然成立;0<t≤1时,k=,由在(0,1]递减,且值域为[,+∞),k=0时,t=0或1,sin x有三解,3个零点;当k=时,t=1,即sin x=1,可得x=,1个零点;当k>时,f(t)=t,t有一解,x两解,即两个零点;当﹣≤k<,且k≠0时,f(t)=t无解,即x无解,无零点.【点评】本题考查函数的解析式的求法,注意运用新定义,考查函数的单调性,以及分类讨论思想方法,考查化简运算能力,属于中档题.21.对于数列{a n},若存在正数p,使得a n+1≤pa n对任意n∈N*都成立,则称数列{a n}为“拟等比数列”.(1)已知a>0,b>0且a>b,若数列{a n}和{b n}满足:a1=,b1=且a n+1=,b n+1=(n∈N*).①若a1=1,求b1的取值范围;②求证:数列{a n﹣b n)(n∈N*)是“拟等比数列”;(2)已知等差数列{c n}的首项为c1,公差为d,前n项和为S n,若c1>0,S4035>0,S4036<0,且{c n}是“拟等比数列”,求p的取值范围(请用c1,d表示).【考点】8H:数列递推式.【专题】35:转化思想;48:分析法;54:等差数列与等比数列.【分析】(1)根据基本不等式的性质以及“拟等比数列”的定义进行求解证明即可(2)根据等差数列的通项公式以及前n项和公式,推导首项和公差d的范围,结合{c n}是“拟等比数列,建立不等式关系进行求解即可【解答】解:(1)①∵a>0,b>0,且a>b,a1=,b1=<1,∴b1∈(0,1).②由题意得a1=>=b1,∴当n∈N*且n≥2时,a n﹣b n=>0,∴对任意n∈N*,都有a n+1﹣b n+1=<﹣=(a n﹣b n),即存在p=,使得有a n+1﹣b n+1<p(a n﹣b n),∴数列数列{a n﹣b n)(n∈N*)是“拟等比数列”;(2)∵c1>0,S4035>0,S4036<0,∴,⇒,⇒⇒,由c1>0得d<0,从而解得﹣2018<<﹣2017,又{c n}是“拟等比数列”,故存在p>0,使得c n+1≤p c n成立,1°当n≤2018时,c n>0,p≥==1+=1+,由﹣2018<<﹣2017得2018<1﹣<2019,由图象可知1+在n≤2018时递减,故p≥=1+∈(,),2°当n≥2019时,c n<0,p≤==1+=1+,由﹣2018<<﹣2017得2018<1﹣<2019,由图象可知1+在n≥2019时递减,故p≤1,由1°2°得p的取值范围是[1+,1].【点评】本题考查递推数列的应用,利用“拟等比数列”的定义结合等差数列的前n项和公式进行递推是解决本题的关键.查了推理能力与计算能力,运算量较大,有一定的难度.。
2019年上海市虹口区高考数学一模试卷(含解析版)
2019年上海市虹口区高考数学一模试卷一、填空题1.(4分)计算=.2.(4分)不等式的解集是(用区间表示).3.(4分)设全集U=R,若A={﹣2,﹣1,0,1,2},B={x|y=log2(1﹣x)},则A∩(∁U B)=4.(4分)设常数a∈R,若函数f(x)=log3(x+a)的反函数的图象经过点(2,1),则a =.5.(4分)若一个球的表面积是4π,则它的体积是.6.(4分)函数f(x)=x+(x∈[2,8])的值域为.7.(5分)二项式()6的展开式的常数项为.8.(5分)双曲线﹣=1的焦点到其渐近线的距离为.9.(5分)若复数z=(i为虚数单位),则z的模的最大值为.10.(5分)已知7个实数1,﹣2,4,a,b,c,d依次构成等比数列,若从这7个数中任取2个,则他们的和为正数的概率为.11.(5分)如图,已知半圆O的直径AB=4,△OAC是等边三角形,若点P是边AC(包含端点AC)上的动点,点Q在弧上,且满足OQ⊥OP,则的最小值为.12.(5分)若直线y=kx与曲线y=2﹣|x﹣1|恰有两个公共点,则实数k的取值范围为.二、选择题13.(5分)已知x∈R,则“|x﹣|”是“x<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件14.(5分)关于三个不同平面α,β,γ与直线l,下列命题中的假命题是()A.若α⊥β,则α内一定存在直线平行于βB.若α与β不垂直,则α内一定不存在直线垂直于βC.若α⊥γ,β⊥γ,α∩β=l,则l⊥γD.若α⊥β,则α内所有直线垂直于β15.(5分)已知函数f(x)=,函数g(x)=ax2﹣x+1,若函数y=f(x)﹣g(x)恰好有2个不同零点,则实数a的取值范围是()A.(0,+∞)B.(﹣∞,0)∪(2,+∞)C.(﹣∞,﹣)∪(1,+∞)D.(﹣∞,0)∪(0,1)16.(5分)已知点E是抛物线C:y2=2px(P>0)的对称轴与准线的交点,点F为抛物线C的焦点,点P在抛物线C上,在△EFP中,若sin∠EFP=μ•sin∠FEP,则μ的最大值为()A.B.C.D.三、解答题17.(14分)在如图所示的圆锥中,底面直径与母线长均为4,点C是底面直径AB所对弧的中点,点D是母线P A的中点(1)求该圆锥的侧面积与体积;(2)求异面直线AB与CD所成角的大小.18.(14分)已知函数f(x)=1﹣(a>0,a≠1)是定义在R上的奇函数.(1)求实数a的值及函数f(x)的值域;(2)若不等式t•f(x)≥3x﹣3在x∈[1,2]上恒成立,求实数t的取值范围.19.(14分)某城市的棚户区改造建筑用地平面示意图如图所示,经过调研、规划确定,棚改规划用地区域近似为圆面,该圆的内接四边形ABCD区域是原棚户区建筑用地,测量可知边界AB=AD=2(km),BC=3(km).CD=1(km).(1)求AC的长以及原棚户区建筑用地ABCD的面积;(2)因地理条件限制,边界AD,DC不能更变,而边界AB,BC可以调整,为了增加棚户区建筑用地的面积,请在弧上设计一点P,使得棚户区改造后的新建筑用地(四边形APCD)的面积最大,并求出这个面积的最大值.20.(16分)设椭圆Γ:+y2=1,点F为其右焦点,过点F的直线与椭圆Γ相交于点P,Q.(1)当点P在椭圆Γ上运动时,求线段FP的中点M的轨迹方程;(2)如图1,点R的坐标为(2,0),若点S是点P关于x轴的对称点,求证:点Q,S,R共线;(3)如图2,点T是直线l:x=2上的任意一点,设直线PT,FT,QT的斜率分别为k PT,k FT,k QT.求证:k PT,k FT,k QT成等差数列.21.