2020-2021学年湖北省咸宁市咸安区九年级上学期期末考试数学试卷及答案解析
2020-2021年九年级上册期末数学试题(含答案)
2020-2021年九年级上册期末数学试题(含答案)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差2.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .105C .3 D .10103.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( ) A .213y y << B .123y y <<C .213y y <<D .213y y <<4.若将二次函数2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+5.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25° 6.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=07.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交B .相切C .相离D .无法确定8.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <19.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .410.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+311.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7512.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .13.一组数据0、-1、3、2、1的极差是( ) A .4 B .3 C .2 D .1 14.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .10015.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(163,45) C .(203,45) D .(163,43) 二、填空题16.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .17.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.18.数据2,3,5,5,4的众数是____.19.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.20.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)21.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.22.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm .23.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .24.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.25.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 26.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.27.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.28.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.29.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)30.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.三、解答题31.(1)解方程:234x x -=;(2)计算:2tan 60sin 452cos30︒+︒-︒32.某景区检票口有A 、B 、C 、D 共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票. (1)甲选择A 检票通道的概率是 ;(2)求甲乙两人选择的检票通道恰好相同的概率.33.已知二次函数y =(x -m )(x +m +4),其中m 为常数. (1)求证:不论m 为何值,该二次函数的图像与x 轴有公共点.(2)若A (-1,a )和B (n ,b )是该二次函数图像上的两个点,请判断a 、b 的大小关系. 34.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.12月17日12月18日 12月19日 12月20日 12月21日最高气温(℃) 10 67 8 9最低气温(℃)1 0 ﹣1 0 335.如图,转盘A 中的6个扇形的面积相等,转盘B 中的3个扇形的面积相等.分别任意转动转盘A 、B 各1次,当转盘停止转动时,将指针所落扇形中的2个数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.(1)用表格列出这样的点所有可能的坐标;(2)求这些点落在二次函数y =x 2﹣5x +6的图象上的概率.四、压轴题36.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.37.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<,设线段AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.38.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)39.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan2CDE∠=,记AD x=,ABC∆面积和DBC∆面积的差为y,直接写出y关于x的函数关系式.40.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.A解析:A 【解析】 【分析】根据勾股定理,可得BD 、AD 的长,根据正切为对边比邻边,可得答案. 【详解】解:如图作CD ⊥AB 于D, CD=2,AD=22, tanA=21222CD AD ==, 故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.A解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.4.C解析:C 【解析】 【分析】根据抛物线的平移规律:上加下减,左加右减解答即可. 【详解】 解:将2yx 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x =+-. 故选:C. 【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.5.D解析:D 【解析】 【分析】根据圆周角定理计算即可. 【详解】解:由圆周角定理得,1252A BOC ∠=∠=︒,故选:D . 【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.C解析:C 【解析】 【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可. 【详解】 A 、x 2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意; B 、x 2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意; C 、x 2﹣2x+1=0, △=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D 、x 2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意; 故选:C . 【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.7.B解析:B 【解析】 【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切. 【详解】∵圆心到直线的距离5cm=5cm , ∴直线和圆相切, 故选B . 【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.8.D解析:D 【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9.B解析:B 【解析】分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下, ∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确; ②当x=﹣1时,a ﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.10.D解析:D【解析】【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y=x2先向右平移1个单位得y=(x﹣1)2,再向上平移3个单位得y=(x﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.11.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴22,34∵CD=DB,∴AD=DC=DB=5,2∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.12.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.13.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.14.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.15.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F ⊥x 轴于点F ,过A 作AE ⊥x 轴于点E ,∵A 的坐标为(2∴OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt △ABE 中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F 22⋅⋅=3O'F 2⋅=,∴.在Rt △O′FB 中,由勾股定理可求83=,∴OF=820433+=.∴O′的坐标为(20,33). 故选C .【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.二、填空题16.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.解析:53π 【解析】【分析】直接利用弧长公式180n R l π=进行计算. 【详解】解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 17.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.18.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.19.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.()【解析】设它的宽为xcm .由题意得 .∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10510)【解析】设它的宽为x cm .由题意得51:20x -=. ∴10510x = .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即12,近似值约为0.618.21.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=12BC=3,∵OB=12AB=5,∴在Rt△OBD中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.22.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,90=25180R∴R=20,225515 .故答案为:【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.23.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm∴较小的三角形的周长为643484cm ⨯=故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.24.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长. 【详解】 过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则. 【点睛】本题考查勾股定解析:2【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解. 25.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.26.60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC==10(cm ),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ), ∴圆锥的侧面积是:12610602r l rl ππππ⋅⋅==⋅⨯=(cm 2). 故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键. 27.8【解析】【分析】在Rt△ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos∠DAC=sinC 得到tanB =,接着在Rt△A解析:8【解析】【分析】在Rt△ADC中,利用正弦的定义得sin C=ADAC=1213,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.28.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=2,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=104,在Rt△ECF中,sin∠AEC=2252510CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.29.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S 甲2>S 乙2,∴成绩较为稳定的是乙; 故答案为:乙. 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.30.7 【解析】 【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值. 【详解】 解:∵, ∴, ∴, ∴, ∴;故答案为:7. 【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7 【解析】 【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值. 【详解】解:∵2430x x +-=, ∴243x x +=, ∴2447x x ++=, ∴2(2)7x +=, ∴7n =; 故答案为:7. 【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤.三、解答题31.(1)x 1=-1,x 2=4;(2)原式=12【解析】 【分析】(1)按十字相乘的一般步骤,求方程的解即可; (2)把函数值直接代入,求出结果 【详解】解:(1)234x x -= (x+1)(x-4)=0 ∴x 1=-1,x 2=4;(2)原式2=12【点睛】本题考查了因式分解法解一元二次过程、特殊角的三角函数值及实数的运算,解决(1)的关键是掌握十字相乘的一般步骤;解决(2)的关键是记住特殊角的三角函数值. 32.(1)14;(2)14. 【解析】 【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解. 【详解】(1)解:一名游客经过此检票口时,选择A 通道通过的概率=14, 故答案为:14; (2)解:列表如下:共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E ,它的发生有4种可能:(A ,A )、(B ,B )、(C ,C )、(D ,D )∴P(E)=416=14.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.33.(1)见解析;(2)①当n=-3时,a=b;②当-3<n<-1时,a>b ;③当n<-3或n>-1时,a<b【解析】【分析】(1)方法一:当y=0时,(x-m)(x-m-4)=0,解得x1=m,x2=-m-4,即可得到结论;方法二:化简得y=x2+4x-m2-4m,令y=0,可得b2-4ac≥0,即可证明;(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a与b 的大小.【详解】(1)方法一:令y=0,(x-m)(x+m+4)=0,解得x1=m;x2=-m-4.当m=-m-4,即m=-2,方程有两个相等的实数根,故二次函数与x轴有一个公共点;当m≠-m-4,即m≠-2,方程有两个不相等的实数根,故二次函数与x轴有两个公共点.综上不论m为何值,该二次函数的图像与x轴有公共点.方法二:化简得y=x2+4x-m2-4m.令y=0,b2-4ac=4m2+16m+16=4(m+2)2≥0,方程有两个实数根.∴不论m为何值,该二次函数的图像与x轴有公共点.(2)由题意知,函数的图像的对称轴为直线x=-2①当n=-3时,a=b;②当-3<n<-1时,a>b③当n<-3或n>-1时,a<b【点睛】本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程,并且注意分情况讨论. 34.见解析【解析】【分析】根据题意,先算出各组数据的平均数,再利用方差公式计算求出各组数据的方差比较大小即可.【详解】∵x 高=()110+6+7+8+9=85⨯(℃),x 低 =()11+01+0+3=0.65⨯-(℃),2S 高=()()()()()222221108687888985⎡⎤⨯-+-+-+-+-⎣⎦=2(℃2)2S 低=()()()()()22222110.600.610.600.630.65⎡⎤⨯-+-+--+-+-⎣⎦=1.84(℃2)∴2S 高>2S 低∴这5天的日最高气温波动大. 【点睛】本题考查方差的应用,解题的关键是熟练掌握方差公式:S 2=()()()()22123221...n x x x x x x x x n ⎡⎤-+-+-++-⎢⎥⎣⎦.35.(1)见解析;(2)19【解析】 【分析】(1)根据题意列表,展示出所有等可能的坐标结果;(2)由(1)可求得点落在二次函数y =x 2﹣5x +6的图象上的结果数,再根据概率公式计算即可解答. 【详解】(1)根据题意列表如下:(2)由上表可知,点(1,2)、(4,2)都在二次函数y =x 2﹣5x +6的图象上, 所以P (这些点落在二次函数y =x 2﹣5x +6的图象上)=218=19. 【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.四、压轴题36.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析【解析】【分析】(1)①证明△ACD≌△BCF,得到∠CAD=∠CBF即可得到∠AEF=∠BCF=90°即可;②根据已知条件画图即可;(2)取AB的中点M,根据直角三角形斜边上的中线等于斜边的一半可得到点A,B,C,E四点在同一个圆M上,再利用圆周角定理即可证明.【详解】解:(1)①∵,90AC BC ACB︒=∠=,CD CF=∴在△ACD与△BCF中,AC BCACD ACBCD CF=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCF(SAS)∴∠CAD=∠CBF又∵∠AFE=∠BFC∴∠AEF=∠BCF=90°,∴BE⊥AD②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE,取AB的中点M,连接MC,ME∵△ABC和△ABE都是直角三角形∴12MC ME AB AM BM====,∴点A,B,C,E四点在同一个圆M上,∴∠BEC=∠BAC=45°,。
湖北省咸宁市咸安区九年级上学期期末考试数学试卷及答案解析
第 1 页 共 28 页
2019-2020学年湖北省咸宁市咸安区九年级上学期期末考试
数学试卷
一、精心选一选(本大题共8小题,每小题3分,共24分,每小题给出的4个选项中只有一个符合题意,请将所选项的字母代号写在题后的括号里)
1.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A .
B .
C .
D .
