三维地形漫游系统的OPENGL实现

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三维地形漫游系统的OPENGL实现

引言 (2)

1地形可视化的概念: (2)

2 三维地形的生成技术: (3)

2.1 基于真实数据的地形生成 (3)

2.2 基于分形技术的地形生成 (3)

2.3 Diamond一Square算法: (4)

3基于OpenGL的地形渲染: (5)

3.1:OpenGL的基本操作 (6)

4 三维地形的简化技术: (7)

4.1四叉树的LOD简化算法 (7)

4.2自适应实时网格优化算法(ROAM) (9)

5三维地形的漫游系统: (10)

5.1各个类之间的类视图,如图所示: (10)

5.2各个类的具体实现: (11)

5.2.1数据采集和处理 (11)

5.2.2Lod 类,封装LOD技术 (11)

5.3系统实现 (12)

引言

本系统是基于OpenGL的三维地形漫游,系统主要包括三个方面:

地形数据的采集与计算,由于本系统是采用随机中点位移法得到地形高度图数据。采用Diamond一Square算法得到原始数据。地形渲染,采用基于OpenGL的环境,在地形中加入光照,雾,天空,以及纹理等效果对地形进行模拟,使其更接近真实。采用LOD技术对地形进行简化和管理。

1地形可视化的概念:

地理信息系统技术从60年代以来,经过40多年的发展,现逐步向三维化、可视化和网络化等方面发展,GIS软件平台不断推陈出新。传统的2D-GIS 软件通过矢量或栅格的方法完成二维地表的成图和分析,多年来,一直用二维地图产品表示三维地物,包括地质图、横断面图、示意图以及专门的几何结构图如立体网等。但在某些领域,人们需要分析具有三维坐标的地表面以下的状况,这种空间关系时常为判断和评价矿产资源、石油资源和污染状况提供重要的信息。因此人们在2D-GIS软件的基础上研究和开发了一些适合实际需要的3D-GIS产品。“数字地球”强调对地球的真三维的描述,中国政府将“数字地球”列为21世纪的战略目标之一,使得3D-GIS的理论研究和软件开发又掀起了一次高峰。所有的GIS系统都带有包括空间数据、拓扑关系及属性数据在内的地理数据库,或者能与外部数据库管理系统直接进行连接。GIS所处理的空间数据按其处理方式不同,可分为:栅格数据、2D拓扑矢量数据、数字高程模型(DEM)、三角形不规则网格(TIN)、三维模型、时间模型等,而所有这些都是以2D或2.5D(准三维)为主的。2D-GIS用点、线和面来表示地理实体,许多3D地理实体被简化为2D形式,得到的是二维地图、图像产品,其分析功能也是在二维基础上进行的。2.5D或称准3D意思是它不具备真正的Z坐标,而是将Z值作为某一位置上的属性变量,它并不是空间坐标值。在真3D-GIS中,可用表达式a=f(x,y,z)来表示,a为点(x,y,z)对应的属性值,z是独立于x,y的自变量,即三维空间中的z坐标值。3D-GIS 具有连续的数据结构和与之相应的分析功能,由此带来的好处是可以从空间的角度分析和显示物体。地形的可视化是一门以研究数字地面模型(Digital Terrain Model,DTM)或数字高程域(Digital Height Field)的显示、简化、仿真为内容的学科,它属于计算机图形学的一个分支。除了计算机图形学之外,计算几何也是它的重要基础知识。它的应用涉及地理信息系统(GIS)、虚拟现实(VR)技术、战场环境仿真、娱乐与游戏、飞行穿越(Flythrough)、土地管理与利用、气象数据的可视化等各个领域。

常用的地形可视化方法大致有写景法、等高线法、分层设色法、晕渲法、拍摄实地景观照片、建立三维几何相似的实物模型、产生三维线框透视投影图和逼真地形显示等多种方法。随着光栅图形显示硬件的发展,以真实感图形为代表的光栅图形技术日益成为计算机图形发展的主流,基于计算机图形学理论的三维地形逼真显示逐渐成为地形可视化发展的主流。产生逼真地形

显示的方法主要有两种:一是将航空像片或卫星影像数据映射到数字地面模型上,另一种是基于分形模型的地面模拟。随着计算机视觉、科学计算可视化、遥感技术、计算机图形学等相关学科的发展,由航空航天摄影测量获取的地形数据来生成具有高度细节层次的三维地形模型已经十分普遍。这些由上百万或者更多的三角形面片表示的各种地形模型,满足了人们对地形真实性所提出的越来越高的要求,但由于这些数据很少从绘制效率方面考虑进行优化,因此对计算机性能又提出了新的挑战。

2 三维地形的生成技术:

2.1 基于真实数据的地形生成

根据真实地形数据进行地形生成是实际工作中使用最多的一类,目前大多采用数字地面模型(Digital Terrain Model,DTM)来生成,DTM数据由在规则网格地形图上采样所得的高程值构成,与飞机或卫星上所拍摄的遥感纹理图像数据相对应,这些纹理图像在重构地形表面时被映射到相应的部位。简单的地形渲染算法,是将相邻的4个网格点定义的DTM单元变换成2个三维空间的三角形,然后将视锥体内部区域的所有这样的三角形送入图形流水线进行绘制。这种算法还可将图像纹理数据以它的最高分辨率映射到对应的多边形上,但这是一个效率很低的方法,因为在一般情况下,三角形和遥感图像纹理像素的数量非常大,而每一个独立的三角形投影到图像空间后则很小,并且很多纹理像素可能被压缩到一个图像像素中,以至于对图像的影响可以忽略不计。因此,如果用DTM直接生成地形,即使在高性能的图形硬件平台上,要进行实时渲染,也几乎是不可能的,通常要对DTM数据进行一定的简化。地形简化方法将在下一章进行详细介绍。

2.2 基于分形技术的地形生成

二十世纪七十年代美籍法国数学家Mnedelbot为研究自然界中复杂极不规则的几何现象创立了分形几何学[34〕,此后,分形理论得到了广泛关注和蓬勃发展。分形(rfactal)的两个重要特征是自相似性和分数维。现在,随着计算机图形图像处理技术的发展应用,用分形几何来表达千差万别的自然现象产生了许多传统方法无法达到的美妙结果。而基于分形原理来研究地形场景(包括地形表面、地形纹理、蓝天白云、地貌植被等)的生成和多分辨率表达是分形几何极为重要的应用领域,也是三维地形可视化的一个重要l”[l’811’9]。国内外一些学者从不同的角度、不同的侧面进行了持续而深入方面究,但普遍而言缺乏系统性、比较性、实践性。

英国植物学家Brwon在1827年注意到浮在液面上的微粒极不规则的运动,空气中的烟尘粒子也具有相似的现象,后来解释为由液体的分子撞击所引起,称这一现象为布朗运动。假设一个随机过程X(t)是实变量t的函数,对每一个给定的时刻t,X(t)是一个随机变量,则两个时刻的函数差:

相关文档
最新文档