(18分)对于n(n∈N*)个实数构成的集合E={e1,e2,…,e n},记S E=e1+e2+…+e n.已知由n个正整数构成的集合A={a1,a2,…,a n}(a1<a2<…<a n,n≥3)满足:对于任意不大于S A的正整数m,均存在集合A的一个子集,使得该子集的所有元素之和等于m.(1)求a1,a2的值;(2)求证:“a1,a2,…,a n成等差数列”的充要条件是“S A=(n+1)”(3)若S A=2018.求证:n的最小值是11,并求n取最小值时,a n的最大值.2019年上海市虹口区高考数学一模试卷参考答案与试题解析一、填空题1.(4分)计算=5.【考点】6F:极限及其运算.【专题】11:计算题;52:导数的概念及应用.【分析】当|q|<1时,,由==则可得解.【解答】解:====5.故答案为:5.【点评】本题考查了极限及其运算,属简单题.2.(4分)不等式的解集是(1,2)(用区间表示).【考点】73:一元二次不等式及其应用.【专题】11:计算题.【分析】先将2移项,然后通分,利用同解变形将不等式化为(x﹣2)(x﹣1)<0,利用二次不等式的解法求出解集.【解答】解:不等式同解于:,即,即(x﹣2)(x﹣1)<0,解得1<x<2,所以不等式的解集是(1,2).故答案为:(1,2).【点评】本题考查解决分式不等式时,先通过移项,将右边化为0,然后通过同解变形将分式不等式化为整式不等式来解,属于基础题.3.(4分)设全集U=R,若A={﹣2,﹣1,0,1,2},B={x|y=log2(1﹣x)},则A∩(∁U B)={1,2}【考点】1H:交、并、补集的混合运算.【专题】11:计算题;37:集合思想;49:综合法;5J:集合.【分析】可解出B,然后进行交集、补集的运算即可.【解答】解:B={x|x<1};∴∁U B={x|x≥1};∴A∩(∁U B)={1,2}.故答案为:{1,2}.【点评】考查列举法、描述法表示集合的概念,以及交集和补集的运算.4.(4分)设常数a∈R,若函数f(x)=log3(x+a)的反函数的图象经过点(2,1),则a =8.【考点】4R:反函数.【专题】11:计算题;51:函数的性质及应用.【分析】反函数图象过(2,1),等价于原函数的图象过(1,2),代点即可求得.【解答】解:依题意知:f(x)=log3(x+a)的图象过(1,2),∴log3(1+a)=2,解得a=8.故答案为:8【点评】本题考查了反函数.属基础题.5.(4分)若一个球的表面积是4π,则它的体积是.【考点】LG:球的体积和表面积.【专题】5F:空间位置关系与距离.【分析】由球的表面积是4π,求出球半径为1,由此能求出球的体积.【解答】解:设球的半径为R,∵球的表面积是4π,∴4πR2=4π,解得R=1,∴球的体积V==.故答案为:.【点评】本题考查球的体积的求法,是基础题,解题时要认真审题,注意球的表面积、体积的计算公式的合理运用.6.(4分)函数f(x)=x+(x∈[2,8])的值域为[,9].【考点】34:函数的值域.【专题】11:计算题;51:函数的性质及应用.【分析】直接利用对勾函数的单调性即可求解函数的最大与最小值,从而可求值域【解答】解:由对勾函数的单调性可知,f(x)=x+在[2,2]上单调递减,在(2,8]上单调递增∴当x=2时,函数有最小值f(2)==4,∵f(2)=6,f(8)=9当x=8时,函数有最大值f(8)=9故函数的值域为[4,9]故答案为:[4,9]【点评】本题主要考查了对勾函数的单调性的简单应用,属于基础试题7.(5分)二项式()6的展开式的常数项为60.【考点】DA:二项式定理.【专题】11:计算题.【分析】求出二项式的通项公式,令x的幂指数等于0,求出r的值,即可得到展开式中的常数项.【解答】解:二项式的通项公式为T r+1=C6r2r x﹣r=2r C6r,令3﹣=0,解得r=2.故常数项为4C62=60,故答案为60.【点评】本题主要考查二项展开式的通项公式,求展开式中某项的系数,属于中档题.8.(5分)双曲线﹣=1的焦点到其渐近线的距离为.【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】先由题中条件求出焦点坐标和渐近线方程,再代入点到直线的距离公式即可求出结论.【解答】解:由题得:其焦点坐标为(﹣,0),(,0).渐近线方程为y=±x,即x﹣2y=0,所以焦点到其渐近线的距离d==.故答案为:.【点评】本题以双曲线方程为载体,考查双曲线的标准方程,考查双曲线的几何性质,属于基础题.9.(5分)若复数z=(i为虚数单位),则z的模的最大值为.【考点】A8:复数的模;OM:二阶行列式的定义.【专题】38:对应思想;4R:转化法;56:三角函数的求值;5N:数系的扩充和复数.【分析】由已知展开二阶行列式,求得复数模,利用倍角公式降幂后求最值.【解答】解:∵z==sinθ•i﹣cosθ(i﹣1)=cosθ+(sinθ﹣cosθ)i,∴|z|====.故答案为:.【点评】本题考查二阶行列式的定义,考查复数模的求法及三角函数的化简求值,是中档题.10.(5分)已知7个实数1,﹣2,4,a,b,c,d依次构成等比数列,若从这7个数中任取2个,则他们的和为正数的概率为.【考点】CB:古典概型及其概率计算公式.【专题】11:计算题;38:对应思想;4R:转化法;5I:概率与统计.【分析】这7个实数为1,﹣2,4,﹣8,16,﹣32,64,根据概率公式计算即可.【解答】解:由题意可得,这7个实数为1,﹣2,4,﹣8,16,﹣32,64,①所选2个数均为正数:C42=6,②所选2个一正一负:(﹣2,4),(﹣2,16),(﹣2,64),(﹣8,16),(﹣8,64),(﹣32,64),共6种,∴P==,故答案为:【点评】本题考查了古典概率的问题,关键是列举,属于基础题.11.(5分)如图,已知半圆O的直径AB=4,△OAC是等边三角形,若点P是边AC(包含端点AC)上的动点,点Q在弧上,且满足OQ⊥OP,则的最小值为2.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;5A:平面向量及应用.