2.下列说法错误的是( )
A .必然事件发生的概率是1
B .通过大量重复试验,可以用频率估计概率
C .概率很小的事件不可能发生
D .投一枚图钉,“钉尖朝上”的概率不能用列举法求得
3.对于二次函数y =(x ﹣1)2+2的图象,下列说法正确的是( )
A .开口向下
B .对称轴是直线x =﹣1
C .顶点坐标是(﹣1,2)
D .与x 轴没有交点
4.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组
其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )
A .x (x +1)=210
B .x (x ﹣1)=210
C .2x (x ﹣1)=210
D .12x (x ﹣1)=210 5.已知⊙O 半径为3,M 为直线AB 上一点,若MO =3,则直线AB 与⊙O 的位置关系为( )
A .相切
B .相交
C .相切或相离
D .相切或相交
6.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC =124°,点E 在AD 的
延长线上,则∠CDE 的度数为( )。
2020-2021上学期年九年级数学上学期期末测试卷01(人教版湖北专用)(解析版)
2020-2021学年九年级数学上学期期末测试卷01一、选择题(每小题3分,共30分)1. (2020营口)一元二次方程2560x x -+=的解为( ) A .122,3x x ==- B .122,3x x =-= C .122,3x x =-=- D .122,3x x == 【答案】C【解析】(x-2)(x-3)=0, x-2=0或x-3=0, ∴x 1=-2, x 2=3, 故选D .2.(2020广州)下列图形中既是轴对称图形,也是中心对称图形的是( )A. B. C. D.【答案】B【解析】A 图既不是轴对称也不是中心对称;C 图为轴对称,但不是中心对称;D 图为中心对称,但不是轴对称,故选B.3.6月15日“父亲节”,小明送给父亲一个礼盒(如图),该礼盒的俯视图是( )A. B. C . D .【答案】C【解析】从上面往下面看,是四个矩形,故选C .4.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tanA =( )A .53 B .54 C .43 D .34 【答案】D【解析】在直角△ABC 中,∵∠ABC=90°,∴tanA=34=AB BC .故选D . 5.下列事件中为必然事件的是( )A .打开电视机,正在播放茂名新闻B .早晨的太阳从东方升起C .随机掷一枚硬币,落地后正面朝上D .下雨后,天空出现彩虹 【答案】B【解析】A 、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B 、早晨的太阳从东方升起,是必然事件,故本选项正确;C 、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D 、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.故选B . 6.在同一平面直角坐标系中,函数y =mx +m 与y =xπ(m ≠0)的图象可能是( ) A. B. C. D.【答案】A【解析】A 、由函数y =mx +m 的图象可知m >0,由函数y =xπ的图象可知m >0,故本选项正确;B 、由函数y =mx +m 的图象可知m <0,由函数y =xπ的图象可知m >0,相矛盾,故本选项错误;C 、由函数y =mx +m 的图象y 随x 的增大而减小,则m <0,而该直线与y 轴交于正半轴,则m >0,相矛盾,故本选项错误;D 、由函数y =mx +m 的图象y 随x 的增大而增大,则m >0,而该直线与y 轴交于负半轴,则m <0,相矛盾,故本选项错误;故选A .7.如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使该角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的个数是( )A .4B .5C .6D .7 【答案】B【解析】360÷30=12;360÷60=6;360÷90=4;360÷120=3;360÷180=2.因此n 的所有可能的值共五种情况,故选B .8.如图,AB 是⊙O 的直径,C ,D 是⊙O 上两点,CD ⊥AB .若∠DAB =65°,则∠BOC =( )A .25°B .50°C .130°D .155° 【答案】C【解析】∵CD ⊥AB .∠DAB=65°,∴∠ADC=90°﹣∠DAB=25°,∴∠AOC=2∠ADC=50°,∴∠BOC=180°﹣∠AOC=130°.故C .9.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为120°,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( )A .2100cm π B .2400cm 3π C .2800cm 3π D .2800cm π 【答案】C【解析】)(3800360201203603012022cm s πππ=⨯-⨯=10. 若A (– 4,y 1),B (– 3,y 2),C (1,y 3)为二次函数y =x 2+4x –5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .312y y y <<B .y 1<y 2<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2 【答案】A【解析】二次函数542-+=x x y 可变形为:9)2(2-+=x y ,由此可知,抛物线的顶点坐标为:)9,2(--,对称轴为2-=x ,又因为01>=a ,所以当2-<x 时,y 随x 的增大而减少,又234-<-<-,因此21y y >;由抛物线的轴对称性可知,3y 的值等于二次函数在5-=x 处的函数值,因为当2-<x 时,y 随x 的增大而减少,2345-<-<-<-,所以312y y y <<.二、填空题(每小题3分,共24分)11.写一个你喜欢的实数m 的值 ,使关于x 的一元二次方程x 2–x +m =0有两个不相等的实数根. 【答案】0【解析】根据题意得:△=1- 4m >0,解得:m <41,则m 可以为0. 12.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是______. 【答案】31 【解析】如图所示:取出的两个数字都是奇数的概率是:3162=. 13. 已知⊙O 的半径是6cm ,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是 . 【答案】相交【解析】设圆的半径为r ,点O 到直线l 的距离为d ,∵d=5,r=6,∴d <r ,∴直线l 与圆相交.14.(2020广州)如图,已知四边形ABCD ,AC 与BD 相交于点O ,∠ABC =∠DAC =90°= .【答案】328【解析】过B 点作BE//AD 交AC 于点E ,则BE ⊥AD ,△ADO ∽△EBO ,∴CE=2BE=4AE ,∴15.(2020怀化)如图是一个几何体的三视图,根据图中所示数据求得个几何体的侧面积是______.(结果保留π)【答案】24π【解析】由三视图可知该几何体是圆柱体,其底面半径是4÷2=2,高是6,圆柱的侧面展开图是一个长方形,长方形的长是圆柱体的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π, ∴这个圆柱的侧面积是4π×6=24π. 故答案为:24π.16.规定:sin (–x )= –sin x ,cos (–x )= cos x ,sin (x +y )=sinx ·cosy +cosx ·siny ,据此判断下列等式成立的是 (写出所有正确的序号).①cos (– 60°)= – 12;② sin 75°= 6+24;③sin 2x =2sinx ·cosx ;④sin (x –y )=sinx ·cosy –cosx ·siny .【答案】②③④.【解析】①cos (–60°)=cos60°=21,命题错误;②sin75°=sin (30°+45°)=sin30°•cos45°+cos30°•sin45°=21×22+23×22=42+46=426 ,命题正确;③sin2x=sinx•cosx+cosx•sinx═2sinx•cosx ,故命题正确;④sin (x –y )=sinx•cos (–y )+cosx•sin (–y )=sinx•cosy–cosx•siny ,命题正确.故答案是:②③④. 17.如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是 cm .【答案】4.【解析】∵把一个半径为12cm 的圆形硬纸片等分成三个扇形,∴扇形的弧长为:13×2πr=8π,∵扇形的弧长等于圆锥的底面周长,∴2πr=8π,解得:r=4cm ,故答案为:4.18.如图,已知在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数y =xk(k ≠0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD .若△OCD ∽△ACO ,则直线OA 的解析式为 .【答案】y =2x .【解析】设OC =a ,∵点D 在y =k x 上,∴CD =k a, ∵△OCD ∽△ACO ,∴OC AC CD OC =,∴AC =2OC CD =3a k ,∴点A (a ,3a k ), ∵点B 是OA 的中点,∴点B 的坐标为(2a,32a k ),∵点B 在反比例函数图象上,∴2k a =32a k ,解得,a 2=2k ,∴点B 的坐标为(2a ,a ), 设直线OA 的解析式为y =mx ,则m •2a=a ,解得m =2,所以,直线OA 的解析式为y =2x . 故答案为:y =2x . 三、解答题(共66分)19.(8分)(1)解方程:.0)10553(|4|222=--+--y x y x(2)如图,一渔船由西往东航行,在A 点测得海岛C 位于北偏东40°的方向,前进20海里到达B 点,此时,测得海岛C 位于北偏东30°的方向,求海岛C 到航线AB 的距离CD 是多少海里.【答案】(1),;(2) 【解析】(1)解:∵, ∴x 2﹣y 2﹣4=0,, ∴由,得,代入x 2﹣y 2﹣4=0得: 整理得:,解得:,,(2)解:根据题意可知∠CAD=30°,∠CBD=60°, ∵∠CBD=∠CAD+∠ACB , ∴∠CAD=30°=∠ACB , ∴AB=BC=20海里,在Rt △CBD 中,∠BDC=90°,∠DBC=60°,sin ∠DBC=CDBC, ∴sin60°=CDBC, ∴CD=12×sin60° 20.(6分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将△ABC 向下平移4个单位,得到△A ′B ′C ′,再把△A ′B ′C ′绕点C ′顺时针旋转90°,得到△A ′′B ′′C ′′,请你画出△A ′B ′C ′和△A ′′B ′′C ′′(不要求写画法).51=x 522=x 0)10553(|4|222=--+--y x y x 010553=--y x 010553=--y x 2553-=x y 04)2553(22=---x x 010532=+-x x 51=x 522=x【答案】见解析.【解析】如图所示.21.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(−1,2),B(−3,4),C (−2,6),(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.【答案】(1)见解析;(2)见解析.【解析】如图:(1)△A1B1C1即为所求;(2)△A 2B 2C 2 即为所求.22.(8分)如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF =∠ABC .(1)求证:AB =AC ; (2)若AD =4,cos ∠ABF =54,求DE 的长. 【答案】(1)见解析;(2)DE=74.【解析】(1)证明:∵BF 是⊙O 的切线,∴∠3=∠C , ∵∠ABF=∠ABC ,即∠3=∠2,∴∠2=∠C , ∴AB=AC ;(2)如图,连接BD ,在Rt △ADB 中,∠BAD=90°, ∵cos ∠ADB=AD BD ,∴BD=cos cos AD AD ADB ABF =∠∠ = =445=5,∴AB=3.在Rt △ABE 中,∠BAE=90°, ∵cos ∠ABE=AB BE ,∴BE=cos AB ABE ∠=345=154, ∴94,∴DE=AD ﹣AE=4﹣94=74.23.(8分)(2020随州)如图,某楼房AB 顶部有一根天线BE ,为了测量天线的高度,在地面上取同一条直线上的三点C ,D ,A ,在点C 处测得天线顶端E 的仰角为60︒,从点C 走到点D ,测得5CD =米,从点D 测得天线底端B 的仰角为45︒,已知A ,B ,E 在同一条垂直于地面的直线上,25AB =米.(1)求A 与C 之间的距离;(2)求天线BE 的高度.1.73≈,结果保留整数) 【答案】(1),A C 之间的距离为30米;(2)天线BE 的高度约为27米. 【解析】(1)依题意可得,在Rt ABD 中,45ADB ∠=︒ ,25AD AB ∴==米,5CD =米,25530AC AD CD ∴=+=+=米.即,A C 之间的距离为30米.(2)在Rt ACE 中,60ACE ∠=︒,30AC =米,30tan60AE ∴=⋅︒=, 25AB =米,25)(BE AE AB ∴=-=-米.173≈..并精确到整数可得27BE ≈米. 即天线BE 的高度约为27米.24.(8分)端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果; (2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少? 【答案】(1)画树状图见解析;(2)P=61. 【解析】(1)画树状图如下:(2)∵一共有6种等可能的结果,当两个转盘的指针所指字母都相同时的结果有一个, ∴P=61. 25.(10分)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数y =﹣200x 2+400x 刻画;1.5小时后(包括1.5小时)y 与x 可近似地用反比例函数y =(k >0)刻画(如图所示). (1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少? ②当x =5时,y =45,求k 的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.【答案】(1)①喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②k= 225;(2)第二天早上7:00不能驾车去上班.理由见解析.【解析】(1)①y=﹣200x2+400x=﹣200(x﹣1)2+200,∴喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②∵当x=5时,y=45,y=(k>0),∴k=xy=45×5=225;(2)不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=225x,则y=22511>20,∴第二天早上7:00不能驾车去上班.26. (10分)(2020广州)如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(-3,0)和B(1,0),与y 轴交于点C,顶点为D.(1)求解抛物线解析式;(2)连接AD,CD,BC,将△OBC沿着x轴以每秒1个单位长度的速度向左平移,点O、B、C,,,设平移时间为t与点A重合时停止移动。
2020-2021学年度第一学期九年级数学期末考试试卷及答案
2020-2021学年度第⼀学期九年级数学期末考试试卷及答案2020-2021学年度第⼀学期期末考试试卷九年级数学⼀、选择题:本⼤题共10⼩题,每⼩题3分,共30分,每⼩题只有⼀个正确选项,将此选项的字母填在题后括号内.1.下列图形中既是轴对称图形⼜是中⼼对称图形的是( )2.⼀元⼆次⽅程xx=-232化成⼀般形式后,⼆次项系数为3,它的⼀次项系数和常数项分别是( )A.1、2B.-1、-2C.3、2D.0、-23.⊙O的半径r=10cm,圆⼼到直线的距离OA=8cm,则直线与圆的位置关系是( )A.相交B.相切C.相离D.不确定4.有下列四个说法,其中正确说法的个数是( )①图形旋转时,位置保持不变的点只有旋转中⼼;②图形旋转时,图形上的每⼀个点都绕着旋转中⼼旋转了相同的⾓度;③图形旋转时,对应点与旋转中⼼的距离相等;④图形旋转时,对应线段相等,对应⾓相等,图形的形状和⼤⼩都没有发⽣变化A.1个B.2个C.3个D.4个5.对于抛物线3)1(2y2+--=x,下列判断正确的是( )A.抛物线的开⼝向上B.抛物线的顶点坐标为(-1,3)C.对称轴为直线x=1D.当x>1时,y随x的增⼤⽽增⼤6.如图,点A,B,C三点均在⊙O上,若∠A=30°,则∠BOC的度数是( )A.30°7.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40°,则∠B的度数为( )A.80°B.60°C.50°D.40°8.某超市⼀⽉份的营业额为100万元,第⼀季度的营业额共800万元,如果平均每⽉增长率为x,则所列⽅程应为( )A.100(1+x)2=800B.100+100×2x=800C.100+100×3x=800D.100[1+(1+x)+(1+x)2]=8009.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内⊙C上⼀点,∠BMO=120°,则⊙C的直径为( )A.6B.5C.3D.2310.⼆次函数)0(2≠++=acbxaxy的顶点坐标为(﹣1,n),其部分图象如图所⽰.以下结论错误的是( )A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的⽅程12+=++ncbxax⽆实数根.⼆、填空题:本⼤题共8⼩题,每⼩题3分,共24分.11.中国汉字有许多具有⼏何图形的特性,观察“⽺,⼠,⽥,旦”这4个汉字有⼀个共同特性都是________图形,其中_______字可看成中⼼对称图形.12.点P(-1,2)关于原点的对称点坐标为.13.抛物线23xy=先向右平移2个单位,再向上平移5个单位,所得抛物线的解析式为___ __.14.如图,△ABC为等边三⾓形,D为△ABC内⼀点,△ABD逆时针旋转后到达△ACP 的位置,则(1)旋转中⼼是____;(2)旋转⾓度是______;(3)△ADP是______三⾓形.15.如图所⽰,图中五⾓星绕着中⼼O最⼩旋转度能与⾃⾝重合.16.若⽅程有两个相等的实数根,则k= _________.17.如图,⊙O是等边三⾓形ABC的外接圆,点D是⊙O上⼀点,则∠BDC= _________.题号⼀⼆三四总分得分第15题图第14题图第17题图第18题图第6题图第10题图第7题图第9题图第1页(共4页)。