【分析】由题意可得,====,结合向量数量积的几何意义可知,当P与C重合时,在上的投影最短,代入可求【解答】解:∵OQ⊥OP,∴=0,∵半圆O的直径AB=4,△OAC是等边三角形,且边长为2,由题意可得,====,由数量积的几何意义可知,当P与C重合时,在上的投影最短,此时()min=2×=2.故答案为:2【点评】本题主要考查了平面向量数量积的定义及向量投影定义的简单应用,解题的关键是要把图象问题转化为已知问题.12.(5分)若直线y=kx与曲线y=2﹣|x﹣1|恰有两个公共点,则实数k的取值范围为(﹣∞,0]∪{1}.【考点】53:函数的零点与方程根的关系.【专题】11:计算题;31:数形结合;51:函数的性质及应用.【分析】y=2﹣|x﹣1|=即y=,观察y=kx与y=f(x)可得恰有两个公共点的k的取值范围为:k=1【解答】解:y=2﹣|x﹣1|=,即y=,则y=kx与y=f(x)恰有两个公共点的k的取值范围为:k=1或k≤0,故答案为:(﹣∞,0]∪{1}【点评】本题考查了函数的零点与方程的根的关系,考查了数形结合的思想.二、选择题13.(5分)已知x∈R,则“|x﹣|”是“x<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11:计算题;5L:简易逻辑.【分析】由|x﹣|得:﹣<x<1,再由“﹣<x<1”与“x<1”的关系判断即可【解答】解:由|x﹣|得:﹣<x<1,又“﹣<x<1”能推出“x<1”又“x<1”不能推出“﹣<x<1”即“|x﹣|”是“x<1”的充分非必要条件,故选:A.【点评】本题考查了充分条件、必要条件、充要条件及绝对值不等式的解法,属简单题.14.(5分)关于三个不同平面α,β,γ与直线l,下列命题中的假命题是()A.若α⊥β,则α内一定存在直线平行于βB.若α与β不垂直,则α内一定不存在直线垂直于βC.若α⊥γ,β⊥γ,α∩β=l,则l⊥γD.若α⊥β,则α内所有直线垂直于β【考点】LO:空间中直线与直线之间的位置关系.【专题】31:数形结合;48:分析法;5F:空间位置关系与距离.【分析】根据空间线面位置关系的判定和性质判断或距离说明.【解答】解:对于A,假设α∩β=a,则α内所有平行于a的直线都平行β,故A正确;对于B,假设α内存在直线a垂直于β,则α⊥β,与题设矛盾,故假设错误,故B正确;对于C,设α∩γ=c,β∩γ=d,在γ内任取一点P,作PM⊥c于点M,PN⊥d于点N则PM⊥α,PN⊥β,且PM、PN不可能共线.又l⊂α,l⊂β,∴PM⊥l,PN⊥l.又PM∩PN=P,PM⊂γ,PN⊂γ,∴l⊥γ.故C正确.对于D,假设α∩β=a,则α内所有平行于a的直线都平行β,故D错误.故选:D.【点评】本题主要考查了直线与平面位置关系的判定,考查了空间想象能力和推理论证能力,属于中档题.15.(5分)已知函数f(x)=,函数g(x)=ax2﹣x+1,若函数y=f(x)﹣g(x)恰好有2个不同零点,则实数a的取值范围是()A.(0,+∞)B.(﹣∞,0)∪(2,+∞)C.(﹣∞,﹣)∪(1,+∞)D.(﹣∞,0)∪(0,1)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;13:作图题;51:函数的性质及应用.【分析】化函数y=f(x)﹣g(x)恰好有2个不同零点为函数f(x)+x﹣1与函数y=ax2的图象有两个不同的交点,从而解得.【解答】解:∵f(x)﹣(ax2﹣x+1)=0,∴f(x)+x﹣1=ax2,而f(x)+x﹣1=,作函数y=f(x)+x﹣1与函数y=ax2的图象如下,,结合选项可知,实数a的取值范围是(﹣∞,0)∪(0,1),故选:D.【点评】本题考查了数形结合的思想应用及函数的零点与函数的图象的关系应用.16.(5分)已知点E是抛物线C:y2=2px(P>0)的对称轴与准线的交点,点F为抛物线C的焦点,点P在抛物线C上,在△EFP中,若sin∠EFP=μ•sin∠FEP,则μ的最大值为()A.B.C.D.【考点】K8:抛物线的性质.【专题】35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】设PE的倾斜角为α,则cosα=,当μ取得最大值时,cosα最小,此时直线PM与抛物线相切,将直线方程代入抛物线方程,△=0,求得k的值,即可求得λ的最大值.【解答】解:过P(x轴上方)作准线的垂线,垂足为H,则由抛物线的定义可得|PF|=|PH|,由sin∠EFP=μ•sin∠FEP,则△PFE中由正弦定理可知:则|PE|=μ|PF|,∴|PE|=μ|PH|,设PE的倾斜角为α,则cosα=,当μ取得最大值时,cosα最小,此时直线PM与抛物线相切,设直线PM的方程为x=ty﹣,则,即y2﹣2pty+p2=0,∴△=4p2t2﹣4p2=0,∴k=1,即tanα=1,则cos,则μ的最大值为,故选:C.【点评】本题考查抛物线的标准方程,直线与抛物线的位置关系,考查正弦定理,考查直线与抛物线相切,考查计算能力,属于中档题.三、解答题17.(14分)在如图所示的圆锥中,底面直径与母线长均为4,点C是底面直径AB所对弧的中点,点D是母线P A的中点(1)求该圆锥的侧面积与体积;(2)求异面直线AB与CD所成角的大小.【考点】L5:旋转体(圆柱、圆锥、圆台);LM:异面直线及其所成的角.【专题】11:计算题;5Q:立体几何.【分析】(1)直接利用公式代值求解即可;(2)需取OP中点E,利用DE∥AB化异面直线为共面直线,找到异面直线所成角,求解较易.【解答】解:(1)由题意得,OB=2,PB=4,PO==2,S侧=πrl=8π,==(2)取PO的中点E,连接DE,CE,则∠CDE或其补角即为所求,易证DE⊥面EOC,∴DE⊥EC,DE==1,=,∴,故异面直线AB与DE所成角的大小为.【点评】此题考查了圆锥的侧面积和体积,异面直线所成角等,难度不大.18.(14分)已知函数f(x)=1﹣(a>0,a≠1)是定义在R上的奇函数.(1)求实数a的值及函数f(x)的值域;(2)若不等式t•f(x)≥3x﹣3在x∈[1,2]上恒成立,求实数t的取值范围.【考点】3K:函数奇偶性的性质与判断;3R:函数恒成立问题.【专题】33:函数思想;4R:转化法;51:函数的性质及应用.【分析】(1)根据函数的奇偶性求出a的值,检验即可;(2)问题转化为t≥[(3x﹣3)•]max,令3x﹣1=m,m∈[2,8],根据函数的单调性求出t的范围即可.【解答】解:(1)由f(0)=0,解得:a=3,反之a=3时,f(x)=1﹣=,f(﹣x)=﹣f(x),符合题意,故a=3,由f(x)=1﹣,x→0时,f(x)→﹣1,x→∞时,f(x)→1,故函数的值域是(﹣1,1);(2)f(x)=1﹣在x∈[1,2]递增,故f(x)∈[,],故t≥(3x﹣3)•,故t≥[(3x﹣3)•]max,令3x﹣1=m,m∈[2,8],则(3x﹣3)•=(m﹣2)•=m﹣随m的增大而增大,最大值是,故实数t的取值范围是[,+∞).【点评】本题考查了函数的奇偶性,单调性问题,考查函数恒成立,转化思想,是一道中档题.19.(14分)某城市的棚户区改造建筑用地平面示意图如图所示,经过调研、规划确定,棚改规划用地区域近似为圆面,该圆的内接四边形ABCD区域是原棚户区建筑用地,测量可知边界AB=AD=2(km),BC=3(km).CD=1(km).(1)求AC的长以及原棚户区建筑用地ABCD的面积;(2)因地理条件限制,边界AD,DC不能更变,而边界AB,BC可以调整,为了增加棚户区建筑用地的面积,请在弧上设计一点P,使得棚户区改造后的新建筑用地(四边形APCD)的面积最大,并求出这个面积的最大值.【考点】5A:函数最值的应用.【专题】38:对应思想;49:综合法;58:解三角形.【分析】(1)由圆内接四边形ABCD对角互补,利用余弦定理求得AC的值,再求建筑用地ABCD的面积;(2)设CP=x,AP=y,利用余弦定理和基本不等式求得四边形APCD面积的最大值.【解答】解:(1)四边形ABCD中,B+D=π,∴cos B+cos D=0,即+=0,解得AC=,且cos B=﹣cos D=;∴sin B=sin D=,∴建筑用地ABCD的面积为S=×(2×1+2×3)×sin B=2;(2)设CP=x,AP=y,由余弦定理得x2+y2﹣xy=7,又7=x2+y2﹣xy≥2xy﹣xy=xy,当且仅当x=y时,等号成立;得S四边形APCD=×2×1×+×x×y×≤,所以,当且仅当AP=CP,即P为线段AC垂直平分线与弧交点时,面积最大,此时△APC为等边三角形,面积最大,最大值为.【点评】本题考查了圆内接四边形的面积计算问题和基本不等式的应用问题,是中档题.20.(16分)设椭圆Γ:+y2=1,点F为其右焦点,过点F的直线与椭圆Γ相交于点P,Q.(1)当点P在椭圆Γ上运动时,求线段FP的中点M的轨迹方程;(2)如图1,点R的坐标为(2,0),若点S是点P关于x轴的对称点,求证:点Q,S,R共线;(3)如图2,点T是直线l:x=2上的任意一点,设直线PT,FT,QT的斜率分别为k PT,k FT,k QT.求证:k PT,k FT,k QT成等差数列.【考点】J3:轨迹方程;K4:椭圆的性质.【专题】34:方程思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(1)由椭圆方程可知,F(1,0)设M(x,y),则P(2x﹣1,2y),把P的坐标代入椭圆Γ,即可求得线段FP的中点M的轨迹方程;(2)当PQ的斜率存在时,设其方程为y=k(x﹣1),与椭圆方程联立,利用根与系数的关系证明k RQ=k RS,即Q,S,R共线.而当PQ斜率不存在时,由椭圆对称性,Q,S 重合,结论显然成立,可得Q,S,R共线;(3)设T(2,t),然后证明k PT+k QT﹣2k FT=0即可证明k PT,k FT,k QT成等差数列.【解答】(1)解:由椭圆方程可知,F(1,0)设M(x,y),则P(2x﹣1,2y),由点P在椭圆Γ上,有.∴线段FP的中点M的轨迹方程;(2)证明:当PQ的斜率存在时,设其方程为y=k(x﹣1),P(x1,y1),Q(x2,y2),将y=k(x﹣1)代入椭圆方程并化简得:(2k2+1)x2﹣4k2x+2(k2﹣1)=0.,.∵==[2x1x2﹣3(x1+x2)+4]=.∴k RQ=k RS,即Q,S,R共线.而当PQ斜率不存在时,由椭圆对称性,Q,S重合,结论显然成立,综上,Q,S,R共线;(3)证明:设T(2,t),,由(2)知,,∴k PT+k QT﹣2k FT===﹣t[]=0.故k PT,k FT,k QT成等差数列.【点评】本题考查轨迹方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.21.(18分)对于n(n∈N*)个实数构成的集合E={e1,e2,…,e n},记S E=e1+e2+…+e n.已知由n个正整数构成的集合A={a1,a2,…,a n}(a1<a2<…<a n,n≥3)满足:对于任意不大于S A的正整数m,均存在集合A的一个子集,使得该子集的所有元素之和等于m.(1)求a1,a2的值;(2)求证:“a1,a2,…,a n成等差数列”的充要条件是“S A=(n+1)”(3)若S A=2018.求证:n的最小值是11,并求n取最小值时,a n的最大值.【考点】16:子集与真子集;83:等差数列的性质;8E:数列的求和.【专题】14:证明题;35:转化思想;49:综合法;5J:集合.【分析】(1)由题意能求出a1=1,a2=2.(2)先证明必要性:推导出a n=n,从而S A=.再证充分性:推导出a1=1,a2=2,a3≥3,a4≥4,…,a n≥n,从而S A=a1+a2+…+a n≥1+2+3+…+n=,从而a1,a2,…,a n成等差数列.(3)先证明,(k=1,12,3,…,n),推导出当m∈(2p﹣1﹣1,a p)时,m 不能等于集合A的任何一个子集的所有元素之和,再由反证法求出(k=1,2,…,n)成立,从而2n≥2019,n≥11,推导出a n≤1009,由此能求出当n取最小值11时,a n的最大值为1009.【解答】解:(1)∵由n个正整数构成的集合A={a1,a2,…,a n}(a1<a2<…<a n,n ≥3)满足:对于任意不大于S A的正整数m,均存在集合A的一个子集,使得该子集的所有元素之和等于m.∴a1=1,a2=2.证明:(2)先证明必要性:∵a1=1,a2=2,a1,a2,…,a n成等差数列,∴a n=n,∴S A=.再证充分性:∵a1<a2<…<a n,a1,a2,…,a n为正整数数列,∴a1=1,a2=2,a3≥3,a4≥4,…,a n≥n,∴S A=a1+a2+…+a n≥1+2+3+…+n=,∵S A=(n+1),∴a k=k,(k=1,2,3,…,n),∴a1,a2,…,a n成等差数列.