咸宁市2020版九年级上学期数学期末考试试卷(II)卷
咸宁市2020版九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·宁波模拟) 掷一枚质地均匀的硬币10次,下列说法正确的是()A . 必有5次正面朝上B . 可能有5次正面朝上C . 至少有1次正面朝上D . 不可能有10次正面朝上2. (2分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)(2020·和平模拟) 下列说法正确的是()A . “三角形任意两边之差小于第三边”是必然事件B . 在连续5次的测试中,两名同学的平均分相同,方差较大的同学成绩更稳定C . 某同学连续10次抛掷质量均匀的硬币,6次正面向上,因此正面向上的概率是60%D . 检测某品牌笔芯的使用寿命,适宜用普查4. (2分)如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A . 50°B . 20°C . 60°D . 70°5. (2分) (2019八下·西湖期末) 为了美化校园环境,加大校园绿化投资.某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x,则()A . 18(1+2x)=33B . 18(1+x2)=33C . 18(1+x)2=33D . 18(1+x)+18(1+x)2=336. (2分)(2018·青海) 关于一元二次方程根的情况,下列说法正确的是()A . 有一个实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 没有实数根7. (2分)已知二次函数y=﹣3(x﹣h)2+5,当x>﹣2时,y随x的增大而减小,则有()A . h≥﹣2B . h≤﹣2C . h>﹣2D . h<﹣28. (2分) (2016八上·六盘水期末) 点(4,﹣3)关于X轴对称的点的坐标是()A . (﹣4,3)B . (4,-3)C . (﹣4,-3)D . (4,3)9. (2分) (2020九上·海曙期末) 如图,在平面直角坐标系中,A点坐标为(1,6),B点坐标为(5,2),点C为线段AB的中点,点C绕原点O顺时针旋转90°,那么点C的对应点坐标及旋转经过的路径长为()A . (-4,3),B . (-4,3),C . (4,-3),D . (4,-3),10. (2分)割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数 y=的图象与两坐标轴所围成的图形最接近的面积是()A . 5B .C . 4D . 17﹣4π二、填空题 (共7题;共7分)11. (1分) (2017七下·泰兴期末) 已知,且,那么的值为________.12. (1分) (2018九下·鄞州月考) 一个不透明的袋子中有2个红球、3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是红色球的概率为________ .13. (1分)(2017·娄底模拟) 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高CD为________米.14. (1分)如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为________.15. (1分)如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2 ,那么设小道进出口的宽度为x米,列方程是________;16. (1分) (2018九上·清江浦期中) 已知一个圆锥的底面半径为2cm,母线长为8cm,则这个圆锥的侧面积为________cm2.17. (1分)(2018·福建模拟) 如图,线段AB的端点A、B分别在x轴和y轴上,且A(2,0),B(0,4),将线段AB绕坐标原点O逆时针旋转90°得线段A'B',设线段AB'的中点为C,则点C的坐标是________.三、解答题 (共9题;共78分)18. (5分)如图,有一拱桥呈圆弧形,它的跨度(所对弦长AB)为60m,拱高18m,当水面涨至其跨度只有30m时,就要采取紧急措施.某次洪水来到时,拱顶离水面只有4m,问:是否要采取紧急措施?并说明理由.19. (10分)(2018·重庆) 某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.20. (5分)已知:如图,在⊙O中,弦AB和CD相交,连接AC、BD,且AC=BD.求证:AB=CD.21. (12分)问题:如图①,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.(1)【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG的位置,从而发现EF=BE+FD,请你利用图①证明上述结论.(2)【类比引申】如图②,在四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E,F分别在边BC,CD上,则当∠EAF与∠BAD 满足________关系时,仍有EF=BE+FD.请说明理由.________(3)【探究应用】如图③,在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80 m,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC,CD上分别有景点E,F,且AE⊥AD,DF=40( -1)m,现要在E,F之间修一条笔直的道路,求这条道路EF的长(结果精确到1 m,参考数据: ≈1.41, ≈1.73).22. (5分)某校八年级(1)班同学在积极倡导和实践“低碳生活”活动中,通过调查随机抽取某城市30天的空气状况并绘制成如下统计表:空气污染指数(W)406090110120天数(t)339105其中W≤50时,空气质量为优;50<W≤100时空气质量为良;100<W≤150时,空气质量为轻微污染.(1)求这个样本中空气污染指数的众数和中位数;(2)在这个样本中空气质量为优或良的共有几天?若一年以366天计算该城市空气质量为优或良的估计约为多少天?23. (15分)(2020·北京模拟) 在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1与y轴交于点C.(1)试用含m的代数式表示抛物线的顶点坐标;(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D.若m>0,CD=8,求m的值;(3)已知A(2k,0),B(0,k),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点时,直接写出k的取值范围.24. (5分) (2019八下·端州期中) 如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF .求证:四边形ABEF为菱形;25. (10分)(2017·长沙模拟) 某商品交易会上,一商人将每件进价为5元的纪念品,按每件9元出售,每天可售出32件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价2元,每天的销售量会减少8件.(1)当售价定为多少元时,每天的利润为140元?(2)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价﹣进价)×售出件数)26. (11分) (2017九上·萝北期中) 如图(1),在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是AB,AC 的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1 ,如图(2),设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)求证:BD1=CE1;(2)当∠CPD1=2∠CAD1时,求CE1的长;(3)连接PA,△PAB面积的最大值为________.(直接填写结果)参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共78分)18-1、19-1、19-2、20-1、21-1、21-2、21-3、22-1、23-1、23-3、24-1、25-1、25-2、26-2、26-3、。
湖北省咸宁市2020年九年级上学期数学期末考试试卷(II)卷
湖北省咸宁市2020年九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)方程的解是()A .B .C .D .2. (2分)下列关于二次函数的说法错误的是()A . 抛物线y=﹣2x2+3x+1的对称轴是直线 ,B . 抛物线y=x2﹣2x﹣3,点A(3,0)不在它的图象上C . 二次函数y=(x+2)2﹣2的顶点坐标是(﹣2,﹣2)D . 函数y=2x2+4x﹣3的图象的最低点在(﹣1,﹣5)3. (2分) (2018九上·椒江月考) 平面直角坐标系中,点P(2,-3)关于原点对称的点的坐标是()A . (2,3)B . (2,-3)C . (-2,3)D . (-2,-3)4. (2分) (2018七上·襄州期末) 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是()A . 2个B . 3个C . 4个D . 5个5. (2分)如图中,轴对称图形的个数是()A . 1个B . 2个C . 3个D . 4个6. (2分)如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,设∠ABC=α,则下列结论错误的是()A . BC=B . CD=AD•tanαC . BD=ABcosαD . AC=ADcosα7. (2分) (2017九上·陆丰月考) 若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A . x2+3x-2=0B . x2-3x+2=0C . x2-2x+3=0D . x2+3x+2=08. (2分)如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,分别标上1、2、3和6、7、8这6个数字,如果同时转动这两个转盘各一次(指针落在等分线上重转),转盘停止后,指针指向字数之和为偶数的是()A .B .C .D .9. (2分)(2018·长春) 如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A,B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y= (x>0)的图象上,若AB=2,则k的值为()A . 4B . 2C . 2D .10. (2分) (2017九上·鄞州月考) 如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,﹣7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有()A . 1个B . 2个C . 3个D . 4个11. (2分)在反比例函数的图象的每一条曲线上,y都随着x的增大而增大,则m的值可以是()A . -1B . 0C . 1D . 212. (2分)(2017·润州模拟) 已知二次函数y=ax2+bx+c,函数y与自变量x的部分对应值如下表:x…﹣4﹣3﹣2﹣10…y…3﹣2﹣5﹣6﹣5…则下列判断中正确的是()A . 抛物线开口向下B . 抛物线与y轴交于正半轴C . 方程ax2+bx+c=0的正根在1与2之间D . 当x=﹣3时的函数值比x=1.5时的函数值大二、填空题 (共5题;共9分)13. (1分)(2019·宜宾) 将抛物线的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为________.14. (1分)如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________ 米.15. (1分)七年级(2)班的男女比例为3:2,则男生占全班人数的________ %.16. (5分)(2017·安顺模拟) 如图,A、B是双曲线y= 上的点,分别过A、B两点作x轴、y轴的垂线段.S1 , S2 , S3分别表示图中三个矩形的面积,若S3=1,且S1+S2=4,则k=________.17. (1分)(2018·信阳模拟) 如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是________(结果保留π).三、解答题 (共9题;共101分)18. (5分)如图,某农场有一块长40 m,宽32 m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路.要使种植面积为1140 m2 ,求小路的宽.19. (10分) (2019八下·桐乡期中) 用适当的方法解方程:(1)(x+1)(x﹣2)=x+1;(2)(2x﹣5)2﹣(x﹣2)2=0.20. (10分)(2017·响水模拟) 在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣的图象上的概率.21. (10分)在海洋上有一近似于四边形的岛屿,其平面如图甲,小明据此构造处该岛的一个数学模型(如图乙四边形ABCD),AC是四边形岛屿上的一条小溪流,其中∠B=90°,AB=BC=15千米,CD=3 千米,AD=12 千米.(1)求小溪流AC的长.(2)求四边形ABCD的面积.(结果保留根号)22. (10分)(2017·吉安模拟) 关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC 三边的长.(1)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.23. (15分) (2019八下·博乐月考) 如图,每个小方格的边长都是1,求:(1)求△ABC的周长;(2)①画出BC边上的高,并求△ABC的面积;②画出AB边上的高,并求出高.24. (15分) (2019九下·宜昌期中) 如图,双曲线经过矩形OABC的边BC的中点E,交AB于点D.设点B的坐标为(m,n).(1)直接写出点E的坐标,并求出点D的坐标;(用含m,n的代数式表示)(2)若梯形ODBC的面积为,求双曲线的函数解析式.25. (11分)如果一个自然数能表示为两个自然数的平方差,那么称这个自然数为智慧数,例如:16=52﹣32 , 16就是一个智慧数,小明和小王对自然数中的智慧数进行了如下的探索:小明的方法是一个一个找出来的:0=02﹣02 , 1=12﹣02 , 3=22﹣12 ,4=22﹣02 , 5=32﹣22 , 7=42﹣32 ,8=32﹣22 , 9=52﹣42 , 11=62﹣52 ,…小王认为小明的方法太麻烦,他想到:设k是自然数,由于(k+1)2﹣k2=(k+1+k)(k+1﹣k)=2k+1.所以,自然数中所有奇数都是智慧数.问题:(1)根据上述方法,自然数中第12个智慧数是________;(2)他们发现0,4,8是智慧数,由此猜测4k(k≥3且k为正整数)都是智慧数,请你参考小王的办法证明4k(k≥3且k为正整数)都是智慧数.(3)他们还发现2,6,10都不是智慧数,由此猜测4k+2(k为自然数)都不是智慧数,请利用所学的知识判断26是否是智慧数,并说明理由.26. (15分)(2018·浦东模拟) 如图,已知在△ABC中,∠ACB=90°,BC=2,AC=4,点D在射线BC上,以点D为圆心,BD为半径画弧交边AB于点E,过点E作EF⊥AB交边AC于点F,射线ED交射线AC于点G.(1)求证:△EFG∽△AEG;(2)设FG=x,△EFG的面积为y,求y关于x的函数解析式并写出定义域;(3)联结DF,当△EFD是等腰三角形时,请直接写出FG的长度.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共9分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共101分)18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-3、。
湖北省咸宁市九年级上学期数学期末考试试卷
湖北省咸宁市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分) (共10题;共27分)1. (3分) (2019八上·诸暨期末) 已知,则直线一定经过的象限是()A . 第一、三、四象限B . 第一、二、四象限C . 第一、四象限D . 第二、三象限2. (3分) (2020九上·镇平期末) 下列事件中,不确定事件是()A . 在空气中,汽油遇上火就燃烧B . 用力向上抛石头,石头落地C . 下星期六是晴天D . 任何数和零相乘,结果仍为零3. (2分)已知扇形的半径为2,圆心角为60°,则扇形的弧长为()A .B .C .D .4. (3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,BC=3,AC=4,则sin∠DCB的值为()A .B .C .D .5. (2分) (2016九上·扬州期末) 如图,一个半径为r(r<1)的圆形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A . πr2B .C . r2D . r26. (3分)把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A . y=﹣(x+1)2+2B . y=﹣(x+1)2﹣2C . y=(x+1)2﹣2D . y=﹣(x﹣1)2+27. (2分) (2016九上·滁州期中) 如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长是()A . 3B . 4C . 4D . 28. (3分) (2017九上·西湖期中) 下列正确的是().A . 三个点确定一个圆B . 同弧或等弧所对的圆周角相等C . 平分弦的直径垂直于弦,并且平分弦所对的弧D . 圆内接平行四边形一定是正方形9. (3分)(2017·杭州) 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A . x﹣y2=3B . 2x﹣y2=9C . 3x﹣y2=15D . 4x﹣y2=2110. (3分)把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A .B .C .D .二、填空题(本题有6小题,每小题4分,共24分) (共6题;共24分)11. (4分)如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则=________ .12. (4分)若a:b:c=1:3:2,且a+b+c=24,则a+b﹣c=________ .13. (4分)(2017·贵阳) 袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有________个.14. (4分) (2017九上·台州月考) 如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为________.15. (4分)(2017·黑龙江模拟) 如图,矩形ABCD中,BE平分∠ABC交AD于点E,F为BE上一点,连接DF,过F作FG⊥DF交BC于点G,连接BD交FG于点H,若FD=FG,BF=3 ,BG=4,则GH的长为________.16. (4分) (2020九上·海曙期末) 如图抛物线y=-x2-2x+3与x轴交于A,B,与y轴交于点C,点P为顶点,线段PA上有一动点D,以CD为底边向下作等腰三角形△CDE,且∠DEC=90°,则AE的最小值为________ 。
咸宁市九年级上学期数学期末考试试卷
咸宁市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2017九上·琼中期中) 若二次函数y=ax2+b的图象开口向下,则()A . b>0B . b<0C . a<0D . a>02. (2分)平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0)、B(0,2)、C(3,0)、D(0,-2),四边形ABCD是().A . 矩形B . 菱形C . 正方形D . 梯形3. (2分) (2017九上·深圳期中) 下列命题正确的是()A . 方程x2-4x+2=0无实数根;B . 两条对角线互相垂直且相等的四边形是正方形C . 甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是D . 若是反比例函数,则k的值为2或-1。
4. (2分) (2020九上·大丰期末) 在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是()A .B .C .D .5. (2分) (2020九上·大丰期末) 如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A . 30°B . 35°C . 40°D . 50°6. (2分) (2020九上·大丰期末) 方程的两根之和是()A .B .C .D .7. (2分) (2020九上·大丰期末) 若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为()A . 5B . 10C . 20D . 408. (2分) (2020九上·大丰期末) 二次函数在下列()范围内,y随着x的增大而增大.A .B .C .D .二、填空题 (共8题;共17分)9. (1分)(2020·九江模拟) 一元二次方程x2-5x+3=0的两个根为x1、x2 ,则3x1x2+x12-5x1的值为________.10. (1分) (2016八上·江阴期末) 已知点A(a-1,2+a)在第二象限,那么a的取值范围是________.11. (1分)(2019·泰兴模拟) 平面直角坐标系中一点P(m﹣3,1﹣2m)在第三象限,则m的取值范围是________.12. (2分)(2017·徐州) 如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为________.13. (1分) (2020九上·大丰期末) 一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是________.14. (1分) (2020九上·大丰期末) 某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为________.15. (5分) (2020九上·大丰期末) 如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为________.16. (5分) (2020九上·大丰期末) 如图,抛物线与x轴交于A、B两点,与y轴交于C点,⊙B的圆心为B,半径是1,点P是直线AC上的动点,过点P作⊙B的切线,切点是Q,则切线长PQ的最小值是________.三、解答题 (共11题;共116分)17. (10分)解方程:.18. (5分) (2019九上·宜兴期末) 已知关于x的一元二次方程有两个不相等的实数根,求m的取值范围.19. (10分) (2020九上·大丰期末) 现有甲、乙、丙三名学生参加学校演讲比赛,并通过抽签确定三人演讲的先后顺序.(1)求甲第一个演讲的概率;(2)画树状图或表格,求丙比甲先演讲的概率.20. (10分) (2020九上·大丰期末) 九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表Ⅰ)所示:现根据上表数据进行统计得到下表(表Ⅱ):姓名平均成绩中位数众数小华80小红8090(1)填空:根据表Ⅰ的数据完成表Ⅱ中所缺的数据;(2)老师计算了小红的方差请你计算小华的方差并说明哪名学生的成绩较为稳定.21. (15分) (2020九上·大丰期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围.22. (10分) (2020九上·大丰期末) 如图,是的直径,是圆心,是圆上一点,且,是延长线上一点,与圆交于另一点,且.(1)求证:;(2)求的度数.23. (10分) (2020九上·大丰期末) 如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.24. (10分) (2020九上·大丰期末) 如图所示,分别切的三边、、于点、、,若,,.(1)求的长;(2)求的半径长.25. (6分) (2020九上·大丰期末) 某网店以每件80元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件的售价每降低2元,其销售量可增加10件.(1)该网店销售该商品原来一天可获利润________元.(2)设后来该商品每件售价降价元,网店一天可获利润元.①若此网店为了尽可能增加该商品的销售量,且一天仍能获利1080元,则每件商品的售价应降价多少元?②求与之间的函数关系式,当该商品每件售价为多少元时,该网店一天所获利润最大?并求最大利润值.26. (15分) (2020九上·大丰期末) 某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点、,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程与时间满足关系,乙以的速度匀速运动,半圆的长度为.(1)甲运动后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?27. (15分) (2020九上·大丰期末) 如图,在直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共17分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共116分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、。
咸宁市九年级上学期数学期末考试试卷
咸宁市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共6题,每题4分,满分24分) (共6题;共24分)1. (4分)抛物线y=﹣2(x﹣3)2+2的顶点坐标是()A . (3,﹣2)B . (﹣3,2)C . (3,2)D . (﹣3,﹣2)2. (4分) (2019九上·瑞安月考) 抛物线y=x2+2x+3与y轴的交点为()A . (0,2)B . (2,0)C . (0,3)D . (3,0)3. (4分) (2019九上·滦南期中) 如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A .B .C .D .4. (4分)下列各组向量中,是平行向量的一组是()A . +与+-B . (-3)与(-2)C . 2+与+D . 5-3与-5. (4分)两圆的半径分别为2和5,圆心距为7,则这两圆的位置关系为A . 外离.B . 外切.C . 相交.D . 内切.6. (4分) (2018九上·台州期中) 如图,在中,,,,动点P从点B开始沿边BA,AC向点C以的速度移动,动点Q从点B开始沿边BC向点C以的速度移动,设的面积为运动时间为,则下列图象能反映y与x之间关系的是()A .B .C .D .二、填空题(本大题共12题,每题4分,满分48分) (共12题;共48分)7. (4分) (2019九上·江阴期中) 若,则=________.8. (4分)(2020·上海模拟) 计算:3(﹣2 )﹣2(﹣3 )=________.9. (4分) (2019九上·衢州期中) 已知抛物线y=ax2+bx+c与x轴的交点是(-4,0),(2,0),则这条抛物线的对称轴是________.10. (4分)(2020·徽县模拟) 把函数的图象向右平移2个单位长度,再向下平移1个单位长度,得到函数的关系式是________.11. (4分) (2019八下·长春期末) 二次函数的函数值自变量之间的部分对应值如下表:…014……4…此函数图象的对称轴为________12. (4分)如图,在平面直角坐标系xOy中,直线y= x+3与坐标轴交于A、B两点,坐标平面内有一点P(m,3),若以P、B、O三点为顶点的三角形与△AOB相似,则m=________.13. (4分) (2019九上·虹口期末) 在中,,如果,,那么________.14. (4分) (2019九上·椒江期末) 边长为4的正六边形内接于,则的半径是________.15. (4分)如图所示,在平面直角坐标系中,有A(1,1)、B(3,2)两点,点P是x轴上一动点,则PA+PB 最小值为________.16. (4分)(2020·上海模拟) 如图,点D是△ABC的边AB上一点,如果∠ACD=∠B,并且,那么 ________.17. (4分)抛物线y=﹣x2+(b+1)x﹣3的顶点在y轴上,则b的值为________.18. (4分) (2020八下·上虞期末) 如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE 沿AE所在直线翻折得△AB'E,AB'与边CD交于点F。
咸宁市九年级(上)期末数学试卷含答案
九年级(上)期末数学试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.下列所述图形中,既是轴对称图形又是中心对称图形的是( )A. 等边三角形B. 平行四边形C. 正五边形D. 圆2.从标有a、b、c、1、2的五张卡牌中随机抽取一张,抽到数字卡牌的概率是( )A. B. C. D.3.若要得到函数y=(x+1)2+2的图象,只需将函数y=x2的图象( )A. 先向右平移1个单位长度,再向上平移2个单位长度B. 先向左平移1个单位长度,再向上平移2个单位长度C. 先向左平移1个单位长度,再向下平移2个单位长度D. 先向右平移1个单位长度,再向下平移2个单位长度4.如图,⊙O中弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是( )A. 15°B. 25°C. 30°D. 75°5.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为( )A. 30πcm2B. 48πcm2C. 60πcm2D. 80πcm26.已知点A(x1,y1),B(x2,y2)是反比例函数y=-的图象上的两点,若x1<0<x2,则下列结论正确的是( )A. y1<0<y2B. y2<0<y1C. y1<y2<0D. y2<y1<07.如图,已知A(-2,0),以B(0,1)为圆心,OB长为半径作⊙B,N是⊙B上一个动点,直线AN交y轴于M点,则△AOM面积的最大值是( )A. 2B.C. 4D.8.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,且a<b,则a、b、m 、n的大小关系是( )A. m<a<b<nB. a<m<n<bC. a<m<b<nD. m<a<n<b二、填空题(本大题共8小题,共24.0分)9.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是______度.10.如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=______.11.方程x2-9x+18=0的两个根是等腰三角形的底和腰的长,则这个等腰三角形的周长为______.12.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是______.13.若P(-3,2)与P′(3,n+1)关于原点对称,则n= ______ .14.一条弦把圆分为2:3的两部分,那么这条弦所对较小的圆周角度数为______.15.如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为______.16.已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a-b+c<0;⑤3a+c>0.其中正确结论的序号是______.三、解答题(本大题共8小题,共72.0分)17.用适当的方法解方程:(x+1)2-3(x+1)=0.18.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,求∠BCD的度数.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出将△ABC向下平移5个单位后得到的△A1B1C1;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.20.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB相交于点P ,连接EF ,EO ,若DE =2,∠DPA =45°.(1)求⊙O 的半径;(2)求图中阴影部分的面积.21.如图,四边形OABC 是矩形,ADEF 是正方形,点A、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F在AB 上,点B ,E 在反比例函数y =的图象上,O A =1,O C =6,试求出正方形ADEF 的边长.22.某商店将成本为每件60元的某商品标价100元出售.(1)为了促销,该商品经过两次降低后每件售价为81元,若两次降价的百分率相同,求每次降价的百分率;(2)经调查,该商品每降价2元,每月可多售出10件,若该商品按原标价出售,每月可销售100件,那么当销售价为多少元时,可以使该商品的月利润最大?最大的月利润是多少?23.在某次数学活动中,如图有两个可以自由转动的转盘A、B,转盘A被分成四个相同的扇形,分别标有数字1、2、3、4,转盘B被分成三个相同的扇形,分别标有数字5、6、7.若是固定不变,转动转盘(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止)(1)若单独自由转动A盘,当它停止时,指针指向偶数区的概率是______.(2)小明自由转动A盘,小颖自由转动B盘,当两个转盘停止后,记下各个转盘指针所指区域内对应的数字,请用画树状图或列表法求所得两数之积为10的倍数的概率.24.如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0),直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F.(1)求抛物线的解析式;(2)连接AE,求h为何值时,△AEF的面积最大.(3)已知一定点M(-2,0),问:是否存在这样的直线y=h,使△BDM是等腰三角形?若存在,请求出h的值和点D的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选:D.根据中心对称图形和轴对称图形的定义对各选项进行判断.本题考查了中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.也考查了轴对称图形.2.【答案】B【解析】解:∵从标有a、b、c、1、2 的五张卡牌中随机抽取一张有5种等可能结果,其中抽到数字卡片的有2种可能,∴抽到数字卡牌的概率是.故选:B.根据概率公式即可得.本题主要考查概率公式,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.3.【答案】B【解析】【分析】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键.找出两抛物线的顶点坐标,由a值不变即可找出结论.【解答】解:∵抛物线y=(x+1)2+2的顶点坐标为(-1,2),抛物线y=x2的顶点坐标为(0,0),∴将抛物线y=x2先向左平移1个单位长度,再向上平移2个单位长度即可得出抛物线y=(x+1)2+2.故选B.4.【答案】C【解析】【分析】本题主要考查了三角形的外角定理,圆周角定理,熟记圆周角定理是解题的关键.由三角形外角定理求得∠C的度数,再由圆周角定理可求∠B的度数.【解答】解:∵∠A=45°,∠AMD=75°,∴∠C=∠AMD-∠A=75°-45°=30°,根据圆周角定理∠B=∠C=30°,故选C.5.【答案】C【解析】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,圆锥侧面展开图的面积为:S侧=×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.6.【答案】B【解析】解:∵A(x1,y1),B(x2,y2)是反比例函数y=-的图象上的两点,∴y1=-,y2=-,∵x1<0<x2,∴y2<0<y1.故选:B.根据反比例函数图象上点的坐标特征得到y1=-,y2=-,然后利用x1<0<x2即可得到y1与y2的大小.本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.7.【答案】B【解析】解:当直线AN与⊙B相切时,△AOM面积的最大.