(3)先证明,(k=1,12,3,…,n),假设存在a p>2p﹣1,且p为最小的正整数,由题意p≥3,则a1+a2+…+a p﹣1≤1+2+…+2p﹣2﹣1,∵a1<a2<…<a n,∴当m∈(2p﹣1﹣1,a p)时,m不能等于集合A的任何一个子集的所有元素之和,∴假设不成立,即(k=1,2,…,n)成立,∴2018=a1+a2+…+a p﹣1≤1+2+…+2p﹣2=2p﹣1﹣1,即2n≥2019,∴n≥11,∵S A=2018,∴a1+a2+…+a n﹣1=2018﹣a n,若2018﹣a n<a n﹣1时,则当m∈(2018﹣a n,a n)时,集合A中不可能有不同元素之和为m,∴2018﹣a n≥a n﹣1,即a n≤1009,此时,可构造集合A={1,2,4,8,16,32,64,128,256,498,1009},∵当m∈{2,2+1}时,m可以等于集合{1,2}中若干个不同元素之和,∴当m∈{22,22+1,22+2,22+3}时,m可以等于集合{1,2,22}中若干个不同元素之和,…∴当m∈{28,28+1,28+2,…,28+255}时,m可以等于集合{1,2,22,…,28}中若干个不同元素之和,∴当m∈{498+3,498+4,…,498+511}时,m可以等于集合{1,2,22,…,28,498}中若干个不同元素之和,∴当m∈{1009,1009+1,1009+2,…,1009+1008}时,m可以等于集合{1,2,22,…,498,1009},∴集合A={1,2,4,8,16,32,64,128,256,498,1009}满足题设,∴当n取最小值11时,a n的最大值为1009.【点评】本题考查数列的前两项的求法,考查等差数列的条件的证明,考查集合的项数的最小值的证明,考查运算求解能力,考查化归与转化思想,是中档题.。
2019届上海市高考仿真模拟卷(一)数学试题
2019届上海市高考仿真模拟卷(一)数学试题一、单选题1.如图,水平放置的正三棱柱的俯视图是( )A. B. C. D.【答案】C【解析】由三视图及正三棱柱的几何特征可得解. 【详解】由正三棱柱的几何特征知,俯视图中间有条实线,故选C. 【点睛】本题主要考查了正三棱柱的几何特征和三视图的相关知识,属于基础题. 2.点()2,0P 到直线14,23,x t y t =+⎧⎨=+⎩(t 为参数,t R ∈)的距离为( )A .35 B .45C .65D .115【答案】D【解析】先把直线的参数方程化成普通方程,再根据点到直线的距离公式可得. 【详解】由1423x t y t =+⎧⎨=+⎩消去参数t 可得3x ﹣4y +5=0,根据点到直线的距离公式可得d 223204511534⨯-⨯+==+. 故选:D . 【点睛】本题考查了直线的参数方程化成普通方程,点到直线的距离公式,属基础题. 3.某公司对4月份员工的奖金情况统计如下: 奖金(单位:元) 8000 5000 4000 2000 1000 800 700 600 500 员工(单位:人)1 2461282052根据上表中的数据,可得该公司4月份员工的奖金:①中位数为800元;②平均数为1373元;③众数为700元,其中判断正确的个数为( ) A.0 B.1C.2D.3【答案】C【解析】根据中位数,平均数,众数的概念,结合题中数据,逐个计算,即可得出结果. 【详解】对于①,中位数是指出现在中间位置的数字,由题中数据可知,该公司共60人,处在中间位置的应该是第29和第30,对于的奖金都是800,所以,中位数为800元;①正确;对于②,根据题中数据可得,平均数800010000160001200012000640014000300010004120603++++++++==,故②错;对于③,众数是指出现次数最多的数,由题中数据可得:众数为700元;故③正确. 故选:C 【点睛】本题主要考查求一组数据的中位数、平均数、众数,熟记概念即可,属于基础题型.4.设函数()sin 6f x x π⎛⎫=- ⎪⎝⎭,若对于任意5,62ππα⎡⎤∈--⎢⎥⎣⎦,在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的最小值为( )A.π6 B.π2C.7π6D.π【答案】B【解析】先求()[f α∈,再由存在唯一确定的β,使得()()f f βα=-∈,得2[,)633m πππ-∈,从而得解.【详解】当5,62ππα⎡⎤∈--⎢⎥⎣⎦时,有2,36ππαπ⎡⎤-∈--⎢⎥⎣⎦,所以()[2f α∈-. 在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,所以存在唯一确定的β,使得()()[0,2f f βα=-∈. []0,,[,]666m m πππββ∈-∈--,所以25[,),[,)63326m m πππππ-∈∈.故选B. 【点睛】本题主要考查了三角函数的图像和性质,考查了函数与方程的思想,正确理解两变量的关系是解题的关键,属于中档题.二、填空题5.函数lg y x =的定义域是{}110,,则该函数的值域是_______. 【答案】{}01,【解析】由题意,将x =1和x =10分别代入解析式即可求得结果. 【详解】依题意,当x =1时,y =lg1=0,当x =10时,y =lg10=1,则该函数的值域是{}01,. 故答案为:{}01,.【点睛】本题考查函数的概念和对数函数的基本知识,要求学生必须掌握已知函数定义域,求函数值域的基本题型,属基础题.6.二项式()61x +的展开式中的第三项为_________. 【答案】415x【解析】由二项式定理及二项式展开式的通项公式得:616r rr T C x -+=,令r +1=3,得r =2,从而由通项公式求得结果. 【详解】由二项式()61x +的展开式的通项公式得616r rr T C x -+=,令 r +1=3,得r =2,则二项式()61x +的展开式中的第三项为2626C x-,即415x ,故答案为:415x .本题考查二项式定理的应用,解题的关键在于正确写出二项式展开式的通项公式,属基础题.7.函数2()f x x =,(0,)x ∈+∞的反函数为1()y f x -=,则1(4)f -=________ 【答案】2【解析】求出原函数的反函数,取x =4即可求得f ﹣1(4). 【详解】由y =f (x )=x 2(x >0),得x =则函数f (x )=x 2(x >0)的反函数为y =f ﹣1(x )=∴f ﹣1(4)2==.故答案为:2. 【点睛】本题考查反函数的求法及函数值的求法,是基础题. 8.若复数z 满足2zi a i=+(i 为虚数单位),且实部和虚部相等,则实数a 的值为______. 【答案】2-【解析】由题得z=(a+2i)i=-2+ai,因为复数的实部与虚部相等,即可求出a 的值. 【详解】由题得z=(a+2i)i=-2+ai,因为复数的实部与虚部相等,所以a=-2. 故答案为:-2 【点睛】本题主要考查复数的计算,考查复数实部与虚部的概念,意在考查学生对这些知识的理解能力掌握水平.9.设函数()()cos 06f x x πωω⎛⎫=-> ⎪⎝⎭,若()4f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,则ω的最小值为__________. 【答案】23【解析】根据题意()f x 取最大值4f π⎛⎫⎪⎝⎭,根据余弦函数取最大值条件解得ω的表达式,进而确定其最小值.因为()4f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以()f x 取最大值4f π⎛⎫⎪⎝⎭, 所以22π()8()463k k Z k k Z ωωππ-=∈∴=+∈,,因为0>ω,所以当0k =时,ω取最小值为23.【点睛】函数cos()(0,0)y A x B A ωϕω=++>>的性质 (1)max min =+y A B y A B =-,. (2)周期2π.T ω=(3)由π()x k k Z ωϕ+=∈求对称轴,最大值对应自变量满足2π()x k k ωϕ+=∈Z ,最小值对应自变量满足+2()x k k ωϕππ+=∈Z , (4)由22()22k x k k πππωϕπ-+≤+≤+∈Z 求增区间;由322()22k x k k πππωϕπ+≤+≤+∈Z 求减区间. 10.如果已知极限1lim sin 1n n n →∞⎛⎫= ⎪⎝⎭,那么极限215sinlim 21n n n n →∞--=________. 【答案】12-【解析】在分式215sin21n n n --的分子和分母中同时除以n ,然后利用题中的极限可计算出所求极限的值. 【详解】21515sinsin011limlim 1212022n n n n n n n n n→∞→∞---===----. 故答案为:12-.【点睛】本题考查极限的计算,对代数式进行合理变形是解题的关键,考查计算能力,属于基础题.11.若函数3()log (91)xf x kx =++(k ∈R )为偶函数,则k 的值为________【答案】1-【解析】根据题意,由函数奇偶性的定义可得f (﹣x )=f (x ),即log 3(9x +1)+kx =log 3(9﹣x +1)+k (﹣x ),变形可得k 的值,即可得答案.【详解】根据题意,函数()()391xf x log kx =++(k ∈R )为偶函数,则有f (﹣x )=f (x ),即log 3(9x +1)+kx =log 3(9﹣x +1)+k (﹣x ), 变形可得:2kx =log 3(9﹣x +1)﹣log 3(9x +1)=﹣2x , 则有k =﹣1; 故答案为:﹣1 【点睛】本题考查函数的奇偶性的应用以及对数的运算性质,关键是掌握函数奇偶性的定义,属于基础题.12.一个几何体的三视图如图所示,则该几何体的体积为________.【答案】43【解析】将三视图还原出几何体,找到其底面和高,根据三视图的数据,求出其底面积和高,根据锥体的体积计算公式,得到答案. 【详解】根据三视图,还原出几何体,为三棱锥 根据三视图中的数据可得,三棱锥底面三角形边长为2,高为2,三棱锥的高为2 所以三棱锥的体积为114222=323⨯⨯⨯⨯. 故答案为:43.【点睛】本题考查根据三视图求几何体的体积,属于简单题.13.若函数221()lg 1x x f x x mx ⎧-≤⎪=⎨->⎪⎩在区间[0,)+∞上单调递增,则实数m 的取值范围为________ 【答案】910m ≤【解析】由函数()f x 在区间[)0,+∞上单调递增,得到()f x 在每一部分都单调递增,且212lg 1m -≤-,即可求出结果. 【详解】因为函数()221lg 1x x f x x mx ⎧-≤⎪=⎨->⎪⎩在区间[)0,+∞上单调递增,所以()f x 在每一部分都单调递增,且212lg 1m -≤-,即1121m lg m ≤⎧⎨-≤-⎩,解得910m ≤. 故答案为910m ≤ 【点睛】本题主要考查分段函数单调的问题,只需满足每一部分单调,并且特别主要结点位置的取值即可,属于常考题型. 14.设,若圆()与直线有交点,则的最小值为________ 【答案】【解析】根据直线与圆相交,可得圆心到直线的距离小于等于半径,列出不等式即可求出结果. 【详解】因为圆的圆心为,又圆()与直线有交点, 所以,使得圆心到直线的距离恒成立,即恒成立,其中,又,所以的最小值为.故答案为【点睛】本题主要考查直线与圆位置关系,直线与圆有交点,只需圆心到直线的距离小于等于半径即可,属于常考题型.15.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________ 【答案】12(,]23【解析】由f (x )=x 2﹣(a +2)x +2﹣a <0可得x 2﹣2x +1<a (x +1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出. 【详解】f (x )=x 2﹣(a +2)x +2﹣a <0, 即x 2﹣2x +1<a (x +1)﹣1, 分别令y =x 2﹣2x +1,y =a (x +1)﹣1,易知过定点(﹣1,﹣1), 分别画出函数的图象,如图所示:∵集合A ={x ∈Z|f (x )<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10{120 311a a a -≤--≤<,解得12<a 23≤故答案为:(12,23]【点睛】本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题16.