连接AB、BN,在Rt△AOB和Rt△ANB中∴Rt△AOB≌Rt△ANB,∴AN=AO=2,设BM=x,∴MN2=(BM-1)(BM+1),∴MN=,∵∠AOM=∠BNM=90°,∠AMO=∠BMN,∴△BNM∽△AOM,∴=,即=,解得x=,S△AOM===.故选:B.当直线AN与⊙B相切时,△AOM面积的最大.设BM=x,由切割线定理表示出MN,可证明△BNM∽△AOM,根据相似三角形的性质可求得x,然后求得△AOM面积.本题是一个动点问题,考查了切线的性质和三角形面积的计算,解题的关键是确定当射线AN与⊙B相切时,△AOM面积的最大.8.【答案】A【解析】解:∵m、n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,∴二次函数y=(x-a)(x-b)-1的图象与x轴交于点(m,0)、(n,0),∴将y=(x-a)(x-b)-1的图象往上平移一个单位可得二次函数y=(x-a)(x-b)的图象,二次函数y=(x-a)(x-b)的图象与x轴交于点(a,0)、(b,0).画出两函数图象,观察函数图象可知:m<a<b<n.故选:A.由m、n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根可得出二次函数y=(x-a)(x-b)-1的图象与x轴交于点(m,0)、(n,0),将y=(x-a)(x-b)-1的图象往上平移一个单位可得二次函数y=(x-a)(x-b)的图象,画出两函数图象,观察函数图象即可得出a、b、m、n的大小关系.本题考查了抛物线与x轴的交点,画出两函数图象,利用数形结合解决问题是解题的关键.9.【答案】80【解析】解:由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故答案为:80.由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键.10.【答案】36°【解析】解:∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=(5-2)×180°÷5=108°,BC=CD=DE,∴,∴∠CAD=×108°=36°;故答案为:36°.由正五边形的性质得出∠BAE=(5-2)×180°÷5=108°,BC=CD=DE,得出,由圆周角定理即可得出答案.本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.11.【答案】15【解析】【分析】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).利用因式分解法解方程得到x1=3,x2=6,再根据三角形三边的关系得等腰三角形的底为3,腰为6,然后计算三角形的周长.【解答】解:x2-9x+18=0,(x-3)(x-6)=0,所以x1=3,x2=6,当等腰三角形的底为3,腰为6时,这个等腰三角形的周长为3+6+6=15,当等腰三角形的底为6,腰为3时,不满足三角形三边之间的的关系(舍去),所以,这个等腰三角形的周长为15.故答案为15.12.【答案】6【解析】解:连接AO,∵半径是5,CD=1,∴OD=5-1=4,根据勾股定理,AD===3,∴AB=3×2=6,因此弦AB的长是6.连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.13.【答案】-3【解析】解:∵P(-3,2)与P′(3,n+1)关于原点对称,∴-2=n+1,则n=-3.故答案为:-3.利用关于原点对称点的性质得出横纵坐标的关系进而得出答案.此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标关系是解题关键.14.【答案】72°【解析】解:如图,连接OA、OB.弦AB将⊙O分为2:3两部分,则∠AOB=×360°=144°;∴∠ACB=∠AOB=72°,∠ADB=180°-∠ACB=108°;故这条弦所对较小的圆周角的度数为72°;故答案为:72°.先求出这条弦所对圆心角的度数,然后分情况讨论这条弦所对圆周角的度数,即可得出结论.本题考查了圆周角定理以及圆内接四边形的性质;需注意的是在圆中,一条弦(非直径)所对的圆周角应该有两种情况.15.【答案】2【解析】解:∵在等边三角形ABC中,AB=6,∴BC=AB=6,∵BC=3BD,∴BD=BC=2,∵△ABD绕点A旋转后得到△ACE,∴△ABD≌△ACE,∴CE=BD=2.故答案为:2.由在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,根据等边三角形的性质,即可求得BD的长,然后由旋转的性质,即可求得CE的长度.此题考查了旋转的性质与等边三角形的性质.此题难度不大,注意旋转中的对应关系.16.【答案】①④⑤【解析】解:∵图象和x轴有两个交点,∴b2-4ac>0,∴b2>4ac,∴①正确;∵从图象可知:a>0,c<0,-=-1,b=2a>0,∴abc<0,∴②错误;∵b=2a>0∴2a+b=4a>0,∴③错误;∵x=-1时,y<0,∴a-b+c<0,∴④正确;∵x=1时,y>0,∴a+b+c>0,把b=2a代入得:3a+c>0,选项⑤正确;故答案为①④⑤.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=-1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.【答案】解:∵(x+1)[(x+1)-3]=0,即(x+1)(x-2)=0,∴x+1=0或x-2=0,解得:x=-1或x=2.【解析】因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键18.【答案】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°-44°=136°,即∠BCD的度数是136°.【解析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.19.【答案】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,,点B旋转到点B2所经过的路径长=.【解析】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,然后计算出OB的长后利用弧长公式计算点B旋转到点B2所经过的路径长.20.【答案】解:(1)连接OF,∵直径AB⊥DE,∴CE=DE=1.∵DE平分AO,∴CO=AO=OE.设CO=x,则OE=2x.由勾股定理得:12+x2=(2x)2.x=.∴OE=2x=.即⊙O的半径为.(2)在Rt△DCP中,∵∠DPC=45°,∴∠D=90°-45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF==π.∵∠EOF=2∠D=90°,OE=OF=S Rt△OEF==.∴S阴影=S扇形OEF-S Rt△OEF=π-.【解析】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系.(1)根据垂径定理得CE的长,再根据已知DE平分AO得CO=AO=OE,根据勾股定理列方程求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.21.【答案】解:∵OA=1,OC=6,四边形OABC是矩形,∴点B的坐标为(1,6),∵反比例函数y=的图象过点B,∴k=1×6=6.设正方形ADEF的边长为a(a>0),则点E的坐标为(1+a,a),∵反比例函数y=的图象过点E,∴a(1+a)=6,解得:a=2或a=-3(舍去),∴正方形ADEF的边长为2.【解析】根据OA、OC的长度结合矩形的性质即可得出点B的坐标,由点B的坐标利用反比例函数图象上点的坐标特征即可求出k值,设正方形ADEF的边长为a,由此即可表示出点E的坐标,再根据反比例函数图象上点的坐标特征即可得出关于a的一元二次方程,解之即可得出结论.本题考查了反比例函数图象上点的坐标特征、矩形的性质以及正方形的性质,根据反比例函数图象上点的坐标特征得出关于a的一元二次方程是解题的关键.22.【答案】解:(1)根据题意得:100(1-x)2=81,解得:x1=0.1,x2=1.9,经检验x2=1.9不符合题意,∴x=0.1=10%,答:每次降价百分率为10%;(2)设销售定价为每件m元,每月利润为y元,则y=(m-60)[100+5×(100-m)]=-5(m-90)2+4500,∵a=-5<0,∴当m=90元时,y最大为4500元.答:(1)下降率为10%;(2)当定价为90元时,y最大为4500元.【解析】(1)设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是100(1-x),第二次后的价格是100(1-x)2,据此即可列方程求解;(2)销售定价为每件m元,每月利润为y元,列出二者之间的函数关系式利用配方法求最值即可.本题考查了一元二次方程的应用及二次函数的有关知识,解题的关键是正确的找到题目中的等量关系且利用其列出方程.23.【答案】【解析】解:(1)∵指针指向1、2、3、4区是等可能情况,∴指针指向偶数区的概率是:=;(2)根据题意画出树状图如下:一共有12种情况,两数之积为10的倍数的情况有2种,所以,P(两数之积为10的倍数)==.(1)根据概率公式列式计算即可得解;(2)画出树状图,然后根据概率公式列式计算即可得解.本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:(1)∵抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0),∴,解得:.∴抛物线的解析式为y=-x2-x+6.(2)∵把x=0代入y=-x2-x+6,得y=6,∴点C的坐标为(0,6),设经过点A和点C的直线的解析式为y=mx+n,则,解得,∴经过点A和点C的直线的解析式为:y=2x+6,∵点E在直线y=h上,∴点E的坐标为(0,h),∴OE=h,∵点F在直线y=h上,∴点F的纵坐标为h,把y=h代入y=2x+6,得h=2x+6,解得x=,∴点F的坐标为(,h),∴EF=.∴S△AEF=•OE•FE=•h•=-(h-3)2+,∵-<0且0<h<6,∴当h=3时,△AEF的面积最大,最大面积是.(3)存在符合题意的直线y=h.∵直线AC的解析式为y=2x+6,点F的坐标为(,h),在△OFM中,OM=2,OF=,MF=,①若OF=OM,则==2,整理,得5h2-12h+20=0,∵△=(-12)2-4×5×20=-256<0,∴此方程无解,∴OF=OM不成立.②若OF=MF,则=,解得h=4,把y=h=4代入y=-x2-x+6,得-x2-x+6=4,解得x1=-2,x2=1,∵点G在第二象限,∴点G的坐标为(-2,4).③若MF=OM,则=2,解得h1=2,h2=-(不合题意,舍去),把y=h1=2代入y=-x2-x+6,得-x2-x+6=2.解得x1=,x2=,∵点G在第二象限,∴点G的坐标为(,2).综上所述,存在这样的直线y=2或y=4,使△OMF是等腰三角形,当h=4时,点G的坐标为(-2,4);当h=2时,点G的坐标为(,2).【解析】(1)利用待定系数法即可解决问题.(2)由题意可得点E的坐标为(0,h),点F的坐标为(,h),根据S△AEF=•OE•FE=•h•=-(h-3)2+.利用二次函数的性质即可解决问题.(3)分三种情形,分别列出方程即可解决问题.此题考查了待定系数法求函数的解析式、二次函数的性质、等腰三角形的性质、勾股定理一次函数的应用等知识,此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.。
湖北省2020-2021学年九年级上期末考试数学试卷2套(含答案)(部编版)
湖北省九年级数学上册期末考试试卷(含答案)注意事项:1.本卷共有4页,共有25小题,满分120分,考试时限120分钟.2.答题前,考生将班级、姓名写在答题卡指定的位置.3.考生必须保持答题卡的整洁,考试结束后,只上交答题卡.一、选择题(本题共 10 题,每小题 3 分,共 30 分)下列各题均有四个备选答案, 其中有且仅有个答案是正确的, 请用2B 铅笔在答题卡上将正确的答案代号涂黑.1.方程x 2=2x 的解为( )A .x =2B .x = 2C .x 1=2,x 2=0D .x 1=2, x 2=02.下列关于反比例函数2y x=-的说法不正确的是( ) A .其图象经过点(-2,1) B .其图象位于第二、第四象限C .当x <0时,y 随x 增大而增大D .当x >-1时,y >23.下列说法中错误的是( )A .必然事件发生的概率为1B .不可能事件发生的概率为0C .随机事件发生的概率大于等于0、小于等于1D .概率很小的事件不可能发生4.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是( )A .(1,0)B .(0,0)C .(-1,2)D .(-1,1)5.如图,△ABC 的边AC 与⊙O 相交于C 、D 两点,且经过圆心O ,边AB 与⊙O 相切,切点为B . 已知∠A =30°,则∠C 的大小是( )A .30°B .45°C .60°D .40°6.如图,A 、B 两点在双曲线4y x=上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1, 则S 1+S 2等于( )A .6B .5C .4D .37.甲、乙、丙三人参加数学、物理、英语三项竞赛,每人限报一项,每项限报一人,则甲报英语、乙报数学、丙报物理的概率是( )A .13B .16C .118D .127 8.如图,点O 为△ABC 的外心,点I 为△ABC 的内心,若∠BOC =140°,则∠BIC 的度数为( )A .110°B .125°C .130°D .140°(第4题图) (第5题图) (第6题图) (第8题图) (第9题图) (第10题图)9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c=2;③12 a>;④b<1.其中正确的结论个数是( )A.1个B.2个C.3个D.4个10.如图,在半径为6cm的⊙O中,点A是劣弧BC︵的中点,点D是优弧BC︵上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=63cm;③弦BC与⊙O直径的比为32;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④二、填空题:(本题有6个小题,每小题3分,共18分)11.若代数式x2+4x-2的值为3,则x的值为____________.12.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________.13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转到△A′B′C,使得点A′恰好落在AB上,则旋转角度为________.14.已知二次函数y1=ax2+bx+c(b≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图所示,则使y1>y2成立的x的取值范围是________.15.如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30°,弦EF∥AB,连接OC交EF于H点,连接CF,若CF=5,则HE的长为________.16.如图,点A(m,6),B(n,1)在反比例函数kyx=的图象上,AD⊥x轴于点D,BC⊥x轴于点C,点E在CD上,CD=5,△ABE的面积为10,则点E的坐标是_____________.三、解答题(本题有9个小题,共72分)17.(本题满分6分)如图,已知反比例函数7myx-=的图象的一支位于第一象限.(1)该函数图象的另一分支位于第_____象限,m的取值范围是____________;(2)已知点A在反比例函数图象上,AB⊥x轴于点B,△AOB的面积为3,求m的值.18.(本题满分6分) 如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE 后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.判断线段DE、FG的位置关系,并说明理由.(第16题图)(第13题图)(第14题图)(第15题图)(第18题图)(第17题图)19.(本题满分7分)一布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小敏从布袋中摸出一球后放回,摇匀后再摸出一球,请用列举法(列表或画树形图)求小敏两次都能摸到黄球的概率.20.(本题满分7分) AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E .(1)若∠B =70°,求∠CAD 的度数;(2)若AB =4,AC =3,求DE 的长.21.(本题满分8分)已知关于x 的一元二次方程x 2-(a -3)x -a =0.(1) 求证:无论a 取何值时,该方程总有两个不相等的实数根;(2) 若该方程两根的平方和为6,求a 的值.22. (本题满分8分)某校九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x ≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元.(1)求y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.23.(本题满分8分)已知关于x 的一元二次方程ax 2-3x -1=0有两个不相等的实数根,且两个实数根都在-1和0之间(不包含-1和0),求a 的取值范围.时间x (天) 1≤x <50 50≤x ≤90 售价(元/件) x +40 90 每天销量(件) 200-2x 200-2x (第20题图)24.(本题满分10分)如图在△ABC中,∠C=90°,点O在AC上,以AO为半径的⊙O交AB于D,BD的垂直平分线交BD于F,交BC于E,连接DE.(1)求证:DE是⊙O的切线;(2)若∠B=30°,BC=43,且AD∶DF=1∶2,求⊙O的直径.25.(本题满分12分)如图,已知抛物线y=ax2+bx+c经过点A(-1,0),点B(3,0)和点C(0,3).(1)求抛物线的解析式和顶点E的坐标;(2)点C是否在以BE为直径的圆上?请说明理由;(3)点Q是抛物线对称轴上一动点,点R是抛物线上一动点,是否存在点Q、R,使以Q、R、C、B为顶点的四边形是平行四边形?若存在,直接写出点Q、R的坐标,若不存在,请说明理由.(第24题图)(第25题图)九年级数学参考答案及评分标准(共3页) 一、选择题(10×3分=30分)1.C ; 2.D ; 3.D ; 4.C ; 5.A ; 6.A ; 7.B ; 8.B ; 9.B ; 10.B .二、填空题(6×3分=18)11.1或-5; 12.12; 13.60°; 14.x <-2或x >8; 15.532; 16.E (3,0). 三、解答题(72分)17.(6分)解:(1)三,m >7;…………………………………………………………………………3分(2)设A (a ,b ),则AB =b ,OB =a由△AOB 的面积为3,得12ab =3,∴ab =6……………………………………………………………5分 即m -7=6,∴m =13. …………………………………………………………………………………3分18.(6分)解:DE ⊥FG .…………………………………………………1分理由:由题知:Rt △ABC ≌Rt △BDE ≌Rt △FEG∴∠A =∠BDE =∠GFE ……………………………………………………3分∵∠BDE +∠BED =90°∴∠GFE +∠BED =90°,即DE ⊥FG . …………………………………6分19.(7分)解:画树形图:(红球记为R ,黄球记为H ,白球记为B)第一次摸球:第二次摸球: ……………………………………………………………5分共有9种等可能性,其中两次都摸到黄球只有1种情况.…………………………………………6分∴P (两次都摸到黄球)=19.……………………………………………………………………………7分 20.(7分)解:(1) 连OC ,则∠B =∠BCO∵OD ∥BC ,∴∠COD =∠OCB =∠B =70°∴∠CAD =12∠COD =35°.……………………………………………3分 (2)∵OD ∥BC ,∴∠B =∠AOD ,∠COD =∠OCB∵∠B =∠BCO ,∴∠AOD =∠COD ,∴OD ⊥AC ,AE =EC ………………………………………4分在Rt △AOE 中:OE =2222372()2AO OE -=-=………………………………………………6分 ∴DE =DO -OE =2-7.………………………………………………………………………………7分 21.(8分) (1) 证明:∵△=[]222(3)41()29(1)8a a a a a ---⨯⨯-=-+=-+>0…………………3分∴无论a 取何值时,该方程总有两个不相等的实数根;………………………………………………4分(2)设方程两根分别为x 1,x 2,则123x x a +=-,12x x a =-……………………………………………5分 ∵222121212()26x x x x x x +=+-= …………………………………………………………………………6分 ∴2(3)2()6a a ---=,即2430a a -+= ………………………………………………………………7分(第18题图)解得:a =1或a =3…………………………………………………………………………………………8分22.(8分)解:(1)①当1≤x <50时,y =(200-2x )(x +40-30)=-2x 2+180x +2000②当50≤x ≤90时,y =(200-2x )(90-30)=-120x +12000综上所述:y =221802000(150)12012000(5090)x x x x x ⎧-++≤<⎨-+≤≤⎩; ……………………………………………………2分(2)①当1≤x <50时, y =-2x 2+180x +2000∵a =-2<0,∴二次函数开口向下,二次函数对称轴为x =2b a -=45 ∴当x =45时,y 最大值=-2×452+180×45+2000=6050………………………………………………4分 ②当50≤x ≤90时,y =-120x +12000,∵k =-120<0, ∴y 随x 的增大而减小,∴当x =50时, y 最大值=6000……………………………………………………………………………5分 综上所述,该商品销售到第45天时,利润最大,最大利润是6050元; …………………………6分(3)当20≤x ≤60时,每天销售利润不低于4800元.…………………………………………………8分23.(8分)解:∵关于x 的一元二次方程ax 2-3x -1=0有两个不相等的实数根∴△=2(3)4(1)0a --⨯⨯->,解得,a >94- …………………………………………………………3分 令y =ax 2-3x -1,则该二次函数的图象与y 轴交于(0,-1) ………………………………………4分 ∵方程ax 2-3x -1=0的两个实数根都在-1和0之间∴二次函数y =ax 2-3x -1与x 轴两交点的横坐标都在-1和0之间∴a <0,其大致图象如图所示:当x =-1时,y =ax 2-3x -1=a +2<0解得,a <-2………………………………………………………………………………………………7分综上可得:94-<a <-2. ………………………………………………………………………………8分24.(10分) (1)证明:连OD .∵OD =OA ,∴∠OAD =∠ODA ………………………………………………1分∵EF 垂直平分DB ,∴ED =EB ,∴∠EDB =∠EBD ………………………2分又∵∠A +∠B =90°,∴∠ODA +∠EDB =90°∴∠ODE =90°,即OD ⊥DE ………………………………………………3分∵点D 在⊙O 上, ∴DE 是⊙O 的切线.………………………………………………………………4分(2)解:∵∠B ,∴∠ A =60°,∴△OAD 是等边三角形………………………………………………5分 在Rt △ABC 中:设AC =x ,则AB =2x ,由勾股定理,得222(43)(2)x x +=解得,x =4,∴AC =4,AB =8……………………………………………………………………………6分 设AD =m ,则DF =BF =2m由AB =AD +2DF =m +4m =8,得m =85 ………………………………………………………………7分 ∴⊙O 的直径=2AD =165. ………………………………………………………………………………8分25.(12分) (1) 将A (-1,0),B (3,0)和C (0,3)代入y =ax 2+bx +c得93003a b c a b c c ++=⎧⎪-+=⎨⎪=⎩……………………………………………………………………………………………1分解得123abc=-⎧⎪=⎨⎪=⎩…………………………………………………………………………………………………2分∴抛物线的解析式为y=-x2+2x+3,顶点E的坐标为(1,4).………………………………………3分(2)点C在以BE为直径的圆上,理由如下:………………………………………………………………4分如图,过点E分别作x轴、y轴的垂线,垂足分别F、G.在Rt△BOC中,OB=3,OC=3,∴BC2=18………………………………………………………………5分在Rt△CEG中,EG=1,CG=OG-OC=4-3=1,∴CE2=2 …………………………………………6分在Rt△BFE中,FE=4,BF=OB-OF=3-1=2,∴BE2=20 …………………………………………7分∴BC2+CE2=BE2故△BCE为直角三角形,点C在以BE为直径的圆上.……………………………………………………8分(3)存在,点Q、R的坐标分别为Q1(1,-2),R1(4,-5);……………………………………………10分Q2(1,-8),R2(-2,-5);R3(2,3),Q3(1,0).…………………………………………………………12分九年级数学上册期末质量抽测试题含答案(考试时间:90分钟,全卷满分:100分)一、选择题(本题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分,请把选择题的答案填入下面的表格中)1.在单词NAME的四个字母中,是中心对称图形的是A.NB.AC.MD.E2.一个不透明的布袋里装有5个只有颜色不同的球,其中3个红球,2个白球,从布袋中随机摸出一个球,摸出红球的概率是A. B. C. D.3.如图,BC是⊙O的直径,点A是⊙O上异于B,C的一点,则∠A的度数为A.60B.70C.80D.904.关于x的方程是一元二次方程,则满足A.a≠lB.a≠-1C. a≠土1D.为任意实数5.如图,P是正△ABC内的一点,若将△BPC绕点B旋转到△BP’A,则∠PBP’的度数是A.45B.60C.90D.1206.如图,⊙O的直径CD垂直弦AB于点E,且CE=1,OB=5,则AB的长为A. B.4 C. 6 D. 47.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是A. B. C. D.8.已知点A(1,a)在抛物线上,则点A关于原点对称的点的坐标为A.(-l,-2)B.(-l,2)C. (1,-2)D.(1,2)9.如图.△ABC为⊙O的内接三角形,AB=2,∠C30,则⊙O的半径为A.lB.2C..3D.410.如图,在平面直角坐标系中,抛物线与y轴交于点A,过点A与x轴平行的直线交抛物线于B、C两点,则BC的长为A. B. C. D.二、填空题(本题共6小题,每小题3分,满分18分)1l.方程的二次项系数是 .12.已知正六边形的边长为2,则这个正六边形的边心距为 .13.将抛物线向左平移2个单位,所得到的抛物线的解析式为 .14.若扇形的半径为3,圆心角120,为则此扇形的弧长是 .15.如图,在△ABC中,∠ACB=90,BC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB 的中点,则△ABC的面积是 .16.如图,圆心都在x轴正半轴上的半圆,半圆,…,半圆均与直线l相切,设半圆,半圆,…,半圆的半径分别是,,…,,则当直线l与x轴所成锐角为30时,且=1时, .三、解答题(本题共7小题,满分52分.解答应写必要的文字说明、演算步骤或推理过程)17.(5分)解方程:18.(6分)如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).(1)画出将△ABC绕坐标原点O逆时针旋转90图形.(2)填空:以A、B、C为顶点的平行四边形的第四个顶点D的坐标为 .19.(6分)有三张正面分别标有数字1、2、3的卡片,它们除数字不同外其余全部相同现将它们背面朝上,洗匀后从中随机抽取一张,记下所标数字,不放回,再任意抽取一张,记下所标数字,将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数,求所组成的两位数是偶数的概率(请用“画树状图”或“列表”的方法写出过程).20.(6分)如图,在长为20cm,宽为16cm的矩形的四个角上截去四个全等的小正方形,使得剩下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.21.(8分)某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)()满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用80元;每间空置的客房,宾馆每日需支出各种费用20元.当房价为多少元时,宾馆当日利润最大?求出最大利润(宾馆当日利润=当日房费收入一当日支出)22.(9分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是8,求线段BF的长23.(12分)在平面直角坐标系xoy中,抛物线(a≠O)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-4,O),抛物线的对称轴是直线x=-3,且经过A、C两点的直线为 .(1)求抛物线的函数表达式;(2)将直线AC向下平移m个单位长度后,得到的直线l与抛物线只有一个交点D,求m的值;(3)抛物线上是否存在点Q,使点Q到直线AC的距离为?若存在,请直接写出Q的坐标,若不存在,请说明理由参考答案及评分标准一、选择题:(每题3分,共30分)二、填空题:(每题3分,共18分)11.1 12. 3 13. ()223+=x y 14. π2 15. 23 16. 20163三、解答题:(共52分) 17.解:()()012=--x x ............................................................ 3分 02=-x 或 01=-x ........................................................... 4分 21=x 或 12=x ........................................................... 5分18.解:(1)如图所示△DEF 为所求................................................. 3分(2))3,7(1-D 、 )3,3(2D 、 )3,5(3--D .......................................... 6分19.解:画树状图如下:开始十位数 1 2 3个位数 2 3 1 3 1 2结果 12 13 21 23 31 32 ............................................. 4分 即3162(==偶数)P ............................................................ 6分 20. 解:设小正方形的边长为xcm .根据题意得:()%801162042-⨯⨯=x ........................................................ 3分解得:4±=x ................................................................ 4分x 为正数∴4=x ..................................................................... 5分答:小正方形的边长为cm 4. ........................................................... 6分题号 1 2 3 4 5 6 7 8 9 10 答案ACDCBCBABDD E F21. 解:(1)设一次函数的解析式为b kx y +=由表可知,点(200,100)、点(300,50)在一次函数上∴{10020050300=+=+b k b k ......................................................... 2分 解得: ............................................................ 3分∴y 与x 之间的函数表达式为:20021+-=x y..................................... 4分 (2)设宾馆每日的利润为w 元. 根据题意得:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⨯-⎪⎭⎫ ⎝⎛+--=20021100202002180x x x w 6分14000230212-+-=x x()12450230212+--=x .......................................................7分 ∵21-=a∴w 有最大值,当230=x 时,12450=最大w答:当宾馆的房价为230元时,当日利润最大.最大利润为12450元. ................. 8分22.解:(1)证明:过点O 作OM ⊥AB ,垂足是M∵⊙O 与AC 相切于点D ∴OD ⊥AC∴∠ADO=∠AMO=90° ................................................... 1分 ∵△ABC 是等边三角形, AO ⊥BC∴OA 是∠MAD 的角平分线 ............................................... 2分 ∵OD ⊥AC ,OM ⊥AB∴OM=OD ............................................................. 3分∴AB 与⊙O 相切 ....................................................... 4分 (2)解:过点O 作ON ⊥BE ,垂足是N ,连接OF∵A B=AC ,AO ⊥BC ∴O 是BC 的中点200=b21-=kM∴482121=⨯==BC OB.................................................. 5分 在直角△ABC 中,∠ABE=90°,∠MBO=60° ∴∠OBN=30° ∵ON ⊥BE ,∠OBN=30°,OB=4 ∴221==OB ON ,322422=-=BN .................................6分 ∵AB ⊥BE∴四边形OMBN 是矩形∴32==OM BN ...................................................... 7分 ∵32==OM OF 由勾股定理得()2223222=-=NF .................................... 8分∴2232+=+=NF BN BF ............................................ 9分 23.解:(2=2=x (2∴设直线l 的解析式为m x y -+=4 ∵直线l 与抛物线相交43212++=x x y m x y -+=4∴ ................................................ 7分 ∵只有一个交点 ∴0=∆即:021422=⨯-m 2=m ............................................................ 8分(3)()12,221+-Q ......................................................... 9分 ()12,222+---Q ...................................................... 10分()36,263+-Q......................................................... 11分 ()36,264+---Q ...................................................... 12分。
湖北省咸宁市咸安区2022年九年级数学第一学期期末统考模拟试题含解析