正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,动点P 满足2||OP =,若AP mAB nAD =+,其中m 、n ∈R ,则2122m n ++的最大值是________ 【答案】1【解析】建立合适的直角坐标系写出坐标表示AP AB ,,AD ,又AP mAB nAD =+,所以2212221m cos n sin θθ⎧=+⎪⎪⎨⎪=+⎪⎩,则21222232m cos n sin θθ++=++,其几何意义为过点E (﹣2,﹣2)与点P (sinθ,cosθ)的直线的斜率,由点到直线的距离得:设直线方程为y 2=k (x 2,点P 的轨迹方程为x 2+y 2=1,由点到直线的距离有:2322211k k -≤+,可得解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年上海高考第一次模拟考试理科数学试卷一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、设x R ∈,则不等式13<-x 的解集为______________________2、设iiZ 23+=,期中i 为虚数单位,则Im z =______________________ 3、已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米)5、已知点(3,9)在函数xa x f +=1)(的图像上,则________)()(1=-x fx f 的反函数6、如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________7、方程3sin 1cos2x x =+在区间[]π2,0上的解为___________ 学.科.网8、在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________9、已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________ 10、设.0,0>>b a 若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,则b a +的取值范围是____________11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为.12.在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则BA BP ⋅的取值范围是.13.设[)π2,0,,∈∈c R b a ,若对任意实数x 都有()c bx a x +=⎪⎭⎫⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为.14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点j i A A ,,点P 满足0=++j i OA OA OP ,则点P落在第一象限的概率是.二、选择题(5×4=20)15.设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分也非必要条件 16.下列极坐标方程中,对应的曲线为右图的是( ) (A )θρcos 56+= (B )θρin s 56+= (C )θρcos 56-= (D )θρin s 56-=17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a (C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a18、设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题 学科.网三、解答题(74分)19.将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧。
(1)求三棱锥111C O A B -的体积;学.科网 (2)求异面直线1B C 与1AA 所成的角的大小。
C1AA1BO20、(本题满分14)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图 (1)求菜地内的分界线C 的方程(2)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为38。
设M 是C 上纵坐标为1的点,请计算以EH 为一边、另一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于1S 面积的经验值21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b-=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点。
(1)若l 的倾斜角为2π,1F AB ∆是等边三角形,求双曲线的渐近线方程; (2)设3b =,若l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率. 学科&网22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知a R ∈,函数21()log ()f x a x=+.(1)当5a =时,解不等式()0f x >;(2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a 的取值范围; (3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.23. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.2019年上海高考第一次模拟考试参考答案1. )4,2(2. 3-3.552 4. 76.1 5. 2log (x 1)- 6. 227. 566ππ或 8. 1129.337 10. 