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.如图,AB 为⊙O 的弦,AB =8,OC ⊥AB 于点D ,交⊙O 于点C ,且CD =1,则⊙O 的半径为( )A .8.5B .7.5C .9.5D .82.下列算式正确的是( )A .110--=B .()33--=C .231-=D .|3|3--=3.如图,AB 是⊙O 的弦(AB 不是直径),以点A 为圆心,以AB 长为半径画弧交⊙O 于点C ,连结AC 、BC 、OB 、OC .若∠ABC=65°,则∠BOC 的度数是( )A .50°B .65°C .100°D .130°4.如图,将ABC ∆绕点()1,0C -旋转180︒得到A B C ∆'',设点A 的坐标为(),a b ,则点A '的坐标为( )A .(),a b --B .()2, a b ---C .1,( )1a b ---+D .(),a b 2---5.点A (﹣3,y 1),B (0,y 2),C (3,y 3)是二次函数y =﹣(x +2)2+m 图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 1=y 3<y 2C .y 3<y 2<y 1D .y 1<y 3<y 26.学校要举行“读书月”活动,同学们设计了如下四种“读书月”活动标志图案,其中是中心对称图形的是( ) A . B . C . D .7.若14b a b =-,则a b的值为( ) A .5 B .15 C .3 D .138.如图,△ABC 中,AB=25,BC=7,CA=1.则sinA 的值为( )A .725B .2425C .724D .2479.如图,⊙O 的半径为2,△ABC 为⊙O 内接等边三角形,O 为圆心,OD ⊥AB ,垂足为D .OE ⊥AC ,垂足为E ,连接DE ,则DE 的长为( )A .1B .2C .3D .210.如图,四边形PAOB 是扇形OMN 的内接矩形,顶点P 在弧MN 上,且不与M ,N 重合,当P 点在弧MN 上移动时,矩形PAOB 的形状、大小随之变化,则AB 的长度( )A .变大B .变小C .不变D .不能确定二、填空题(每小题3分,共24分)11.在1:5000的地图上,某两地间的距离是20cm ,那么这两地的实际距离为______________千米.12.如图,点A 、B 、C 在O 上,若90AOC ∠=︒,15BAO ∠=︒,则C ∠=________.13.如图,路灯距离地面9.6m ,身高1.6m 的小明站在距离路灯底部(点O )20m 的点A 处,则小明在路灯下的影子AM 长为_____m .14.顺次连接矩形各边中点所得四边形为_____.15.在本赛季CBA 比赛中,某运动员最后六场的得分情况如下:17、15、21、28、12、19,则这组数据的方差为______.16.如图,在Rt △ABC 中,∠ABC =90°,BD ⊥AC ,垂足为点D ,如果BC =4,sin ∠DBC =23,那么线段AB 的长是_____.17.分解因式:x 3﹣4x 2﹣12x=_____.18.如图,AB 是⊙O 的直径,点C 在AB 的延长线上, CD 与⊙O 相切于点D ,若∠CDA =122°,则∠C =_______.三、解答题(共66分)19.(10分)如图,点A 的坐标是(-2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到△A′BC′,若反比例函数k y x=的图像恰好经过A′B 的中点D ,求这个反比例函数的解析式.20.(6分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?21.(6分)已知二次函数213442y x x =-++与x 轴交于A 、B (A 在B 的左侧)与y 轴交于点C ,连接AC 、BC .(1)如图1,点P 是直线BC 上方抛物线上一点,当PBC ∆面积最大时,点M N 、分别为x y 、轴上的动点,连接PM 、PN 、MN ,求PMN ∆的周长最小值;(2)如图2,点C 关于x 轴的对称点为点E ,将抛物线沿射线AE 的方向平移得到新的拋物线'y ,使得'y 交x 轴于点H B 、(H 在B 的左侧). 将CHB ∆绕点H 顺时针旋转90︒至''C HB ∆. 抛物线'y 的对称轴上有—动点S ,坐标系内是否存在一点K ,使得以O 、'C 、K 、S 为顶点的四边形是菱形,若存在,请直接写出点K 的坐标;若不存在,请说明理由. 22.(8分)如图1.在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,442D AB =,(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180︒,得到新的抛物线'C .()1求抛物线C的函数表达式:()2若抛物线'C与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.()3如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线'C上的对应点P',设M是C上的动点,N是'C上的动点,试探究四边形'PMP N能否成为正方形?若能,求出m的值;若不能,请说明理由.23.(8分)已知线段AC(1)尺规作图:作菱形ABCD,使AC是菱形的一条对角线(保留作图痕迹,不要求写作法);(2)若AC=8,BD=6,求菱形的边长.24.(8分)我们把对角线互相垂直的四边形叫做垂直四边形.(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.25.(10分)小明家所在居民楼的对面有一座大厦AB,高为74米,为测量居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.(1)求∠ACB的度数;(2)求小明家所在居民楼与大厦之间的距离.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,sin48°≈710,cos48°≈711,tan48°≈11 10)26.(10分)已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.(1)求证:△ABE∽△DEA;(2)若AB=4,求AE•DE的值.参考答案一、选择题(每小题3分,共30分)1、A【解析】根据垂径定理得到直角三角形,求出AD的长,连接OA,得到直角三角形,然后在直角三角形中计算出半径的长.【详解】解:如图所示:连接OA,则OA长为半径.∵OC AB ⊥于点D , ∴142AD DB AB ===, ∵在Rt OAD 中,222OA AD OD =+,∴()22214OA OA =-+, ∴178.52OA ==, 故答案为A.【点睛】本题主要考查垂径定理和勾股定理.根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的弧”得到一直角边,利用勾股定理列出关于半径的等量关系是解题关键.2、B【解析】根据有理数的减法、绝对值的意义、相反数的意义解答即可.【详解】A. 112--=-,故不正确;B. ()33--=,正确;C. 231-=-,故不正确;D. |3|3--=-,故不正确;故选B.【点睛】本题考查了有理数的运算,熟练掌握有理数的减法法则、绝对值的意义、相反数的意义是解答本题的关键.3、C【分析】直接根据题意得出AB=AC ,进而得出∠A=50°,再利用圆周角定理得出∠BOC=100°.【详解】解:由题意可得:AB=AC ,∵∠ABC=65°,∴∠ACB=65°,∴∠A=50°,∴∠BOC=100°,故选:C .【点睛】本题考查圆心角、弧、弦的关系.4、B【分析】由题意可知,点C 为线段A A '的中点,故可根据中点坐标公式求解.对本题而言,旋转后的纵坐标与旋转前的纵坐标互为相反数,(旋转后的横坐标+旋转前的横坐标)÷2=-1,据此求解即可. 【详解】解:∵ABC ∆绕点()1,0C -旋转180︒得到A B C ∆'',点A 的坐标为(),a b ,∴旋转后点A 的对应点A '的横坐标为:122a a -⨯-=--,纵坐标为-b ,所以旋转后点A '的坐标为:()2,a b ---. 故选:B .【点睛】本题考查了旋转变换后点的坐标规律探求,属于常见题型,掌握求解的方法是解题的关键.5、C【解析】先确定抛物线的对称轴,然后比较三个点到对称轴的距离,再利用二次函数的性质判断对应的函数值的大小.【详解】二次函数y =﹣(x +2)2+m 图象的对称轴为直线x =﹣2,又a=-1, 二次函数开口向下,∴x <-2时,y 随x 增大而增大,x >-2时,y 随x 增大而减小,而点A (﹣3,y 1)到直线x =﹣2的距离最小,点C (3,y 3)到直线x =﹣2的距离最大,所以y 3<y 2<y 1.故选:C .【点睛】此题主要考查二次函数的图像,解题的关键是熟知二次函数的图像与性质.6、C【分析】根据中心对称图形的概念作答.在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【详解】解:A 、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;B 、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;C 、图形中心绕旋转180°以后,能够与它本身重合,故是中心对称图形,符合题意;D 、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意.故选:C .【点睛】本题考查了中心对称图形的概念.特别注意,中心对称图形是要寻找对称中心,旋转180°后两部分重合.7、A【分析】根据比例的性质,可用b 表示a ,根据分式的性质,可得答案. 【详解】由14b a b =-,得 4b =a−b .,解得a =5b ,55a b b b== 故选:A .【点睛】本题考查了比例的性质,利用比例的性质得出b 表示a 是解题关键.8、A【分析】根据勾股定理逆定理推出∠C=90°,再根据sin =BC A AB 进行计算即可; 【详解】解:∵AB=25,BC=7,CA=1,又∵22225=247+,∴222=AB BC AC +,∴△ABC 是直角三角形,∠C=90°, ∴sin =BC A AB =725; 故选A.【点睛】本题主要考查了锐角三角函数的定义,勾股定理逆定理,掌握锐角三角函数的定义,勾股定理逆定理是解题的关键. 9、C【分析】过O 作OH BC ⊥于H ,得到12BH BC =,连接OB ,由ABC ∆为O 内接等边三角形,得到30OBC ∠=︒,求得2BC BH ==【详解】解:过O 作OH BC ⊥于H ,12BH BC ∴=, 连接OB ,ABC ∆为O 内接等边三角形,30OBC ∴∠=︒,2OB =,BH ∴==223BC BH ∴==,OD AB ⊥,OE AC ⊥,AD BD ∴=,AE CE =,132DE BC ∴==, 故选:C .【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了三角形中位线定理. 10、C【分析】四边形PAOB 是扇形OMN 的内接矩形,根据矩形的性质AB=OP=半径,所以AB 长度不变.【详解】解:∵四边形PAOB 是扇形OMN 的内接矩形,∴AB=OP=半径,当P 点在弧MN 上移动时,半径一定,所以AB 长度不变,故选:C .【点睛】本题考查了圆的认识,矩形的性质,用到的知识点为:矩形的对角线相等;圆的半径相等.二、填空题(每小题3分,共24分)11、1【分析】根据比例尺的意义,可得答案.【详解】解:120100000cm 1km 5000÷==, 故答案为:1.【点睛】本题考查了比例尺,利用比例尺的意义是解题关键,注意把厘米化成千米.12、30【分析】连接OB ,先根据OA=OB 计算出OBA ∠,再根据12ABC AOC ∠=∠计算出ABC ∠,进而计算出OBC ∠,最后根据OB=OC 得出OBC C ∠=∠即得.【详解】解:连接OB ,如下图:∴=OA OB OC =∴15OBA BAO ==︒∠∠,=C OBC ∠∠∵90AOC ∠=︒ ∴1=452ABC AOC =︒∠∠∴==451530C OBC ︒-︒=︒∠∠故答案为:30 【点睛】 本题考查了圆的性质及等腰三角形的性质,解题关键是熟知同圆的半径相等,同弧所对的圆周角是圆心角的一半. 13、4【分析】//,AM AB AB OC OM OC=,从而求得AM . 【详解】解://,AB OCAM AB OM OC∴=, 1.6209.6AM AM =+ 解得4AM =.【点睛】本题主要考查的相似三角形的应用.14、菱形【详解】解:如图,连接AC 、BD ,∵E 、F 、G 、H 分别是矩形ABCD 的AB 、BC 、CD 、AD 边上的中点,∴EF=GH=12AC ,FG=EH=12BD (三角形的中位线等于第三边的一半), ∵矩形ABCD 的对角线AC=BD ,∴EF=GH=FG=EH ,∴四边形EFGH 是菱形.故答案为菱形.考点:三角形中位线定理;菱形的判定;矩形的性质.15、5259. 【分析】先计算出这组数据的平均数,然后根据方差公式求解. 【详解】解:平均数=12(171521281219)1863+++++= 所以方差是S 2=2222221222222[(1718)(1518)(2118)(2818)(1218)(1918)]6333333-+-+-+-+-+- =5259故答案为:5259. 【点睛】本题考查方差:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2= ()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 16、5【分析】在Rt BDC 中,根据直角三角形的边角关系求出CD ,根据勾股定理求出BD ,在在Rt ABD 中,再求出AB 即可.【详解】解:在Rt △BDC 中,∵BC =4,sin ∠DBC =23, ∴28sin 433CD BC DBC =⨯∠=⨯=,∴2245 3BD BC CD=-=,∵∠ABC=90°,BD⊥AC,∴∠A=∠DBC,在Rt△ABD中,∴45325sin32BDABA==⨯=,故答案为:25.【点睛】考查直角三角形的边角关系,勾股定理等知识,在不同的直角三角形中利用合适的边角关系式正确解答的关键.17、x(x+2)(x-6).【分析】因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.首先提取公因式x,然后利用十字相乘法求解,【详解】解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).【点睛】本题考查因式分解-十字相乘法;因式分解-提公因式法,掌握因式分解的技巧正确计算是本题的解题关键.18、26°【分析】连接OD,如图,根据切线的性质得∠ODC=90°,即可求得∠ODA=32°,再利用等腰三角形的性质得∠A=32°,然后根据三角形内角和定理计算即可.【详解】连接OD,如图,∵CD与⊙O相切于点D,∴OD⊥CD,∴∠ODC=90°,∴∠ODA=∠CDA-90°=122°-90°=32°,∵OA=OD,∴∠A=∠ODA=32°,∴∠C=180°-∠ADC+∠A=180°-122°-32°=26°.故答案为:26︒.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.三、解答题(共66分)19、15yx =.【分析】作A′H⊥y轴于H.证明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出点A′坐标,再利用中点坐标公式求出点D坐标即可解决问题.【详解】作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵点A的坐标是(−2,0),点B的坐标是(0,6),∴OA=2,OB=6,∴BH=OA=2,A′H=OB=6,∴OH=4,∴A′(6,4),∵BD=A′D,∴D(3,5),∵反比例函数的图象经过点D,∴这个反比例函数的解析式15 yx =【点睛】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化-旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.20、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.1,2y =2.1,∵有利于减少库存,∴y =2.1.答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.21、(1)(1)存在,理由见解析;1(1K -,2(1,K -,3(11,2K ,4(11,2K ,5(1,7)K【分析】(1)利用待定系数法求出A ,B ,C 的坐标,如图1中,作PQ ∥y 轴交BC 于Q ,设P 213,442m m m ⎛⎫-++ ⎪⎝⎭,则Q 1,42m m ⎛⎫-+ ⎪⎝⎭,构建二次函数确定点P 的坐标,作P 关于y 轴的对称点P 1(-2,6),作P 关于x 轴的对称点P 1(2,-6),PMN ∆的周长最小,其周长等于线段12PP 的长,由此即可解决问题.(1)首先求出平移后的抛物线的解析式,确定点H ,点C′的坐标,分三种情形,当OC′=C′S 时,可得菱形OC′S 1K 1,菱形OC′S 1K 1.当OC′=OS 时,可得菱形OC′K 3S 3,菱形OC′K 2S 2.当OC′是菱形的对角线时,分别求解即可解决问题.【详解】解:(1)如图,(2,0),(8,0),(0,4)A B C -,142BC y x =-+ 过点P 作y 轴平行线,交线段BC 于点Q ,设2131,4,,4422P m m m Q m m ⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭, ()12PBC CPQ BPQ B C S S S x x PQ ∆∆∆=+=- 21424PQ m m ==-+=-14(m 1-2)1+2, ∵08m <<,104a =-< ∴m=2时,△PBC 的面积最大,此时P (2,6)作P 点关于y 轴的对称点1P ,P 点关于x 轴的对称点2P ,连接12PP 交x 轴、y 轴分别为,M N ,此时PMN ∆的周长最小,其周长等于线段12PP 的长;∵12(4,6),(4,6)P P --,∴22221212812413PP PP PP =+=+= (1)如图,∵E (0,-2),平移后的抛物线经过E ,B ,∴抛物线的解析式为y=-14x 1+bx-2,把B (8,0)代入得到b=2, ∴平移后的抛物线的解析式为y=-14x+2x-2=-14(x-1)(x-8), 令y=0,得到x=1或8,∴H (1,0),∵△CHB 绕点H 顺时针旋转90°至△C′HB′,∴C′(6,1),当OC′=C′S 时,可得菱形OC′S 1K 1,菱形OC′S 1K 1,∵2226 10,∴可得S 1(5,39),S 1(5,39),∵点C′39得到S 1,∴点O 39个单位得到K 1,∴K 1(-1,39),同法可得K 1(-139),当OC′=OS 时,可得菱形OC′K 3S 3,菱形OC′K 2S 2,同法可得K 3(11,15,K 2(11,15,当OC′是菱形的对角线时,设S 5(5,m ),则有51+m 1=11+(1-m )1,解得m=-5,∴S 5(5,-5),∵点O 向右平移5个单位,向下平移5个单位得到S 5,∴C′向上平移5个单位,向左平移5个单位得到K 5,∴K 5(1,7),综上所述,满足条件的点K 的坐标为(-1,-39)或(-1,39)或(11,1-15)或(11,1+15)或(1,7).