2+∞(,) 11. 4 12. [0,12]+ 13. 414.528 15.A 16.D 17.B 18.D19. (1)由题意可知,圆柱的高1h =,底面半径1r =. 由11A B 的长为3π,可知1113π∠A O B =. 111111111113sin 24S ∆O A B =O A ⋅O B ⋅∠A O B =, 111111C 13V 312S h -O A B ∆O A B =⋅=.(2)设过点1B 的母线与下底面交于点B ,则11//BB AA ,所以1C ∠B B 或其补角为直线1C B 与1AA 所成的角. 由C A 长为23π,可知2C 3π∠AO =, 又1113π∠AOB =∠A O B =,所以C 3π∠OB =,从而C ∆OB 为等边三角形,得C 1B =. 因为1B B ⊥平面C AO ,所以1C B B ⊥B . 在1C ∆B B 中,因为1C 2π∠B B =,C 1B =,11B B =,所以1C 4π∠B B =,从而直线1C B 与1AA 所成的角的大小为4π. 20. (1)因为C 上的点到直线EH 与到点F 的距离相等,所以C 是以F 为焦点、以 EH 为准线的抛物线在正方形FG E H 内的部分,其方程为24y x =(02y <<). (2)依题意,点M 的坐标为1,14⎛⎫⎪⎝⎭. 所求的矩形面积为52,而所求的五边形面积为114.矩形面积与“经验值”之差的绝对值为581236-=,而五边形面积与“经验值”之差 的绝对值为11814312-=,所以五边形面积更接近于1S 面积的“经验值”. 考点:1.抛物线的定义及其标准方程;2.面积. 21(1)设(),x y A A A .由题意,()2F ,0c ,21c b =+,()22241y b c b A =-=,因为1F ∆AB 是等边三角形,所以23c y A =, 即()24413b b +=,解得22b =. 故双曲线的渐近线方程为2y x =±. (2)由已知,()1F 2,0-,()2F 2,0.设()11,x y A ,()22,x y B ,直线:l ()2y k x =-.显然0k ≠.由()22132y x y k x ⎧-=⎪⎨⎪=-⎩,得()222234430k x k x k --++=. 因为l 与双曲线交于两点,所以230k -≠,且()23610k ∆=+>. 设AB 的中点为(),x y M M M .由()11F F 0A +B ⋅AB =即1F 0M⋅AB =,知1F M ⊥AB ,故1F 1k k M ⋅=-. 而2122223x x k x k M +==-,()2623k y k x k M M =-=-,1F 2323kk k M =-, 所以23123k k k ⋅=--,得235k =,故l的斜率为155±. 22.解:(1)由21log 50x ⎛⎫+>⎪⎝⎭,得151x +>,解得()1,0,4x ⎛⎫∈-∞-+∞ ⎪⎝⎭.(2)()1425a a x a x+=-+-,()()24510a x a x -+--=, 当4a =时,1x =-,经检验,满足题意. 当3a =时,121x x ==-,经检验,满足题意. 当3a ≠且4a ≠时,114x a =-,21x =-,12x x ≠. 1x 是原方程的解当且仅当110a x +>,即2a >; 2x 是原方程的解当且仅当210a x +>,即1a >. 于是满足题意的(]1,2a ∈. 综上,a 的取值范围为(]{}1,23,4.(3)当120x x <<时,1211a a x x +>+,221211log log a a x x ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在()0,+∞上单调递减.函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +.()()22111log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭即()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立. 因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥. 故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.23.解析:(1)因为52a a =,所以63a a =,743a a ==,852a a ==. 于是678332a a a a ++=++,又因为67821a a a ++=,解得316a =. (2){}n b 的公差为20,{}n c 的公比为13, 所以()12012019n b n n =+-=-,1518133n n n c --⎛⎫=⋅= ⎪⎝⎭.520193n n n n a b c n -=+=-+.1582a a ==,但248a =,63043a =,26a a ≠, 所以{}n a 不具有性质P . (3)[证]充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=. 充分性得证. 必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N , 使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠. 设()sin f x x x b =--,取m *∈N ,使得m b π>,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.取1a c =,因为1sin n n a b a +=+(1n k ≤≤),所以21sin a b c c a =+==, 依此类推,得121k a a a c +==⋅⋅⋅==.但2111sin sin sin k k k k a b a b c b c ++++=+=+≠+,即21k k a a ++≠. 所以{}n a 不具有性质P ,矛盾. 必要性得证.综上,“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”.。