【点睛】本题属于二次函数综合题,考查了二次函数的性质,平移变换,翻折变换,菱形的判定和性质,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题.22、()12142y x =-+;()2222m <<;()3四边形'PMP N 可以为正方形,6m = 【分析】(1)由题意得出A,B 坐标,并代入,,A B D 坐标利用待定系数法求出抛物线C 的函数表达式;(2)根据题意分别求出当C '过点()0,4D 时m 的值以及当C '过点()22,0B 时m 的值,并以此进行分析求得; (3)由题意设(),P n n ,代入解出n ,并作HK OF ⊥,PHHK ⊥于H ,利用正方形性质以及全等三角形性质得出M 为()2,2m m --,将M 代入21: 42C y x =-+即可求得答案. 【详解】解:()142AB = (), 22,0)2,0(2A B ∴-将,,A B D 三点代入得2 y ax bx c =++ 8220.8220.4a b c a b c c ⎧-+=⎪⎪++=⎨⎪=⎪⎩解得1204a b c ⎧=-⎪⎪=⎨⎪=⎪⎩2142y x ∴=-+; ()2如图21:42C y x =-+.关于(),0F m 对称的抛物线为()21:242C y x m '=-- 当C '过点()0,4D 时有()2140242m =-- 解得:2m =当C '过点()22,0B 时有()21022242m =-- 解得:22m =222m ∴<<;()3四边形'PMP N 可以为正方形由题意设(),P n n ,P 是抛物线C 第一象限上的点2142n n ∴-+= 解得:122,2n n ==-(舍去)即()2,2P如图作HK OF ⊥,PH HK ⊥于H ,MK HK ⊥于K四边形PMP N '为正方形易证PHK FKM ≌2FK HP m ∴==-2MK HF ==M ∴为()2,2m m --∴将M 代入21: 42C y x =-+得()212242m m -=--+ 解得:126,0m m ==(舍去)∴当6m =时四边形PMP N ''为正方形.【点睛】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,难度大.23、(1)详见解析;(2)1.【解析】(1)先画出AC 的垂直平分线,垂足为O ,然后截取OB=OD 即可;(2)根据菱形的性质及勾股定理即可求出边长.【详解】解:(1)如图所示,四边形ABCD 即为所求作的菱形;(2)∵AC =8,BD =6,且四边形ABCD 是菱形,∴AO =12AC =4,DO =12BD =3,且∠AOD =90° 则AD 22AO DO +2234+1. 【点睛】本题主要考查菱形的画法及性质,掌握菱形的性质是解题的关键.24、(1)四边形ABCD 是垂直四边形;理由见解析;(2)见解析;(3)GE 73【分析】(1)由AB =AD ,得出点A 在线段BD 的垂直平分线上,由CB =CD ,得出点C 在线段BD 的垂直平分线上,则直线AC 是线段BD 的垂直平分线,即可得出结果; (2)设AC 、BD 交于点E ,由AC ⊥BD ,得出∠AED =∠AEB =∠BEC =∠CED =90°,由勾股定理得AD 2+BC 2=AE 2+DE 2+BE 2+CE 2,AB 2+CD 2=AE 2+BE 2+DE 2+CE 2,即可得出结论;(3)连接CG 、BE ,由正方形的性质得出AG =AC ,AB =AE ,242CG AC =2BE AB =,∠CAG =∠BAE =90°,易求∠GAB =∠CAE ,由SAS 证得△GAB ≌△CAE ,得出∠ABG =∠AEC ,推出∠ABG +∠CEB +∠ABE =90°,即CE⊥BG,得出四边形CGEB是垂直四边形,由(2)得,CG2+BE2=BC2+GE2,5 AB==,BE==【详解】(1)解:四边形ABCD是垂直四边形;理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂直四边形;(2)证明:设AC、BD交于点E,如图2所示:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得:AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+DE2+CE2,∴AD2+BC2=AB2+CD2;(3)解:连接CG、BE,如图3所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,CG=BE=,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,AG ACGAB CAE AB AE=⎧⎪∠=∠⎨⎪=⎩,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∵∠AEC+∠CEB+∠ABE=90°,∴∠ABG+∠CEB+∠ABE=90°,即CE⊥BG,∴四边形CGEB是垂直四边形,由(2)得,CG2+BE2=BC2+GE2,∵AC=4,BC=3,∴5 AB==,BE==∴2222222373 GE CG BE BC=+-=+-=,∴GE=73.【点睛】本题是四边形综合题,主要考查了正方形的性质、勾股定理、垂直平分线、垂直四边形、全等三角形的判定与性质等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.25、(1)85°;(2)小明家所在居民楼与大厦的距离CD的长度是40米.【分析】(1)结合图形即可得出答案;(2)利用所给角的三角函数用CD表示出AD、BD;根据AB=AD+BD=74米,即可求得居民楼与大厦的距离.【详解】解:(1)由图知∠ACB=37°+48°=85°;(2)设CD=x米.在Rt△ACD中,tan37°=AD CD,则34=ADx,∴AD=34x;在Rt△BCD中,tan48°=BDCD,则1110=BDx,∴BD=1110x.∵AD+BD=AB,∴34x+1110x=74,解得:x=40,答:小明家所在居民楼与大厦的距离CD的长度是40米.【点睛】本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.26、(1)见解析;(2)2【解析】试题分析:(1)根据菱形的对边平行,可得出∠1=∠2,结合∠AED=∠B即可证明两三角形都得相似.(2)根据(1)的结论可得出AE ABDA DE=,进而代入可得出AE•DE的值.试题解析:(1)如图,∵四边形ABCD是菱形,∴AD∥BC.∴∠1=∠2. 又∵∠B=∠AED,∴△ABE∽△DEA.(2)∵△ABE∽△DEA,∴AE ABDA DE=.∴AE•DE=AB•DA.∵四边形ABCD是菱形,AB=1,∴AB=DA=1.∴AE•DE=AB2=2.考点:1.菱形的性质;2.相似三角形的判定和性质.。
湖北省咸宁市咸安区2025届九上数学期末教学质量检测试题含解析
湖北省咸宁市咸安区2025届九上数学期末教学质量检测试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)1.在圆,平行四边形、函数2y x 的图象、1y x =-的图象中,既是轴对称图形又是中心对称图形的个数有( ) A .0 B .1 C .2 D .32.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.永州市2016年底大约有贫困人口13万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .()13121x -=B .()21311x -=C .()13121x +=D .()21311x += 3.如果用配方法解方程,那么原方程应变形为( ) A . B . C . D .4.如图,将矩形纸片ABCD 折叠,使点A 落在BC 上的点F 处,折痕为BE ,若沿EF 剪下,则折叠部分是一个正方形,其数学原理是( )A .邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .两个全等的直角三角形构成正方形D .轴对称图形是正方形5.有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是,将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是随的增大而增大的概率是( )A .B .C .D .16.在△ABC 中,∠C=90°,则下列等式成立的是( )A .sinA=AC AB B .sinA=BC AB C .sinA=AC BCD .sinA=BC AC7.下列说法正确的是( )A .了解飞行员视力的达标率应使用抽样调查B .一组数据3,6,6,7,9的中位数是6C .从2000名学生中选200名学生进行抽样调查,样本容量为2000D .一组数据1,2,3,4,5的方差是108.有甲、乙、丙、丁四架机床生产一种直径为20mm 圆柱形零件,从各自生产的零件中任意抽取10件进行检测,得出各自的平均直径均为20mm ,每架机床生产的零件的方差如表: 机床型号甲 乙 丙 丁 方差mm 2 0.012 0.020 0.015 0.102则在这四台机床中生产的零件最稳定的是( ).A .甲B .乙C .丙D .丁9.如图,点,,B D C 是O 上的点,120BDC ∠=,则BOC ∠是( )A .120B .130C .150D .16010.如图,一个半径为r (r <1)的圆形纸片在边长为6的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是( )A .πr 2B 23C .223r r π-D .221233r r π- 11.下列说法正确的是( )A .三点确定一个圆B .同圆中,圆周角等于圆心角的一半C .平分弦的直径垂直于弦D .一个三角形只有一个外接圆12.如图,ABC 中,30A ∠=,3tan 2B =,23AC =,则AB 的长为( )A . 33+B . 223+C .5D .92二、填空题(每题4分,共24分)13.已知扇形的半径为8cm ,圆心角为120,则扇形的弧长为__________cm .14.为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是______小时.睡眠时间(小时)6 7 8 9 学生人数8 6 4 215.如图,在半径为10cm 的圆形铁片上切下一块高为4cm 的弓形铁片,则弓形弦AB 的长为__________cm .16.若点P (m ,-2)与点Q (3,n )关于原点对称,则2019()m n +=______.17.抛物线y=9x 2﹣px +4与x 轴只有一个公共点,则p 的值是_____.18.若用αn 表示正n 边形的中心角,则边长为4的正十二边形的中心角是____.三、解答题(共78分)19.(8分)已知:如图,在四边形ABCD 中,//AB DC ,AC BD ⊥,垂足为M ,过点A 作AE AC ⊥,交CD 的延长线于点E .(1)求证:四边形ABDE 是平行四边形(2)若12AC =,3cos 5ABD ∠=,求BD 的长 20.(8分)如图,已知ABC 是边长为4cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的移动速度都是1/cm s ,当点P 到达点B 时,P 、Q 两点停止运动,设点P 的运动时间的t 秒,解答下列问题.(1)2t s =时,求PBQ △的面积;(2)若PBQ △是直角三角形,求t 的值;(3)用t 表示PBQ △的面积并判断13PBQ ABC S S =△△能否成立,若能成立,求t 的值,若不能成立,说明理由.21.(8分)中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为 ;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.22.(10分)如图,分别以△ABC 的边AC 和BC 为腰向外作等腰直角△DAC 和等腰直角△EBC ,连接DE .(1)求证:△DAC ∽△EBC ;(2)求△ABC 与△DEC 的面积比.23.(10分)如图,抛物线y =ax 2+32x+c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.24.(10分)如图,有一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,PN 时,试通过计算说明是否需要采取紧急措施. 就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即4m25.(12分)某商场经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价为25元/件时,每天的销售量是250件;销售单价每上涨一元,每天的销售量就减少10件,(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?26.如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M 作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当OB=6cm,OC=8cm时,求⊙O的半径及MN的长.参考答案一、选择题(每题4分,共48分)1、C【分析】根据轴对称图形又是中心对称图形的定义和函数图象,可得答案.【详解】解:圆是轴对称图形又是中心对称图形;平行四边形是中心对称图形,不是轴对称图形;函数y=x 2的图象是轴对称图形,不是中心对称图形;1y x=-的图象是中心对称图形,是轴对称图形; 故选:C .【点睛】本题考查了反比例函数和二次函数的图象,利用了轴对称,中心对称的定义.2、B【分析】根据等量关系:2016年贫困人口×(1-下降率2)=2018年贫困人口,把相关数值代入即可. 【详解】设这两年全省贫困人口的年平均下降率为x ,根据题意得:213(1)1x -=,故选:B .【点睛】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键.3、A【解析】先移项,再配方,即方程两边同时加上一次项系数一般的平方.【详解】解:移项得,x 2−2x =3,配方得,x 2−2x +1=4,即(x−1)2=4,故选:A .【点睛】本题考查了用配方法解一元二次方程,掌握配方法的步骤是解题的关键.4、A【解析】∵将长方形纸片折叠,A落在BC上的F处,∴BA=BF,∵折痕为BE,沿EF剪下,∴四边形ABFE为矩形,∴四边形ABEF为正方形.故用的判定定理是;邻边相等的矩形是正方形.故选A.5、C【解析】分析:从四张卡片中,抽出随的增大而增大的有共3个,即从四个函数中,抽取到符合要求的有3个。
湖北省咸宁市咸安区2021届九年级上学期期末考试数学答案
(2)易求 C(1,0),OA=OC,若 PA=PC,则点 P 在直 x 1)2 2 在第一象限的交点即为点 P. y
令 y x2 2x 1=x ,
A
解得: x = 1 5 (舍)或 1 5
2
2
O
B yx
Q
P
C
x
(第 24 题)
第3页共4页
△ABC 的内切圆半径为 1 ····························································································9 分
21.(1)证明:连接 OE(过程略)(4 分) (2) r 5 (过程略)(9 分)
共有 20 种等可能结果,其中两个球颜色刚好相同的情况有 4 种,
P(摸出的两个球颜色恰好相同)= 4 1 ·············································································8 分
20 5
19.(1) y = 2 .·····················································································································3 分 x
·······················································································································································8 分 此时 x=19 满足 (12 x 24 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 30 页
2020-2021学年湖北省咸宁市咸安区九年级上学期期末考试数学
试卷
一.选择题(共8小题,满分24分)
1.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A .
B .
C .
D .
2.(3分)以下说法合理的是( )
A .小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是12
B .某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖
C .某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12
D .小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23 3.(3分)若点M 在抛物线y =(x +3)2﹣4的对称轴上,则点M 的坐标可能是( )
A .(3,﹣4)
B .(﹣3,0)
C .(3,0)
D .(0,﹣4)
4.(3分)要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),
计划安排30场比赛,设邀请x 个球队参加比赛,根据题意可列方程为( )
A .x (x ﹣1)=30
B .x (x +1)=30
C .x(x−1)2=30
D .x(x+1)2=30
5.(3分)已知⊙O 的直径为12cm ,圆心到直线L 的距离5cm ,则直线L 与⊙O 的公共点
的个数为( )
A .2
B .1
C .0
D .不确定
6.(3分)Rt △ABC 中,∠C =90°,AB =5,内切圆半径为1,则三角形的周长为( )
A .12
B .13
C .14
D .15
7.(3分)已知等腰三角形的三边长分别为a 、b 、4,且a 、b 是关于x 的一元二次方程x 2
﹣12x +m +2=0的两根,则m 的值是( )
A .34
B .30
C .30或34
D .30或36
8.(3分)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示:关于x 的方程ax 2+bx +c =m。